

**First-principles investigation of equilibrium magnesium isotope fractionation
among mantle minerals: Review and new data**

Wenzhong Wang^{1,2,3*}, Zhongqing Wu^{1,4}, Shichun Huang⁵, Fang Huang^{4,6}

¹Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

²Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA

³Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom

⁴CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui 230026, China

⁵Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville, TN, 37996 United States

⁶CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

*Correspondence: Wenzhong Wang (wz30304@mail.ustc.edu.cn)

1 **Abstract**

2 Equilibrium inter-mineral Mg isotope fractionation factors ($10^3\ln\alpha$) are key for
3 using Mg isotopes to investigate high-temperature geochemical processes. First-
4 principles calculations based on density functional theory (DFT) has been proven to be
5 a reliable approach to predict the reduced partition function ratio ($10^3\ln\beta$) and the inter-
6 mineral $10^3\ln\alpha$ values, and there are large amounts of data calculated based on different
7 methods in the literature. We here review previous DFT calculations on inter-mineral
8 $10^3\ln\alpha$ of Mg isotopes and complement new calculations for some minerals, and
9 thoroughly discuss and compare the results from different methods. Two types of
10 approximations, the local density approximation (LDA) and the generalized gradient
11 approximation (GGA), are adopted to model the exchange-correlation potential in DFT
12 calculations. Static calculations and quasi-harmonic approximation (QHA) are both
13 used to calculate the $10^3\ln\alpha$. In theory, the QHA method is more reliable but more
14 computationally expensive than the static method, because the former derives the
15 pressure- and temperature-dependent $10^3\ln\beta$ from its volume- and temperature-
16 dependent form via the equation of states.

17 The structural and vibrational properties of mantle minerals predicted by the LDA
18 calculations agree well with experimental results, while the GGA calculations
19 overestimate the volumes and Mg-O bond lengths. There are systematic differences
20 between the calculated $10^3\ln\beta$ values using static LDA and GGA calculations; however,
21 both approaches predict similar inter-mineral $10^3\ln\alpha$ values at high temperatures
22 because the systematic difference between two $10^3\ln\beta$ values cancels out. Furthermore,
23 the inter-mineral $10^3\ln\alpha$ values predicted by the static LDA method generally agree
24 with those from the LDA+QHA method, which is used to calculate the pressure effect
25 on $10^3\ln\alpha$. Two sets of inter-mineral $10^3\ln\alpha$ values of $^{26}\text{Mg}/^{24}\text{Mg}$ calculated by static
26 LDA and LDA+QHA methods are present as a function of temperature and/or pressure
27 in this review. Large Mg isotope fractionation exists between some minerals, and inter-
28 mineral $10^3\ln\alpha$ values could be significantly affected by pressure due to the difference

29 in the pressure slopes of their $10^3 \ln \beta$. The measured forsterite-magnesite and spinel-
30 magnesite Mg isotope fractionation factors in previous experiments are consistent with
31 the calculated results within uncertainties. Using the calculated data, we examine the
32 degree to which the observed inter-mineral Mg isotope fractionation in natural rocks
33 represents equilibrium and model the Mg isotope fractionation during late-stage basalt
34 differentiation.

35 **Keywords:** first-principles calculations, equilibrium isotope fractionation, Mg isotopes,
36 geothermometer, quasi-harmonic approximation, basalt differentiation

37

38 1. Introduction

39 Magnesium is a major rock-forming element. It is the fourth most common
40 element in the Earth (McDonough and Sun, 1995) and the fifth most abundant element
41 in the continental crust (Rudnick and Gao, 2014). Magnesium has three stable isotopes,
42 ^{24}Mg , ^{25}Mg , and ^{26}Mg , with relative abundances of 78.99%, 10.00%, and 11.01%,
43 respectively. The Mg isotope composition is usually reported as $\delta^{26}\text{Mg} =$
44 $[(^{26}\text{Mg}/^{24}\text{Mg})_{\text{sample}}/(^{26}\text{Mg}/^{24}\text{Mg})_{\text{standard}} - 1] \times 1000$ (‰), where $(^{26}\text{Mg}/^{24}\text{Mg})_{\text{standard}}$ refers
45 to the Mg isotopic ratio in a standard sample. Recent advances in Mg isotope analytical
46 technique lead to an analytical precision of $\delta^{26}\text{Mg}$ to the level of < 0.1 ‰ (2SD), and
47 large $\delta^{26}\text{Mg}$ variations were found in natural samples (see review in Young and Galy
48 (2004) and Teng (2017)). This makes Mg isotopes a useful tool in the studies of a variety
49 of geological processes, including chemical weathering and alteration (Brewer et al.,
50 2018; Cuozzo et al., 2020; Huang et al., 2018, 2016, 2012; Li et al., 2010; Liu et al.,
51 2014; Teng et al., 2010b), magma differentiation (Huang et al., 2011a; W.-Y. Li et al.,
52 2016; Liu et al., 2011; Teng et al., 2007, 2010a; Wang et al., 2012, 2016; X.-J. Wang et
53 al., 2021; Young et al., 2009), the recycling of surficial materials into the mantle (Hu et
54 al., 2020, 2017; Huang et al., 2015; S.-G. Li et al., 2016; Liu et al., 2010; Wang et al.,
55 2014; X.-J. Wang et al., 2017; Yang et al., 2012), and planetary evolution (Hin et al.,
56 2017; Young et al., 2019).

57 Applications of Mg isotopes in high-temperatures geochemical processes require
58 the understanding of equilibrium mineral-melt and inter-mineral Mg isotope
59 fractionation. The similar $\delta^{26}\text{Mg}$ values of mantle peridotites, mid-ocean ridge basalts,
60 and ocean island basalts from different regions (e.g., Teng et al., 2010a, 2007) suggest
61 a negligible Mg isotope fractionation during partial melting of mantle peridotites and
62 basalt differentiation. This also reveals an unresolvable Mg isotope fractionation
63 between olivine and melt ($\Delta^{26}\text{Mg}_{\text{olivine-melt}} = 0.0 \pm 0.04 \text{ ‰}$) at magmatic temperatures
64 when compared with the current levels of precision (Teng et al., 2010a, 2007). Mineral-
65 melt Mg isotope fractionation for other minerals can be derived from the equilibrium
66 mineral-olivine Mg isotope fractionation factors and $\Delta^{26}\text{Mg}_{\text{olivine-melt}}$. There are
67 extensive studies in the literature investigating the $\delta^{26}\text{Mg}$ of constituent minerals in a
68 variety of mantle xenoliths, including olivine, pyroxenes, garnet, and spinel (Chen et
69 al., 2018; Handler et al., 2009; Yan Hu et al., 2016; Hu et al., 2020; Li et al., 2011; Liu
70 et al., 2011; Stracke et al., 2018; Wang et al., 2015, 2012; Xiao et al., 2016, 2013; Young
71 et al., 2009). These studies found that the orthopyroxene-olivine Mg isotope
72 fractionation ($\Delta^{26}\text{Mg}_{\text{orthopyroxene-olivine}} = \delta^{26}\text{Mg}_{\text{orthopyroxene}} - \delta^{26}\text{Mg}_{\text{olivine}}$) ranges from -0.05
73 $\pm 0.14 \text{ ‰}$ to $0.25 \pm 0.14 \text{ ‰}$ (2SD), and the measured $\Delta^{26}\text{Mg}_{\text{cpx-ol}}$ varies in a wide range
74 from $-0.25 \pm 0.07 \text{ ‰}$ (Yan Hu et al., 2016) to $+0.42 \pm 0.14 \text{ ‰}$ (Young et al., 2009). The
75 observed $\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$ ranges from $+0.11 \pm 0.06 \text{ ‰}$ in garnet-bearing
76 pyroxenites from Yan Hu et al. (2016) to $+1.14 \pm 0.04 \text{ ‰}$ in eclogites from Li et al.
77 (2011), and the $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ ranges from $+0.17 \pm 0.14 \text{ ‰}$ in north China craton
78 peridotites from Xiao et al. (2013) to $+0.87 \pm 0.14 \text{ ‰}$ in San Carlos xenoliths from
79 Young et al. (2009). The degree to which the observed inter-mineral fractionation in
80 natural samples represents equilibrium warrants a closer examination.

81 Olivine- and spinel-carbonate Mg isotope fractionation factors, and hence the Mg
82 isotope fractionation between spinel and forsterite ($\Delta^{26}\text{Mg}_{\text{spinel-forsterite}}$) have been
83 determined experimentally using the three-isotope method (Macris et al., 2013; Tang et
84 al., 2021). They reported large $\Delta^{26}\text{Mg}_{\text{spinel-forsterite}}$ values at 873-1073 K and 1 GPa, and

85 found that $\Delta^{26}\text{Mg}_{\text{spinel-forsterite}}$ is also affected by the Cr content in spinel. The Mg isotope
86 fractionation factors among other minerals have not been yet investigated by
87 experiments until now. Alternatively, first-principles calculations based on DFT have
88 been widely used to determine the equilibrium isotope fractionation for many systems
89 including Mg (Blanchard et al., 2017; Feng et al., 2014; Gao et al., 2018; Huang et al.,
90 2014, 2013; Li et al., 2019b, 2019a; Méheut et al., 2009; Schauble, 2011; W. Wang et
91 al., 2021b, 2021a, 2017b, 2017a; Wang et al., 2020a, 2019b; W. Wang et al., 2021e; Wu
92 et al., 2015). Specifically, Schauble (2011) calculated the equilibrium Mg isotope
93 fractionation factors among olivine, spinel, pyroxene, and magnesite at static 0 GPa.
94 Huang et al. (2013) calculated the equilibrium Mg isotope fractionation factors among
95 garnet, clinopyroxene, orthopyroxene, and olivine at various pressures and
96 temperatures, and found a substantial pressure effect on the equilibrium Mg isotope
97 fractionation among garnet, pyroxene, and olivine. These two studies used different
98 approximations for the exchange-correlation potential (GGA vs. LDA) to perform the
99 DFT calculations and different methods (the static method vs. the QHA method) to
100 calculate the equilibrium Mg isotope fractionation factors from the Urey equation, but
101 their results for the first order are consistent with each other at 0 GPa (Huang et al.,
102 2013).

103 In this contribution, we review previous first-principles studies on the
104 equilibrium Mg isotope fractionation among a variety of mantle minerals and present
105 new calculated results for Fe-Ti oxides (magnesioferrite and ilmenite), which play an
106 important role during late-stage basalt differentiation (e.g., X.-J. Wang et al., 2021). We
107 thoroughly discuss the results calculated from different approximations for the
108 exchange-correlation potential and different methods, and provide a full set of self-
109 consistent equilibrium inter-mineral Mg isotope fractionation factors for future usage.
110 Furthermore, we compare the theoretical results with experimental measurements, and
111 use the data to examine whether the observed inter-mineral Mg isotope fractionation in
112 mantle rocks represents equilibrium or not. Finally, we apply the fractionation data to

113 interpret the Mg isotope fractionation during late-stage basalt differentiation.

114

115 **2. Methods**

116 **2.1 Equilibrium isotope fractionation factor**

117 The equilibrium isotope fractionation factor between Phases A and B is defined as
118 the ratio of the isotopic ratios in Phases A and B:

119 $\alpha_{A-B} = R_A/R_B = (Y^*/Y)_A / (Y^*/Y)_B$ (1)

120 where Y^* and Y refer to the concentrations of two isotopes. In the theoretical
121 calculations, the equilibrium isotope fractionation factor can be expressed as the ratio
122 of the reduced partition function ratios (β factor) of the two phases:

123 $\alpha_{A-B} = \beta_A / \beta_B$ or $10^3 \ln \alpha_{A-B} (\%) = 10^3 \ln \beta_A - 10^3 \ln \beta_B$ (2)

124 The reduced partition function ratio of a given phase describes the isotopic
125 fractionation between that specific phase and an ideal atomic gas. Following Bigeleisen
126 and Mayer (1947) and Richet et al. (1977), based on the harmonic approximation and
127 the Teller-Redlich rule, the reduced partition function ratio β_A of an element X in Phase
128 A is given by:

129
$$\beta_A = \frac{Q_h}{Q_l} = \prod_i^{3N} \frac{u_{ih}}{u_{il}} \frac{e^{-\frac{1}{2}u_{ih}}}{1-e^{-u_{ih}}} \frac{1-e^{-u_{il}}}{e^{-\frac{1}{2}u_{il}}}$$
 (3)

130 where h and l represent the heavy and light isotopes, respectively; Q_h and Q_l refer to
131 the vibrational partition function for the heavy and light isotopes, respectively. The
132 running index i refers to the vibrational frequency mode, and N is the number of atoms
133 in the unit cell. Parameters u_{ih} and u_{il} are defined as:

134
$$u_{ih \text{ or } il} = \hbar \omega_{ih \text{ or } il} / k_B T$$
 (4)

135 where \hbar and k_B are the Planck and Boltzmann constants, respectively; $\omega_{ih \text{ or } il}$ is
136 the vibrational frequency; and T is the temperature in Kelvin. It can be noted that
137 equilibrium isotope fractionation is related to the changes in vibrational frequencies
138 caused by the isotopic substitution of an element in a given system (Bigeleisen and
139 Mayer, 1947; Urey, 1947). Thus, deriving the equilibrium isotope fractionation factor
140 requires calculations of vibrational properties.

141 Because the differences in vibrational frequencies caused by isotope substitution
 142 ($\Delta u_i = u_{il} - u_{ih}$) are very small, following the analysis in previous works (Bigeleisen
 143 and Mayer, 1947; Dauphas et al., 2012; Kowalski et al., 2013a; W. Wang et al., 2021e),
 144 Eq. (1) can be written as:

$$145 \quad \beta = 1 + \sum_{i=1}^{3N} \left(\frac{1}{2} - \frac{1}{u_i} + \frac{1}{\exp(u_i)-1} \right) \Delta u_i \quad (7)$$

146 The Taylor expansion of the function enclosed by the summation sign is:

$$147 \quad G(u_i) = \frac{1}{2} - \frac{1}{u_i} + \frac{1}{\exp(u_i)-1} = \frac{u_i}{12} - \frac{u_i^3}{720} + \frac{u_i^5}{30240} - \frac{u_i^7}{1209600} + \dots \quad (8)$$

148 When only the first term of the Taylor expansion is considered, the β factor is:

$$149 \quad \beta = 1 + \sum_{i=1}^{3N} \frac{u_i}{12} \Delta u_i = 1 + \sum_{i=1}^{3N} \frac{u_{il}^2 - u_{ih}^2}{24} \quad (9)$$

150 As we only consider changes in vibrational frequencies caused by the isotopic
 151 substitution of the element of interest, Eq. (9) can be expressed as:

$$152 \quad \beta = 1 + \sum_{i=1}^{3N} \frac{u_{il}^2 - u_{ih}^2}{24} = 1 + \left(\frac{1}{m_l} - \frac{1}{m_h} \right) \frac{\hbar^2}{24k_B^2 T^2} \sum_{i=1}^3 A_i \\ 153 \quad = 1 + \left(\frac{1}{m_l} - \frac{1}{m_h} \right) \frac{\hbar^2}{8k_B^2 T^2} \langle F \rangle \quad (10)$$

$$154 \quad 10^3 \ln \beta = \left(\frac{1}{m_l} - \frac{1}{m_h} \right) \frac{\hbar^2}{8k_B^2 T^2} \langle F \rangle \quad (11)$$

155 where m_l and m_h are the masses of light and heavy isotopes, respectively. A_i ($i =$
 156 1, 2, 3) are the force constants acting on the isotopic atom in the three perpendicular
 157 spatial directions, and $\langle F \rangle$ is the average force constant. The use of Eq. (11) requires
 158 that frequencies related to the element of interest ω_i (cm^{-1}) are ≤ 1.39 T (T is the
 159 temperature in Kelvin).

161 2.2 Quasi-harmonic approximation

162 In general, the $10^3 \ln \beta$ and $10^3 \ln \alpha$ calculation procedures for solids involve three
 163 steps: (1) optimizing the solid structures under a certain pressure under static conditions;
 164 (2) calculating the vibrational properties of the relaxed structures with different isotope
 165 masses; and (3) deriving $10^3 \ln \beta$ and $10^3 \ln \alpha$ using Eqs. (3) and (2). The $10^3 \ln \beta$ obtained
 166 using the static method is volume- and temperature-dependent because vibrational

167 frequencies from first-principles calculations are a function of volume. In many
 168 published studies (Blanchard et al., 2017; Feng et al., 2014; Gao et al., 2018; Li et al.,
 169 2019a, 2019b; Méheut et al., 2009; Schable, 2011; W. Wang et al., 2017a; Wang et al.,
 170 2020a, 2019b; W. Wang et al., 2021e, 2021b, 2017b), the temperature-dependent $10^3\ln\beta$
 171 values calculated from the vibrational frequencies at static 0 GPa (called the "static
 172 method" thereafter) are typically used to derive $10^3\ln\alpha$ at 0 GPa and different
 173 temperatures, without considering the temperature effect on volume. In theory, the solid
 174 volume increases with temperature at a certain pressure, and the temperature-dependent
 175 $10^3\ln\beta$ values at static 0 GPa are not the values at realistic 0 GPa and different
 176 temperatures. To address this issue, it is necessary to express $10^3\ln\beta$ as a function of
 177 both pressure (P) and temperature (T). The transform requires the equation of state $P(V,$
 178 $T)$, which can be derived from the Helmholtz free energy (F). Within the quasi-
 179 harmonic approximation (QHA), the Helmholtz free energy is expressed as:

$$180 \quad F(V, T) = U(V) + \frac{1}{2} \sum_{q,i} \hbar\omega_{q,i}(V) + k_B T \sum_{q,i} \ln \left(1 - \exp \left(-\frac{\hbar\omega_{q,i}(V)}{k_B T} \right) \right) \quad (5)$$

181 where q is the wave vector in the Brillouin zone, and i is the running index of phonon
 182 mode. The first, second, and third terms in Eq. (5) correspond to the static, zero-point,
 183 and vibrational energy contributions, respectively. The calculated Helmholtz free
 184 energy versus volume was fitted by the third-order Birch-Murnaghan finite strain
 185 equation of state and the pressure can be derived from:

$$186 \quad P(V, T) = -\left(\frac{\partial F}{\partial V}\right)_T \quad (6)$$

187 Thus, the pressure- and temperature-dependent $10^3\ln\beta$ can be transformed from its
 188 volume- and temperature-dependent form via $P(V, T)$. We call this approach "QHA
 189 method" in this study. It should be noted that calculating $10^3\ln\beta$ for each mineral using
 190 the static method only needs to calculate the vibrational frequencies of the relaxed
 191 structure at static 0 GPa, while the QHA method requires the vibrational frequencies at
 192 different equilibrium volumes to obtain the pressure- and temperature-dependent
 193 $10^3\ln\beta$. Because the phonon calculations are computationally expensive, the QHA
 194 method costs at least 5-10 times more computation time than the static method. We will

195 compare the results calculated using these two different methods in section 4.2.

196

197 **2.3 First-principles calculations**

198 All first-principles calculations were performed using the Quantum Espresso
199 package (Giannozzi et al., 2009) based on DFT, plane waves, and pseudopotentials. In
200 principle, the DFT is an exact theory, but the accurate functional form is still unknown,
201 and approximations such as the local density approximation (LDA) and the generalized
202 gradient approximation (GGA) are required to model the exchange–correlation
203 potential. Here we adopted the local density approximation (LDA) for the exchange
204 correlation function, because it works well for calculating phonon properties
205 and thermodynamic properties of mantle minerals (Duan et al., 2019; Hao et al., 2019;
206 Yi Hu et al., 2016; Huang et al., 2013; Qian et al., 2018; Shukla et al., 2016, 2015; Wang
207 et al., 2020c, 2019a; W. Wang et al., 2021c, 2021d; Wang et al., 2020b; Wang and Wu,
208 2018; Wentzcovitch et al., 2010; Wu and Wang, 2016; Yang et al., 2017; Yang and Wu,
209 2014; Yu et al., 2011, 2007; Zou et al., 2018). The pseudopotential for magnesium (Mg)
210 was generated by the von Barth and Car method with a cutoff radius of 2.5 Bohr for all
211 channels using five valence configurations, $3s^23p^0$, $3s^13p^1$, $3s^13p^{0.5}3d^{0.5}$, $3s^13p^{0.5}$, and
212 $3s^13d^1$ with decreasing weights of 1.5, 0.6, 0.3, 0.3, and 0.2, respectively. The
213 pseudopotentials for silicon (Si) and oxygen (O) were generated using the method in
214 Troullier and Martins (1991), with a valence configuration of $3s^23p^43d^0$ and a cutoff
215 radius of 1.47 Bohr for Si and a valence configuration $2s^22p^4$ and a cutoff radius of 1.45
216 Bohr for O. The pseudopotentials for calcium (Ca), iron (Fe), titanium (Ti), chromium
217 (Cr), aluminum (Al), and carbon (C) were generated using the Vanderbilt method
218 (Vanderbilt, 1990). The cutoff radius is 1.85 Bohr for Ca with a valence configuration
219 of $3s^23p^64s^1$, 1.8 Bohr for Fe with a valence configuration of $3s^23p^63d^{6.5}4s^14p^0$, 1.8
220 Bohr for Ti with a valence configuration of $3s^23p^64s^23d^2$, 1.65 Bohr for Cr with a
221 valence configuration of $3s^23p^64s^13d^5$, 1.77 Bohr for Al with a valence configuration of
222 $3s^23p^1$, and 1.3 Bohr for C with a valence configuration of $2s^22p^2$. Pseudopotentials for

223 all elements included in this study except for Cr were used to predict the equilibrium
224 isotope fractionation factors in our previous studies (Feng et al., 2014; Huang et al.,
225 2014, 2013; Qin et al., 2016; W. Wang et al., 2021b, 2017a, 2017b; Wang et al., 2020a;
226 Wu et al., 2015). The energy cutoff for plane waves was 70 Ry.

227 Although LDA has successfully predicted various properties of mantle minerals,
228 it cannot sufficiently describe the large on-site Coulomb interactions among the
229 localized electrons in open shell configurations (Anisimov et al., 1991). For instance,
230 LDA gives a metallic band structure for FeO, failing to predict the insulating ground
231 state because LDA does not properly describe the large on-site Coulomb interactions
232 among the Fe's 3d electrons (Anisimov et al., 1991). To address this issue, we
233 introduced a Hubbard U correction to the LDA (LDA+ U) for Fe, Ti, and Cr. The
234 LDA+ U method has also been widely used to successfully predict the physical and
235 chemical properties of Fe-bearing bridgemanite and ferropericlase (Hsu et al., 2011;
236 Shukla et al., 2016, 2015; Shukla and Wentzcovitch, 2016; W. Wang et al., 2021c, 2021b;
237 Wu et al., 2013). The U values were nonempirically determined using the linear
238 response method (Cococcioni and de Gironcoli, 2005). In geikielite-ilmenite solid
239 solutions, the U values for Fe and Ti are 3.6 and 4.1 eV (W. Wang et al., 2021d; Wang
240 et al., 2020a), respectively. In Mg-bearing magnesioferrite (MgFe_2O_4), the U values are
241 3.3 and 3.7 eV for Fe^{3+} in octahedral and tetrahedral sites, respectively. The U value for
242 Cr is 2.5 eV in Cr-bearing spinel (MgCrAlO_4 and MgCr_2O_4).

243 Crystal structures of all minerals investigated in this study were optimized at
244 variable pressures using variable cell shape molecular dynamics (Wentzcovitch, 1991).
245 To compare the structural properties calculated using different exchange–correlation
246 functional approximations, we also conducted GGA calculations for some minerals to
247 obtain their relaxed structures at static 0 GPa (Table 1). The residual forces converge
248 within 10^{-4} Ry/Bohr. Brillouin zone summations over electronic states were performed
249 over different mesh grids that depend on the unit cells of materials (Table S1).
250 Vibrational density of states (VDOS) was calculated using the density-functional

251 perturbation theory (DFPT) for the LDA calculations without U correction and the finite
252 displacement method as implemented in the code PHONOPYT (Togo and Tanaka, 2015)
253 for the LDA+ U calculations. For each mineral, we conducted VDOS calculations for at
254 least seven volumes (corresponding to seven static pressures) to accurately calculate
255 the F as a function of volume and temperature (Eq. (5)) (Wentzcovitch et al., 2010). To
256 check the effect of the number of volumes on the calculated $10^3\ln\beta$, we did the LDA
257 calculations at more static pressures for forsterite and found that the difference in $10^3\ln\beta$
258 between the results using seven and ten volumes is negligible.

259

260 **3. Results**

261 **3.1 Mineral volumes and vibrational frequencies**

262 The cell parameters and volumes of all minerals investigated in this study are listed
263 in Table 1 and compared with experimental measurements. Compared to the
264 experimental data under ambient conditions, the static LDA calculations underestimate
265 the mineral volumes at 0 GPa by 1.0-3.4%, with the largest difference of -3.4% in
266 magnesite volume (Fig. 1a). Except for magnesite, the volumes of other minerals
267 predicted by the static LDA calculations are 1.0-2.5% lower than the experimental
268 results. In contrast, the static GGA calculations from this study and Schauble (2011)
269 overestimate the mineral volumes by 1.7-4.0% (Fig. 1a). This is consistent with the
270 general concept that the LDA underestimates but the GGA overestimates the volumes
271 of silicate minerals (Wentzcovitch et al., 2010). The static calculations do not include
272 the vibrational effect on the mineral volumes. Based on the QHA, the mineral volumes
273 predicted by the LDA calculations increase by 1.2-2.5% after considering the zero-point
274 motion and room-temperature effect (Table 1 and Fig. 1a). Accordingly, the volume
275 differences between the LDA calculations and experimental measurements are smaller
276 than 1.0% under ambient conditions, and in particular, the differences for our studies
277 minerals except for spinel, magnesiochromite, magnesite, and periclase are smaller than
278 0.5% (Fig. 1a). Additionally, our previous studies demonstrated that the volumes of

279 forsterite, diopside, orthopyroxene, magnesite, geikielite-ilmenite solid solutions,
280 pyrope, majorite, wadsleyite, ringwoodite, bridgmanite, and periclase also agree well
281 ($< 1.0\%$) with high-quality experimental data at high pressures (Yi Hu et al., 2016;
282 Núñez-Valdez et al., 2013; Núñez Valdez et al., 2012; Qian et al., 2018; Shukla et al.,
283 2016, 2015; W. Wang et al., 2021d; Wu et al., 2013; Wu and Wang, 2016; Yao et al.,
284 2018; Yu et al., 2011; Zou et al., 2018). All of our previous works and this study use the
285 same LDA pseudopotentials and similar calculation details and consequently predict
286 similar properties of those minerals. However, when the vibrational effect is included
287 in the GGA calculations, GGA calculations will give even larger mineral volumes under
288 ambient conditions, and therefore, the differences between the GGA results and
289 experiments will become larger than those under static conditions. This suggests that
290 the LDA is preferred for predicting the structures of mantle minerals.

291 The vibrational properties are sensitive to mineral structures such as lattice
292 parameters. The calculated vibrational frequencies using the LDA are compared with
293 the experimental measurements in Fig. 2. All raw data are available in Table S2. Our
294 LDA results agree well with the experimental data, with the slope between the
295 calculated frequencies and measured frequencies being 0.999 ± 0.002 (1σ , $R^2 = 0.9985$)
296 (Fig. 2). In contrast, the vibrational frequencies of forsterite, diopside, orthopyroxene,
297 magnesite, spinel, and periclase calculated using the GGA in Schauble (2011) are
298 slightly lower than our LDA results, and the slope between those GGA results and
299 experimental data is 0.968 ± 0.001 (1σ , $R^2 = 0.9998$). This suggests that both LDA and
300 GGA calculations based on the periodic boundary conditions can predict the vibrational
301 properties of mantle minerals well, and the LDA works better than the GGA. According
302 to the error analysis on the β factor derived from Eq. (1), a deviation of $n\%$ in vibrational
303 frequencies would cause an error of $n\%$ at low temperatures and $2n\%$ at high
304 temperatures in $10^3 \ln \beta$ (Méheut et al., 2009). Therefore, the $10^3 \ln \beta$ and $10^3 \ln \alpha$
305 calculated using LDA in this study have errors of 0.2% and 0.3% at high temperatures,
306 respectively. In comparison, the relative uncertainties derived from the GGA

307 calculations (Schauble, 2011) are 3.2% for $10^3\ln\beta$ and 4.5% for $10^3\ln\alpha$ at high
308 temperatures.

309

310 **3.2 Mg-O bond lengths**

311 The average Mg-O bond lengths predicted by the LDA and GGA calculations are
312 listed in Table 2 and compared with the experimental results at 300 K. Mg is sixfold
313 coordinated in forsterite, diopside, orthopyroxene, magnesite, geikielite-ilmenite solid
314 solutions, ^MMgFe₂O₄ magnesioferrite, wadsleyite, ringwoodite, and periclase, while it
315 is fourfold coordinated in ^TMgFe₂O₄ magnesioferrite and spinel-magnesiochromite
316 solid solutions (Table 2). In pyrope and bridgmanite, the coordination number (CN) of
317 Mg is 8. Specifically, majorite has a tetragonal structure with a chemical formula of
318 Mg₃(MgSi)(SiO₄)₃, in which three Mg cations are eightfold coordinated and one Mg
319 cation is sixfold coordinated. Thus, the average CN of Mg in majorite is 7.5. The
320 average Mg-O bond lengths calculated using the LDA range from 1.9295 Å in MgAl₂O₄
321 spinel to 2.2641 Å in pyrope at static 0 GPa. It increases in the order of spinel (MgAl₂O₄)
322 < spinel (MgAlCrO₄) < magnesiochromite (MgCr₂O₄) < magnesioferrite (^TMgFe₂O₄)
323 < diopside ~ ringwoodite < magnesioferrite (^MMgFe₂O₄) < wadsleyite < magnesite <
324 geikielite (MgFeTi₂O₆) ~ orthopyroxene ~ geikielite (MgTiO₃) ~ geikielite
325 (Mg₂Fe₄Ti₆O₁₈) < forsterite ~ periclase < bridgmanite < majorite < pyrope. The static
326 LDA calculations predict slightly shorter, by -1.3 – -0.3%, average Mg-O bond lengths
327 than experiments for all studied minerals except for MgAl₂O₄ spinel. The calculated
328 average Mg-O bond length in MgAl₂O₄ spinel is ~+0.2% longer than the experimental
329 data (Fig. 1b and Table 2). In contrast, the static GGA calculations give longer, by +0.6%
330 to +2.0%, average Mg-O bond lengths in all minerals than the experimental results (Fig.
331 1b).

332 Similar to the volume predictions, the static calculations of Mg-O bond length do
333 not include the temperature effect. To account for this effect on the average Mg-O bond
334 lengths, we first calculated the average Mg-O bond lengths at different equilibrium

335 volumes (corresponding to different hydrostatic pressures) for each mineral and found
336 that they linearly increase with volumes (Fig. S1). Based on these linear relationships,
337 we then used the calculated mineral volumes under ambient conditions (Table 1) to
338 recalculate the Mg-O bond lengths at 300 K and 0 GPa. The calculated average Mg-O
339 bond lengths under ambient conditions based on this LDA+QHA method agree well
340 with the experimental results, and the differences are smaller than 0.4%, except for
341 MgAl₂O₄ spinel (Fig. 1b). Because the average Mg-O bond length in MgAl₂O₄ spinel
342 at static 0 GPa is already ~+0.2% longer than the experimental data, the difference
343 between the LDA calculations and experiments increases to ~+0.9% for MgAl₂O₄
344 spinel at 300 K and 0 GPa (Fig. 1b). Such a difference is much smaller than those
345 between the GGA calculations and experiments if the temperature correction is made.
346 Collectively, the LDA calculations in this study can predict the mineral structures,
347 vibrational properties, and bond lengths well, suggesting that the calculated $10^3\ln\beta$ and
348 $10^3\ln\alpha$ are reliable and accurate.

349

350 **3.3 Reduced partition function ratios of $^{26}\text{Mg}/^{24}\text{Mg}$**

351 The $10^3\ln\beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$ calculated based on the static LDA method are shown in
352 Fig. 3a, and their polynomial fitting parameters of $10^3\ln\beta$ as a function of temperature
353 are reported in Table 3. The $10^3\ln\alpha$ values between other minerals and forsterite are
354 shown in Fig. 3b. The $10^3\ln\beta$ decreases in the order of spinel (MgAl₂O₄) > spinel
355 (MgAlCrO₄) > ringwoodite > magnesiochromite (MgCr₂O₄) > wadsleyite > diopside ~
356 periclase > magnesioferrite (^TMgFe₂O₄) ~ magnesioferrite (^MMgFe₂O₄) ~
357 orthopyroxene > forsterite > bridgmanite > magnesite > geikielite (MgTiO₃) ~ geikielite
358 (MgFeTi₂O₆) ~ geikielite (Mg₂Fe₄Ti₆O₁₈) > majorite > pyrope. At 1000 K, $10^3\ln\beta$
359 ranges from 3.51 ‰ for MgAl₂O₄ spinel to 1.58 ‰ for pyrope, suggesting that large
360 Mg isotope fractionation can occur at high temperatures (Li et al., 2011; Schauble, 2011;
361 Wang et al., 2012; Young et al., 2009). For instance, the calculated $10^3\ln\alpha$ values
362 between forsterite and pyrope and between forsterite and MgAl₂O₄ spinel are +0.97 ‰

363 and -0.96 ‰ at 1000 K, respectively.

364 In spinel-magnesiochromite solid solutions, $10^3\ln\beta$ decreases with increasing
365 Cr/(Al+Cr) ratio (called "Cr#"), indicating that Al-Cr substitution significantly affects
366 $10^3\ln\alpha$ between spinel and other minerals, which has been confirmed by previous
367 experiments (Tang et al., 2021). This is mainly because the replacement of Al by Cr
368 significantly increases the volume and Mg-O bond lengths. For example, the relative
369 differences in volume and average Mg-O bond length between MgAlCrO_4 and
370 MgAl_2O_4 are +4.6% and +0.95%, respectively, leading to a difference in $10^3\ln\beta$ value
371 of -0.39 ‰ at 1000 K and -3.65 ‰ at 300 K. However, Mg-Fe substitution in geikielite-
372 ilmenite solid solutions does not substantially change the $10^3\ln\beta$ values, with
373 differences of 0.05 ‰ and 0.39 ‰ between MgTiO_3 and $\text{Mg}_2\text{Fe}_4\text{Ti}_6\text{O}_{18}$ at 1000 K and
374 300 K, respectively. This is because Mg has a similar radius to Fe, and hence, the
375 replacement of Mg by Fe does not significantly change the average Mg-O bond length
376 in geikielite-ilmenite solid solutions. In comparison, previous studies (Feng et al., 2014;
377 Li et al., 2019a; W. Wang et al., 2017b, 2017a) found that $10^3\ln\beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$ for
378 calcite-type carbonates, $10^3\ln\beta$ of $^{44}\text{Ca}/^{40}\text{Ca}$ for orthopyroxene, and $10^3\ln\beta$ of $^{41}\text{K}/^{39}\text{K}$
379 for feldspars are sensitive to carbonate Mg, orthopyroxene Ca, and feldspar K
380 concentrations in wide ranges, respectively. The concentration effect on $10^3\ln\beta$ is due
381 to the large difference in ionic radii between Mg and Ca and between K and Na. As
382 such, Mg-Ca substitution in carbonates and orthopyroxene and K-Na substitution in
383 feldspars result in large variations in the average Mg-O, Ca-O, and K-O bond lengths,
384 respectively, and their $10^3\ln\beta$ values are negatively correlated with their average bond
385 lengths (Feng et al., 2014; Li et al., 2019a; W. Wang et al., 2017b, 2017a). In summary,
386 whether the concentration variation in solid solutions can affect their $10^3\ln\beta$ depends
387 on the size difference between atoms or ions of interest. This observation is consistent
388 with basic crystal chemistry in general if one treats the bond lengths as sums of ionic
389 radii (Young et al., 2015).

390 In sections 3.1 and 3.2, we showed that using different exchange-correlation

391 potentials (LDA vs. GGA) in the DFT calculations can predict different structural and
392 vibrational properties of mantle minerals. To check the effect of exchange–correlation
393 potentials on the $10^3\ln\beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$ and inter-mineral $10^3\ln\alpha$ values, we compare our
394 static LDA results for forsterite, orthopyroxene, diopside, MgAl_2O_4 spinel, magnesite,
395 and periclase with the static GGA calculations in Schauble (2011). Because the static
396 GGA calculations predict larger mineral volumes and longer Mg–O bond lengths than
397 the static LDA calculations (Tables 1 and 2, and Fig. 1), the $10^3\ln\beta$ of those minerals
398 calculated using the GGA are smaller than our static LDA results. It is important to
399 emphasize that the $10^3\ln\beta$ calculated based on different exchange–correlation potentials
400 cannot be used to derive the $10^3\ln\alpha$ due to systematic offsets. However, in general, both
401 LDA and GGA predict similar inter-mineral $10^3\ln\alpha$ values at 1000 K (Fig. 4), because
402 the systematic offsets of $10^3\ln\beta$ are canceled out. For instance, based on the LDA
403 calculations, we obtained $10^3\ln\alpha_{\text{orthopyroxene-forsterite}}$, $10^3\ln\alpha_{\text{diopside-forsterite}}$, and $10^3\ln\alpha_{\text{spinel-}}$
404 forsterite of +0.07 ‰, +0.20 ‰, and +0.97 ‰ at 1000 K, respectively, consistent with the
405 values in Schauble (2011) who used GGA approach ($10^3\ln\alpha_{\text{orthopyroxene-forsterite}} = +0.08\text{ ‰}$,
406 $10^3\ln\alpha_{\text{diopside-forsterite}} = +0.13\text{ ‰}$, and $10^3\ln\alpha_{\text{spinel-forsterite}} = +0.96\text{ ‰}$). In detail, our LDA
407 calculations give a $10^3\ln\alpha_{\text{magnesite-forsterite}}$ value of -0.14 ‰ at 1000 K, which has a smaller
408 magnitude than the value of -0.33 ‰ given by Schauble (2011). Overall, the GGA is
409 also a good approximation for the exchange–correlation potential for calculating the
410 inter-mineral equilibrium isotope fractionation, but we prefer to use the LDA to predict
411 the equilibrium isotope fractionation among mantle silicate minerals because of its
412 reliability in predicting structural and vibrational properties (Figs. 1 and 2).

413

414 **4. Discussion**

415 **4.1 Controlling factors on the $10^3\ln\beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$**

416 Mass-dependent equilibrium isotope fractionation factors are dominantly
417 controlled by the relative bond stiffness (Bigeleisen and Mayer, 1947; Urey, 1947). In
418 general, shorter chemical bonds are stiffer with higher vibrational frequencies, which

419 lead to enrichments of heavier isotopes relative to longer and weaker bonds (Hill and
 420 Schauble, 2008; Li et al., 2019b; Schauble et al., 2004; Schauble, 2011; Urey, 1947;
 421 Wang et al., 2020a). Thus, $10^3\ln\beta$ is mainly controlled by the bond length. This is
 422 supported by previous findings (Feng et al., 2014; Li et al., 2019a; W. Wang et al.,
 423 2017b, 2017a) that $10^3\ln\beta$ of $^{44}\text{Ca}/^{40}\text{Ca}$ for orthopyroxene, $10^3\ln\beta$ of $^{24}\text{Mg}/^{26}\text{Mg}$ for
 424 carbonates, and $10^3\ln\beta$ of $^{41}\text{K}/^{39}\text{K}$ for feldspars show a linear negative correlation with
 425 their average Ca-O, Mg-O, and K-O bond lengths, respectively. For all minerals
 426 investigated in this study, our static LDA results show that in general, $10^3\ln\beta$ of
 427 $^{24}\text{Mg}/^{26}\text{Mg}$ is negatively correlated with the average Mg-O bond length (Fig. 5a), but
 428 there is no good linear negative relation between them. This is because the bond
 429 stiffness is not only controlled by the bond length but also affected by other factors such
 430 as the CN and second-neighbor atoms (Huang et al., 2019; Li et al., 2019b; Rabin et al.,
 431 2021). In Ca-doped orthopyroxene, carbonates, and K-bearing feldspars, other
 432 structural properties, including the CNs for Ca, Mg, and K, are similar at different Ca,
 433 Mg, and K concentrations, so $10^3\ln\beta$ is dominantly controlled by the bond length and
 434 there is a linear negative relation between them (Feng et al., 2014; Li et al., 2019a; W.
 435 Wang et al., 2017b, 2017a). When different minerals are compared with each other, this
 436 study together with previous works on the $10^3\ln\beta$ of Ca, K, Fe, and Si isotopes for
 437 different minerals (Blanchard et al., 2017; Huang et al., 2019, 2014; Li et al., 2019b;
 438 Méheut et al., 2009; Qin et al., 2016; Rabin et al., 2021; W. Wang et al., 2021b) show
 439 that $10^3\ln\beta$ is affected by multiple structural factors including the bond length,
 440 CN, oxidation state, electronic configuration, and second-neighbor atoms, which jointly
 441 determine the bond stiffness.

442 Bond stiffness can be approximatively measured by the force constant ($\langle F \rangle$) (Eq.
 443 (11)). Following Dauphas et al. (2012), the $\langle F \rangle$ of the atom of interest can be calculated
 444 from its projected partial phonon density of states (PDOS) using:

$$445 \quad \langle F \rangle = \frac{M}{\hbar^2} \int_0^{+\infty} E^2 g(E) dE \quad (12)$$

446 where $g(E)$ is PDOS and M is the atomic mass. In experiments, the PDOS of some

447 isotopes such as ^{57}Fe , ^{83}Kr , and ^{119}Sn can be measured by the technique of nuclear
448 resonant inelastic X-ray scattering (NRIXS) (Dauphas et al., 2018, 2014; Liu et al.,
449 2017; Roskosz et al., 2020; Shahar et al., 2016; W. Wang et al., 2021b; Yang et al.,
450 2019), while the VDOS calculations based on the DFT can give the $\langle F \rangle$ and PDOS of
451 each atom in materials (see Methods). The average $\langle F \rangle$ of Mg in all investigated
452 minerals calculated using LDA are reported in Table 2, ranging from 110.1 N/m in
453 pyrope to 223.7 N/m MgAl_2O_4 in spinel. The $10^3 \ln \beta$ of $^{24}\text{Mg}/^{26}\text{Mg}$ linearly increases
454 with $\langle F \rangle$ (Fig. 5b), consistent with the basic tenants of the equilibrium isotope
455 fractionation (Ducher et al., 2018; Li et al., 2019b; W. Wang et al., 2021e; Wang et al.,
456 2020a, 2019b).

457 Although the calculated data and the theoretical analyses match well, it is not clear
458 whether one can calculate the $10^3 \ln \beta$ of $^{24}\text{Mg}/^{26}\text{Mg}$ from $\langle F \rangle$ using Eq. (11) because it
459 is an approximation of the Urey equation (Eq. (3)). The criteria for using Eq. (11)
460 requires frequencies related to the element of interest ω_i (cm^{-1}) to be ≤ 1.39 T. This is
461 the case for Mg in our investigated minerals: the vibrational frequencies related to Mg
462 in all investigated minerals, except for magnesite, are smaller than 1400 cm^{-1} (Fig. 2).
463 Magnesite has two frequencies higher than 1400 cm^{-1} (Fig. 2), but they are related to
464 the vibrational modes of the C-O complex. Our static LDA results show that $10^3 \ln \beta$
465 calculated from $\langle F \rangle$ using Eq. (11) agree well with those calculated from vibrational
466 frequencies using Eq. (3) at 1000 K, with differences of $< 0.02 \text{ \%}$ (Fig. 6b).

467 We also calculated the $10^3 \ln \beta$ of forsterite, orthopyroxene, magnesite, and spinel
468 as a function of the upper-limit frequency values used in Eq. (3), and the results show
469 that $10^3 \ln \beta$ at 1000 K remains almost constant when the frequencies are larger than 800
470 cm^{-1} (Fig. 6a), suggesting that the majority of frequencies related to Mg atoms in
471 minerals do not exceed 800 cm^{-1} . These comparisons suggest that Eq. (11) can be used
472 to calculate the $10^3 \ln \beta$ of $^{24}\text{Mg}/^{26}\text{Mg}$ from $\langle F \rangle$ at high temperatures, but it will result
473 in larger uncertainties at low temperatures (< 600 K). Because of this reason, Eq. (11)
474 is also called "the high-temperature approximation" of the Urey equation.

475 Eq. (11) provides a convenient way to approximately calculate the $10^3\ln\beta$ if the
476 $\langle F \rangle$ of the element of interest is well-known. However, the $\langle F \rangle$ of most elements
477 cannot be directly measured by experiments, although some can be obtained from the
478 PDOS measured by the NRIXS technique. On the other hand, when a Born-Mayer type
479 interionic potential was adopted, the $\langle F \rangle$ can be directly calculated from the interionic
480 distance, which is referred as the “ionic model” (Young et al., 2015). Equilibrium
481 isotope fractionation factors estimated from the ionic model are usually within a factor
482 of ~2 or 3 of the DFT calculations, but this empirical model provides a straightforward
483 framework for understanding how the crystal chemistry affects the equilibrium isotope
484 fractionation (Young et al., 2015). Whether the ionic model can be used to accurately
485 predict isotope fractionation factors depends on the reliability of Born-Mayer type
486 interionic potential that mimics the realistic interatomic interaction.

487

488 **4.2 Temperature and pressure dependences of equilibrium Mg isotope 489 fractionation**

490 The β factors in Eq. (3) are volume- and temperature-dependent because phonon
491 frequencies from the DFT calculations are a function of volume. It is more practical to
492 express $10^3\ln\beta$ as a function of P and T . Here, we calculate the $10^3\ln\beta$ of $^{24}\text{Mg}/^{26}\text{Mg}$ for
493 all minerals at high pressures and temperatures based on the LDA+QHA method (see
494 Methods), which are plotted in Fig. 7. The temperature and pressure dependences of
495 $10^3\ln\beta$ are fitted by a binary polynomial equation: $10^3\ln\beta$ (%) =
496 $(a+b*P+c*P^2)*(10^6/T^2)+(d+e*P+f*P^2)*(10^6/T^2)^2+(g+h*P+l*P^2)*(10^6/T^2)^3$. The
497 polynomial fitting parameters (a, b, c, d, e, f, g, h, and l) are reported in Table 4, and
498 the $10^3\ln\alpha$ values between other minerals and forsterite as a function of temperature at
499 different pressures are shown in Fig. 8. It should be noted that the $10^3\ln\beta$ values
500 calculated based on the LDA+QHA method are lower than those predicted by the static
501 LDA method at 0 GPa (Tables 3 and 4; Figs. 3 and 7). For example, the $10^3\ln\beta$ of
502 forsterite from the LDA+QHA calculations is 2.19 % at 1000 K, significantly lower

503 than that (2.55 ‰, Table 3) given by the static LDA calculations. This is because the
504 static method does not consider the volume change with temperature, and $10^3\ln\beta$ at
505 different temperatures are calculated from the vibrational frequencies of the static
506 structures at 0 GPa using Eq. (3). However, the inter-mineral $10^3\ln\alpha$ values calculated
507 from the static LDA method generally agree well with those calculated from the
508 LDA+QHA method at 0 GPa (Fig. 9). For instance, the $10^3\ln\alpha_{\text{orthopyroxene-forsterite}}$,
509 $10^3\ln\alpha_{\text{diopside-forsterite}}$, and $10^3\ln\alpha_{\text{spinel-forsterite}}$ from the static LDA calculations are +0.07 ‰,
510 +0.20 ‰, and +0.97 ‰ at 1000 K, respectively, consistent with the values predicted by
511 the LDA+QHA method ($10^3\ln\alpha_{\text{orthopyroxene-forsterite}} = +0.13$ ‰, $10^3\ln\alpha_{\text{diopside-forsterite}} =$
512 +0.17 ‰, and $10^3\ln\alpha_{\text{spinel-forsterite}} = +0.96$ ‰). In theory, compared to the static method,
513 it is more accurate and reliable to use the QHA method to calculate $10^3\ln\beta$ at different
514 temperatures and 0 GPa, but this approach is more computationally expensive because
515 the phonon frequencies at several different equilibrium volumes are required (see
516 Methods). If the pressure effect is ignored, it is more convenient and less costly to use
517 the static method to predict $10^3\ln\alpha$, and such a method has been widely used to predict
518 equilibrium fractionation of various isotopes in previous studies (Feng et al., 2014; Fujii
519 et al., 2014, 2011; Gao et al., 2018; Kowalski et al., 2013b; Kowalski and Jahn, 2011;
520 Li and Liu, 2011; Li et al., 2019a, 2019b; Méheut et al., 2009; Qin et al., 2016; Schable,
521 2011; W. Wang et al., 2017b, 2017a; Wang et al., 2020a, 2019b). It is noteworthy that
522 two groups of $10^3\ln\beta$ calculated from the static and QHA methods cannot be compared
523 with each other to obtain the $10^3\ln\alpha$ values due to systematic offsets. Combining this
524 study with our previous studies (Huang et al., 2013; W. Wang et al., 2017b, 2017a), all
525 of which use the same pseudopotentials and similar calculation details, we summarize
526 two sets of $10^3\ln\beta$ for calculating the inter-mineral equilibrium Mg isotope fractionation
527 calculated by the static LDA and LDA+QHA methods in Tables 3 and 4, respectively.
528 The $10^3\ln\beta$ and $10^3\ln\alpha$ discussed hereafter are calculated based on the LDA+QHA
529 method unless otherwise specified.

530 The $10^3\ln\beta$ of all minerals increase with pressure because increasing pressure will

531 decrease mineral volumes, and thus increase the strength and stiffness of Mg-O bonds.
532 For instance, at 1000 K, the $10^3\ln\beta$ of forsterite and pyrope significantly increase from
533 2.19 ‰ and 1.30 ‰ at 0 GPa to 2.83 ‰ and 1.66 ‰ at 10 GPa (Table 4 and Fig. 7),
534 respectively. The second pressure derivatives (fitting parameters c, f, and l) of $10^3\ln\beta$
535 are two orders of magnitude lower than the first pressure derivatives (fitting parameters
536 b, e, and h) (Table 4), suggesting that $10^3\ln\beta$ linearly increases with pressure. However,
537 different minerals have different first pressure derivatives, ranging from 0.028 ‰/GPa
538 for pyrope to 0.082 ‰/GPa for diopside at 1000 K (Table 4). These various pressure
539 slopes indicate that the inter-mineral $10^3\ln\alpha$ could be significantly affected by pressure.
540 If $10^3\ln\beta$ of two minerals increase with similar magnitudes with increasing pressure,
541 then the inter-mineral $10^3\ln\alpha$ will not be influenced by pressure. Otherwise, pressure
542 will inevitably affect $10^3\ln\alpha$.

543 Our results show that diopside, orthopyroxene, spinel, and magnesioferrite are
544 enriched in heavy Mg isotopes compared with forsterite, while magnesite, pyrope and
545 geikielite-ilmenite solid solutions are enriched in light Mg isotopes relative to forsterite
546 (Fig. 8). Previous experiments found that Mg mainly occupies the octahedral site in
547 MgFe_2O_4 magnesioferrite with the structural configurations of
548 ${}^T(\text{Mg}_{0.16}\text{Fe}_{0.84})^M(\text{Mg}_{0.84}\text{Fe}_{1.16})\text{O}_4$ and ${}^T(\text{Mg}_{0.28}\text{Fe}_{0.72})^M(\text{Mg}_{0.72}\text{Fe}_{1.28})\text{O}_4$ at 873 K and
549 1300 K (O'Neill et al., 1992), respectively. Thus, the results for MgFe_2O_4
550 magnesioferrite with ~75% octahedral Mg and 25% tetrahedral Mg are used in our
551 further discussion on high-temperature fractionation. The magnitude of $10^3\ln\alpha_{\text{pyrope}-$
552 $\text{forsterite}}$ is significantly enhanced by pressure, but $10^3\ln\alpha_{\text{magnesioferrite-forsterite}}$ substantially
553 decreases with pressure. For instance, at 1000 K, the magnitude of $10^3\ln\alpha_{\text{pyrope-forsterite}}$
554 increases from -0.88 ‰ at 0 GPa to -1.16 ‰ at 10 GPa due to the large difference in
555 the pressure slopes of $10^3\ln\beta$ (Table 4), while the $10^3\ln\alpha_{\text{magnesioferrite-forsterite}}$ decreases
556 from +0.29 ‰ at 0 GPa to +0.05 ‰ at 10 GPa. In comparison, the pressure effects on
557 $10^3\ln\alpha$ between other minerals (diopside, orthopyroxene, magnesite, spinel, and
558 geikielite-ilmenite solid solutions) and forsterite are less pronounced, with a variation

559 of < 0.13 ‰ in the range of 0-10 GPa at 1000 K. It can be inferred that the $10^3 \ln \alpha$
560 between other minerals (such as diopside and orthopyroxene) and pyrope also
561 significantly depend on pressure. Specifically, regardless of the magnitude of the
562 pressure effect, both $10^3 \ln \alpha_{\text{spinel-forsterite}}$ and $10^3 \ln \alpha_{\text{magnesioferrite-forsterite}}$ decrease with
563 pressure, because the $10^3 \ln \beta$ of spinel and magnesioferrite increase more slowly with
564 pressure than that of forsterite (Table 4). In contrast, the magnitudes of $10^3 \ln \alpha$ between
565 other minerals (diopside, orthopyroxene, magnesite, pyrope, and geikielite-ilmenite
566 solid solutions) and forsterite are enhanced by pressure (Fig. 8).

567

568 **4.3 Mg isotope fractionation caused by phase transitions**

569 The Earth's upper mantle is mainly composed of ~60% olivine, 15% garnet, 15%
570 clinopyroxene, and 10% orthopyroxene (Ringwood, 1962), which can reproduce the
571 seismic velocity and density profiles of the upper mantle (Duan et al., 2019; Dziewonski
572 and Anderson, 1981; Yi Hu et al., 2016; Kennett et al., 1995; Zou et al., 2018). Forsterite,
573 pyrope, and diopside are the most important endmembers of olivine, garnet, and
574 clinopyroxene in the upper mantle, respectively. With increasing depth, olivine
575 transforms to wadsleyite at ~410 km, then to ringwoodite at ~520 km, and finally
576 decomposes into bridgmanite and periclase (which is also called the "post-spinel
577 transition") at ~660 km (Akaogi et al., 1989; Bina and Helffrich, 1994; Fei et al., 2004;
578 Helffrich and Wood, 2001; Hirose, 2002; Inoue et al., 2006; Katsura et al., 2004;
579 Katsura and Ito, 1989; Tsujino et al., 2019; Yu et al., 2008). It has been widely accepted
580 that olivine-wadsleyite, wadsleyite-ringwoodite, and post-spinel phase transitions
581 result in the seismic 410-km, 520-km, and 660-km discontinuities (e.g., Kind and Li,
582 2015 and references therein), respectively. Meanwhile, clinopyroxene and
583 orthopyroxene are gradually dissolved into garnet with increasing depth to form
584 majoritic garnet at the bottom of the upper mantle, and the volume fraction of majorite
585 is up to 35% in the mantle transition zone (MTZ) (Ita and Stixrude, 1992; Ringwood,
586 1962). Under the conditions of the uppermost lower mantle, majorite transforms to

587 bridgmanite (Hirose, 2002; Yu et al., 2011), which is thought to be responsible for the
588 multiple discontinuities at approximately 660 km detected by seismic studies (Ai and
589 Zheng, 2003; Cottaar and Deuss, 2016; Deuss, 2009, 2006; Gao et al., 2010; Schultz
590 and Gu, 2013). These phase transitions in the Earth's mantle lead to large differences in
591 structural properties between minerals and hence likely cause Mg isotope fractionation.

592 Our results show that the enrichment of heavy Mg isotopes in Mg_2SiO_4 minerals
593 follows the order of ringwoodite > wadsleyite > forsterite (Fig. 9 and Table 4) because
594 ringwoodite and wadsleyite have shorter Mg-O bonds and hence larger $\langle F \rangle$ of Mg than
595 forsterite (Table 2). The $10^3 \ln \alpha_{\text{wadsleyite-forsterite}}$ and $10^3 \ln \alpha_{\text{ringwoodite-wadsleyite}}$ are +0.08 ‰
596 under 410-km conditions (~14 GPa and 1700 K) and +0.05 ‰ under 520-km conditions
597 (~18.5 GPa and 1830 K), respectively. The post-spinel transition will enrich
598 bridgmanite and periclase with light Mg isotopes relative to ringwoodite, with a
599 $10^3 \ln \alpha_{\text{bridgmanite-ringwoodite}}$ value of -0.26 ‰ and a $10^3 \ln \alpha_{\text{periclase-ringwoodite}}$ value of -0.13 ‰
600 at 660-km conditions (~23.5 GPa and 1890 K). Majorite is enriched in light Mg isotopes
601 relative to clinopyroxene and orthopyroxene, consistent with a much longer average
602 Mg-O bond length in majorite than those in clinopyroxene and orthopyroxene (Table
603 2). The $10^3 \ln \alpha_{\text{majorite-diopside}}$ is -0.33 ‰ and the $10^3 \ln \alpha_{\text{majorite-orthopyroxene}}$ is -0.28 ‰ under
604 410-km conditions (Table 4). In contrast, majorite (${}^{\text{VIII}}\text{Mg}_3{}^{\text{VI}}(\text{MgSi})(\text{SiO}_4)_3$) is enriched
605 in heavy Mg isotopes relative to pyrope (${}^{\text{VIII}}\text{Mg}_3{}^{\text{VI}}(\text{Al}_2)(\text{SiO}_4)_3$) with a $10^3 \ln \alpha_{\text{majorite-pyrope}}$
606 of +0.20 ‰ at 14 GPa and 1700 K because a quarter of Mg in majorite occupies the
607 octahedral site with a much shorter average Mg-O bond length (Table 2). For the
608 majorite-bridgmanite transition, $10^3 \ln \alpha_{\text{bridgmanite-majorite}}$ is +0.06 ‰ at 24 GPa and 1900
609 K (Table 4). Our calculations reveal that phase transitions in the Earth's mantle can
610 induce significant inter-mineral Mg isotope fractionation under mantle *P-T* conditions.
611 Similarly, Si isotopes can be fractionated among different mantle minerals (Huang et
612 al., 2014; Wu et al., 2015).

613 The Mg_2SiO_4 and MgSiO_3 phase transitions may induce Mg isotope fractionation
614 in the deep mantle if the primordial mantle has not been fully homogenized by mantle

615 convection. To constrain how the crystallization of different mantle layers from a hot
616 magma ocean fractionate Mg isotopes, we assume that no Mg isotope fractionation
617 occurs between olivine and melt at the temperature of magma ocean crystallization (>
618 3500 K). As such, the $10^3 \ln \alpha_{\text{mineral-melt}}$ (minerals=wadsleyite, ringwoodite, majorite,
619 bridgmanite, and periclase) would be equal to $10^3 \ln \alpha_{\text{mineral-olivine}}$, and the $10^3 \ln \alpha_{\text{wadsleyite-}}$
620 melt , $10^3 \ln \alpha_{\text{ringwoodite-melt}}$, and $10^3 \ln \alpha_{\text{majorite-melt}}$ will be smaller than +0.02 ‰, +0.03 ‰,
621 and -0.05 ‰, respectively. Considering the mineral proportions in the MTZ, the
622 $10^3 \ln \alpha_{\text{solid-melt}}$ will be ~ -0.00 ‰ at 410-520 km and +0.01 ‰ at 520-660 km. Such small
623 fractionation factors cannot result in any resolvable Mg isotope fractionation between
624 minerals and residual melt, even if the primordial MTZ can be partially preserved or
625 isolated from mantle convection since its formation. For the lower mantle, the
626 magnitude of the estimated $10^3 \ln \alpha_{\text{solid-melt}}$ will be smaller than -0.03 ‰ at > 3500 K,
627 indicating no significant Mg isotope fractionation during the crystallization of lower-
628 mantle minerals. Therefore, the bulk Mg isotope composition of the primordial deep
629 mantle could be similar to that of the upper mantle. It should be noted that the
630 $10^3 \ln \alpha_{\text{olivine-melt}}$ is assumed to be 0.00 ‰ at all pressures, which needs to be examined
631 by future studies especially at high pressures.

632

633 4.4 Comparisons with experiments

634 The three-isotope method has been used to investigate the high-temperature
635 fractionation factors for many isotopic systems including Fe, Ni, and Si isotopes (Lazar
636 et al., 2012; Shahar et al., 2011, 2009, 2008). This method was also applied to determine
637 the Mg isotope fractionation factors between forsterite and magnesite ($\Delta^{26}\text{Mg}_{\text{forsterite-}}$
638 $\text{magnesite} = \delta^{26}\text{Mg}_{\text{forsterite}} - \delta^{26}\text{Mg}_{\text{magnesite}}$) and between spinel (MgAl_2O_4 , MgAlCrO_4 , and
639 MgCr_2O_4) and magnesite ($\Delta^{26}\text{Mg}_{\text{spinel-magnesite}}$) at 1 GPa and different temperatures, from
640 which the Mg isotope fractionation between spinel and forsterite can be derived
641 ($\Delta^{26}\text{Mg}_{\text{spinel-forsterite}} = \Delta^{26}\text{Mg}_{\text{spinel-magnesite}} - \Delta^{26}\text{Mg}_{\text{forsterite-magnesite}}$) (Macris et al., 2013; Tang
642 et al., 2021). The experimental results show that $\Delta^{26}\text{Mg}_{\text{forsterite-magnesite}}$ is $+0.04 \pm 0.04$ ‰

643 at 1073 K, $+0.11 \pm 0.10 \text{‰}$ at 973 K, and $0.44 \pm 0.10 \text{‰}$ at 873 K (Macris et al., 2013).
644 Tang et al. (2021) recalculated the $\Delta^{26}\text{Mg}_{\text{forsterite-magnesite}}$ from the experiments of Macris
645 et al. (2013) for internal consistency using a slightly different data reduction method
646 for the three-isotope method, and found that $\Delta^{26}\text{Mg}_{\text{forsterite-magnesite}}$ is $+0.08 \pm 0.06 \text{‰}$,
647 $+0.11 \pm 0.17 \text{‰}$, and $+0.32 \pm 0.15 \text{‰}$ at 1073, 973, and 873 K, respectively. The
648 recalculated fractionation factors agree within uncertainty with those reported by in
649 Macris et al. (2013). Our results based on the LDA+QHA method show that the
650 $10^3 \ln \alpha_{\text{forsterite-magnesite}}$ is $+0.18 \text{‰}$, $+0.21 \text{‰}$, and $+0.26 \text{‰}$ at 1 GPa and 1073, 973, and
651 873 K, respectively. Although the measured isotope fractionation factors are consistent
652 with our calculations within uncertainties at 973 and 873 K, the experimental result at
653 1073 K is slightly lower than our results (Fig. 10a). The measured $\Delta^{26}\text{Mg}_{\text{forsterite-magnesite}}$
654 is significantly lower than the calculated results based on the static GGA method
655 ($10^3 \ln \alpha_{\text{forsterite-magnesite}} = +0.30 \text{‰}$ at 1073 K) (Schauble, 2011), probably because the
656 static method does not take into account the pressure effect (see methods). On the other
657 hand, the measured $\Delta^{26}\text{Mg}_{\text{forsterite-magnesite}}$ at different temperatures does not follow a
658 proportional relationship with $1/T^2$ (Fig. 10a). In particular, Tang et al. (2021) derived
659 a negative $10^3 \ln \alpha_{\text{forsterite-magnesite}}$ from the $10^3 \ln \beta$ in our previous studies (Huang et al.,
660 2013; W. Wang et al., 2017a; Wu et al., 2015), which is contrast to the experimental
661 fractionation direction. However, it should be noted that the temperature- and pressure-
662 dependent $10^3 \ln \beta$ of minerals in Huang et al. (2013) and Wu et al. (2015) were
663 calculated based on the LDA+QHA method, while the $10^3 \ln \beta$ of magnesite in Wang et
664 al. (2017a) was calculated based on the static LDA method. The $10^3 \ln \beta$ values derived
665 from these two different methods cannot be directly compared with each other or used
666 to obtain the $10^3 \ln \alpha$ values, although those studies used the same details for the DFT
667 calculations (Huang et al., 2013; W. Wang et al., 2017a; Wu et al., 2015).

668 The measured $\Delta^{26}\text{Mg}_{\text{spinel-magnesite}}$ for MgAl_2O_4 is $+0.90 \pm 0.28 \text{‰}$, $+1.10 \pm 0.27 \text{‰}$,
669 and $+1.73 \pm 0.38 \text{‰}$ at 1 GPa and 1073 K, 973 K, and 873 K, respectively, consistent
670 with our calculations ($10^3 \ln \alpha_{\text{MgAl}_2\text{O}_4\text{-magnesite}} = +1.01 \text{‰}$ at 1073 K, $+1.22 \text{‰}$ at 973 K,

671 and +1.51 ‰ at 873 K) within uncertainties (Fig. 10b). Notably, the experimentally
672 determined $\Delta^{26}\text{Mg}_{\text{spinel-magnesite}}$ and the calculated $10^3\ln\alpha_{\text{spinel-magnesite}}$ both decrease with
673 Cr concentration (Cr/(Cr+Al) ratio) in spinel, because the substitution of Cr for Al
674 increases the average Mg-O bond length and hence decreases the $\langle F \rangle$ of Mg (Table 2).
675 The experimentally determined $\Delta^{26}\text{Mg}_{\text{MgAlCrO}_4\text{-magnesite}}$ is $+0.76 \pm 0.37$ ‰ at 1073 K,
676 0.95 ± 0.62 ‰ at 973 K, and 1.37 ± 0.37 ‰ at 873 K, while the $\Delta^{26}\text{Mg}_{\text{MgCr}_2\text{O}_4\text{-magnesite}}$
677 decreases to $+0.47 \pm 0.08$ ‰ at 1073 K, $+0.54 \pm 0.22$ ‰ at 973 K, and $+0.90 \pm 0.30$ ‰
678 at 873 K (Tang et al., 2021). These results also agree with our predictions
679 ($10^3\ln\alpha_{\text{MgAlCrO}_4\text{-magnesite}} = +0.71$ ‰ at 1073 K, $+0.86$ ‰ at 973 K, and $+1.06$ ‰ at 873
680 K; $10^3\ln\alpha_{\text{MgCr}_2\text{O}_4\text{-magnesite}} = +0.61$ ‰ at 1073 K, $+0.73$ ‰ at 973 K, and $+0.89$ ‰ at 873
681 K) within experimental uncertainties (Fig. 10b and Table 4). Our results also show a
682 nonlinear dependance of $10^3\ln\alpha_{\text{spinel-magnesite}}$ on the Cr/(Cr+Al) ratio in spinel, with a
683 $10^3\ln\beta$ difference of 0.30 ‰ between MgAl_2O_4 and MgAlCrO_4 but a much smaller
684 difference (0.10 ‰) between MgAlCrO_4 and MgCr_2O_4 at 1073 K. This is because the
685 average Mg-O bond length and the $\langle F \rangle$ of Mg also nonlinearly depend on the
686 Cr/(Cr+Al) ratio in spinel (Table 2). In contrast, the experimental data show a relatively
687 smaller difference between $\Delta^{26}\text{Mg}_{\text{MgAl}_2\text{O}_4\text{-magnesite}}$ and $\Delta^{26}\text{Mg}_{\text{MgAlCrO}_4\text{-magnesite}}$ than that
688 between $\Delta^{26}\text{Mg}_{\text{MgAlCrO}_4\text{-magnesite}}$ and $\Delta^{26}\text{Mg}_{\text{MgCr}_2\text{O}_4\text{-magnesite}}$ (Fig. 10b). This discrepancy
689 between our calculations and previous experiments is probably due to the large
690 experimental uncertainties that preclude the robust estimate of the Cr concentration
691 effect on the $\Delta^{26}\text{Mg}_{\text{spinel-magnesite}}$. The $\Delta^{26}\text{Mg}_{\text{spinel-forsterite}}$ is derived from the $\Delta^{26}\text{Mg}_{\text{forsterite-}}$
692 magnesite and $\Delta^{26}\text{Mg}_{\text{spinel-magnesite}}$ and compared with our results in Fig. 10c. The
693 experimentally determined $\Delta^{26}\text{Mg}_{\text{MgAl}_2\text{O}_4\text{-forsterite}}$ and $\Delta^{26}\text{Mg}_{\text{MgCr}_2\text{O}_4\text{-forsterite}}$ agree well
694 with our predictions within experimental uncertainties.

695

696 **5. Equilibrium or disequilibrium inter-mineral Mg isotope fractionation in natural
697 rocks?**

698 Previous studies have measured the Mg isotope compositions of constituent

699 minerals in a variety of mantle xenoliths, including olivine, pyroxenes, garnet, spinel,
700 and other minerals, and reported resolvable inter-mineral Mg isotope fractionation
701 (Chen et al., 2018; Handler et al., 2009; Hu et al., 2020; Yan Hu et al., 2016; Liu et al.,
702 2011; Stracke et al., 2018; Wang et al., 2015, 2012; Xiao et al., 2016, 2013; Young et
703 al., 2009). In particular, some studies found that spinel has higher $\delta^{26}\text{Mg}$ values relative
704 to those of coexisting olivine (Liu et al., 2011; Stracke et al., 2018; Xiao et al., 2013;
705 Young et al., 2009), whereas garnet exhibits lower $^{26}\text{Mg}/^{24}\text{Mg}$ ratios when compared to
706 coexisting clinopyroxene or olivine (Yan Hu et al., 2016; Wang et al., 2015, 2012). The
707 degree to which the observed inter-mineral fractionation in natural samples represents
708 equilibrium warrants examination.

709

710 **5.1 Pyroxenes vs. olivine**

711 Fig. 11 shows the measured Mg isotope fractionation between orthopyroxene and
712 olivine ($\Delta^{26}\text{Mg}_{\text{orthopyroxene-olivine}}$) and between clinopyroxene and olivine
713 ($\Delta^{26}\text{Mg}_{\text{clinopyroxene-olivine}}$) in natural rocks (Chen et al., 2018; Handler et al., 2009; Yan Hu
714 et al., 2016; Huang et al., 2011b; Liu et al., 2011; Stracke et al., 2018; Xiao et al., 2013;
715 Young et al., 2009) compared with the calculated results in this study. In general, these
716 studies found that the $\delta^{26}\text{Mg}$ values of orthopyroxene in most natural samples are
717 comparable to or relatively higher than those of coexisting olivine, with $\Delta^{26}\text{Mg}_{\text{opx-ol}}$
718 ranging from $-0.05 \pm 0.14 \text{ ‰}$ to $0.25 \pm 0.14 \text{ ‰}$ (2SD), except for one of mantle
719 pyroxenite xenoliths ($-0.32 \pm 0.08 \text{ ‰}$) in Yan Hu et al. (2016) (Fig. 11). The
720 temperatures for these peridotites, pyroxenites, xenoliths, and layered mafic intrusions
721 were estimated to be approximately 1000-1500 K (Yan Hu et al., 2016; Huang et al.,
722 2011b; Liu et al., 2011; Stracke et al., 2018; Xiao et al., 2013; Zhang et al., 2012). For
723 comparison, at 0 GPa, our calculated $10^3 \ln \alpha_{\text{orthopyroxene-forsterite}}$ ranges from $+0.14 \text{ ‰}$ at
724 1000 K to $+0.06 \text{ ‰}$ at 1500 K (Table 4 and Fig. 8). The pressure effect on
725 $10^3 \ln \alpha_{\text{orthopyroxene-forsterite}}$ is insignificant at high temperatures, although the equilibrium
726 pressures of some garnet-bearing xenoliths are 1.5-2.0 GPa (Yan Hu et al., 2016).

727 Therefore, most of the observed $\Delta^{26}\text{Mg}_{\text{opx-ol}}$ in literature studies are consistent with the
728 calculated $10^3\ln\alpha_{\text{orthopyroxene-forsterite}}$ within uncertainties, indicating a general Mg isotopic
729 equilibrium between orthopyroxene and olivine.

730 The $\Delta^{26}\text{Mg}_{\text{clinopyroxene-olivine}}$ observed in natural rocks vary in a wide range from -
731 $0.25 \pm 0.07 \text{ ‰}$ in Yan Hu et al. (2016) to $+0.42 \pm 0.14 \text{ ‰}$ in Young et al. (2009). At 0
732 GPa, the $10^3\ln\alpha_{\text{diopside-forsterite}}$ decreases from $+0.17 \text{ ‰}$ at 1000 K to $+0.08 \text{ ‰}$ at 1500 K
733 (Table 4). Pressure can slightly enhance the magnitude of $10^3\ln\alpha_{\text{diopside-forsterite}}$; at 1000
734 K, it increases from $+0.17 \text{ ‰}$ at 0 GPa to $+0.23 \text{ ‰}$ at 5 GPa. Most observed $\Delta^{26}\text{Mg}_{\text{cpx-ol}}$
735 data agree with the calculated $10^3\ln\alpha_{\text{diopside-forsterite}}$ within uncertainties, reflecting Mg
736 isotopic equilibrium between clinopyroxene and olivine. However, some published data
737 from Young et al. (2009), Yan Hu et al. (2016), and Chen et al. (2018) fall outside the
738 range of $10^3\ln\alpha_{\text{diopside-forsterite}}$ (Fig. 11). Specifically, the observed $\Delta^{26}\text{Mg}_{\text{cpx-ol}}$ for San
739 Carlos xenoliths in Young et al. (2009) is positive but larger than the calculated
740 $10^3\ln\alpha_{\text{diopside-forsterite}}$, whereas some data for Hannuoba pyroxenite xenoliths in Yan Hu
741 et al. (2016) and Baima layered mafic intrusions in Chen et al. (2018) are negative,
742 opposite to the direction of equilibrium fractionation. This implies that in some cases
743 clinopyroxene and olivine are apparently not in Mg isotopic equilibrium, which may be
744 the result of rapid and incomplete metasomatic reaction (Yan Hu et al., 2016) or
745 chemical diffusion (Chen et al., 2018). Also, Macris et al. (2015) found Fe isotope
746 disequilibrium in San Carlos xenoliths, which probably had experienced a complex
747 petrologic history.

748

749 **5.2 ilmenite vs. olivine/clinopyroxene**

750 The isotopic disequilibrium between cumulus minerals in the Baima layered mafic
751 intrusions was indicated by the measured ilmenite-olivine and ilmenite-clinopyroxene
752 Mg isotope fractionation ($\Delta^{26}\text{Mg}_{\text{ilmenite-olivine}}$ and $\Delta^{26}\text{Mg}_{\text{ilmenite-clinopyroxene}}$) (Fig. 12). Chen
753 et al. (2018) found that olivine and clinopyroxene have limited Mg isotope variations,
754 with $\delta^{26}\text{Mg}$ ranging from $-0.33 \pm 0.05 \text{ ‰}$ to $+0.05 \pm 0.05 \text{ ‰}$ (2SD) for olivines and

755 from $-0.29 \pm 0.03 \text{ ‰}$ to $-0.13 \pm 0.04 \text{ ‰}$ for clinopyroxenes, similar to those of mantle
756 xenoliths (Yan Hu et al., 2016; Huang et al., 2011b; Liu et al., 2011; Stracke et al., 2018;
757 Xiao et al., 2013). In contrast, ilmenites display an extremely large Mg isotopic
758 variation, with $\delta^{26}\text{Mg}$ ranging from $-0.50 \pm 0.05 \text{ ‰}$ to $+1.90 \pm 0.06 \text{ ‰}$ (2SD). As such,
759 there is large inter-mineral Mg isotope fractionation between ilmenite and olivine and
760 between ilmenite and clinopyroxene, with $\Delta^{26}\text{Mg}_{\text{ilmenite-olivine}}$ ranging from $-0.22 \pm 0.08 \text{ ‰}$
761 to $+2.11 \pm 0.09 \text{ ‰}$ (2SD) and $\Delta^{26}\text{Mg}_{\text{ilmenite-clinopyroxene}}$ from $-0.30 \pm 0.08 \text{ ‰}$ to $+2.12 \pm$
762 0.07 ‰ (2SD). Our results show that ilmenite should be enriched in light Mg isotopes
763 relative to forsterite and diopside at equilibrium (Fig. 8). When temperature increases
764 from 1000 K to 1500 K at 0 GPa, $10^3 \ln \alpha_{\text{ilmenite-forsterite}}$ and $10^3 \ln \alpha_{\text{ilmenite-diopside}}$ range from
765 -0.20 ‰ to -0.09 ‰ and from -0.37 ‰ to -0.16 ‰ , respectively (Table 4). Although the
766 MgO content in ilmenites varies from 1 to 4 wt% (Chen et al., 2018), the Mg
767 concentration effects on the $10^3 \ln \alpha_{\text{ilmenite-forsterite}}$ and $10^3 \ln \alpha_{\text{ilmenite-diopside}}$ are negligible ($<$
768 0.04 ‰) (Table 4). The fractionation magnitudes can be enhanced by pressure. At 1000
769 K, the magnitude of $10^3 \ln \alpha_{\text{ilmenite-forsterite}}$ and $10^3 \ln \alpha_{\text{ilmenite-diopside}}$ increase by 0.06 ‰ and
770 0.11 ‰ , respectively, when pressure increases from 0 to 5 GPa. Comparison of observed
771 $\Delta^{26}\text{Mg}_{\text{ilmenite-olivine}}$ and $\Delta^{26}\text{Mg}_{\text{ilmenite-clinopyroxene}}$ with our results indicates disequilibrium
772 Mg isotopic partitioning between most ilmenite and olivine/clinopyroxene pairs in
773 layered mafic intrusions from SW, China (Fig. 12).

774 The isotopic disequilibrium between ilmenite and coexisting
775 olivine/clinopyroxene in the Baima layered mafic intrusions is probably related to the
776 kinetic fractionation caused by chemical diffusion (Chen et al., 2018). Previous
777 experiments show that the MgO content in ilmenite decreases with temperature during
778 crystallization (Toplis and Carroll, 1995). If ilmenite crystallized at high temperatures
779 undergoes re-equilibration with surrounding silicate minerals (e.g., olivine and
780 clinopyroxene) at relatively low temperatures, MgO would diffuse out of ilmenite and
781 into olivine and clinopyroxene. This chemical exchange is further supported by the
782 decreasing of MgO content from the core to the rim in most ilmenites in contact with

783 olivine and clinopyroxene (Chen et al., 2018). Given that light isotopes diffuse faster
784 than heavy isotopes, the chemical diffusion would enrich ilmenites with heavy Mg
785 isotopes and result in a negative correlation between Mg isotopes and MgO content,
786 consistent with the observations (Chen et al., 2018). The chemical diffusion between
787 ilmenites and ferromagnesian silicates in the Baima layered mafic intrusions at
788 subsolidus temperatures has been also revealed by previous Fe isotopic evidence (Chen
789 et al., 2014).

790

791 **5.3 Garnet vs. olivine/pyroxenes**

792 Several studies have measured the $\delta^{26}\text{Mg}$ of garnet and coexisting minerals in
793 different samples and suggested various inter-mineral Mg isotope fractionation. Wang
794 et al. (2012) and Wang et al. (2015) measured the $\delta^{26}\text{Mg}$ of garnet and clinopyroxene
795 in cratonic eclogites from Kaalvallei and Bellsbank kimberlite, South Africa, and
796 from Koidu kimberlite, West Africa. They found that the measured clinopyroxene-
797 garnet Mg isotope fractionation ($\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$) ranges from $+0.38 \pm 0.07 \text{‰}$ to
798 $+0.68 \pm 0.08 \text{‰}$ for Kaalvallei and Bellsbank eclogites and from $+0.43 \pm 0.10 \text{‰}$ to
799 $+0.85 \pm 0.10 \text{‰}$ for Koidu eclogites. The equilibrium temperatures estimated using the
800 garnet-clinopyroxene Fe-Mg geothermometer are 1120-1670 K for these cratonic
801 eclogites (Hills and Haggerty, 1989; Williams et al., 2009) and the pressures of
802 equilibration are $\sim 5 \text{ GPa}$ (Hills and Haggerty, 1989; Huang et al., 2013). Li et al. (2011)
803 also measured the $\delta^{26}\text{Mg}$ of garnet and omphacite in Bixiling eclogites and found large
804 omphacite-garnet Mg isotope fractionation ($\Delta^{26}\text{Mg}_{\text{omphacite-garnet}} = +1.14 \pm 0.04 \text{‰}$). The
805 equilibrium temperatures estimated from the garnet-clinopyroxene Fe-Mg
806 geothermometer are 814-997 K and the pressures of equilibration are $\sim 3 \text{ GPa}$ (Li et al.,
807 2011). Stracke et al. (2018) analyzed the $\delta^{26}\text{Mg}$ values of clinopyroxene and coexisting
808 garnet in Hawaiian garnet pyroxenites, which are interpreted as high-pressure (2-3 GPa)
809 cumulates from melts erupted during the rejuvenated phase of volcanism (Bizimis et
810 al., 2005). The measured $\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$ ranges from $+0.38 \pm 0.14 \text{‰}$ to $+0.46 \pm$

811 0.14 ‰, with the equilibrium temperatures estimated based on the Fe-Mg
812 geothermometer varying from 1430 K to 1680 K (Bizimis et al., 2005). Yan Hu et al.
813 (2016) reported the $\delta^{26}\text{Mg}$ of garnet, clinopyroxene, orthopyroxene, and olivine
814 in garnet-bearing pyroxenites from Hannuoba, North China Craton, with
815 $\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$, $\Delta^{26}\text{Mg}_{\text{orthopyroxene-garnet}}$, and $\Delta^{26}\text{Mg}_{\text{olivine-garnet}}$ varying from $+0.11 \pm$
816 0.06‰ to $+0.65 \pm 0.07 \text{‰}$, from $+0.19 \pm 0.06 \text{‰}$ to $+0.76 \pm 0.07 \text{‰}$, and from $+0.16 \pm$
817 0.07‰ to $+0.80 \pm 0.07 \text{‰}$, respectively. For most garnet-bearing xenoliths, the
818 temperatures and pressures of equilibration estimated based on equilibrium partitioning
819 of Mg-Fe among clinopyroxene, orthopyroxene, and olivine are 1170-1310 K and 1.5-
820 2.0 GPa (Yan Hu et al., 2016), respectively.

821 Our results show that at 0 GPa, the $10^3 \ln \alpha_{\text{diopside-pyrope}}$ ranges from $+1.05 \text{‰}$ at 1000
822 K to $+0.46 \text{‰}$ at 1500 K (Table 4). The magnitude of $10^3 \ln \alpha_{\text{diopside-pyrope}}$ is significantly
823 enhanced by pressure. At 5 GPa, it increases to $+1.26 \text{‰}$ at 1000 K and $+0.55 \text{‰}$ at
824 1500 K. The observed $\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$ values in cratonic eclogites and Hawaiian
825 pyroxenites fall within the range of the calculated $10^3 \ln \alpha_{\text{diopside-pyrope}}$ (Fig. 13). For most
826 data, the equilibrium temperatures estimated based on Mg isotopes are consistent with
827 the values based on garnet-clinopyroxene Mg-Fe geothermometer, with a difference of
828 $< 100 \text{ K}$ (Fig. 14). It should be noted that an uncertainty of $\pm 0.14 \text{‰}$ on $\Delta^{26}\text{Mg}_{\text{clinopyroxene-}}$
829 garnet lead to an uncertainty in temperature of 100-200 K at 1200-1400 K. This suggests a
830 general isotopic equilibrium between clinopyroxene and garnet in cratonic eclogites.
831 For Bixiling eclogites, the $\Delta^{26}\text{Mg}_{\text{omphacite-garnet}}$ values of $+1.14 \pm 0.04 \text{‰}$ (Li et al., 2011)
832 suggest an equilibrium temperature of $\sim 1015 \text{ K}$ based on the temperature dependence
833 of $10^3 \ln \alpha_{\text{diopside-pyrope}}$ at 3 GPa. This value is slightly higher than the temperature range
834 (822-887 K) estimated from garnet-clinopyroxene Mg-Fe geothermometer, but well
835 consistent with the results of fresh eclogites (991-1030 K) reported (Xiao et al., 2000).

836 However, the observed $\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$, $\Delta^{26}\text{Mg}_{\text{orthopyroxene-garnet}}$, and
837 $\Delta^{26}\text{Mg}_{\text{olivine-garnet}}$ values in garnet-bearing lherzolites and pyroxenites from Yan Hu et al.
838 (2016) are systematically lower than the calculated $10^3 \ln \alpha_{\text{diopside-pyrope}}$, $10^3 \ln \alpha_{\text{orthopyroxene-}}$

839 pyrope, and $10^3 \ln \alpha_{\text{forsterite-pyrope}}$, respectively, using the temperatures estimated based on
840 inter-mineral Mg-Fe geothermometer (Fig. 13). If the Mg isotopic partitioning reached
841 equilibrium between garnet and other silicate minerals, the temperatures estimated from
842 Mg isotope fractionation would be much higher than 1600 K (Fig. 14). Such high
843 temperatures seem unrealistic for Hannuoba mantle xenoliths and indicate that these
844 garnets are probably not in Mg isotopic equilibrium with coexisting pyroxenes and
845 olivine. The disequilibrium inter-mineral fractionation is likely caused by incomplete
846 melt-rock interaction that generated the garnets in lherzolites and
847 pyroxenites. Petrographic observations also reveal a clear metasomatic origin for these
848 garnets (Yan Hu et al., 2016), which were not the primary refractory phase in depleted
849 peridotites. Since garnets formed at the expense of coexisting minerals (e.g., spinel)
850 and partly inherited their heavy $\delta^{26}\text{Mg}$ values, the magnitude of inter-mineral Mg
851 isotope fractionation between garnet and coexisting minerals is smaller than that of
852 equilibrium fractionation (Yan Hu et al., 2016).

853

854 **5.4 Spinel vs. olivine**

855 Previous studies investigated the Mg isotope fractionation between spinel and
856 olivine ($\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$) in natural peridotites and xenoliths (Liu et al., 2011; Stracke
857 et al., 2018; Xiao et al., 2013; Young et al., 2009), and found that spinel has higher
858 $\delta^{26}\text{Mg}$ values than coexisting olivine. The $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ ranges from $+0.17 \pm 0.14 \text{ ‰}$
859 for north China craton peridotites in Xiao et al. (2013) to $+0.87 \pm 0.14 \text{ ‰}$ for San Carlos
860 xenoliths in Young et al. (2009) (Fig. 15). The estimated temperatures for these
861 peridotites and xenoliths are 1100-1500 K based on the clinopyroxene-orthopyroxene
862 Mg-Fe geothermometer (Liu et al., 2011; Stracke et al., 2018; Xiao et al., 2013) or
863 inversion parameter for Al-Mg ordering in spinel (Young et al., 2009). Our results also
864 show that spinel is enriched in heavy Mg isotopes relative to forsterite (Table 4 and Fig.
865 8). The $10^3 \ln \alpha_{\text{spinel-forsterite}}$ is not only controlled by temperature but also affected by the
866 Cr# in spinel. In contrast, the fractionation magnitude is not significantly affected by

867 pressure (Fig. 8). When temperature increases from 1100 K to 1500 K, the $10^3 \ln \alpha_{\text{spinel-forsterite}}$
868 decreases from +0.80 ‰ to +0.43 ‰ for MgAl_2O_4 and from +0.52 ‰ to +0.28 ‰
869 for MgAlCrO_4 (Fig. 8). The Cr# in spinel from these studies is lower than 0.5
870 (summarized in Stracke et al., 2018), and thus the observed $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ values are
871 expected to fall between the $10^3 \ln \alpha_{\text{spinel-forsterite}}$ lines for MgAl_2O_4 and MgAlCrO_4 .

872 The $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ data from Young et al. (2009) fall on the calculated
873 $10^3 \ln \alpha_{\text{spinel-forsterite}}$ line for MgAl_2O_4 within uncertainties if the temperatures estimated
874 based on the inversion parameter for Mg-Al ordering are adopted (Fig. 15), but these
875 San Carlos spinels have Cr#s of ~ 0.38 (Young et al., 2009). This suggests an average
876 equilibrium temperature of 960 ± 100 K (2SD) based on the temperature dependence
877 of $10^3 \ln \alpha_{\text{spinel-forsterite}}$ at Cr# ~ 0.38 , which is consistent with the spinel inversion
878 parameter closure temperature of 1080 ± 37 K (Uchida, 2005) but somewhat lower than
879 the one estimated by Young et al. (2009) using the first-principles results in Schauble
880 (2011). This is because the $10^3 \ln \alpha_{\text{spinel-forsterite}}$ for MgAl_2O_4 was used and the effect of
881 Cr# was ignored in Young et al. (2009). However, if the temperatures estimated from
882 the clinopyroxene-orthopyroxene Mg-Fe geothermometer are used, the observed
883 $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ data from Liu et al. (2011), Xiao et al. (2013), and Stracke et al. (2018)
884 with Cr# of 0-0.3 fall around or below the $10^3 \ln \alpha_{\text{spinel-forsterite}}$ line for MgAlCrO_4 ,
885 somewhat deviating from the expected results at Cr# $\sim 0-0.3$ (Fig. 15). To show the Cr#
886 effect on the Mg isotope fractionation, we anchored the observed $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ to the
887 fractionation at 1000 K using $A_{\text{spinel-olivine}} = (\Delta^{26}\text{Mg}_{\text{spinel-olivine}}) * T^2 / 10^6$, where T is
888 temperature. In general, the $A_{\text{spinel-olivine}}$ estimated from $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ show a
889 decreasing trend with Cr#, consistent with our predicted results (Fig. 15b). Nonetheless,
890 the magnitude is systematically smaller than our results, probably due to the Mg-Al
891 substitution in spinel and/or reflecting the equilibrium temperature differences between
892 Mg isotope exchange and Mg-Fe exchange if Mg isotopic equilibrium in natural
893 samples had reached.

894 First, previous experiments found significant Mg-Al exchange in spinel at high

895 temperatures (e.g., Ma and Liu, 2019; Peterson et al., 1991), which may affect the
896 equilibrium Mg isotope fractionation between spinel and other minerals. In a normal
897 configuration for MgAl_2O_4 spinel, Mg^{2+} only occupies the tetrahedral sites with a CN
898 of 4 for Mg-O bonds, while Al^{3+} only occupies the octahedral sites with a CN of 6 for
899 Al-O bonds. At high temperatures, a fraction of Mg could occupy the octahedral sites
900 to form a disordered $(\text{Mg}_{1-x}\text{Al}_x)(\text{Mg}_x\text{Al}_{2-x})\text{O}_4$ spinel, with x increasing from ~ 0.2 at
901 1000 K to ~ 0.3 at 1400 K (Ma and Liu, 2019). To check the effect of Mg-Al disorder
902 effect on $10^3 \ln \alpha_{\text{spinel-forsterite}}$, we conducted first-principles calculations on
903 $(\text{Mg}_7\text{Al})(\text{MgAl}_{15})\text{O}_{32}$ spinel based on the LDA+QHA, corresponding to a value of
904 0.125 for x . The calculated results show that this disordered spinel has a slightly longer
905 average Mg-O bond length for the tetrahedral Mg than the normal spinel, which,
906 however, are both much shorter than the average Mg-O bond length for the octahedral
907 six-fold Mg (Table 2). The $(\text{Mg}_7\text{Al})(\text{MgAl}_{15})\text{O}_{32}$ spinel has an average $\langle F \rangle$ of Mg of
908 247.5 N/m, which is ~ 3 N/m lower than that of MgAl_2O_4 spinel (Table 2). Therefore,
909 its $10^3 \ln \beta$ value decreases by $\sim 0.04\text{‰}$ at 1000 K compared with a normal spinel (Tables
910 3 and 4), and the $10^3 \ln \alpha$ between $(\text{Mg}_7\text{Al})(\text{MgAl}_{15})\text{O}_{32}$ spinel and forsterite is $\sim 0.04\text{‰}$
911 lower than that between MgAl_2O_4 spinel and forsterite at 1000 K. If the difference is
912 linearly correlated with the concentration of Mg in the octahedral site, one can infer
913 that the $10^3 \ln \alpha_{\text{spinel-forsterite}}$ will decrease by $\sim 0.08\text{‰}$ at 1000 K when 25 mol% of Mg in
914 spinel occupy the octahedral sites (Ma and Liu, 2019). Such a magnitude is smaller than
915 the difference between our results and the observations from natural samples (Fig. 15b),
916 and therefore, the Mg-Al disordered effect can only partly account for that discrepancy.

917 Second, the deviation of the other $\Delta^{26}\text{Mg}_{\text{spinel-ol}}$ data from our results may be
918 caused by the differences in the closure temperatures of inter-mineral Mg isotopic
919 equilibrium and inter-mineral cation equilibrium as suggested by Stracke et al. (2018)
920 and Tang et al. (2021). It was proposed that the temperatures for xenoliths from north
921 China craton could vary from 800 to 1500 K using different cation geothermometers
922 (Wu et al., 2006), indicating that there are considerable temperature uncertainties for

923 reconciling the $\Delta^{26}\text{Mg}_{\text{spinel}-\text{ol}}$ data and the $10^3 \ln \alpha_{\text{spinel-forsterite}}$. If the $\Delta^{26}\text{Mg}_{\text{spinel}-\text{ol}}$ data
924 from Liu et al. (2011), Xiao et al. (2013), and Stracke et al. (2018) reflect equilibrium
925 fractionation, the temperatures estimated based on the temperature dependances of
926 $10^3 \ln \alpha_{\text{spinel-forsterite}}$ at various Cr# are significantly higher than those from inter-mineral
927 element geothermometers (Fig. 16), although the errors for temperatures from Mg
928 isotopes could be up to ± 400 K (2SD) due to the large uncertainties of $\Delta^{26}\text{Mg}_{\text{spinel}-\text{ol}}$
929 ($\pm 0.14\text{ ‰}$, 2SD). The Mg isotope temperatures for most data are lower than 1500 K,
930 with differences of < 300 K between Mg isotope and element geothermometers (Fig.
931 16). However, some samples require an extremely high temperatures for Mg isotopic
932 equilibration due to the very small $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ (Fig. 15), which are unrealistic for
933 mantle xenoliths. In summary, the temperature difference between Mg isotope
934 equilibrium and cation equilibrium probably could explain the deviation of some of
935 $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ data from our results.

936 Finally, the observed $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ values may reflect the Mg isotopic
937 disequilibrium induced by metasomatism (Liu et al., 2011; Stracke et al., 2018; Xiao et
938 al., 2013). Most peridotites and xenoliths analyzed for Mg isotope ratios have
939 experienced considerable post-melting metasomatism (Stracke et al., 2018). The only
940 likely xenoliths that may undergo a simple petrogenetic history are peridotites from the
941 North China Craton investigated by Liu et al. (2011), because these rocks preserve the
942 expected correlation between Al_2O_3 (whole rock) or Cr# in spinel and Mg# in olivine.
943 However, the rare earth element patterns in these peridotites also show variable
944 metasomatic overprint (Wu et al., 2006). All other peridotite suites likely have
945 experienced considerable metasomatism (Liu et al., 2011; Stracke et al., 2018; Xiao et
946 al., 2013; Young et al., 2009). The melt-peridotite reaction gradually dissolves
947 pyroxenes (clinopyroxene first) and forms olivine, spinel, and a modified melt. The
948 later-formed spinel may have partly inherited the relatively light $\delta^{26}\text{Mg}$ values of
949 pyroxenes, making the observed $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ values lower than the equilibrium
950 fractionation. The degree to which the observed $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ have been overprinted

951 by post-melting metasomatism may vary in different samples. For instance, the
952 equilibrium Mg isotope temperatures for peridotites in Liu et al. (2011) are ~200 K
953 higher than those from the clinopyroxene-orthopyroxene Fe-Mg geothermometer,
954 comparable to the uncertainties introduced by isotopic measurement uncertainty (Fig.
955 16). This indicates that spinel and olivine are nearly in Mg isotopic equilibrium in these
956 peridotites that have probably not experienced strong metasomatism, supported by the
957 correlation between Al_2O_3 (whole rock) or Cr# in spinel and Mg# in olivine (Liu et al.,
958 2011). In contrast, the observed $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ for Hawaiian peridotites in Stracke et
959 al. (2018) are too small (~ +0.22 ‰) (Fig. 15), and therefore, the equilibrium
960 temperatures estimated based on Mg isotopes are ~600 K higher than those from inter-
961 mineral cation geothermometers (Fig. 16). These large differences likely reflect the Mg
962 isotopic disequilibrium between spinel and coexisting olivine due to the considerable
963 post-melting metasomatism (Stracke et al., 2018).

964

965 **5.5. Mg isotope geothermometers**

966 Comparison of the observed inter-mineral Mg isotope fractionation in mantle
967 rocks reveals disequilibrium Mg isotope partitioning among some minerals, while some
968 rocks likely preserve the equilibrium inter-mineral Mg isotope fractionation. The large
969 $10^3 \ln \alpha_{\text{forsterite-pyrope}}$, $10^3 \ln \alpha_{\text{clinopyroxene-pyrope}}$, and $10^3 \ln \alpha_{\text{spinel-forsterite}}$ at high temperatures
970 suggest that the measured Mg isotope fractionation between these mineral pairs, if
971 reflecting the equilibrium fractionation, could be used to estimate the equilibrium
972 temperatures, when the equilibrium pressure can be obtained by other methods. The
973 application of $10^3 \ln \alpha_{\text{spinel-forsterite}}$ requires the knowledge of chemical composition in
974 spinel, e.g., the Cr# and the Mg-Al disorder, because $10^3 \ln \alpha_{\text{spinel-forsterite}}$ is not only
975 controlled by temperature but also significantly affected by the Cr# (Fig. 10). In general,
976 the temperatures of equilibration for mantle rocks were estimated using the inter-
977 mineral cation geothermometers, e.g., the clinopyroxene-orthopyroxene and garnet-
978 clinopyroxene Mg-Fe geothermometers, but the temperatures from different cation

979 geothermometers could vary in a wide range with differences of up to 300 K (Bizimis
980 et al., 2005; Wu et al., 2006). The Mg isotope geothermometers can provide
981 independent temperature estimates and check the reliability of temperatures from the
982 inter-mineral cation geothermometers. For instance, most $\Delta^{26}\text{Mg}_{\text{cpx-grt}}$ values
983 from cratonic eclogites and Hawaiian pyroxenites in Wang et al. (2012), Wang et al.
984 (2015), and Stracke et al. (2018) reflect the equilibrium fractionation and the
985 temperatures given by clinopyroxene-garnet Mg isotope geothermometer agree well
986 with those from the garnet-clinopyroxene Mg-Fe geothermometer within 100 K (Fig.
987 14). However, for Bixiling eclogites in Li et al. (2011), the equilibrium temperature
988 range estimated from garnet-clinopyroxene Mg-Fe geothermometer is 822-887 K,
989 lower than the equilibrium temperature of \sim 1015 K from clinopyroxene-garnet Mg
990 isotope geothermometer based on the $\Delta^{26}\text{Mg}_{\text{omphacite-grt}}$ values of $+1.14 \pm 0.04 \text{‰}$. It
991 should be noted that the precision of Mg isotope geothermometers could be better than
992 that of the traditional inter-mineral cation geothermometers. The uncertainties of $\pm 0.10 \text{‰}$
993 on $\Delta^{26}\text{Mg}_{\text{cpx-grt}}$ and $\Delta^{26}\text{Mg}_{\text{spinel-ol}}$ translate into errors in temperature of \sim 70 and \sim 90 K at
994 $T \sim 1200 \text{ K}$, respectively. Therefore, Mg isotope geothermometers could provide a
995 reliable and independent tool in estimating equilibrium temperatures of garnet-bearing
996 and spinel-bearing mantle rocks if the Mg isotope exchange has reached equilibrium.
997

998 **6. Implications for Mg isotope fractionation during late-stage basalt
999 differentiation**

1000 In order to constrain the Mg isotope fractionation during magma differentiation,
1001 previous studies measured the $\delta^{26}\text{Mg}$ values of a set of well-characterized basalts from
1002 the Kilauea Iki lava lake, Hawaii, which have diverse chemical compositions (MgO
1003 content ranges from 2.4 to 26.9 wt%) as a result of magma differentiation (Teng et al.,
1004 2010a, 2007). They found no resolvable Mg isotopic variations among these basalt
1005 samples at the current levels of analytical precision, indicating no measurable Mg
1006 isotope fractionation during mineral crystallization. However, subsequent studies on a

1007 suite of alkaline rocks show that samples containing $> \sim 5$ wt.% MgO have relatively
1008 uniform $\delta^{26}\text{Mg}$ values within uncertainties, whereas highly evolved rocks containing $<$
1009 ~ 5 wt.% MgO display large $\delta^{26}\text{Mg}$ variations (Wang et al., 2016, 2018; X.-J. Wang et
1010 al., 2021). This suggests that late-stage basalt differentiation may lead to detectable Mg
1011 isotope fractionation. As an example, we focus on the $\delta^{26}\text{Mg}$ variations in ocean island
1012 basalts (OIBs) from St. Helena Island investigated by X.-J. Wang et al. (2021). These
1013 OIBs vary from primitive nepheline-normative basalt to highly evolved trachyandesite
1014 with MgO contents decreasing from 15.7 wt.% to 0.8 wt.%, which include the
1015 crystallization history during late-stage differentiation. These samples have
1016 homogenous radiogenic isotopic compositions (Hanyu et al., 2014; Kawabata et al.,
1017 2011), implying that they may originate from a common mantle source and their
1018 parental magmas may have the same $\delta^{26}\text{Mg}$.

1019 X.-J. Wang et al. (2021) found that the basalts which only experienced
1020 crystallization of olivine and clinopyroxene have $\delta^{26}\text{Mg}$ values similar to that of the
1021 peridotitic mantle ($\delta^{26}\text{Mg} = -0.25 \pm 0.04 \text{‰}$) within uncertainties, while three out of
1022 four highly evolved rocks with MgO content < 4 wt% have lower $\delta^{26}\text{Mg}$ values (-0.36
1023 $\pm 0.04 \text{‰}$) than the mantle value. The chemical variations in the highly evolved samples
1024 with < 4 wt% MgO were caused by the crystallization of a variety of minerals including
1025 olivine, clinopyroxene, plagioclase, apatite, and magnetite (X.-J. Wang et al., 2021).
1026 Considering the low MgO contents in plagioclase and apatite (Kawabata et al., 2011;
1027 Luhr et al., 1984), the removal of these two phases does not significantly affect the
1028 $\delta^{26}\text{Mg}$ of the residual melt. On the other hand, the $\delta^{26}\text{Mg}$ values of highly evolved rocks
1029 with < 4 wt% MgO show a decreasing correlation with the decreasing of TiO_2 content,
1030 suggesting that magnetite likely plays an important role in producing the $\delta^{26}\text{Mg}$
1031 variations in these samples (X.-J. Wang et al., 2021). To model the Mg isotope
1032 fractionation during mineral crystallization, X.-J. Wang et al. (2021) investigated the
1033 proportions and chemical compositions of segregated minerals and residual melts
1034 during St. Helena lavas differentiation using MELTS. Combining the Mg abundances

1035 in different phases with the Mg isotope fractionation between olivine and melt
1036 ($\Delta^{26}\text{Mg}_{\text{olivine-melt}}$) and between clinopyroxene and melt ($\Delta^{26}\text{Mg}_{\text{clinopyroxene-melt}}$), which
1037 were assumed as -0.04 and -0.02 ‰, respectively, they suggested that an Mg isotope
1038 fractionation factor between magnetite and melt ($\Delta^{26}\text{Mg}_{\text{magnetite-melt}}$) of $\sim +0.6$ ‰ is
1039 required to explain the lower $\delta^{26}\text{Mg}$ values in highly evolved rocks. This is because
1040 magnetite has a low Mg content, and a large $\Delta^{26}\text{Mg}_{\text{magnetite-melt}}$ value is required to drive
1041 the $\delta^{26}\text{Mg}$ of the residual melt to a more negative value as $\Delta^{26}\text{Mg}_{\text{olivine-melt}} = -0.04$ ‰
1042 and $\Delta^{26}\text{Mg}_{\text{clinopyroxene-melt}} = -0.02$ ‰.

1043 Our calculated results show that magnetite (represented by magnesioferrite) is
1044 enriched in heavy Mg isotopes relative to olivine, with $10^3\ln\alpha_{\text{magnetite-forsterite}}$ varying
1045 from +0.30 ‰ for the octahedral Mg (six-fold) to +0.10 ‰ for the tetrahedral Mg (four-
1046 fold) at 1000 K and 0 GPa (Table 4 and Fig. 8). Previous experiments suggested that
1047 Mg can occupy both the octahedral and tetrahedral sites in magnetite, and the fraction
1048 of tetrahedral Mg is $\sim 25\%$ at high temperatures (O'Neill et al., 1992). Thus, the
1049 $10^3\ln\alpha_{\text{magnetite-forsterite}}$ can be calculated from the contribution from these two types of
1050 Mg, which is expressed as $10^3\ln\alpha_{\text{magnetite-forsterite}} = 0.32*10^6/T^2 - 0.080*(10^6/T^2)^2$, T is the
1051 temperature in Kelvin. Given that there is no resolvable Mg isotope fractionation
1052 between olivine and melt, the crystallization of magnetite will enrich the residual melt
1053 in light Mg isotopes, consistent with the observations for St. Helena highly evolved
1054 rocks. However, the magnitude of $10^3\ln\alpha_{\text{magnetite-forsterite}}$ or $10^3\ln\alpha_{\text{magnetite-melt}}$ is much
1055 smaller than the required value ($\Delta^{26}\text{Mg}_{\text{mgt-melt}} = \sim +0.6$ ‰) in X.-J. Wang et al. (2021).
1056 The discrepancy is probably related to the unjustified values for $\Delta^{26}\text{Mg}_{\text{olivine-melt}}$ and
1057 $\Delta^{26}\text{Mg}_{\text{clinopyroxene-melt}}$ used by X.-J. Wang et al. (2021). Here we combine chemical
1058 evolution history calculated by X.-J. Wang et al. (2021) using MELTS and the
1059 fractionation data ($10^3\ln\alpha_{\text{clinopyroxene-forsterite}}$ and $10^3\ln\alpha_{\text{magnetite-forsterite}}$) in this study to
1060 model the $\delta^{26}\text{Mg}$ evolution in the residual melt during St. Helena lava differentiation
1061 (Fig. 17). The $\Delta^{26}\text{Mg}_{\text{olivine-melt}}$ value is taken as 0.00 ± 0.04 ‰ as constrained by
1062 measurements on Kilauea Iki lavas (Teng et al., 2010a), and therefore, $\Delta^{26}\text{Mg}_{\text{clinopyroxene-}}$

1063 α_{melt} and $\Delta^{26}\text{Mg}_{\text{magnetite-melt}}$ can be derived from the calculated $10^3 \ln \alpha_{\text{clinopyroxene-forsterite}}$ and
1064 $10^3 \ln \alpha_{\text{magnetite-forsterite}}$. The $\delta^{26}\text{Mg}$ value of primary melt is assumed as the peridotitic
1065 mantle value ($-0.25 \pm 0.04 \text{ ‰}$; Teng, 2017). Our model results show that the residual
1066 melts at $\text{MgO} < 5 \text{ wt.\%}$ have relatively lower $\delta^{26}\text{Mg}$ values than the primary melt
1067 because clinopyroxene and magnetite are enriched in heavy Mg isotopes relative to the
1068 melt. Clinopyroxene and magnetite both play a key role in fractionating Mg isotopes
1069 during late-stage differentiation. The modeling results based on the fractionation data
1070 in this study can reproduce the negative $\delta^{26}\text{Mg}$ values observed in highly evolved
1071 basalts from St. Helena. The $\delta^{26}\text{Mg}$ of melt displays a wide range due to the
1072 uncertainties of $\Delta^{26}\text{Mg}_{\text{olivine-melt}}$ and $\delta^{26}\text{Mg}$ of primary melt. Overall, Mg isotopes could
1073 be significantly fractionated due to the fractional crystallization of some minerals such
1074 as magnetite and clinopyroxene during late-stage basalt differentiation.

1075 A recent study reported a more negative $\Delta^{26}\text{Mg}_{\text{olivine-melt}}$ value of $-0.071 \pm 0.010 \text{ ‰}$
1076 at $\sim 1438 \text{ K}$ by measuring the $\delta^{26}\text{Mg}$ of equilibrated olivine-glass pairs from ocean
1077 island and mid-ocean ridge basalts (Liu et al., 2022). The fractionation factor can be
1078 expressed as a function of temperature as $\Delta^{26}\text{Mg}_{\text{olivine-melt}} = (-0.146 \pm 0.026) \times 10^6 / T^2$
1079 (‰). If this value is used, the $\Delta^{26}\text{Mg}_{\text{clinopyroxene-melt}}$ is negligible ($\sim +0.01 \text{ ‰}$) and the
1080 $\Delta^{26}\text{Mg}_{\text{magnetite-melt}}$ is only $+0.08 \text{ ‰}$ at the crystallization temperature of magnetite. The
1081 modeling shows that the residual melt will gradually become enriched in heavy Mg
1082 isotopes with differentiation, contrary to the fractionation direction with a $\Delta^{26}\text{Mg}_{\text{olivine-}}$
1083 melt value of $0.00 \pm 0.04 \text{ ‰}$ (Fig. 17). This comparison highlights the importance of
1084 accurately determining the $\Delta^{26}\text{Mg}_{\text{olivine-melt}}$ by experiments or DFT calculations,
1085 especially when the chemical composition of melt changes. More future studies are
1086 needed to solve this key problem.

1087

1088 **7. Conclusions**

1089 In this study, we compile previous first-principles results and new calculations
1090 based on DFT to present the $10^3 \ln \alpha$ among a variety of mantle minerals. The LDA and

1091 GGA are generally adopted to model the exchange-correlation potential in the DFT
1092 calculations, and the static and QHA methods are used to calculate the $10^3\ln\beta$. We find
1093 that the volumes and average Mg-O bond lengths of mantle minerals predicted by the
1094 LDA calculations agree well with experimental results at ambient conditions, while the
1095 GGA calculations overestimate those structural properties. Both LDA and GGA
1096 calculations based on the periodic boundary conditions can predict the vibrational
1097 properties of mantle minerals well, and the LDA is better than the GGA. Due to the
1098 differences in predicted structural properties between the LDA and the GGA, the $10^3\ln\beta$
1099 of mantle minerals from the static GGA calculations are smaller than the static LDA
1100 results. Therefore, the $10^3\ln\beta$ calculated based on different exchange-correlation
1101 potentials cannot be used to derive the $10^3\ln\alpha$. In general, both LDA and GGA predict
1102 similar inter-mineral $10^3\ln\alpha$ values at high temperatures because the systematic offsets
1103 of $10^3\ln\beta$ are canceled out.

1104 We also compare the $10^3\ln\alpha$ values calculated by the static LDA method and the
1105 LDA+QHA method. The QHA method can derive the pressure- and temperature-
1106 dependent $10^3\ln\beta$ from its volume- and temperature-dependent form via the equation
1107 of states. The results show that the inter-mineral $10^3\ln\alpha$ values calculated from the static
1108 LDA method generally agree with those calculated from the LDA+QHA method at 0
1109 GPa. If the pressure effect is ignored, it is more convenient and less computational
1110 expensive to use the static method to predict $10^3\ln\alpha$. Two sets of inter-mineral $10^3\ln\alpha$
1111 values of $^{26}\text{Mg}/^{24}\text{Mg}$ calculated by the static LDA method and QHA+LDA method are
1112 provided in this work.

1113 The theoretical results show that the $10^3\ln\beta$ of $^{24}\text{Mg}/^{26}\text{Mg}$ decreases in the order
1114 of spinel (MgAl_2O_4) > spinel (MgAlCrO_4) > ringwoodite > magnesiochromite
1115 (MgCr_2O_4) > wadsleyite > diopside ~ periclase > magnesioferrite ($^{\text{T}}\text{MgFe}_2\text{O}_4$) ~
1116 magnesioferrite ($^{\text{M}}\text{MgFe}_2\text{O}_4$) ~ orthopyroxene > forsterite > bridgmanite > magnesite >
1117 geikielite (MgTiO_3) ~ geikielite ($\text{MgFeTi}_2\text{O}_6$) ~ geikielite ($\text{Mg}_2\text{Fe}_4\text{Ti}_6\text{O}_{18}$) > majorite >
1118 pyrope. The $10^3\ln\beta$ is dominantly controlled by the force constant of Mg in these

1119 minerals, which is affected by structural properties such as the Mg-O bond lengths and
1120 the CNs. Inter-mineral $10^3 \ln \alpha$ values could be significantly affected by pressure due to
1121 the large difference in the pressure slopes of $10^3 \ln \beta$. The $\Delta^{26}\text{Mg}_{\text{forsterite-magnesite}}$,
1122 $\Delta^{26}\text{Mg}_{\text{spinel-magnesite}}$, and $\Delta^{26}\text{Mg}_{\text{spinel-forsterite}}$ measured by previous experiments using the
1123 three-isotope method are consistent with the calculated results within uncertainties. We
1124 further use the calculated data to examine the degree to which the observed inter-
1125 mineral Mg isotope fractionation in natural rocks represents equilibrium. We also model
1126 the Mg isotope fractionation during late-stage basalt differentiation and find that the
1127 fractional crystallization of some minerals such as magnetite and clinopyroxene during
1128 late-stage basalt differentiation may enrich the residual melt in light Mg isotopes.

1129 **Acknowledgements**

1130 W.W. acknowledges the support the support from CAS Hundred Talents
1131 Programme and from the UCL-Carnegie Postdoctoral Scholarship. Part of the
1132 calculations were conducted at the Supercomputing Center of the University of Science
1133 and Technology of China.

1134 **References**

1135 Ai, Y., Zheng, T., 2003. The upper mantle discontinuity structure beneath eastern
1136 China. *Geophys. Res. Lett.* 30, 2089. doi:10.1029/2003GL017678

1137 Akaogi, M., Ito, E., Navrotsky, A., 1989. Olivine-modified spinel-spinel transitions in
1138 the system Mg₂SiO₄-Fe₂SiO₄: Calorimetric measurements,
1139 thermochemical calculation, and geophysical application. *J. Geophys. Res. Solid
1140 Earth* 94, 15671–15685. doi:10.1029/JB094iB11p15671

1141 Angel, R.J., Finger, L.W., Hazen, R.M., Kanzaki, M., Weidner, D.J., Liebermann,
1142 R.C., Veblen, D.R., 1989. Structure and twinning of single-crystal MgSiO₃
1143 garnet synthesized at 17 GPa and 1800 °C. *Am. Mineral.* 74, 509–512.

1144 Anisimov, V.I., Zaanen, J., Andersen, O.K., 1991. Band theory and Mott insulators:
1145 Hubbard U instead of Stoner I. *Phys. Rev. B* 44, 943–954.
1146 doi:10.1103/PhysRevB.44.943

1147 Bigeleisen, J., Mayer, M.G., 1947. Calculation of Equilibrium Constants for Isotopic
1148 Exchange Reactions. *J. Chem. Phys.* 15, 261. doi:10.1063/1.1746492

1149 Bina, C.R., Helffrich, G., 1994. Phase transition Clapeyron slopes and transition zone
1150 seismic discontinuity topography. *J. Geophys. Res.* 99, 15853.
1151 doi:10.1029/94JB00462

1152 Bizimis, M., Sen, G., Salters, V.J.M., Keshav, S., 2005. Hf-Nd-Sr isotope systematics
1153 of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: Evidence for a
1154 depleted component in Hawaiian volcanism. *Geochim. Cosmochim. Acta* 69,
1155 2629–2646. doi:10.1016/j.gca.2005.01.005

1156 Blanchard, M., Balan, E., Schauble, E.A., 2017. Equilibrium Fractionation of Non-
1157 traditional Isotopes: a Molecular Modeling Perspective. *Rev. Mineral.
1158 Geochemistry* 82, 27–63. doi:10.2138/rmg.2017.82.2

1159 Brewer, A., Teng, F.-Z., Dethier, D., 2018. Magnesium isotope fractionation during
1160 granite weathering. *Chem. Geol.* 501, 95–103.
1161 doi:10.1016/j.chemgeo.2018.10.013

1162 Cameron, M., Sueno, S., Prewitt, C.T., Papike, J.J., 1973. High-Temperature Crystal
1163 Chemistry of Acmite, Diopside, Hedenbergite Jadeite, Spodumene and Ureyite.
1164 *Am. Mineral.* 58, 594–618.

1165 Chen, L.-M., Song, X.-Y., Zhu, X.-K., Zhang, X.-Q., Yu, S.-Y., Yi, J.-N., 2014. Iron
1166 isotope fractionation during crystallization and sub-solidus re-equilibration:
1167 Constraints from the Baima mafic layered intrusion, SW China. *Chem. Geol.*
1168 380, 97–109. doi:10.1016/j.chemgeo.2014.04.020

1169 Chen, L.-M., Teng, F.-Z., Song, X.-Y., Hu, R.-Z., Yu, S.-Y., Zhu, D., Kang, J., 2018.
1170 Magnesium isotopic evidence for chemical disequilibrium among cumulus
1171 minerals in layered mafic intrusion. *Earth Planet. Sci. Lett.* 487, 74–83.
1172 doi:10.1016/j.epsl.2018.01.036

1173 Cococcioni, M., de Gironcoli, S., 2005. Linear response approach to the calculation of
1174 the effective interaction parameters in the LDA+U method. *Phys. Rev. B* 71,
1175 035105. doi:10.1103/PhysRevB.71.035105

1176 Cottaar, S., Deuss, A., 2016. Large-scale mantle discontinuity topography beneath
1177 Europe: Signature of akimotoite in subducting slabs. *J. Geophys. Res. Solid*
1178 *Earth* 121, 279–292. doi:10.1002/2015JB012452

1179 Cuozzo, N., Sletten, R.S., Hu, Y., Liu, L., Teng, F.-Z., Hagedorn, B., 2020. Silicate
1180 weathering in antarctic ice-rich permafrost: Insights using magnesium isotopes.
1181 *Geochim. Cosmochim. Acta* 278, 244–260. doi:10.1016/j.gca.2019.07.031

1182 Dauphas, N., Hu, M.Y., Baker, E.M., Hu, J., Tissot, F.L.H., Alp, E.E., Roskosz, M.,
1183 Zhao, J., Bi, W., Liu, J., Lin, J.-F., Nie, N.X., Heard, A., 2018. SciPhon: a data
1184 analysis software for nuclear resonant inelastic X-ray scattering with applications
1185 to Fe, Kr, Sn, Eu and Dy. *J. Synchrotron Radiat.* 25, 1581–1599.
1186 doi:10.1107/S1600577518009487

1187 Dauphas, N., Roskosz, M., Alp, E.E., Golden, D.C., Sio, C.K., Tissot, F.L.H., Hu,
1188 M.Y., Zhao, J., Gao, L., Morris, R.V., 2012. A general moment NRIXS approach
1189 to the determination of equilibrium Fe isotopic fractionation factors: Application
1190 to goethite and jarosite. *Geochim. Cosmochim. Acta* 94, 254–275.
1191 doi:10.1016/j.gca.2012.06.013

1192 Dauphas, N., Roskosz, M., Alp, E.E., Neuville, D.R., Hu, M.Y., Sio, C.K., Tissot,
1193 F.L.H., Zhao, J., Tissandier, L., Médard, E., Cordier, C., 2014. Magma redox and
1194 structural controls on iron isotope variations in Earth's mantle and crust. *Earth*
1195 *Planet. Sci. Lett.* 398, 127–140. doi:10.1016/j.epsl.2014.04.033

1196 Deuss, A., 2009. Global Observations of Mantle Discontinuities Using SS and PP
1197 Precursors. *Surv. Geophys.* 30, 301–326. doi:10.1007/s10712-009-9078-y

1198 Deuss, A., 2006. The Nature of the 660-Kilometer Discontinuity in Earth's Mantle
1199 from Global Seismic Observations of PP Precursors. *Science (80-.).* 311, 198–
1200 201. doi:10.1126/science.1120020

1201 Dewaele, A., Fiquet, G., Andrault, D., Hausermann, D., 2000. P-V-T equation of state
1202 of periclase from synchrotron radiation measurements. *J. Geophys. Res. Solid*
1203 *Earth* 105, 2869–2877. doi:10.1029/1999JB900364

1204 Duan, L., Wang, W., Wu, Z., Qian, W., 2019. Thermodynamic and Elastic Properties
1205 of Grossular at High Pressures and High Temperatures: A First-Principles Study.
1206 *J. Geophys. Res. Solid Earth* 124, 7792–7805. doi:10.1029/2019JB017439

1207 Ducher, M., Blanchard, M., Balan, E., 2018. Equilibrium isotopic fractionation
1208 between aqueous Zn and minerals from first-principles calculations. *Chem. Geol.*
1209 1–9. doi:10.1016/j.chemgeo.2018.02.040

1210 Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference Earth model. *Phys.*
1211 *Earth Planet. Inter.* 25, 297–356. doi:10.1016/0031-9201(81)90046-7

1212 Fei, Y., Van Orman, J., Li, J., van Westrenen, W., Sanloup, C., Minarik, W., Hirose,
1213 K., Komabayashi, T., Walter, M., Funakoshi, K., 2004. Experimentally
1214 determined postspinel transformation boundary in Mg₂SiO₄ using MgO as an
1215 internal pressure standard and its geophysical implications. *J. Geophys. Res.*
1216 *Solid Earth* 109, 1–8. doi:10.1029/2003JB002562

1217 Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. First-principles investigations

1218 of equilibrium calcium isotope fractionation between clinopyroxene and Ca-
1219 doped orthopyroxene. *Geochim. Cosmochim. Acta* 143, 132–142.
1220 doi:10.1016/j.gca.2014.06.002

1221 Fujii, T., Moynier, F., Blichert-Toft, J., Albarède, F., 2014. Density functional theory
1222 estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant
1223 to geochemical and biological environments. *Geochim. Cosmochim. Acta* 140,
1224 553–576. doi:10.1016/j.gca.2014.05.051

1225 Fujii, T., Moynier, F., Pons, M.-L., Albarède, F., 2011. The origin of Zn isotope
1226 fractionation in sulfides. *Geochim. Cosmochim. Acta* 75, 7632–7643.
1227 doi:10.1016/j.gca.2011.09.036

1228 Gao, C., Cao, X., Liu, Q., Yang, Y., Zhang, S., He, Y., Tang, M., Liu, Y., 2018.
1229 Theoretical calculation of equilibrium Mg isotope fractionations between
1230 minerals and aqueous solutions. *Chem. Geol.* #pagerange#.
1231 doi:10.1016/j.chemgeo.2018.04.005

1232 Gao, Y., Suetsugu, D., Fukao, Y., Obayashi, M., Shi, Y., Liu, R., 2010. Seismic
1233 discontinuities in the mantle transition zone and at the top of the lower mantle
1234 beneath eastern China and Korea: Influence of the stagnant Pacific slab. *Phys.*
1235 *Earth Planet. Inter.* 183, 288–295. doi:10.1016/j.pepi.2010.03.009

1236 Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli,
1237 D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S.,
1238 Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gouguassis, C., Kokalj, A.,
1239 Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini,
1240 S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G.,
1241 Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M., 2009.
1242 QUANTUM ESPRESSO: a modular and open-source software project for
1243 quantum simulations of materials. *J. Phys. Condens. Matter* 21, 395502.
1244 doi:10.1088/0953-8984/21/39/395502

1245 Handler, M.R., Baker, J.A., Schiller, M., Bennett, V.C., Yaxley, G.M., 2009.
1246 Magnesium stable isotope composition of Earth's upper mantle. *Earth Planet.*
1247 *Sci. Lett.* 282, 306–313. doi:10.1016/j.epsl.2009.03.031

1248 Hanyu, T., Kawabata, H., Tatsumi, Y., Kimura, J.-I., Hyodo, H., Sato, K., Miyazaki,
1249 T., Chang, Q., Hirahara, Y., Takahashi, T., Senda, R., Nakai, S., 2014. Isotope
1250 evolution in the HIMU reservoir beneath St. Helena: Implications for the mantle
1251 recycling of U and Th. *Geochim. Cosmochim. Acta* 143, 232–252.
1252 doi:10.1016/j.gca.2014.03.016

1253 Hao, S., Wang, W., Qian, W., Wu, Z., 2019. Elasticity of akimotoite under the mantle
1254 conditions: Implications for multiple discontinuities and seismic anisotropies at
1255 the depth of ~600–750 km in subduction zones. *Earth Planet. Sci. Lett.* 528,
1256 115830. doi:10.1016/j.epsl.2019.115830

1257 Hazen, R.M., Weinberger, M.B., Yang, H., Prewitt, C.T., 2000. Comparative high-
1258 pressure crystal chemistry of wadsleyite, β -(Mg 1- x Fe x) 2 SiO 4 , with x = 0
1259 and 0.25. *Am. Mineral.* 85, 770–777. doi:10.2138/am-2000-5-617

1260 Helffrich, G.R., Wood, B.J., 2001. The Earth's mantle. *Nature* 412, 501–507.
1261 doi:10.1038/35087500

1262 Hill, P.S., Schauble, E.A., 2008. Modeling the effects of bond environment on
1263 equilibrium iron isotope fractionation in ferric aquo-chloro complexes. *Geochim.*
1264 *Cosmochim. Acta* 72, 1939–1958. doi:10.1016/j.gca.2007.12.023

1265 Hills, D. V., Haggerty, S.E., 1989. Petrochemistry of eclogites from the Koidu
1266 Kimberlite Complex, Sierra Leone. *Contrib. to Mineral. Petrol.* 103, 397–422.
1267 doi:10.1007/BF01041749

1268 Hin, R.C., Coath, C.D., Carter, P.J., Nimmo, F., Lai, Y.J., Pogge von Strandmann,
1269 P.A.E., Willbold, M., Leinhardt, Z.M., Walter, M.J., Elliott, T., 2017.
1270 Magnesium isotope evidence that accretional vapour loss shapes planetary
1271 compositions. *Nature* 549, 511–527. doi:10.1038/nature23899

1272 Hirose, K., 2002. Phase transitions in pyrolytic mantle around 670-km depth:
1273 Implications for upwelling of plumes from the lower mantle. *J. Geophys. Res.*
1274 *Solid Earth* 107, ECV 3-1-ECV 3-13. doi:10.1029/2001JB000597

1275 Hsu, H., Blaha, P., Cococcioni, M., Wentzcovitch, R.M., 2011. Spin-State Crossover
1276 and Hyperfine Interactions of Ferric Iron in MgSiO₃ Perovskite. *Phys. Rev. Lett.*
1277 106, 118501. doi:10.1103/PhysRevLett.106.118501

1278 Hu, Y., Teng, F.-Z., Ionov, D.A., 2020. Magnesium isotopic composition of
1279 metasomatized upper sub-arc mantle and its implications to Mg cycling in
1280 subduction zones. *Geochim. Cosmochim. Acta* 278, 219–234.
1281 doi:10.1016/j.gca.2019.09.030

1282 Hu, Y., Teng, F.-Z., Plank, T., Huang, K.-J., 2017. Magnesium isotopic composition
1283 of subducting marine sediments. *Chem. Geol.* 466, 15–31.
1284 doi:10.1016/j.chemgeo.2017.06.010

1285 Hu, Yan, Teng, F.-Z., Zhang, H.-F., Xiao, Y., Su, B.-X., 2016. Metasomatism-
1286 induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites.
1287 *Geochim. Cosmochim. Acta* 185, 88–111. doi:10.1016/j.gca.2015.11.001

1288 Hu, Yi, Wu, Z., Dera, P., Bina, C., 2016. Thermodynamic and elastic properties of
1289 pyrope at high pressure and high temperature by first-principles calculations. *J.*
1290 *Geophys. Res.* 1–15. doi:10.1002/2016JB013026. Received

1291 Huang, F., Chen, L., Wu, Z., Wang, W., 2013. First-principles calculations of
1292 equilibrium Mg isotope fractionations between garnet, clinopyroxene,
1293 orthopyroxene, and olivine: Implications for Mg isotope thermometry. *Earth*
1294 *Planet. Sci. Lett.* 367, 61–70. doi:10.1016/j.epsl.2013.02.025

1295 Huang, F., Wu, Z., Huang, S., Wu, F., 2014. First-principles calculations of
1296 equilibrium silicon isotope fractionation among mantle minerals. *Geochim.*
1297 *Cosmochim. Acta* 140, 509–520. doi:10.1016/j.gca.2014.05.035

1298 Huang, F., Zhang, Z., Lundstrom, C.C., Zhi, X., 2011a. Iron and magnesium isotopic
1299 compositions of peridotite xenoliths from Eastern China. *Geochim. Cosmochim.*
1300 *Acta* 75, 3318–3334. doi:10.1016/j.gca.2011.03.036

1301 Huang, F., Zhang, Z., Lundstrom, C.C., Zhi, X., 2011b. Iron and magnesium isotopic

1302 compositions of peridotite xenoliths from Eastern China. *Geochim. Cosmochim. Acta* 75, 3318–3334. doi:10.1016/j.gca.2011.03.036

1303

1304 Huang, F., Zhou, C., Wang, W., Kang, J., Wu, Z., 2019. First-principles calculations
1305 of equilibrium Ca isotope fractionation: Implications for oldhamite formation
1306 and evolution of lunar magma ocean. *Earth Planet. Sci. Lett.* 510, 153–160.
1307 doi:10.1016/j.epsl.2018.12.034

1308 Huang, J., Li, S.-G., Xiao, Y., Ke, S., Li, W.-Y., Tian, Y., 2015. Origin of low $\delta^{26}\text{Mg}$
1309 Cenozoic basalts from South China Block and their geodynamic implications.
1310 *Geochim. Cosmochim. Acta* 164, 298–317. doi:10.1016/j.gca.2015.04.054

1311 Huang, K.-J., Teng, F.-Z., Plank, T., Staudigel, H., Hu, Y., Bao, Z.-Y., 2018.
1312 Magnesium isotopic composition of altered oceanic crust and the global Mg
1313 cycle. *Geochim. Cosmochim. Acta* 238, 357–373. doi:10.1016/j.gca.2018.07.011

1314 Huang, K.-J., Teng, F.-Z., Shen, B., Xiao, S., Lang, X., Ma, H.-R., Fu, Y., Peng, Y.,
1315 2016. Episode of intense chemical weathering during the termination of the 635
1316 Ma Marinoan glaciation. *Proc. Natl. Acad. Sci.* 113, 14904–14909.
1317 doi:10.1073/pnas.1607712113

1318 Huang, K.-J., Teng, F.-Z., Wei, G.-J., Ma, J.-L., Bao, Z.-Y., 2012. Adsorption- and
1319 desorption-controlled magnesium isotope fractionation during extreme
1320 weathering of basalt in Hainan Island, China. *Earth Planet. Sci. Lett.* 359–360,
1321 73–83. doi:10.1016/j.epsl.2012.10.007

1322 Inoue, T., Irifune, T., Higo, Y., Sanehira, T., Sueda, Y., Yamada, A., Shinmei, T.,
1323 Yamazaki, D., Ando, J., Funakoshi, K., Utsumi, W., 2006. The phase boundary
1324 between wadsleyite and ringwoodite in Mg_2SiO_4 determined by in situ X-ray
1325 diffraction. *Phys. Chem. Miner.* 33, 106–114. doi:10.1007/s00269-005-0053-y

1326 Ita, J., Stixrude, L., 1992. Petrology, elasticity, and composition of the mantle
1327 transition zone. *J. Geophys. Res.* 97, 6849. doi:10.1029/92JB00068

1328 Katsura, T., Ito, E., 1989. The system Mg_2SiO_4 – Fe_2SiO_4 at high pressures and
1329 temperatures: Precise determination of stabilities of olivine, modified spinel, and
1330 spinel. *J. Geophys. Res. Solid Earth* 94, 15663–15670.
1331 doi:10.1029/JB094iB11p15663

1332 Katsura, T., Yamada, H., Nishikawa, O., Song, M., Kubo, A., Shinmei, T., Yokoshi,
1333 S., Aizawa, Y., Yoshino, T., Walter, M.J., Ito, E., Funakoshi, K., 2004. Olivine-
1334 wadsleyite transition in the system $(\text{Mg},\text{Fe})_2\text{SiO}_4$. *J. Geophys. Res. Solid*
1335 *Earth* 109, n/a–n/a. doi:10.1029/2003JB002438

1336 Kawabata, H., Hanyu, T., Chang, Q., Kimura, J.-I., Nichols, A.R.L., Tatsumi, Y.,
1337 2011. The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation
1338 of the Oceanic Crust-recycling Model for HIMU OIB. *J. Petrol.* 52, 791–838.
1339 doi:10.1093/petrology/egr003

1340 Kennett, B.L.N., Engdahl, E.R., Buland, R., 1995. Constraints on seismic velocities in
1341 the Earth from traveltimes. *Geophys. J. Int.* 122, 108–124. doi:10.1111/j.1365-
1342 246X.1995.tb03540.x

1343 Kind, R., Li, X., 2015. Deep Earth Structure - Transition Zone and Mantle

1344 Discontinuities, in: Treatise on Geophysics. Elsevier, pp. 655–682.
1345 doi:10.1016/B978-0-444-53802-4.00017-8

1346 Kirfel, A., Lippmann, T., Blaha, P., Schwarz, K., Cox, D.F., Rosso, K.M., Gibbs, G.
1347 V., 2005. Electron density distribution and bond critical point properties for
1348 forsterite, Mg₂SiO₄, determined with synchrotron single crystal X-ray
1349 diffraction data. *Phys. Chem. Miner.* 32, 301–313. doi:10.1007/s00269-005-
1350 0468-5

1351 Kowalski, P.M., Jahn, S., 2011. Prediction of equilibrium Li isotope fractionation
1352 between minerals and aqueous solutions at high P and T: An efficient ab initio
1353 approach. *Geochim. Cosmochim. Acta* 75, 6112–6123.
1354 doi:10.1016/j.gca.2011.07.039

1355 Kowalski, P.M., Wunder, B., Jahn, S., 2013a. Ab initio prediction of equilibrium
1356 boron isotope fractionation between minerals and aqueous fluids at high P and T.
1357 *Geochim. Cosmochim. Acta* 101, 285–301. doi:10.1016/j.gca.2012.10.007

1358 Kowalski, P.M., Wunder, B., Jahn, S., 2013b. Ab initio prediction of equilibrium
1359 boron isotope fractionation between minerals and aqueous fluids at high P and T.
1360 *Geochim. Cosmochim. Acta* 101, 285–301. doi:10.1016/j.gca.2012.10.007

1361 Lazar, C., Young, E.D., Manning, C.E., 2012. Experimental determination of
1362 equilibrium nickel isotope fractionation between metal and silicate from 500°C
1363 to 950°C. *Geochim. Cosmochim. Acta* 86, 276–295.
1364 doi:10.1016/j.gca.2012.02.024

1365 Li, S.-G., Yang, W., Ke, S., Meng, X., Tian, H., Xu, L., He, Y., Huang, J., Wang, X.-
1366 C., Xia, Q., Sun, W., Yang, X., Ren, Z.-Y., Wei, H., Liu, Y., Meng, F., Yan, J.,
1367 2016. Deep carbon cycles constrained by a large-scale mantle Mg isotope
1368 anomaly in eastern China. *Natl. Sci. Rev.* 4, nww070. doi:10.1093/nsr/nww070

1369 Li, W.-Y., Teng, F.-Z., Halama, R., Keller, J., Klaudius, J., 2016. Magnesium isotope
1370 fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania. *Earth*
1371 *Planet. Sci. Lett.* 444, 26–33. doi:10.1016/j.epsl.2016.03.034

1372 Li, W.-Y., Teng, F.-Z., Ke, S., Rudnick, R.L., Gao, S., Wu, F.-Y., Chappell, B.W.,
1373 2010. Heterogeneous magnesium isotopic composition of the upper continental
1374 crust. *Geochim. Cosmochim. Acta* 74, 6867–6884.
1375 doi:10.1016/j.gca.2010.08.030

1376 Li, W.-Y., Teng, F.-Z., Xiao, Y., Huang, J., 2011. High-temperature inter-mineral
1377 magnesium isotope fractionation in eclogite from the Dabie orogen, China. *Earth*
1378 *Planet. Sci. Lett.* 304, 224–230. doi:10.1016/j.epsl.2011.01.035

1379 Li, X., Liu, Y., 2011. Equilibrium Se isotope fractionation parameters: A first-
1380 principles study. *Earth Planet. Sci. Lett.* 304, 113–120.
1381 doi:10.1016/j.epsl.2011.01.022

1382 Li, Y., Wang, W., Huang, S., Wang, K., Wu, Z., 2019a. First-principles investigation
1383 of the concentration effect on equilibrium fractionation of K isotopes in
1384 feldspars. *Geochim. Cosmochim. Acta* 245, 374–384.
1385 doi:10.1016/j.gca.2018.11.006

1386 Li, Y., Wang, W., Wu, Z., Huang, S., 2019b. First-principles investigation of
1387 equilibrium K isotope fractionation among K-bearing minerals. *Geochim.
1388 Cosmochim. Acta* 264, 30–42. doi:10.1016/j.gca.2019.07.038

1389 Liu, J., Dauphas, N., Roskosz, M., Hu, M.Y., Yang, H., Bi, W., Zhao, J., Alp, E.E.,
1390 Hu, J.Y., Lin, J.F., 2017. Iron isotopic fractionation between silicate mantle and
1391 metallic core at high pressure. *Nat. Commun.* 8, ncomms14377.
1392 doi:10.1038/ncomms14377

1393 Liu, S.-A., Teng, F.-Z., He, Y., Ke, S., Li, S., 2010. Investigation of magnesium
1394 isotope fractionation during granite differentiation: Implication for Mg isotopic
1395 composition of the continental crust. *Earth Planet. Sci. Lett.* 297, 646–654.
1396 doi:10.1016/j.epsl.2010.07.019

1397 Liu, S.-A., Teng, F.-Z., Yang, W., Wu, F.-Y., 2011. High-temperature inter-mineral
1398 magnesium isotope fractionation in mantle xenoliths from the North China
1399 craton. *Earth Planet. Sci. Lett.* 308, 131–140. doi:10.1016/j.epsl.2011.05.047

1400 Liu, X.-N., Hin, R.C., Coath, C.D., van Soest, M., Melekhova, E., Elliott, T., 2022.
1401 Equilibrium olivine-melt Mg isotopic fractionation explains high $\delta^{26}\text{Mg}$ values
1402 in arc lavas. *Geochemical Perspect. Lett.* 22, 42–47.
1403 doi:10.7185/geochemlet.2226

1404 Liu, X.M., Teng, F.Z., Rudnick, R.L., McDonough, W.F., Cummings, M.L., 2014.
1405 Massive magnesium depletion and isotope fractionation in weathered basalts.
1406 *Geochim. Cosmochim. Acta* 135, 336–349. doi:10.1016/j.gca.2014.03.028

1407 Luhr, J.F., Carmichael, I.S.E., Varekamp, J.C., 1984. The 1982 eruptions of El
1408 Chichón Volcano, Chiapas, Mexico: Mineralogy and petrology of the
1409 anhydritebearing pumices. *J. Volcanol. Geotherm. Res.* 23, 69–108.
1410 doi:10.1016/0377-0273(84)90057-X

1411 Ma, Y., Liu, X., 2019. Kinetics and Thermodynamics of Mg-Al Disorder in
1412 MgAl_2O_4 -Spinel: A Review. *Molecules* 24, 1704.
1413 doi:10.3390/molecules24091704

1414 Macris, C.A., Manning, C.E., Young, E.D., 2015. Crystal chemical constraints on
1415 inter-mineral Fe isotope fractionation and implications for Fe isotope
1416 disequilibrium in San Carlos mantle xenoliths. *Geochim. Cosmochim. Acta* 154,
1417 168–185. doi:10.1016/j.gca.2015.01.024

1418 Macris, C.A., Young, E.D., Manning, C.E., 2013. Experimental determination of
1419 equilibrium magnesium isotope fractionation between spinel, forsterite, and
1420 magnesite from 600 to 800 °C. *Geochim. Cosmochim. Acta* 118, 18–32.
1421 doi:10.1016/j.gca.2013.05.008

1422 McDonough, W.F., Sun, S. -s., 1995. The composition of the Earth. *Chem. Geol.* 120,
1423 223–253. doi:10.1016/0009-2541(94)00140-4

1424 Méheut, M., Lazzeri, M., Balan, E., Mauri, F., 2009. Structural control over
1425 equilibrium silicon and oxygen isotopic fractionation: A first-principles density-
1426 functional theory study. *Chem. Geol.* 258, 28–37.
1427 doi:10.1016/j.chemgeo.2008.06.051

1428 Meng, Y., Fei, Y., Weidner, D.J., Gwanmesia, G.D., Hu, J., 1994. Hydrostatic
1429 compression of Mg_2SiO_4 to mantle pressures and 700 K: Thermal equation of
1430 state and related thermoelastic properties. *Phys. Chem. Miner.* 21, 407–412.
1431 doi:10.1007/BF00203299

1432 Núñez-Valdez, M., Wu, Z., Yu, Y.G., Wentzcovitch, R.M., 2013. Thermal elasticity
1433 of $(\text{Fe}_{x},\text{Mg}_{1-x})_2\text{SiO}_4$ olivine and wadsleyite. *Geophys. Res. Lett.* 40, 290–
1434 294. doi:10.1002/grl.50131

1435 Núñez Valdez, M., Wu, Z., Yu, Y.G., Revenaugh, J., Wentzcovitch, R.M., 2012.
1436 Thermoelastic properties of ringwoodite $(\text{Fe}_{x},\text{Mg}_{1-x})_2\text{SiO}_4$: Its relationship to
1437 the 520 km seismic discontinuity. *Earth Planet. Sci. Lett.* 351–352, 115–122.
1438 doi:10.1016/j.epsl.2012.07.024

1439 O'Neill, H.S.C., Annersten, H., Virgo, D., 1992. The temperature dependence of the
1440 cation distribution in magnesioferrite (MgFe_2O_4) from powder XRD structural
1441 refinements and Mössbauer spectroscopy. *Am. Mineral.* 77, 725–740.

1442 O'Neill, H.S.C., Dollase, W.A., 1994. Crystal structures and cation distributions in
1443 simple spinels from powder XRD structural refinements: MgCr_2O_4 , ZnCr_2O_4 ,
1444 Fe_3O_4 and the temperature dependence of the cation distribution in ZnAl_2O_4 .
1445 *Phys. Chem. Miner.* 20, 541–555. doi:10.1007/BF00211850

1446 Pavese, A., Artioli, G., Prencipe, M., 1995. X-ray single-crystal diffraction study of
1447 pyrope in the temperature range 30–973 K. *Am. Mineral.* 80, 457–464.
1448 doi:10.2138/am-1995-5-606

1449 Peterson, R.C., Lager, G.A., Hitterman, R.L., 1991. A time-of-flight neutron powder
1450 diffraction study of MgAl_2O_4 at temperatures up to 1273 K. *Am. Mineral.* 76,
1451 1455–1458.

1452 Qian, W., Wang, W., Zou, F., Wu, Z., 2018. Elasticity of Orthoenstatite at High
1453 Pressure and Temperature: Implications for the Origin of Low V P / V S Zones
1454 in the Mantle Wedge. *Geophys. Res. Lett.* 45, 665–673.
1455 doi:10.1002/2017GL075647

1456 Qin, T., Wu, F., Wu, Z., Huang, F., 2016. First-principles calculations of equilibrium
1457 fractionation of O and Si isotopes in quartz, albite, anorthite, and zircon. *Contrib.
1458 to Mineral. Petrol.* 171, 91. doi:10.1007/s00410-016-1303-3

1459 Rabin, S., Blanchard, M., Pinilla, C., Poitrasson, F., Gregoire, M., 2021. First-
1460 principles calculation of iron and silicon isotope fractionation between Fe-
1461 bearing minerals at magmatic temperatures: The importance of second atomic
1462 neighbors. *Geochim. Cosmochim. Acta* 304, 101–118.
1463 doi:10.1016/j.gca.2021.03.028

1464 Richet, P., Bottinga, Y., Javoy, M., 1977. A Review of Hydrogen, Carbon, Nitrogen,
1465 Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous
1466 Molecules. *Annu. Rev. Earth Planet. Sci.* 5, 65–110.
1467 doi:10.1146/annurev.ea.05.050177.000433

1468 Ringwood, A.E., 1962. A model for the upper mantle. *J. Geophys. Res.* 67, 857–867.
1469 doi:10.1029/JZ067i002p00857

1470 Roskosz, M., Amet, Q., Fitoussi, C., Dauphas, N., Bourdon, B., Tissandier, L., Hu,
1471 M.Y., Said, A., Alatas, A., Alp, E.E., 2020. Redox and structural controls on tin
1472 isotopic fractionations among magmas. *Geochim. Cosmochim. Acta* 268, 42–55.
1473 doi:10.1016/j.gca.2019.09.036

1474 Ross, N.L., 1997. The equation of state and high-pressure behavior of magnesite. *Am.*
1475 *Mineral.* 82, 682–688. doi:10.2138/am-1997-7-805

1476 Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust, in: *Treatise on*
1477 *Geochemistry*. Elsevier, pp. 1–51. doi:10.1016/B978-0-08-095975-7.00301-6

1478 Schauble, E., Rossman, G.R., Taylor, H.P., 2004. Theoretical estimates of equilibrium
1479 chromium-isotope fractionations. *Chem. Geol.* 205, 99–114.
1480 doi:10.1016/j.chemgeo.2003.12.015

1481 Schauble, E.A., 2011. First-principles estimates of equilibrium magnesium isotope
1482 fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals.
1483 *Geochim. Cosmochim. Acta* 75, 844–869. doi:10.1016/j.gca.2010.09.044

1484 Schultz, R., Gu, Y.J., 2013. Multiresolution imaging of mantle reflectivity structure
1485 using SS and P'P' precursors. *Geophys. J. Int.* 195, 668–683.
1486 doi:10.1093/gji/ggt266

1487 Shahar, A., Hillgren, V.J., Young, E.D., Fei, Y., Macris, C.A., Deng, L., 2011. High-
1488 temperature Si isotope fractionation between iron metal and silicate. *Geochim.*
1489 *Cosmochim. Acta* 75, 7688–7697. doi:10.1016/j.gca.2011.09.038

1490 Shahar, A., Schauble, E.A., Caracas, R., Gleason, A.E., Reagan, M.M., Xiao, Y., Shu,
1491 J., Mao, W., 2016. Pressure-dependent isotopic composition of iron alloys.
1492 *Science* (80-). 352, 580–582. doi:10.1126/science.aad9945

1493 Shahar, A., Young, E.D., Manning, C.E., 2008. Equilibrium high-temperature Fe
1494 isotope fractionation between fayalite and magnetite: An experimental
1495 calibration. *Earth Planet. Sci. Lett.* 268, 330–338. doi:10.1016/j.epsl.2008.01.026

1496 Shahar, A., Ziegler, K., Young, E.D., Ricolleau, A., Schauble, E.A., Fei, Y., 2009.
1497 Experimentally determined Si isotope fractionation between silicate and Fe metal
1498 and implications for Earth's core formation. *Earth Planet. Sci. Lett.* 288, 228–
1499 234. doi:10.1016/j.epsl.2009.09.025

1500 Shukla, G., Cococcioni, M., Wentzcovitch, R.M., 2016. Thermoelasticity of Fe 3+ -
1501 and Al-bearing bridgmanite. *Geophys. Res. Lett.* doi:10.1002/2016GL069332

1502 Shukla, G., Wentzcovitch, R.M., 2016. Spin crossover in
1503 (Mg,Fe3+)(Si,Fe3+)O3bridgmanite: Effects of disorder, iron concentration, and
1504 temperature. *Phys. Earth Planet. Inter.* 260, 53–61.
1505 doi:10.1016/j.pepi.2016.09.003

1506 Shukla, G., Wu, Z., Hsu, H., Floris, A., Cococcioni, M., Wentzcovitch, R.M., 2015.
1507 Thermoelasticity of Fe 2+ -bearing bridgmanite. *Geophys. Res. Lett.* 42, 1741–
1508 1749. doi:10.1002/2014GL062888

1509 Stracke, A., Tipper, E.T., Klemme, S., Bizimis, M., 2018. Mg isotope systematics
1510 during magmatic processes: Inter-mineral fractionation in mafic to ultramafic
1511 Hawaiian xenoliths. *Geochim. Cosmochim. Acta* 226, 192–205.

1512 doi:10.1016/j.gca.2018.02.002

1513 Sugahara, M., Yoshiasa, A., Komatsu, Y., Yamanaka, T., Bolfan-Casanova, N.,
1514 Nakatsuka, A., Sasaki, S., Tanaka, M., 2006. Reinvestigation of the MgSiO₃
1515 perovskite structure at high pressure. *Am. Mineral.* 91, 533–536.
1516 doi:10.2138/am.2006.1980

1517 Tang, H., Szumila, I., Trail, D., Young, E.D., 2021. Experimental determination of the
1518 effect of Cr on Mg isotope fractionation between spinel and forsterite. *Geochim.
1519 Cosmochim. Acta* 296, 152–169. doi:10.1016/j.gca.2020.12.028

1520 Teng, F.-Z., 2017. Magnesium Isotope Geochemistry. *Rev. Mineral. Geochemistry*
1521 82, 219–287. doi:10.2138/rmg.2017.82.7

1522 Teng, F.-Z., Li, W.-Y., Ke, S., Marty, B., Dauphas, N., Huang, S., Wu, F.-Y.,
1523 Pourmand, A., 2010a. Magnesium isotopic composition of the Earth and
1524 chondrites. *Geochim. Cosmochim. Acta* 74, 4150–4166.
1525 doi:10.1016/j.gca.2010.04.019

1526 Teng, F.-Z., Li, W.-Y., Rudnick, R.L., Gardner, L.R., 2010b. Contrasting lithium and
1527 magnesium isotope fractionation during continental weathering. *Earth Planet.
1528 Sci. Lett.* 300, 63–71. doi:10.1016/j.epsl.2010.09.036

1529 Teng, F.-Z., Wadhwa, M., Helz, R.T., 2007. Investigation of magnesium isotope
1530 fractionation during basalt differentiation: Implications for a chondritic
1531 composition of the terrestrial mantle. *Earth Planet. Sci. Lett.* 261, 84–92.
1532 doi:10.1016/j.epsl.2007.06.004

1533 Togo, A., Tanaka, I., 2015. First principles phonon calculations in materials science.
1534 *Scr. Mater.* 108, 1–5. doi:10.1016/j.scriptamat.2015.07.021

1535 Toplis, M.J., Carroll, M.R., 1995. An Experimental Study of the Influence of Oxygen
1536 Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral–Melt Equilibria
1537 in Ferro-Basaltic Systems. *J. Petrol.* 36, 1137–1170.
1538 doi:10.1093/petrology/36.5.1137

1539 Troullier, N., Martins, J.L., 1991. Efficient pseudopotentials for plane-wave
1540 calculations. II. Operators for fast iterative diagonalization. *Phys. Rev. B* 43,
1541 8861–8869. doi:10.1103/PhysRevB.43.8861

1542 Tsujino, N., Yoshino, T., Yamazaki, D., Sakurai, M., Sun, W., Xu, F., Tange, Y.,
1543 Higo, Y., 2019. Phase transition of wadsleyite–ringwoodite in the Mg₂SiO₄–
1544 Fe₂SiO₄ system. *Am. Mineral.* 104, 588–594. doi:10.2138/am-2019-6823

1545 Uchida, H., 2005. Single-crystal X-ray diffraction of spinels from the San Carlos
1546 Volcanic Field, Arizona: Spinel as a geothermometer. *Am. Mineral.* 90, 1900–
1547 1908. doi:10.2138/am.2005.1795

1548 Urey, H.C., 1947. The thermodynamic properties of isotopic substances. *J. Chem.
1549 Soc.* 562. doi:10.1039/jr9470000562

1550 Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue
1551 formalism. *Phys. Rev. B* 41, 7892–7895. doi:10.1103/PhysRevB.41.7892

1552 Wang, S.-J., Teng, F.-Z., Li, S.-G., 2014. Tracing carbonate–silicate interaction
1553 during subduction using magnesium and oxygen isotopes. *Nat. Commun.* 5,

1554 5328. doi:10.1038/ncomms6328

1555 Wang, S.-J., Teng, F.-Z., Rudnick, R.L., Li, S.-G., 2015. Magnesium isotope evidence
1556 for a recycled origin of cratonic eclogites. *Geology* 43, G37259.1.
1557 doi:10.1130/G37259.1

1558 Wang, S.-J., Teng, F.-Z., Scott, J.M., 2016. Tracing the origin of continental HIMU-
1559 like intraplate volcanism using magnesium isotope systematics. *Geochim.
1560 Cosmochim. Acta* 185, 78–87. doi:10.1016/j.gca.2016.01.007

1561 Wang, S.-J., Teng, F.-Z., Williams, H.M., Li, S.-G., 2012. Magnesium isotopic
1562 variations in cratonic eclogites: Origins and implications. *Earth Planet. Sci. Lett.*
1563 359–360, 219–226. doi:10.1016/j.epsl.2012.10.016

1564 Wang, W., Huang, S., Huang, F., Zhao, X., Wu, Z., 2020a. Equilibrium inter-mineral
1565 titanium isotope fractionation: Implication for high-temperature titanium isotope
1566 geochemistry. *Geochim. Cosmochim. Acta* 269, 540–553.
1567 doi:10.1016/j.gca.2019.11.008

1568 Wang, W., Li, C.H., Brodholt, J.P., Huang, S., Walter, M.J., Li, M., Wu, Z., Huang,
1569 F., Wang, S.J., 2021a. Sulfur isotopic signature of Earth established by
1570 planetesimal volatile evaporation. *Nat. Geosci.* 14, 806–811.
1571 doi:10.1038/s41561-021-00838-6

1572 Wang, W., Liu, J., Yang, H., Dorfman, S.M., Lv, M., Li, J., Zhu, F., Zhao, J., Hu,
1573 M.Y., Bi, W., Alp, E.E., Xiao, Y., Wu, Z., Lin, J., 2021b. Iron force constants of
1574 bridgmanite at high pressure: Implications for iron isotope fractionation in the
1575 deep mantle. *Geochim. Cosmochim. Acta* 294, 215–231.
1576 doi:10.1016/j.gca.2020.11.025

1577 Wang, W., Liu, J., Zhu, F., Li, M., Dorfman, S.M., Li, J., Wu, Z., 2021c. Formation
1578 of large low shear velocity provinces through the decomposition of oxidized
1579 mantle. *Nat. Commun.* 12, 1911. doi:10.1038/s41467-021-22185-1

1580 Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017a. Concentration
1581 effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals:
1582 Insights from first-principles calculations. *Geochim. Cosmochim. Acta* 208,
1583 185–197. doi:10.1016/j.gca.2017.03.023

1584 Wang, W., Tschauner, O., Huang, S., Wu, Z., Meng, Y., Bechtel, H., Mao, H., 2021d.
1585 Coupled deep mantle carbon-water cycle: Evidence from lower-mantle
1586 diamonds. *Innov.* 2, 100117. doi:10.1016/j.xinn.2021.100117

1587 Wang, W., Walter, M.J., Peng, Y., Redfern, S., Wu, Z., 2019a. Constraining olivine
1588 abundance and water content of the mantle at the 410-km discontinuity from the
1589 elasticity of olivine and wadsleyite. *Earth Planet. Sci. Lett.* 519, 1–11.
1590 doi:10.1016/j.epsl.2019.04.018

1591 Wang, W., Wu, Z., 2018. Elasticity of Corundum at High Pressures and
1592 Temperatures: Implications for Pyrope Decomposition and Al-Content Effect on
1593 Elastic Properties of Bridgmanite. *J. Geophys. Res. Solid Earth* 123, 1201–1216.
1594 doi:10.1002/2017JB015088

1595 Wang, W., Wu, Z., Huang, F., 2021e. Equilibrium barium isotope fractionation

1596 between minerals and aqueous solution from first-principles calculations.
1597 *Geochim. Cosmochim. Acta* 292, 64–77. doi:10.1016/j.gca.2020.09.021

1598 Wang, W., Xu, Y., Sun, D., Ni, S., Wentzcovitch, R., Wu, Z., 2020b. Velocity and
1599 density characteristics of subducted oceanic crust and the origin of lower-mantle
1600 heterogeneities. *Nat. Commun.* 11, 64. doi:10.1038/s41467-019-13720-2

1601 Wang, W., Zhang, H., Brodholt, J.P., Wu, Z., 2020c. Elasticity of hydrous
1602 ringwoodite at mantle conditions: Implication for water distribution in the
1603 lowermost mantle transition zone. *Earth Planet. Sci. Lett.* 554, 116626.
1604 doi:10.1016/j.epsl.2020.116626

1605 Wang, W., Zhou, C., Liu, Y., Wu, Z., Huang, F., 2019b. Equilibrium Mg isotope
1606 fractionation among aqueous Mg²⁺, carbonates, brucite and lizardite: Insights
1607 from first-principles molecular dynamics simulations. *Geochim. Cosmochim.*
1608 *Acta* 250, 117–129. doi:10.1016/j.gca.2019.01.042

1609 Wang, W., Zhou, C., Qin, T., Kang, J., Huang, S., Wu, Z., Huang, F., 2017b. Effect of
1610 Ca content on equilibrium Ca isotope fractionation between orthopyroxene and
1611 clinopyroxene. *Geochim. Cosmochim. Acta* 219, 44–56.
1612 doi:10.1016/j.gca.2017.09.022

1613 Wang, X.-J., Chen, L.-H., Hanyu, T., Zhong, Y., Shi, J.-H., Liu, X.-W., Kawabata, H.,
1614 Zeng, G., Xie, L.-W., 2021. Magnesium isotopic fractionation during basalt
1615 differentiation as recorded by evolved magmas. *Earth Planet. Sci. Lett.* 565,
1616 116954. doi:10.1016/j.epsl.2021.116954

1617 Wang, X.-J., Chen, L.-H., Hofmann, A.W., Hanyu, T., Kawabata, H., Zhong, Y., Xie,
1618 L.-W., Shi, J.-H., Miyazaki, T., Hirahara, Y., Takahashi, T., Senda, R., Chang,
1619 Q., Vaglarov, B.S., Kimura, J.-I., 2018. Recycled ancient ghost carbonate in the
1620 Pitcairn mantle plume. *Proc. Natl. Acad. Sci. U. S. A.* 115, 8682–8687.
1621 doi:10.1073/pnas.1719570115

1622 Wang, X.-J., Chen, L.-H., Hofmann, A.W., Mao, F.-G., Liu, J.-Q., Zhong, Y., Xie, L.-
1623 W., Yang, Y.-H., 2017. Mantle transition zone-derived EM1 component beneath
1624 NE China: Geochemical evidence from Cenozoic potassic basalts. *Earth Planet.*
1625 *Sci. Lett.* 465, 16–28. doi:10.1016/j.epsl.2017.02.028

1626 Wechsler, B.A., Lindsley, D.H., Prewitt, C.T., 1984. Crystal structure and cation
1627 distribution in titanomagnetites (Fe_{3-x}Ti_xO₄). *Am. Mineral.* 69, 754–770.

1628 Wentzcovitch, R.M., 1991. Invariant molecular-dynamics approach to structural
1629 phase transitions. *Phys. Rev. B* 44, 2358–2361. doi:10.1103/PhysRevB.44.2358

1630 Wentzcovitch, R.M., Yu, Y.G., Wu, Z., 2010. Thermodynamic Properties and Phase
1631 Relations in Mantle Minerals Investigated by First Principles Quasiharmonic
1632 Theory. *Rev. Mineral. Geochemistry* 71, 59–98. doi:10.2138/rmg.2010.71.4

1633 Williams, H.M., Nielsen, S.G., Renac, C., Griffin, W.L., O'Reilly, S.Y., McCammon,
1634 C.A., Pearson, N., Viljoen, F., Alt, J.C., Halliday, A.N., 2009. Fractionation of
1635 oxygen and iron isotopes by partial melting processes: Implications for the
1636 interpretation of stable isotope signatures in mafic rocks. *Earth Planet. Sci. Lett.*
1637 283, 156–166. doi:10.1016/j.epsl.2009.04.011

1638 Wu, F.-Y., Walker, R.J., Yang, Y.-H., Yuan, H.-L., Yang, J.-H., 2006. The chemical-
1639 temporal evolution of lithospheric mantle underlying the North China Craton.
1640 *Geochim. Cosmochim. Acta* 70, 5013–5034. doi:10.1016/j.gca.2006.07.014

1641 Wu, Z., Huang, F., Huang, S., 2015. Isotope fractionation induced by phase
1642 transformation: First-principles investigation for Mg₂SiO₄. *Earth Planet. Sci.*
1643 *Lett.* 409, 339–347. doi:10.1016/j.epsl.2014.11.004

1644 Wu, Z., Justo, J.F., Wentzcovitch, R.M., 2013. Elastic Anomalies in a Spin-Crossover
1645 System: Ferropericlase at Lower Mantle Conditions. *Phys. Rev. Lett.* 110,
1646 228501. doi:10.1103/PhysRevLett.110.228501

1647 Wu, Z., Wang, W., 2016. First-principles calculations of elasticity of minerals at high
1648 temperature and pressure. *Sci. China Earth Sci.* 59, 1107–1137.
1649 doi:10.1007/s11430-016-5296-6

1650 Xiao, Y., Hoefs, J., van den Kerkhof, A.M., Fiebig, J., Zheng, Y., 2000. Fluid history
1651 of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen
1652 isotope study on the coesite-bearing eclogite from Bixiling. *Contrib. to Mineral.*
1653 *Petrol.* 139, 1–16. doi:10.1007/s004100050570

1654 Xiao, Y., Teng, F.-Z., Zhang, H.-F., Yang, W., 2013. Large magnesium isotope
1655 fractionation in peridotite xenoliths from eastern North China craton: Product of
1656 melt–rock interaction. *Geochim. Cosmochim. Acta* 115, 241–261.
1657 doi:10.1016/j.gca.2013.04.011

1658 Xiao, Y., Teng, F., Su, B., Hu, Y., Zhou, M., Zhu, B., Shi, R., Huang, Q., Gong, X.,
1659 He, Y., 2016. Iron and magnesium isotopic constraints on the origin of chemical
1660 heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet.
1661 *Geochemistry, Geophys. Geosystems* 17, 940–953. doi:10.1002/2015GC006223

1662 Yamanaka, T., Komatsu, Y., Sugahara, M., Nagai, T., 2005. Structure change of
1663 MgSiO₃, MgGeO₃, and MgTiO₃ ilmenites under compression. *Am. Mineral.* 90,
1664 1301–1307. doi:10.2138/am.2005.1621

1665 Yang, D., Wang, W., Wu, Z., 2017. Elasticity of superhydrated phase B at the mantle
1666 temperatures and pressures: Implications for 800 km discontinuity and water
1667 flow into the lower mantle. *J. Geophys. Res. Solid Earth* 122, 5026–5037.
1668 doi:10.1002/2017JB014319

1669 Yang, H., Ghose, S., 1995. High temperature single crystal X-ray diffraction studies
1670 of the ortho-proto phase transition in enstatite, Mg₂Si₂O₆ at 1360 K. *Phys.*
1671 *Chem. Miner.* 22, 300–310. doi:10.1007/BF00202770

1672 Yang, H., Lin, J.F., Hu, M.Y., Roskosz, M., Bi, W., Zhao, J., Alp, E.E., Liu, Jin, Liu,
1673 Jiachao, Wentzowitch, R.M., Okuchi, T., Dauphas, N., 2019. Iron isotopic
1674 fractionation in mineral phases from Earth's lower mantle: Did terrestrial magma
1675 ocean crystallization fractionate iron isotopes? *Earth Planet. Sci. Lett.* 506, 113–
1676 122. doi:10.1016/j.epsl.2018.10.034

1677 Yang, R., Wu, Z., 2014. Elastic properties of stishovite and the CaCl₂-type silica at
1678 the mantle temperature and pressure: An ab initio investigation. *Earth Planet.*
1679 *Sci. Lett.* 404, 14–21. doi:10.1016/j.epsl.2014.07.020

1680 Yang, W., Teng, F.-Z., Zhang, H.-F., Li, S.-G., 2012. Magnesium isotopic systematics
1681 of continental basalts from the North China craton: Implications for tracing
1682 subducted carbonate in the mantle. *Chem. Geol.* 328, 185–194.
1683 doi:10.1016/j.chemgeo.2012.05.018

1684 Yao, C., Wu, Z., Zou, F., Sun, W., 2018. Thermodynamic and Elastic Properties of
1685 Magnesite at Mantle Conditions: First-Principles Calculations. *Geochemistry,*
1686 *Geophys. Geosystems* 19, 2719–2731. doi:10.1029/2017GC007396

1687 Young, E.D., Galy, A., 2004. The Isotope Geochemistry and Cosmochemistry of
1688 Magnesium. *Rev. Mineral. Geochemistry* 55, 197–230.
1689 doi:10.2138/gsrmg.55.1.197

1690 Young, E.D., Manning, C.E., Schauble, E.A., Shahar, A., Macris, C.A., Lazar, C.,
1691 Jordan, M., 2015. High-temperature equilibrium isotope fractionation of non-
1692 traditional stable isotopes: Experiments, theory, and applications. *Chem. Geol.*
1693 395, 176–195. doi:10.1016/j.chemgeo.2014.12.013

1694 Young, E.D., Shahar, A., Nimmo, F., Schlichting, H.E., Schauble, E.A., Tang, H.,
1695 Labidi, J., 2019. Near-equilibrium isotope fractionation during planetesimal
1696 evaporation. *Icarus* 323, 1–15. doi:10.1016/j.icarus.2019.01.012

1697 Young, E.D., Tonui, E., Manning, C.E., Schauble, E., Macris, C.A., 2009. Spinel–
1698 olivine magnesium isotope thermometry in the mantle and implications for the
1699 Mg isotopic composition of Earth. *Earth Planet. Sci. Lett.* 288, 524–533.
1700 doi:10.1016/j.epsl.2009.10.014

1701 Yu, Y.G., Wentzcovitch, R.M., Tsuchiya, T., Umemoto, K., Weidner, D.J., 2007.
1702 First principles investigation of the postspinel transition in Mg₂SiO₄.
1703 *Geophys. Res. Lett.* 34, L10306. doi:10.1029/2007GL029462

1704 Yu, Y.G., Wentzcovitch, R.M., Vinograd, V.L., Angel, R.J., 2011. Thermodynamic
1705 properties of MgSiO₃ majorite and phase transitions near 660 km depth in
1706 MgSiO₃ and Mg₂SiO₄: A first principles study. *J. Geophys. Res.* 116,
1707 B02208. doi:10.1029/2010JB007912

1708 Yu, Y.G., Wu, Z., Wentzcovitch, R.M., 2008. α – β – γ transformations in Mg₂SiO₄ in
1709 Earth's transition zone. *Earth Planet. Sci. Lett.* 273, 115–122.
1710 doi:10.1016/j.epsl.2008.06.023

1711 Zhang, X.Q., Song, X.Y., Chen, L.M., Xie, W., Yu, S.Y., Zheng, W.Q., Deng, Y.F.,
1712 Zhang, J.F., Gui, S.G., 2012. Fractional crystallization and the formation of thick
1713 Fe-Ti-V oxide layers in the Baima layered intrusion, SW China. *Ore Geol. Rev.*
1714 49, 96–108. doi:10.1016/j.oregeorev.2012.09.003

1715 Zou, F., Wu, Z., Wang, W., Wentzcovitch, R.M., 2018. An Extended Semianalytical
1716 Approach for Thermoelasticity of Monoclinic Crystals: Application to Diopside.
1717 *J. Geophys. Res. Solid Earth* 123, 7629–7643. doi:10.1029/2018JB016102

1718

cell parameters and volumes of mantle minerals compared with experimental measurements. Cell parameters are calculated at 300 K are obtained based on the QHA.

	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Static volumes (Å ³)	Volumes at 300 K (Å ³)	
SiO ₄)	4.738	10.115	5.941	90	90	90	284.714	290.274	LDA
	4.790	10.303	6.036	90	90	90	297.885		
	4.752	10.192	5.978	90	90	90	289.529		
K _{Si₂O₆)}	9.692	8.835	5.213	90	105.35	90	430.477	439.677	GGA
	9.879	8.986	5.308	90	106.48	90	451.844		
	9.745	8.899	5.251	90	105.63	90	438.532		
MgSiO ₃)	18.110	8.755	5.138	90	90	90	814.640	832.179	LDA
	18.398	8.920	5.228	90	90	90	857.968		
	18.251	8.814	5.181	90	90	90	833.438		
Si ₃ O ₁₂)	11.357	11.357	11.357	90	90	90	1464.717	1495.661	PBC
	11.545	11.545	11.545	90	90	90	1538.958		
	11.454	11.454	11.454	90	90	90	1502.855		
O ₂ O ₄)	8.013	8.013	8.013	90	90	90	514.470	523.131	GGA
	8.185	8.185	8.185	90	90	90	548.442		
	8.080	8.080	8.080	90	90	90	527.465		
Al ₁₅)O ₃₂)	8.007	8.007	8.023	89.87	89.87	89.86	514.382	523.062	
CrO ₄)	8.145	8.136	8.145	90.35	88.76	90.35	539.671	548.046	
MgCr ₂ O ₄)	8.235	8.328	8.235	89.34	91.31	89.34	564.463	572.989	
	8.357	8.431	8.357	89.49	91.02	89.49	588.7366		
K	8.334	8.334	8.334	90	90	90		578.884	O'N
CO ₃)	4.619	4.619	14.605	90	90	120	269.899	276.550	GGA
	4.672	4.672	15.183	90	90	120	286.974		
	4.634	4.634	15.018	90	90	120		279.272	
TiO ₃)	5.040	5.040	13.743	90	90	120	302.336	307.919	LDA
	5.125	5.125	14.014	90	90	120	318.818		
	5.054	5.054	13.898	90	90	120		307.435	
MgFeTi ₂ O ₆)	5.072	5.072	13.717	90	90	120	305.551	311.000	LDA
Mg ₂ Fe ₄ Ti ₆ O ₁₈)	5.081	5.081	13.711	90	90	120	306.524	311.115	
MgFe ₂ O ₄)	8.303	8.298	8.298	89.90	90.03	90.03	571.758	579.303	

Table 2. The average Mg-O bond lengths, coordination numbers, and force constants of Mg in minerals.

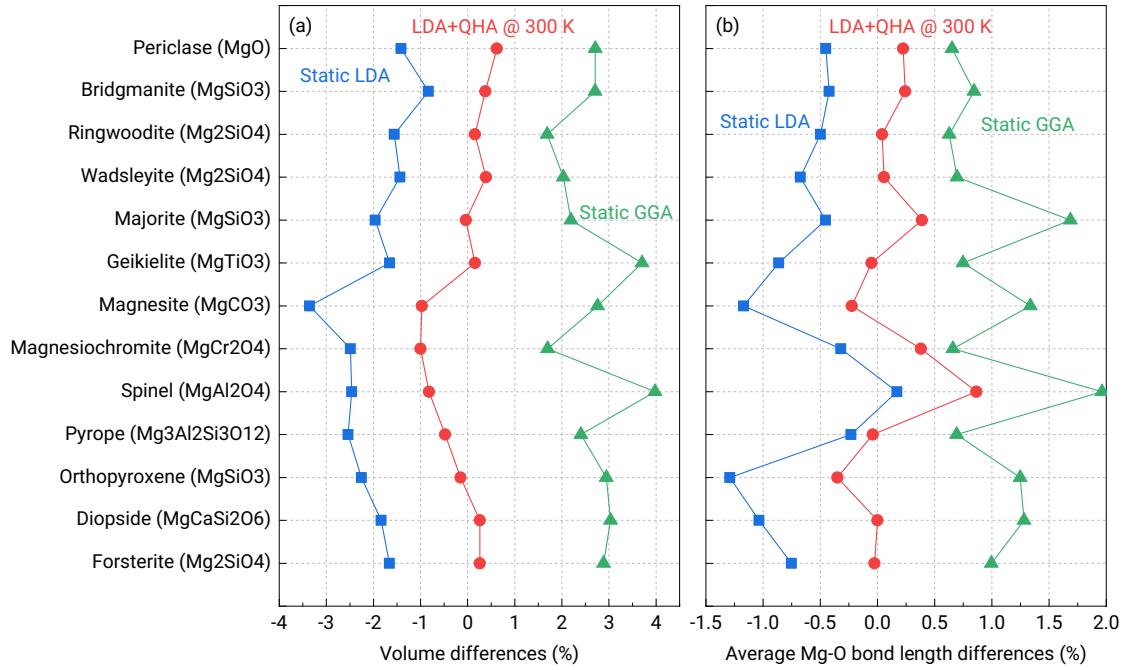
Minerals	Static LDA (Å)	LDA at 300 K (Å)	Static GGA (Å)	Exp. at 300 K (Å)	Coordination number (CN)	<F> (N/m)
Forsterite (Mg_2SiO_4)	2.0956	2.1109	2.1325	2.1115	6	182.1
Diopside ($\text{MgCaSi}_2\text{O}_6$)	2.0549	2.0764	2.1030	2.0764	6	195.1
Orthopyroxene (MgSiO_3)	2.0873	2.1072	2.1410	2.1146	6	186.9
Pyrope ($\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$)	2.2641	2.2685	2.2851	2.2694	8	110.1
Spinel (MgAl_2O_4)	1.9295	1.9429	1.9640	1.9262	4	250.8
*Spinel ($(\text{Mg}_7\text{Al})(\text{MgAl}_{15})\text{O}_{32}$)	1.9484	-	-	-	4.25	247.5
Spinel (MgAlCrO_4)	1.9480	1.961	-	-	4	223.7
Magnesiochromite (MgCr_2O_4)	1.9530	1.966	-	1.959	4	212.3
Magnesite (MgCO_3)	2.0763	2.0962	2.1290	2.1009	6	171.2
Geikielite (MgTiO_3)	2.0889	2.1060	2.1229	2.1071	6	169.3
Geikielite-ilmenite ($\text{MgFeTi}_2\text{O}_6$)	2.0868	2.1039	-	-	6	167.5
Geikielite-ilmenite ($\text{Mg}_2\text{Fe}_4\text{Ti}_6\text{O}_{18}$)	2.0897	2.1041	-	-	6	165.8
Magnesioferrite (${}^{\text{M}}\text{MgFe}_2\text{O}_4$)	2.0598	2.0702	-	-	6	191.4
Magnesioferrite (${}^{\text{T}}\text{MgFe}_2\text{O}_4$)	1.9712	1.9900	-	-	4	190.0
[†] Majorite (MgSiO_3)	2.2163	2.2351	2.2640	2.2264	7.5	147.7
Wadsleyite (Mg_2SiO_4)	2.0688	2.0840	2.0973	2.0828	6	206.1
Ringwoodite (Mg_2SiO_4)	2.0561	2.0673	2.0794	2.0664	6	219.5
Bridgmanite (MgSiO_3)	2.1937	2.2084	2.2216	2.2030	8	177.4
Periclase (MgO)	2.0960	2.1102	2.1192	2.1055	6	199.2

The sources of experimental data are listed in Table 1.

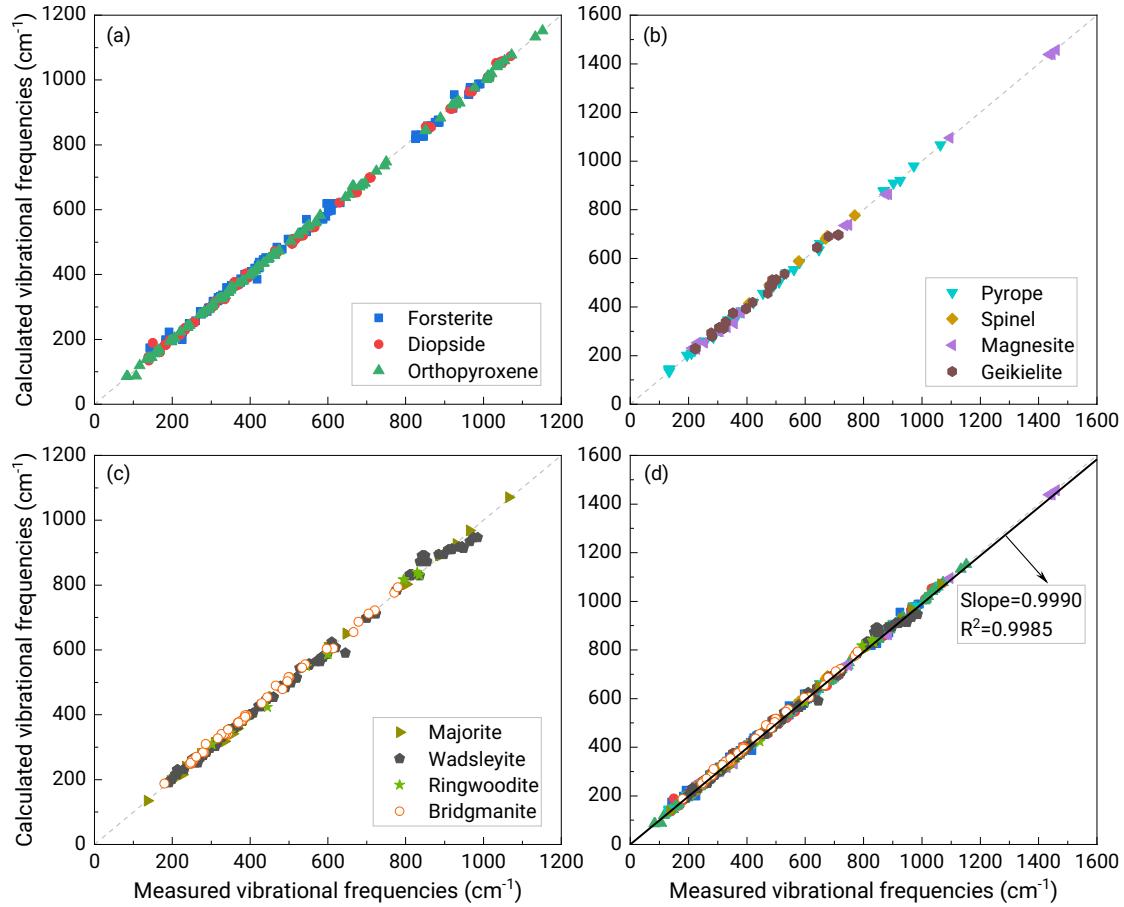
*In this disordered spinel, 12.5 mol% of Mg occupies the octahedral sites with a CN of 6, and therefore, the average CN is 4.25. The average Mg-O bond lengths for octahedral and tetrahedral Mg are 2.0222 and 1.9326 Å, respectively.

[†]Majorite has a tetragonal structure with the chemical formula ${}^{\text{VIII}}\text{Mg}_3{}^{\text{VI}}(\text{MgSi})(\text{SiO}_4)_3$. Three Mg cations are eight-fold coordinated and one Mg cation is six-fold coordinated. Thus, the average CN of Mg in majorite is 7.5. The average ${}^{\text{VIII}}\text{Mg-O}$ and ${}^{\text{VI}}\text{Mg-O}$ bond lengths are 2.2619 Å and 2.0339 Å based on our static LDA calculations.

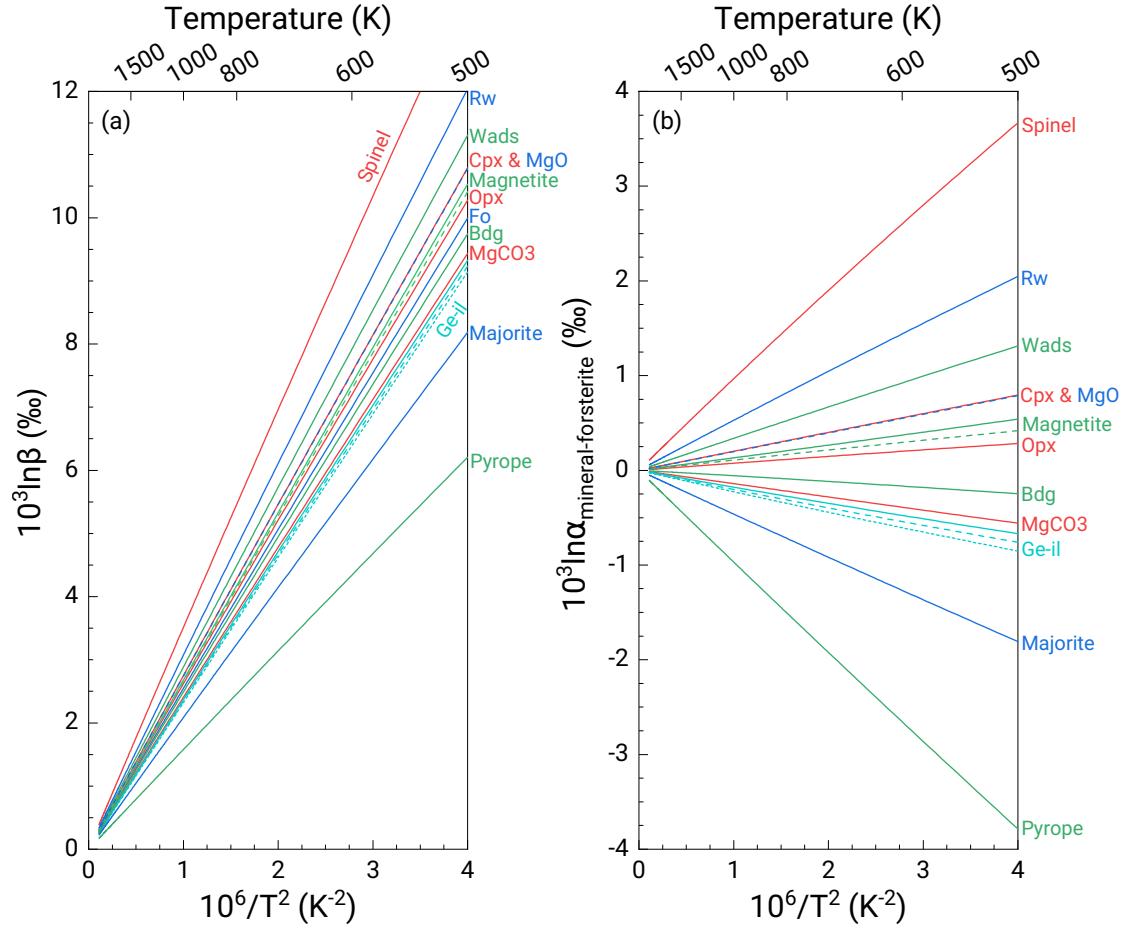
Table 3. Calculated reduced partition function ratios of $^{26}\text{Mg}/^{24}\text{Mg}$ ($10^3 \ln \beta$) for mantle minerals at static zero pressure as a function of temperature. The polynomial fitting equation is: $10^3 \ln \beta (\%) = ax + bx^2 + cx^3$, where $x = 10^6/T^2$, T is temperature in Kelvin.

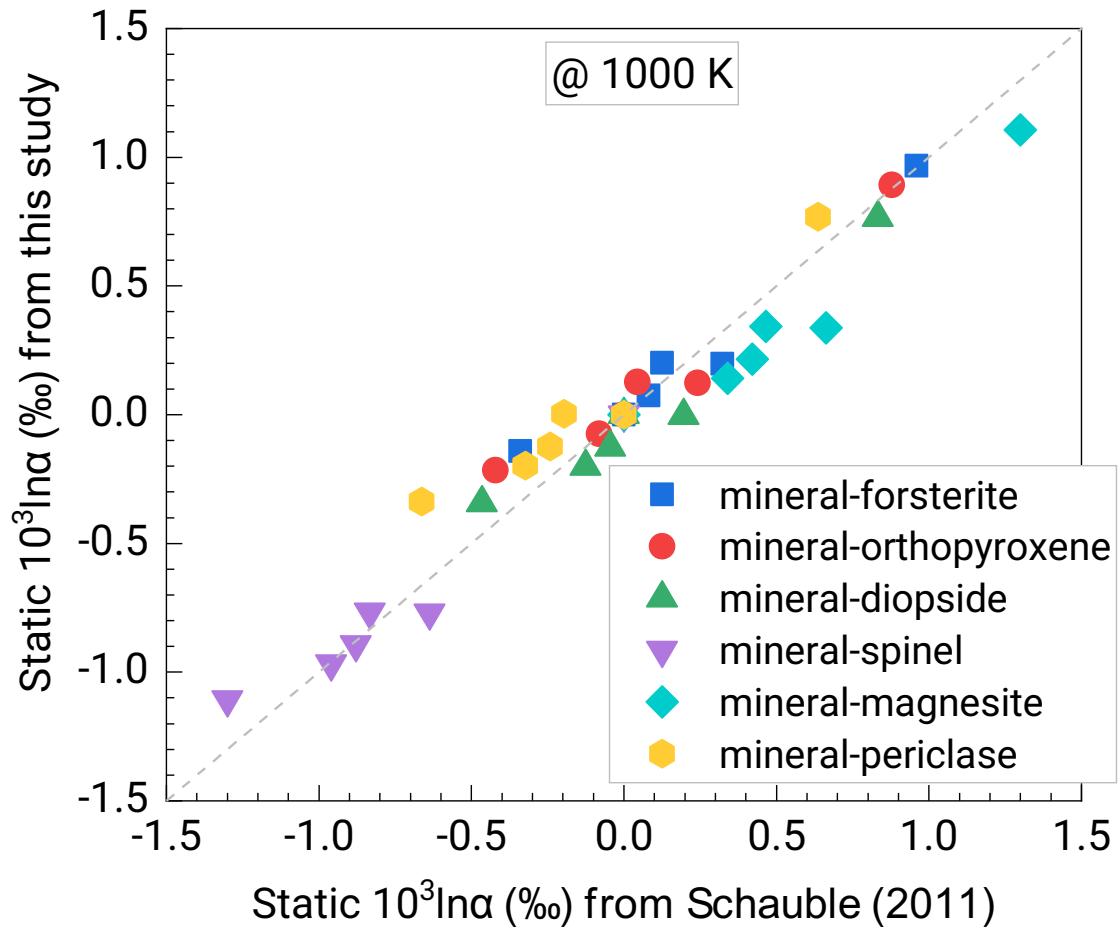

Temperature range for polynomial fittings is from 400 K to 2000 K.

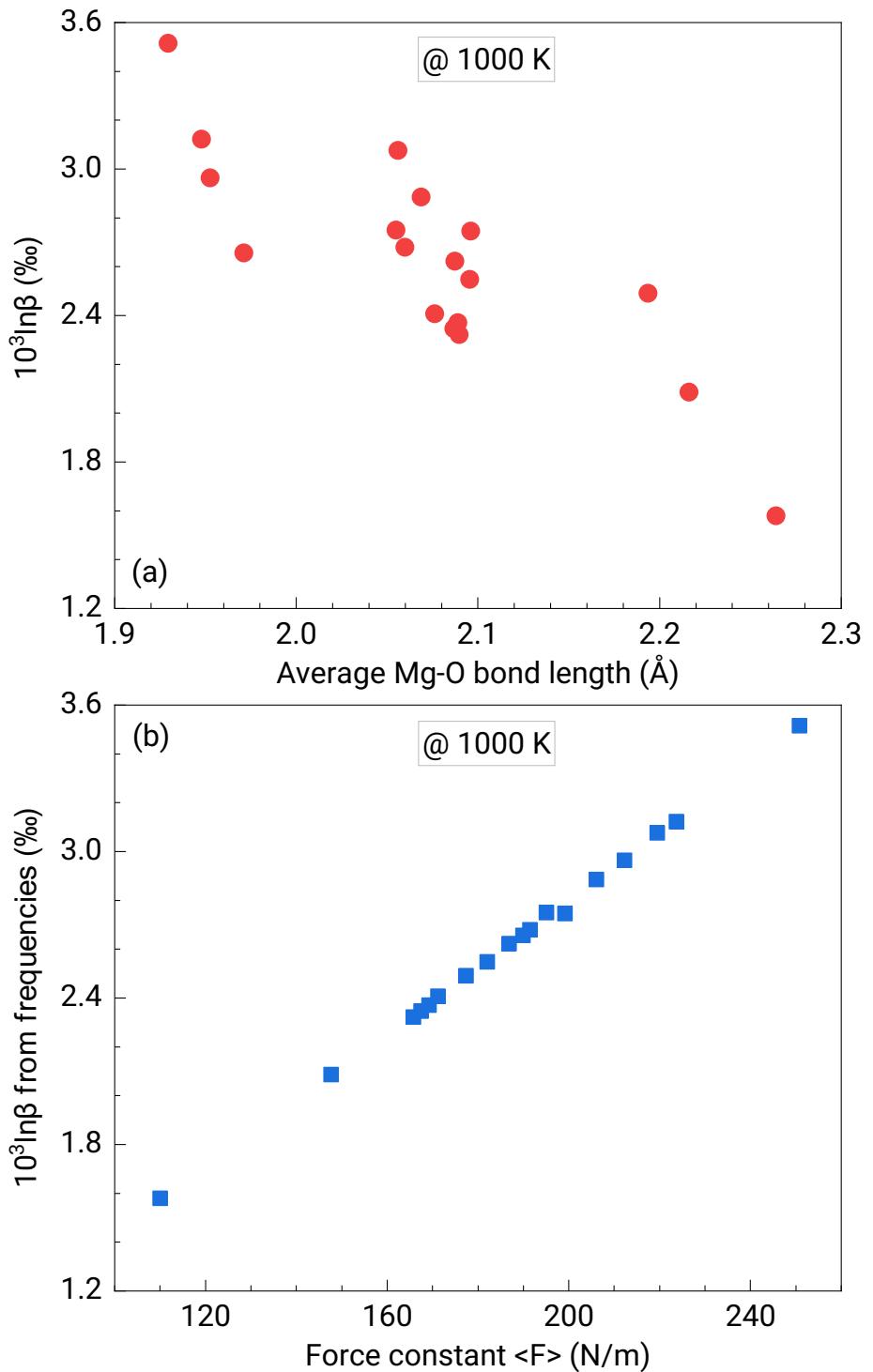
Minerals	a	b	c	$10^3 \ln \beta (\%)$ at 1000 K
Forsterite (Mg_2SiO_4)	2.565	-1.735E-02	1.947E-04	2.548
Diopside ($\text{MgCaSi}_2\text{O}_6$)	2.767	-1.812E-02	1.877E-04	2.749
Orthopyroxene (MgSiO_3)	2.641	-1.878E-02	2.136E-04	2.622
Pyrope ($\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$)	1.588	-9.624E-03	1.317E-04	1.579
Spinel (MgAl_2O_4)	3.548	-3.514E-02	4.975E-04	3.514
Spinel ($(\text{Mg}_7\text{Al})(\text{MgAl}_{15})\text{O}_{32}$)	3.501	-3.448E-02	5.511E-04	3.467
Spinel (MgAlCrO_4)	3.148	-2.694E-02	3.381E-04	3.122
Magnesiochromite (MgCr_2O_4)	2.987	-2.395E-02	2.832E-04	2.964
Magnesite (MgCO_3)	2.423	-1.700E-02	2.603E-04	2.407
Geikielite (MgTiO_3)	2.383	-1.344E-02	1.204E-04	2.370
Geikielite-ilmenite ($\text{MgFeTi}_2\text{O}_6$)	2.358	-1.284E-02	1.093E-04	2.345
Geikielite-ilmenite ($\text{Mg}_2\text{Fe}_4\text{Ti}_6\text{O}_{18}$)	2.334	-1.260E-02	1.065E-04	2.321
Magnesioferrite (${}^M\text{MgFe}_2\text{O}_4$)	2.695	-1.586E-02	1.291E-04	2.679
Magnesioferrite (${}^T\text{MgFe}_2\text{O}_4$)	2.674	-1.848E-02	1.886E-04	2.656
Majorite (MgSiO_3)	2.099	-1.382E-02	1.644E-04	2.085
Wadsleyite (Mg_2SiO_4)	2.906	-2.061E-02	2.232E-04	2.885
Ringwoodite (Mg_2SiO_4)	3.098	-2.302E-02	2.530E-04	3.076
Bridgmanite (MgSiO_3)	2.510	-1.930E-02	2.489E-04	2.491
Periclase (MgO)	2.762	-1.732E-02	1.626E-04	2.745
*Dolomite (MgCaC_2O_6)	2.571	-1.177E-02	2.400E-04	2.558
*Calcite ($\text{Mg}_{1/12}\text{Ca}_{11/12}\text{CO}_3$)	2.136	-1.317E-02	1.190E-04	2.122

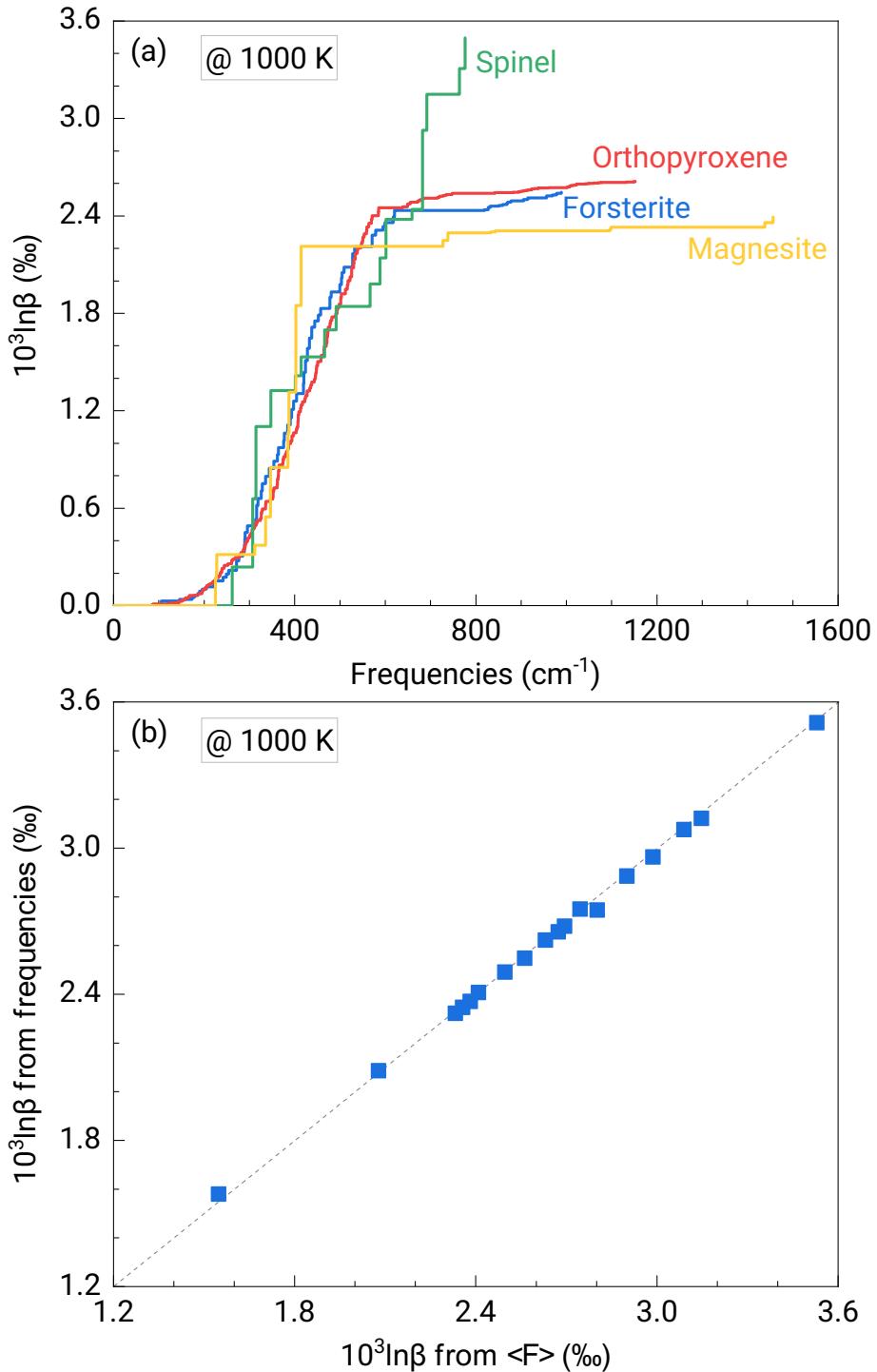

*The results are from Wang et al. (2017a).

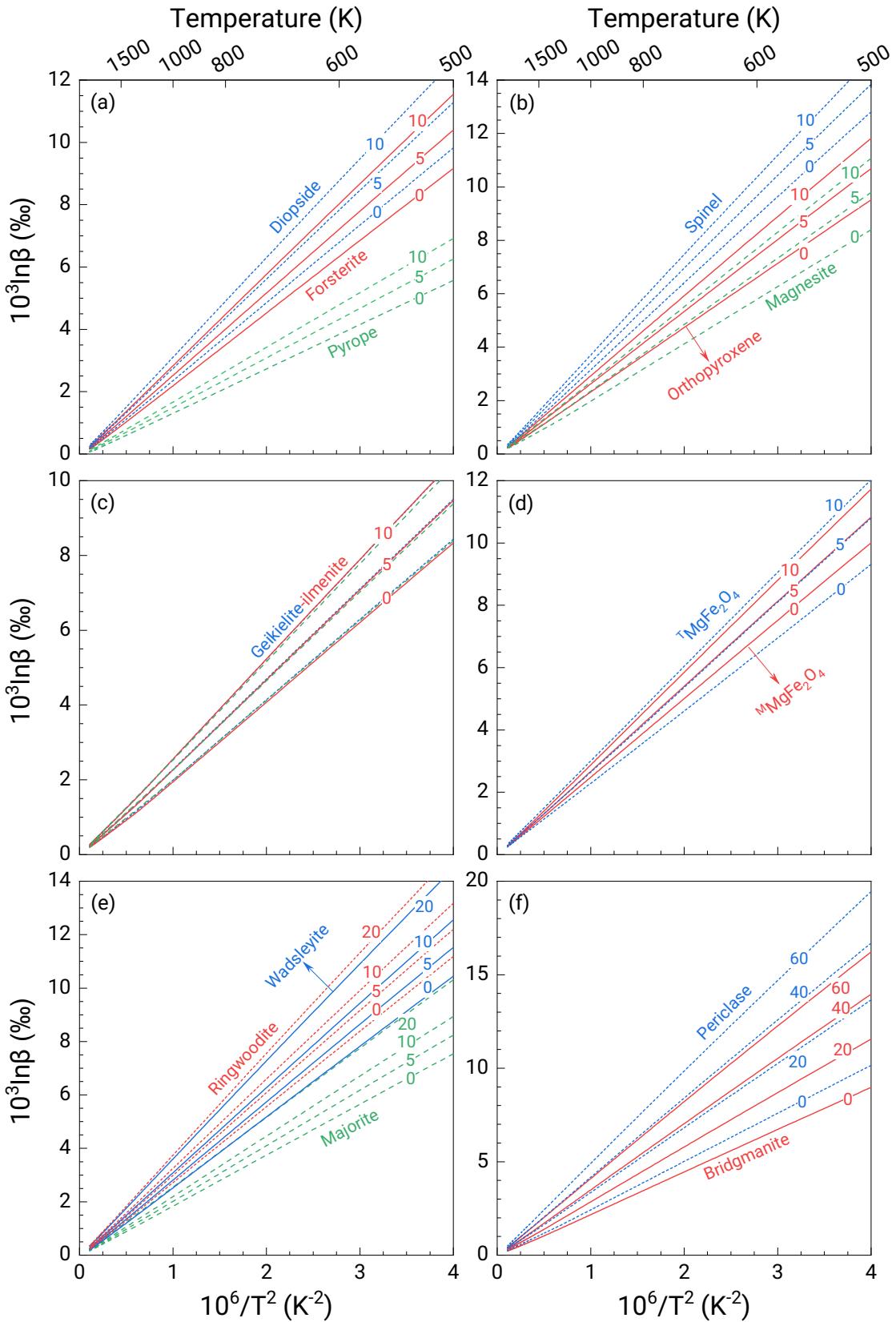
ated reduced partition function ratios of $^{26}\text{Mg}/^{24}\text{Mg}$ ($10^3 \ln \beta$) for mantle minerals at a function of pressure and temperature. The polynomial fitting equation is: $10^3 \ln \beta (\%) = (a+b*P+c*P^2)*(10^6/T^2)+(d+e*P+f*P^2)*(10^6/T^2)^2+(g+h*P+l*P^2)*(10^6/T^2)^3$ and T is temperature in Kelvin. Temperature for polynomial fittings ranges from 400 K to 2000 K.

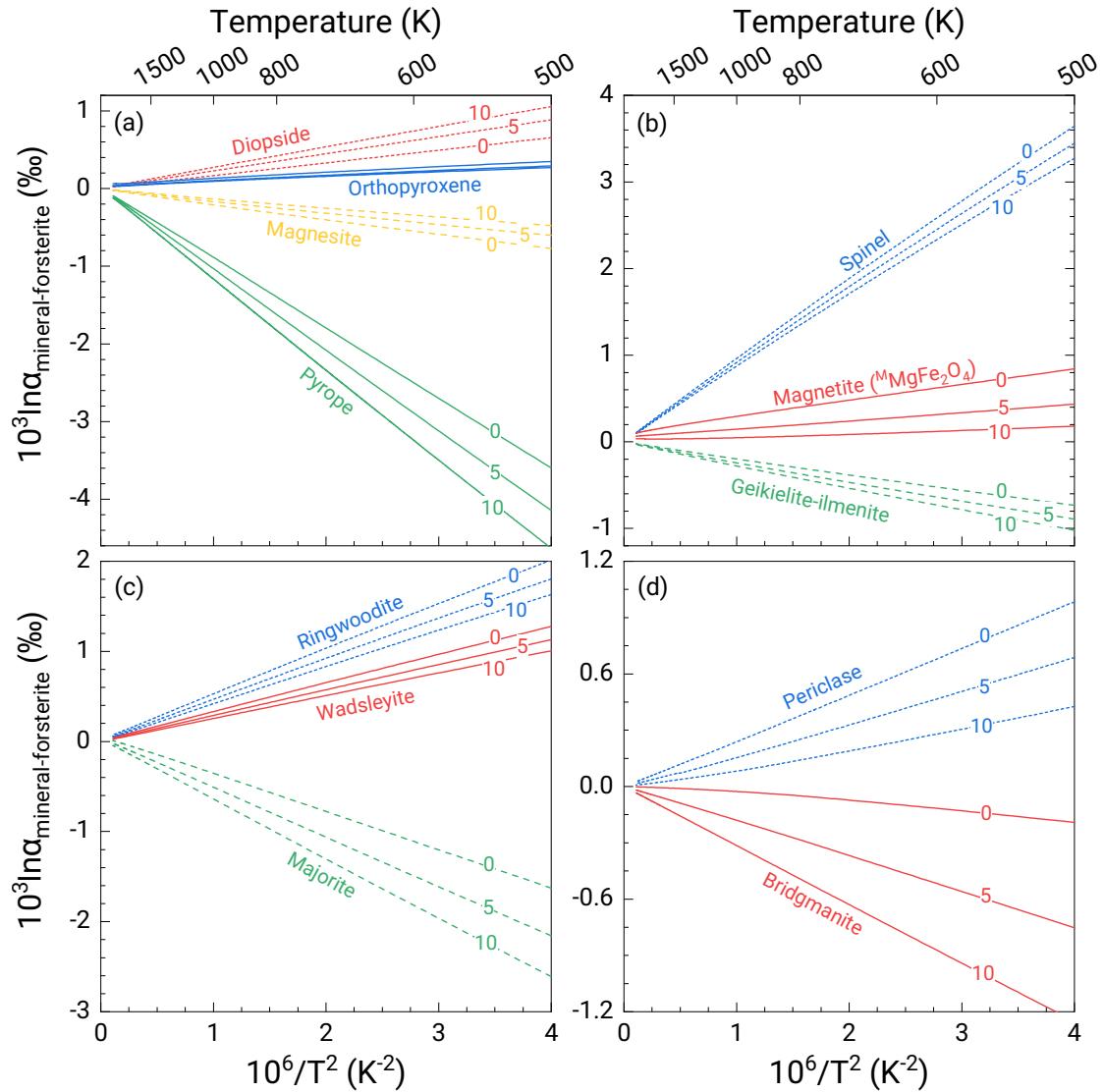

	a	b	c	d	e	f	g	h	
MgO	2.076	7.183E-02	-4.672E-04	1.049E-01	-3.359E-03	5.009E-05	-1.192E-02	2.739E-04	-5.5
Mg_2SiO_4	2.246	8.548E-02	-7.425E-04	1.025E-01	-3.639E-03	5.172E-05	-1.169E-02	2.834E-04	-5.5
Mg_2O_3	2.246	6.206E-02	-7.331E-05	6.748E-02	-1.405E-04	-8.619E-05	-8.171E-03	-6.569E-05	8.82
$\text{Mg}_2\text{Si}_2\text{O}_5$	1.302	2.732E-02	1.784E-04	4.919E-02	1.266E-03	-4.067E-05	-5.543E-03	-1.482E-04	3.78
$\text{Mg}_2\text{Si}_3\text{O}_8$	3.058	6.216E-02	-3.720E-04	8.472E-02	-3.421E-03	5.116E-05	-1.132E-02	2.555E-04	-5.5
$\text{Mg}_2\text{Si}_4\text{O}_9$	3.014	5.980E-02	-2.454E-04	8.306E-02	-2.481E-03	1.220E-05	-1.101E-02	1.577E-04	-1.5
$\text{Mg}_2\text{Si}_5\text{O}_8$	2.736	5.647E-02	-1.233E-04	6.945E-02	-1.989E-03	1.310E-06	-9.122E-03	1.170E-04	-7.0
$\text{Mg}_2\text{Si}_6\text{O}_9$	2.611	6.596E-02	-4.429E-04	6.135E-02	-4.495E-03	9.388E-05	-8.197E-03	3.802E-04	-1.0
$\text{Mg}_2\text{Si}_7\text{O}_9$	1.852	8.151E-02	-6.499E-04	1.174E-01	-3.625E-03	5.687E-05	-1.299E-02	2.944E-04	-6.2
$\text{Mg}_2\text{Si}_8\text{O}_9$	1.873	6.067E-02	-2.328E-04	1.116E-01	-2.462E-03	1.617E-05	-1.227E-02	1.959E-04	-2.0
$\text{Mg}_2\text{Si}_9\text{O}_9$	1.808	6.830E-02	-3.739E-04	1.306E-01	-4.609E-03	6.142E-05	-1.426E-02	4.187E-04	-6.8
$\text{Mg}_2\text{Si}_{10}\text{O}_9$	1.858	6.222E-02	-3.344E-04	1.149E-01	-5.439E-03	1.533E-04	-1.282E-02	5.322E-04	-1.6
$\text{Mg}_2\text{Si}_{11}\text{O}_9$	2.452	2.941E-02	6.431E-04	2.943E-02	4.608E-03	-1.027E-04	-4.039E-03	-4.908E-04	7.22
$\text{Mg}_2\text{Si}_{12}\text{O}_9$	2.247	5.620E-02	9.565E-04	1.046E-02	1.907E-02	-1.328E-03	1.490E-03	-2.944E-03	1.82
$\text{Mg}_2\text{Si}_{13}\text{O}_9$	1.774	3.599E-02	3.827E-06	5.534E-02	3.144E-05	-1.721E-05	-6.554E-03	-3.859E-05	1.58
$\text{Mg}_2\text{Si}_{14}\text{O}_9$	2.416	6.086E-02	-2.440E-04	9.795E-02	-2.208E-03	1.485E-05	-1.149E-02	1.587E-04	-1.7
$\text{Mg}_2\text{Si}_{15}\text{O}_9$	2.621	5.657E-02	-1.832E-04	9.024E-02	-1.721E-03	5.186E-06	-1.091E-02	1.087E-04	-7.7
$\text{Mg}_2\text{Si}_{16}\text{O}_9$	2.092	3.481E-02	-3.340E-05	8.393E-02	-9.066E-04	1.845E-07	-9.910E-03	5.081E-05	-1.1
$\text{Mg}_2\text{Si}_{17}\text{O}_9$	2.357	4.632E-02	-7.245E-05	1.070E-01	-1.279E-03	7.383E-07	-1.207E-02	7.262E-05	-1.6

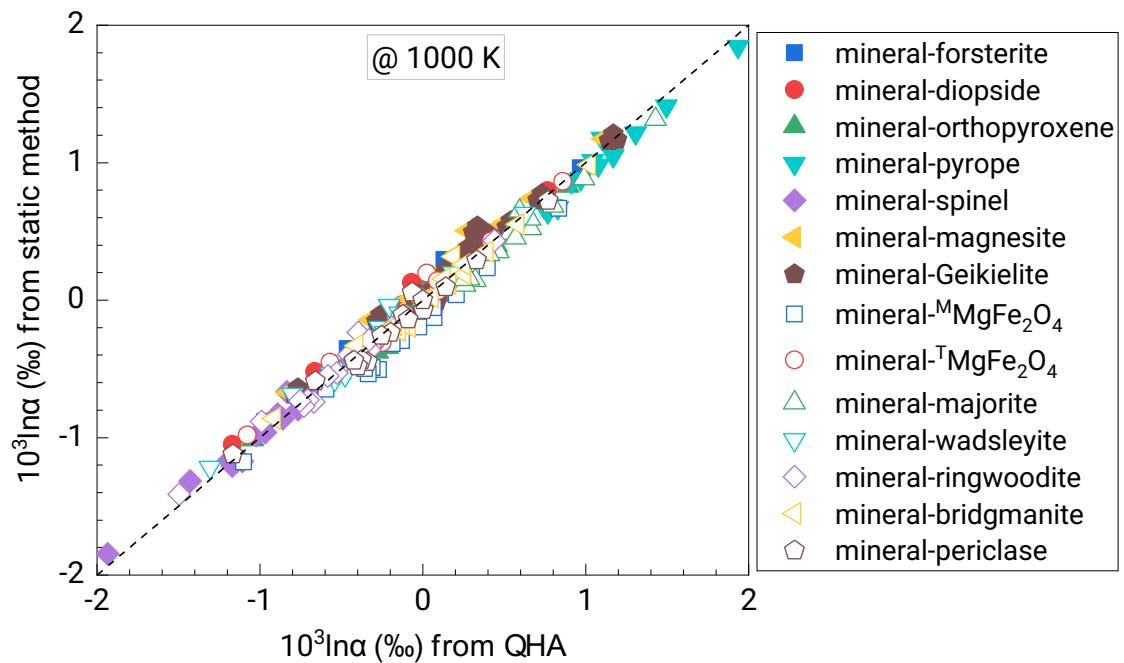

Figure 1. The differences in (a) mineral volumes and (b) average Mg-O bond lengths between first-principles calculations and experimental measurements. Magnesioferrite and geikielite-ilmenite solid solutions are not included because there are no experimental results. Static LDA and GGA refer to the static calculations at 0 GPa within the LDA and GGA, respectively. LDA+QHA represents the results at 300 K and 0 GPa calculated based on the QHA. All absolute values are listed in Table 1 and 2.

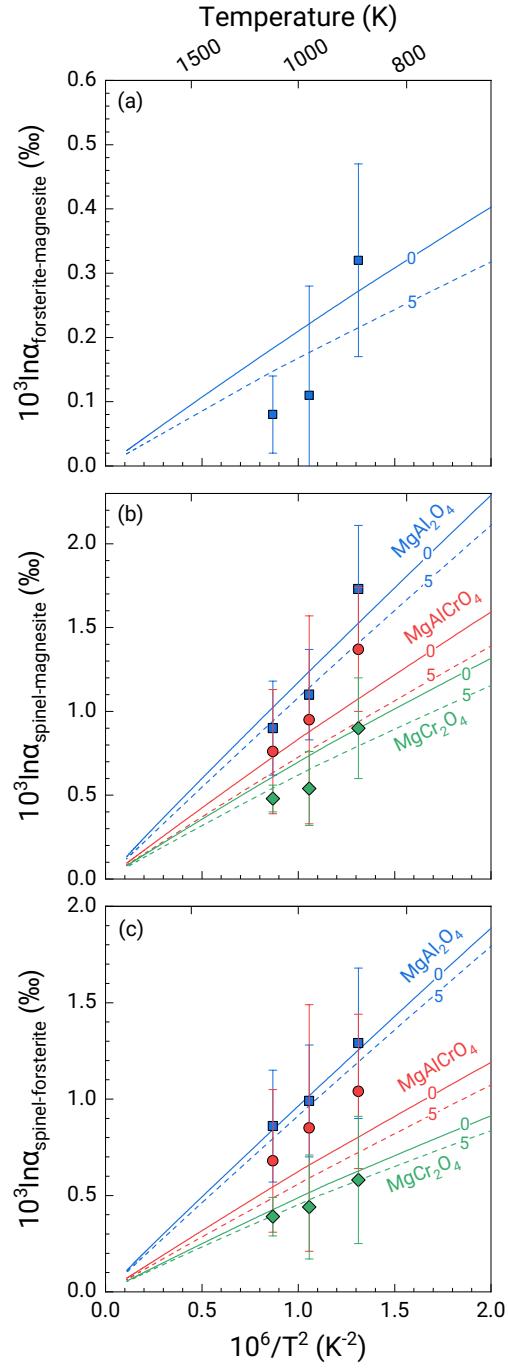

Figure 2. The calculated vibrational frequencies using LDA compared to the measured results. The dash lines in four panels refer to the 1:1 scale and the solid line in (d) represents the fitting line between the theoretical results and experimental measurements. The slope between calculated frequencies and measured frequencies is 0.999 ± 0.002 (1σ , $R^2 = 0.9985$). All raw data can be found in Table S2.

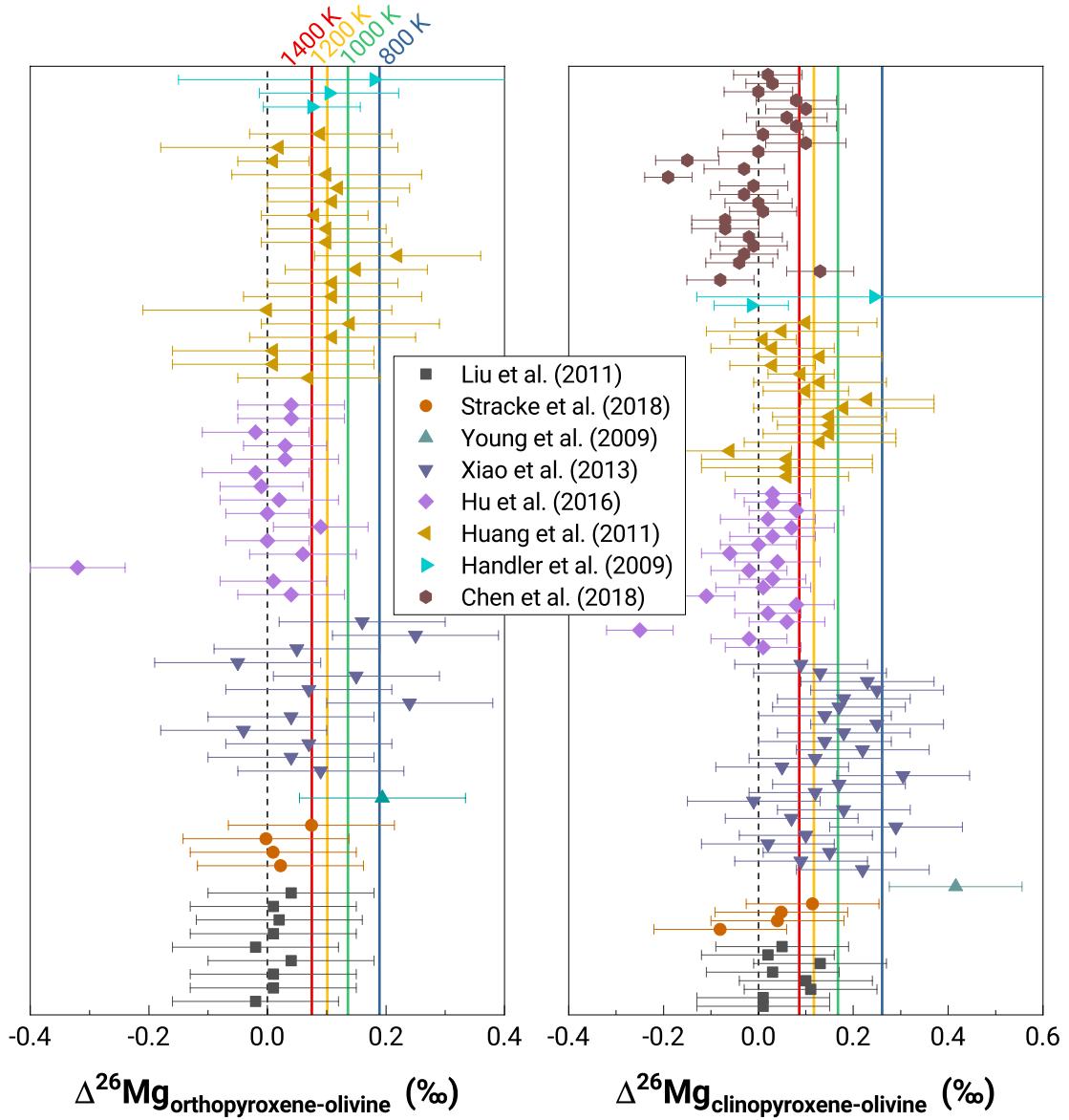

Figure 3. (a) The $10^3 \ln \beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$ of mantle minerals at 0 GPa calculated based on the static LDA method, and (b) the $10^3 \ln \alpha$ between other minerals and forsterite. The polynomial fitting parameters of $10^3 \ln \beta$ as a function of temperature are listed in Table 3. Mineral abbreviations: Rw, ringwoodite; Wads, wadsleyite; Cpx, diopside; MgO, periclase; Opx, orthopyroxene; Fo, forsterite; Bdg, bridgmanite; MgCO₃, magnesite; Ge-il, geikielite-ilmenite solid solutions.

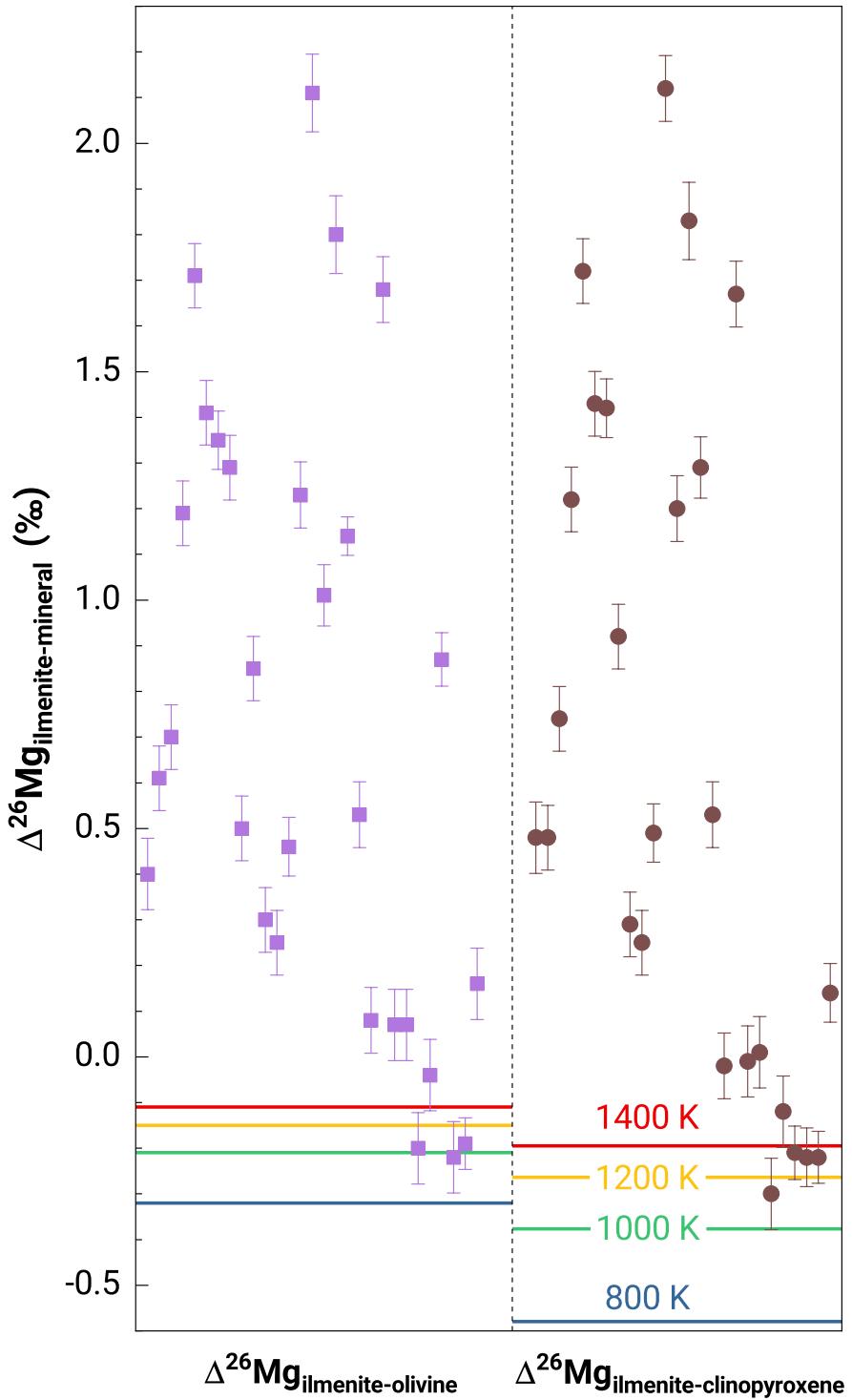

Figure 4. The $10^3 \ln \alpha$ among forsterite, orthopyroxene, diopside, spinel (MgAl_2O_4), magnesite, and periclase calculated using the static LDA method compared with those calculated using the static GGA method in Schauble (2011).

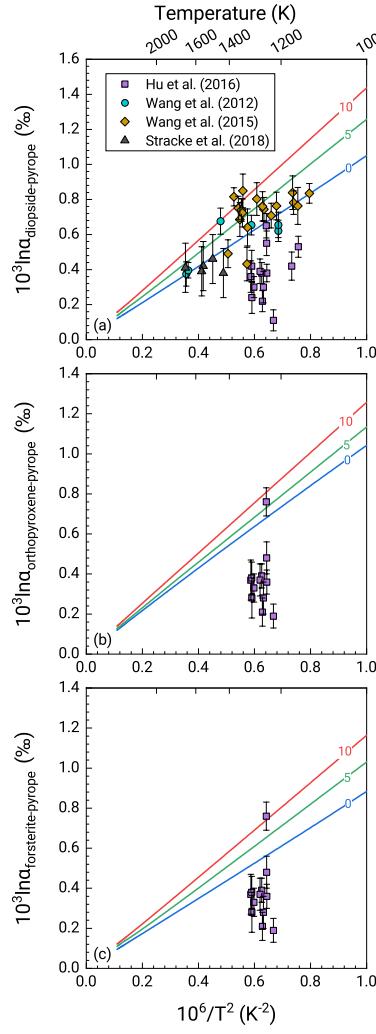

Figure 5. The $10^3 \ln \beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$ at 1000 K calculated using the static LDA method versus (a) the average Mg-O bond length and (b) the force constant of Mg.

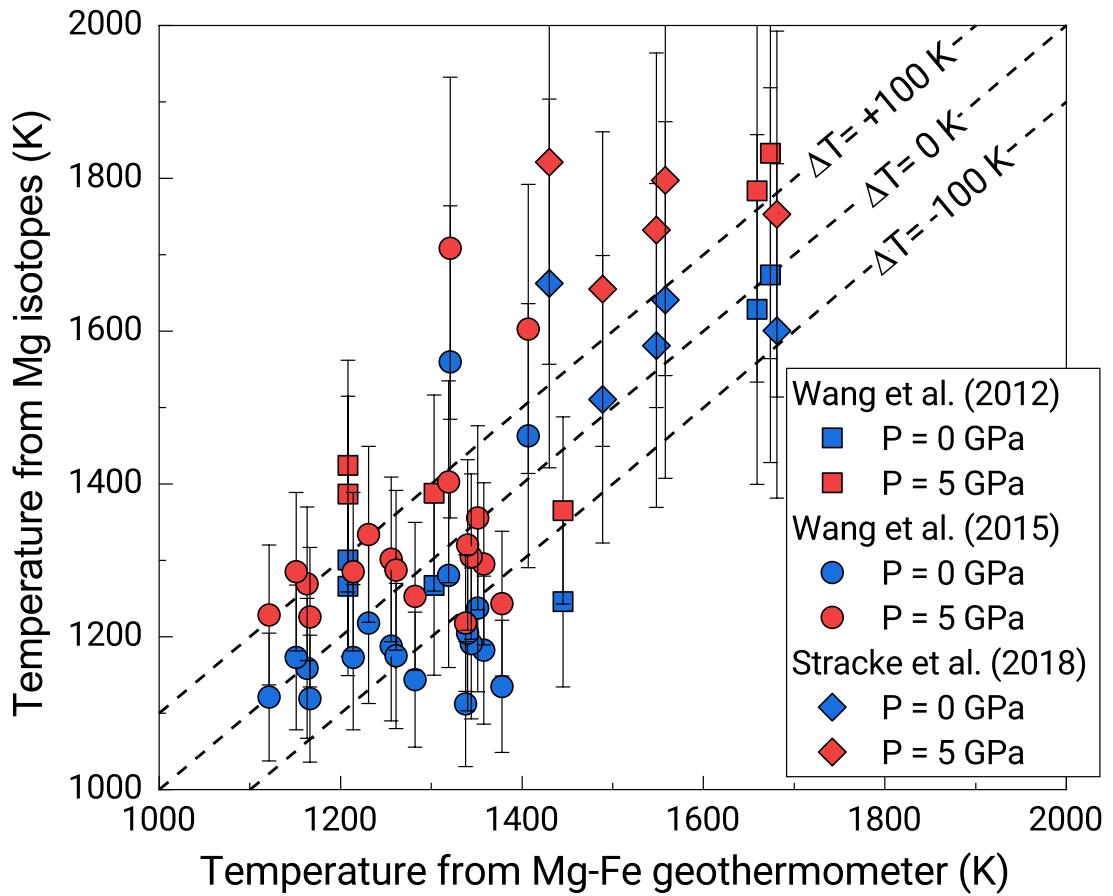

Figure 6. (a) The $10^3 \ln \beta$ integral of forsterite, orthopyroxene, magnesite, and spinel (MgAl_2O_4) at 0 GPa calculated using the static LDA method versus the upper-limit frequency values that are used in the calculations using Eq. (3). (b) The $10^3 \ln \beta$ calculated from frequencies using Eq. (3) compared to those estimated from the force constant of Mg.

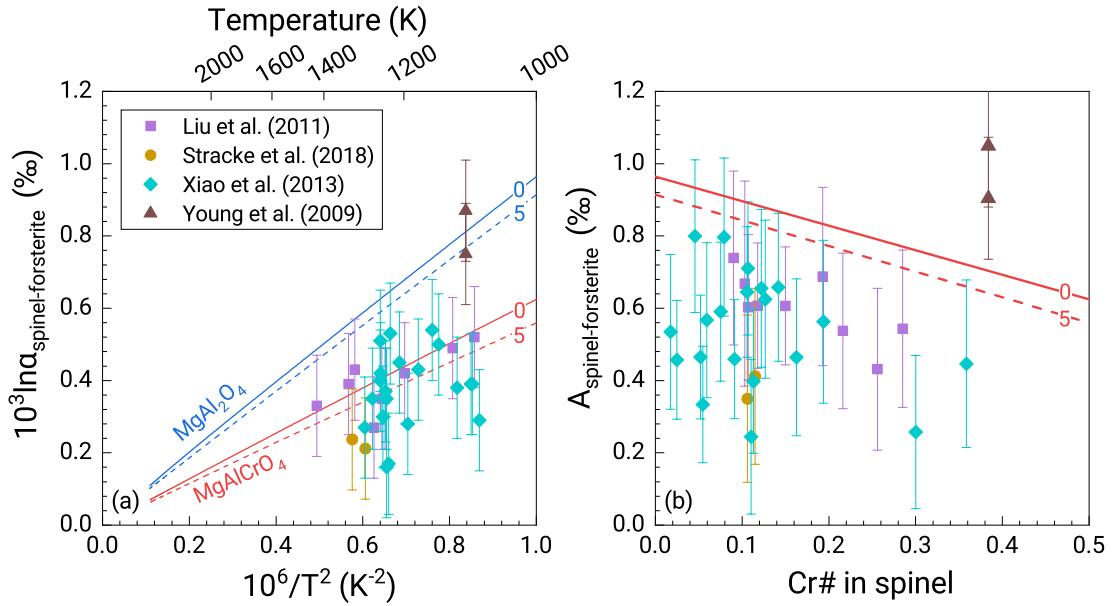

Figure 7. The $10^3 \ln \beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$ of mantle minerals as a function of temperature at different pressures calculated using the LDA+QHA method. The values in the middle of lines in all panels refer to the pressure values in GPa.

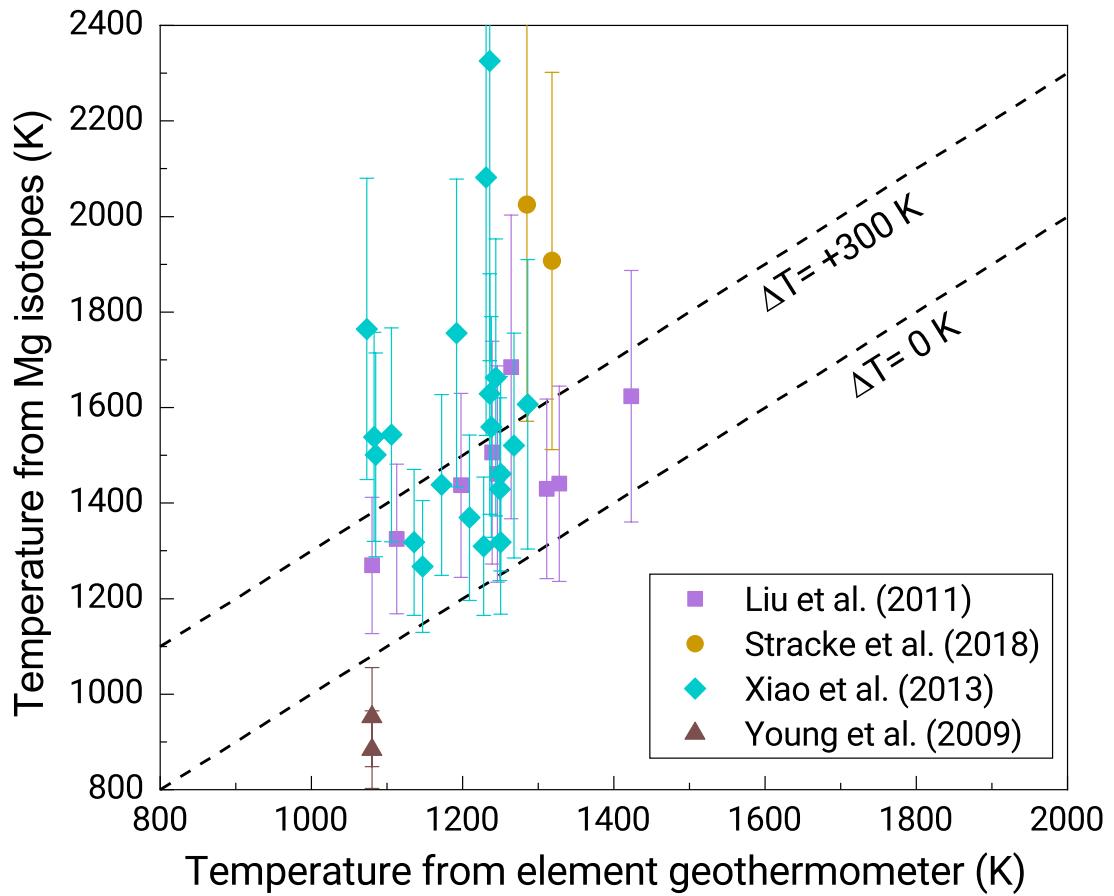

Figure 8. The $10^3 \ln \alpha$ of $^{26}\text{Mg}/^{24}\text{Mg}$ between other minerals and forsterite as a function of temperature at different pressures (0, 5, and 10 GPa) calculated using the LDA+QHA method.


Figure 9. The $10^3 \ln \alpha$ of $^{26}\text{Mg}/^{24}\text{Mg}$ between different mineral pairs calculated using the LDA+QHA method compared with those calculated using the static LDA method.


Figure 10. Calculated $10^3 \ln \alpha$ of $^{26}\text{Mg}/^{24}\text{Mg}$ among spinel, forsterite, and magnesite compared with experimental measurements. (a) $10^3 \ln \alpha$ between forsterite and magnesite, (b) $10^3 \ln \alpha$ between spinel (MgAl_2O_4 , MgAlCrO_4 , and MgCr_2O_4) and magnesite, and (c) $10^3 \ln \alpha$ between spinel (MgAl_2O_4 , MgAlCrO_4 , and MgCr_2O_4) and forsterite. Solid and dash lines represent our calculated results at 0 and 5 GPa using the LDA+QHA method, respectively. Experimental data: blue squares, Macris et al. (2013); red circles and green diamonds, Tang et al. (2021).


Figure 11. Comparison of observed orthopyroxene-olivine and clinopyroxene-olivine Mg isotope fractionation ($\Delta^{26}\text{Mg}_{\text{orthopyroxene-olivine}}$ and $\Delta^{26}\text{Mg}_{\text{clinopyroxene-olivine}}$) in natural peridotites, pyroxenites, xenoliths, and layered mafic intrusions with the calculated results in this study. Literature data are from (Chen et al., 2018; Handler et al., 2009; Yan Hu et al., 2016; Huang et al., 2011b; Liu et al., 2011; Stracke et al., 2018; Xiao et al., 2013; Young et al., 2009). The blue, green, yellow, and red lines refer to the calculated $10^3 \ln \alpha_{\text{orthopyroxene-forsterite}}$ and $10^3 \ln \alpha_{\text{diopside-forsterite}}$ values at 800, 1000, 1200, and 1400 K, respectively.


Figure 12. Mg isotope fractionation between ilmenite and olivine ($\Delta^{26}\text{Mg}_{\text{ilmenite-olivine}}$) and between ilmenite and clinopyroxene ($\Delta^{26}\text{Mg}_{\text{ilmenite-clinopyroxene}}$) in the Baima layered mafic intrusion compared with the calculated results in this study. The $\Delta^{26}\text{Mg}_{\text{ilmenite-olivine}}$ and $\Delta^{26}\text{Mg}_{\text{ilmenite-clinopyroxene}}$ data are from Chen et al. (2018). The blue, green, yellow, and red lines mark the calculated $10^3 \ln \alpha_{\text{ilmenite-orthopyroxene}}$ and $10^3 \ln \alpha_{\text{ilmenite-diopside}}$ values at 800, 1000, 1200, and 1400 K, respectively.


Figure 13. Comparison of observed clinopyroxene-garnet, orthopyroxene-garnet, and olivine-garnet Mg isotope fractionation ($\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$, $\Delta^{26}\text{Mg}_{\text{orthopyroxene-garnet}}$, and $\Delta^{26}\text{Mg}_{\text{olivine-garnet}}$) in Hannuoba garnet-bearing xenoliths (squares, Yan Hu et al., 2016), cratonic eclogites from Koidu, Kaalvallei, and Bellshank kimberlites (circles, Wang et al., 2012; diamonds, Wang et al., 2015), and Hawaiian garnet pyroxenites (triangles, Stracke et al., 2018) with the calculated results in this study. The equilibrium temperatures for Hannuoba xenoliths were estimated based on the Mg-Fe partitioning between clinopyroxene and orthopyroxene (Yan Hu et al., 2016), while those for cratonic eclogites and Hawaiian pyroxenites were calculated using the garnet-clinopyroxene Fe-Mg geothermometer (Bizimis et al., 2005; Wang et al., 2015; Williams et al., 2009). The blue, green, and red lines refer to (a) $10^3\ln\alpha_{\text{diopside-pyrope}}$, (b) $10^3\ln\alpha_{\text{orthopyroxene-pyrope}}$, and (c) $10^3\ln\alpha_{\text{forsterite-pyrope}}$ as a function of $10^6/T^2$ at 0, 5, and 10 GPa, respectively.

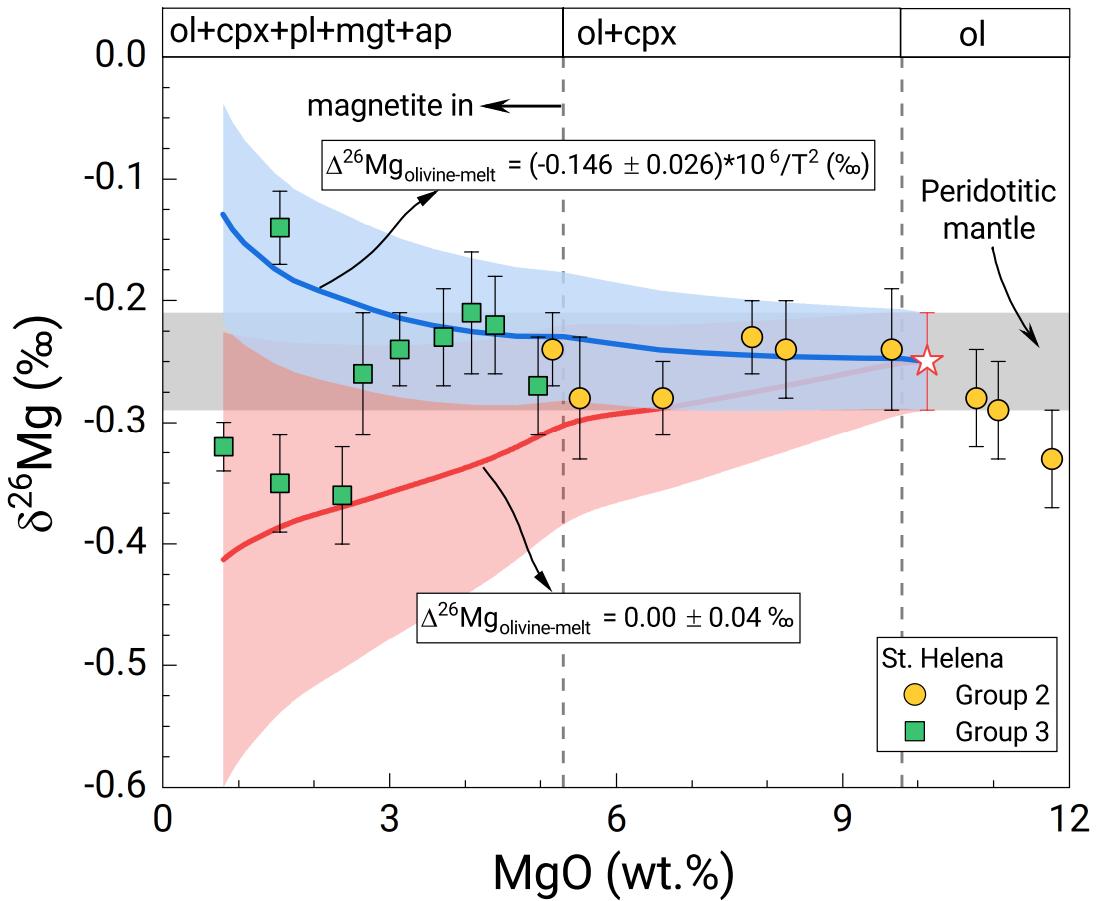

Figure 14. Temperatures estimated from $\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$ compared with those estimated using the clinopyroxene-garnet Mg-Fe geothermometer. Data sources for $\Delta^{26}\text{Mg}_{\text{clinopyroxene-garnet}}$: circles, Wang et al. (2012); squares, Wang et al. (2015); diamonds, Stracke et al. (2018). Blue and red scatters refer to the results based on the temperature dependences of $10^3 \ln \alpha_{\text{diopside-pyrope}}$ at 0 and 5 GPa, respectively.

Figure 15. (a) Comparison of observed spinel-olivine Mg isotopic fractionation ($\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$) in natural peridotites and xenoliths with the calculated results in this study. Literature data include San Carlos xenoliths (triangles, Young et al., 2009), north China craton peridotites (squares, Liu et al., 2011; diamonds, Xiao et al., 2013), and Hawaiian xenoliths (circles, Stracke et al., 2018). The temperatures for San Carlos xenoliths were estimated based on inversion parameter for Al-Mg ordering in spinel, whereas the temperatures of all other samples were calculated using the clinopyroxene-orthopyroxene Fe-Mg geothermometer. The blue and red lines represent the $10^3 \ln \alpha_{\text{MgAl}_2\text{O}_4\text{-forsterite}}$ and $10^3 \ln \alpha_{\text{MgAlCrO}_4\text{-forsterite}}$ as a function of $10^6/T^2$, respectively. The solid and dash lines mark the calculated results at 0 and 5 GPa, respectively. (b) Correlation between the coefficient $A_{\text{spinel-forsterite}}$ ($A_{\text{spinel-forsterite}} = (\Delta^{26}\text{Mg}_{\text{spinel-olivine}} \text{ or } 10^3 \ln \alpha_{\text{spinel-forsterite}}) * T^2 / 10^6$) and Cr# in spinel (Cr# = Cr/(Cr+Al)). The coefficient $A_{\text{spinel-forsterite}}$ represents the corrected Mg isotope fractionation at 1000 K from the observed $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ or the calculated $10^3 \ln \alpha_{\text{spinel-forsterite}}$ at a certain temperature. Error bars for $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ ($\pm 0.14\text{\textperthousand}$, 2SD) are drawn assuming an uncertainty of $\pm 0.10\text{\textperthousand}$ (2SD) on $\delta^{26}\text{Mg}_{\text{olivine}}$ and $\delta^{26}\text{Mg}_{\text{spinel}}$. The red solid and dash lines refer to the calculated results at 0 and 5 GPa, respectively, assuming a linear relationship between $10^3 \ln \alpha_{\text{spinel-forsterite}}$ and Cr# when Cr# varies from 0 to 0.5.

Figure 16. Temperatures estimated from $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ compared with those estimated using the inter-mineral element geothermometers. Data sources: triangles, Young et al. (2009); squares, Liu et al., (2011); diamonds, Xiao et al. (2013); circles, Stracke et al. (2018). The errors for temperatures from Mg isotopes are estimated from the uncertainties of $\Delta^{26}\text{Mg}_{\text{spinel-olivine}}$ ($\pm 0.14\text{ \%, 2SD}$).

Figure 17. Mg isotopic variation during differentiation of St. Helena lavas. The $\delta^{26}\text{Mg}$ values of St. Helena group 2 and group 3 samples were measured by X.-J. Wang et al. (2021). The proportions and chemical compositions of segregated minerals and residual melts were calculated by X.-J. Wang et al. (2021) using the MELTS. Plagioclase (pl) and apatite (ap) are ignored in the calculation of melt $\delta^{26}\text{Mg}$ values because of their extremely low MgO contents. The grey range refers to the Mg isotopic composition of the peridotitic mantle ($\delta^{26}\text{Mg} = -0.25 \pm 0.04 \text{‰}$; Teng, 2017), which is also assumed as the $\delta^{26}\text{Mg}$ value of primary melt. The red and blue regions refer to the modeling results with Mg isotope fractionation between olivine and melt ($\Delta^{26}\text{Mg}_{\text{olivine-melt}}$) of $0.00 \pm 0.04 \text{‰}$ and $(-0.146 \pm 0.026) \times 10^6 / T^2 \text{‰}$). Accordingly, the Mg isotope fractionation between clinopyroxene and melt ($\Delta^{26}\text{Mg}_{\text{clinopyroxene-melt}}$) and between magnetite and melt ($\Delta^{26}\text{Mg}_{\text{magnetite-melt}}$) at various temperatures can be derived from the temperature dependences of $10^3 \ln \alpha_{\text{clinopyroxene-forsterite}}$ and $10^3 \ln \alpha_{\text{magnesioferrite-forsterite}}$ calculated in this study.