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ABSTRACT
Recent emerging technologies such as artificial intelligence and
machine learning have been promising enormous economic and
societal benefits. While it is desirable to deploy these technologies
to Internet-of-Things (IoT) infrastructures in many applications
such as medical, energy, transportation, and industrial automa-
tion systems, such deployments present daunting challenges in
performance, efficiency, and dependability of scaling-up IoT in-
frastructure, due to the ever-increasing number of edge devices,
ever-increasing levels of device and system heterogeneity, and more
stringent requirements of reliability, robustness, and security in
mission-critical settings. This position paper elaborates the needs
for a cross-layer and full hardware/software stack solution for the
design and deployment of scalable, secure, and smart mission-critical
IoT systems from four different perspectives and research fields.
We present a review of recent studies on such issues and identify
the potential challenges and gaps, based on which we highlight
some important research directions and future works that can be
conducted to tackle such challenges.
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1 INTRODUCTION
The growing capabilities of sensing, computing and communica-
tion devices are leading to an explosion of Internet of Things (IoT).
Somewhat orthogonally, disruptive technologies such as artificial
intelligence have been promising enormous economic and societal
benefits. While it is naturally desirable to deploy these technologies
in IoT infrastructures, such deployments present daunting chal-
lenges for increasingly scaling-up IoT infrastructures in mission-
critical applications such as medical, energy, transportation, and
industrial automation systems. These challenges pose immediate
threat to the performance, efficiency, and dependability of scaling-
up IoT infrastructure.

The challenges stem from several major aspects in terms of
scalability. First, the number of edge devices can be enormous, e.g.,
in the order of billions [17], which makes a centralized management
infeasible. Second, there are multiple layers of heterogeneity [73].
An IoT system can consist of heterogeneous computing subsystems;
each subsystem can have heterogeneous computing devices; and
each single device can be composed of different kinds of computing
components. Third, mission-critical applications have stringent
requirements in correctness, resilience, timeliness, security, and
safety [80]. It is difficult for a large-scale IoT system to satisfy these
requirements due to the increasing adversarial surfaces.

An IoT infrastructure is typically a layered structure composed of
data centers, gateways/aggregators, and edge devices (Fig. 1), which
exhibit the following features. First, the target system’s performance
deeply impacts business/organization operations on, e.g., trans-
portation and industrial automation industries. Second, the consid-
ered IoT platform consists of data centers, gateways/aggregators,
and edge devices, which are naturally heterogeneous in many
aspects including computational capacity, network latency, and
hardware and software. Third, each single device can contain het-
erogeneous computing components which are good at processing
different types of workloads.
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Figure 1: Overview of a cross-layer and full hardware/software stack solution for mission-critical IoT system design.

Hence, to guarantee the performance of such IoT systems, we
argue that a cross-layer and full hardware/software stack solution
is needed. In this paper, we approach such challenges and problems
from four perspectives: (i) theory/algorithm (data-driven model-
ing); (ii) resourcemanagement (network resourcemanagement); (iii)
architectures/systems and (iv) security/privacy (design-time vulner-
ability detection, and runtime detection and recovery of physical
attacks). For each perspective, we highlight key challenges, review
representative recent work, and then provide our vision and in-
sights. We conclude the paper with a discussion on the lessons
learned.

2 DATA-DRIVEN MODELING AND CONTROL
OF QOS IN SAFETY-CRITICAL IOT SYSTEMS

Safety-critical IoT fabrics are complex dynamical systems for which
it is impossible to identify accurate a priori models. This section
describes novel data-driven theory/algorithms that learn dynamical
models of the IoT fabric and outlines how these models can be used
in a hierarchical manner to manage IoT resources that control the
fabric’s quality-of-service (QoS).

2.1 Challenges
Feedback control theory has long been considered for managing
complex computer systems forming the IoT fabric because this
theory provides tools allowing one to manage a dynamical system’s
behavior in an application independent manner. The effective use
of this theory, however, has been hampered by the lack of accurate
process models. Internet congestion control [49] was one of the
earliest uses of control theory in network congestion control. But
moving from theory to real-life [36] required creative ways of
estimating network parameters. Control theory has been suggested
for managing software systems [62] and the quality of service
(QoS) of IoT systems [22, 69]. This prior work relies on simplistic
models with few results showing the robustness of these methods
with respect to the modeling uncertainty seen in real-life. So while
feedback control provides an attractive theory for managing IoT
systemQoS, the identification of systemmodels remains an obstacle
to the successful use of the theory in real life.

2.2 Existing Work
System complexity, scale, and openness all conspire to make model
identification challenging in IoT applications [79]. IoT systems are
complex and large-scale networks with many interacting nodes
using ad hoc protocols to provide best-effort delivery. These IoT
systems are open to human users generating time-varying work-
loads and an exogenous environment that perturbs network pa-
rameters and topology. The large-scale and open nature of these
systems injects a great deal of modeling uncertainty which couples
with dynamic complexity to make it extremely difficult to obtain
accurate models required for control system design. IoT modeling
must therefore address these challenges of scale, complexity, and
openness before feedback control methods become practical tools
for managing real-life IoT applications.

Machine learning paradigms such as deep reinforcement learn-
ing (DRL) [55] cannot fully address these issues. DRL uses a deep
neural network to realize the actor in reinforcement learning’s
actor-critic schema. DRL-based control has been used to manage
IoT computing/radio resources [91] in support of smart city services
[56]. While DRL based control can avoid scaling issues, it seems
poorly suited for open systems. Safety critical IoT systems (traffic
control or industrial automation) experience transient disruptions
that must be addressed in real time. DRL has difficulty handling
such transient disruptions because its training is so time consum-
ing. It has been suggested [89] that incrementally augmenting the
actor neural network can improve transient response. While the
strategy has shown promise in smart city traffic control [89], the
black-box nature of the neural network training algorithms makes
it difficult to see how well these methods would generalize to other
IoT applications.

2.3 Vision
Our vision sees an approach for managing safety-critical IoT that
builds on recent advances in hierarchical control and data-driven
learning. In particular, we propose a method for identification and
control based on a novel synthesis of moment matching reduced
order models (MM-RoM) [3] and Koopman decompositions [6]
used in an hierarchical control framework [24] where the physical
system “approximately simulates” [25] the system’s model. Our
preliminary work suggests this data-driven approach provides a
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scalable way of identifying and controlling complex dynamical
systems that are open to the outside environment.

We treat the IoT fabric as an input/output system, denoted as Σ𝑐 .
This system has two types of input signals; the workload,𝑤𝑘 , and
the control, 𝑢𝑘 . The workload,𝑤𝑘 , is an aggregate measure of the
total work submitted to the system at time 𝑘 and is treated as an
exogenous signal. The control input, 𝑢𝑘 , is the desired QoS that the
fabric has been commanded to enforce. The output, 𝑦𝑘 , of Σ𝑐 is the
actual QoS delivered by the fabric at time 𝑘 . Because of the time-
varying nature of the workload, the actual QoS, 𝑦𝑘 , will deviate
from the desired QoS, 𝑢𝑘 . This variation is dynamic in the sense
that 𝑦𝑘 at time 𝑘 depends on all prior inputs. The fabric, in other
words, has a “memory” which is usually represented concretely
as a state vector, x𝑘 . For control purposes we need to identify a
state-based model for Σ𝑐 that captures the dynamic relationship
between inputs, (𝑤𝑘 , 𝑢𝑘 ), states, x𝑘 , and outputs, 𝑦𝑘 .

Our proposed approach uses the fact that the system’s output,
𝑦𝑘 , can be decomposed as

total response, 𝑦𝑘 = natural response + forced response (1)

The natural response is that part of 𝑦𝑘 generated solely by the
system’s internal state, x𝑘 . The forced response is the steady-state
part of 𝑦𝑘 generated in response to the input 𝑤𝑘 alone. Rather
than identifying a single monolithic model or control algorithm
(as is done in DRL), we identify separate models for the natural
and forced response that can then be smoothly integrated into a
hierarchical control framework.

The forced response model is a moment-matching reduced or-
der model (MM-RoM) [3] denoted as Σ𝑎 whose output,𝜓𝑘 , is the
MM-RoM’s prediction of the physical system’s quality of service.
This model, Σ𝑎 , assumes that the workload is also generated by a
dynamical system, Σ𝑔 , called the workload generator. This assump-
tion allows one to identify a family of MM-RoM whose dynamics
are determined by Σ𝑔 and where the nonlinear map from these
internal model states to output 𝜓𝑘 is all that needs to be learned.
Identification of the MM-RoM therefore reduces to a standard linear
regression problem [70] that can be solved using recursive algo-
rithms that balance prior and posterior information in an optimal
manner. The system’s, Σ𝑐 , historic off-line outputs and workload
are used to generate the a priori RoM, Σ𝑎 , which is updated on-line
so the model can adapt to changes in the physical system.

A model for the natural response is learned from the model-
following system, Σ𝑎−Σ𝑐 , mapping control input,𝑢𝑘 , onto the model
following error, 𝑒𝑘 = 𝜓𝑘 − 𝑦𝑘 . This is another stage of the model
learning process which occurs after a posterior MM-RoM has been
learned. For this second learning problem,we use a delay-embedding
[39] of these errors to form a state vector, z𝑘 , that evolves linearly
through the system’s Koopman operator [6]. This linear model of
the natural dynamics can also be efficiently identified (learned)
in a data driven manner using the dynamic mode decomposition
(DMD) algorithm [44]. So not only do we have an efficient way
of identifying the natural dynamics, we also have a model that is
“linear” in terms of the delay embedded, state, z𝑘 .

Both of these models fit naturally within Girard’s hierarchical
control architecture [24] shown in Fig. 2. This architecture has the
MM-RoM, Σ𝑎 , generate an output, 𝜓𝑘 , that feeds into a control
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Figure 2: Hierarchical Control Architecture for Data-Driven
Control of the IoT Fabric QoS

interface that drives the physical system Σ𝑐 , so it approximately
simulates the MM-RoM [25]. Approximate simulation uses the term
"simulation" in the sense defined by Milner [51]. The approximate
nature of the simulation relation means that the model following
error remains bounded for bounded perturbations of the workload
generator’s, Σ𝑔 , output. Because the natural dynamics are “linear”
through the Koopman operator, passivity based control [85] can
be readily used to design an approximately simulating control in-
terface that is robust to passive model uncertainties. Maintaining
approximate simulation also means that one may use the MM-RoM
for planning and management with an assurance that the actual
system will follow this plan.

The control system shown in Fig. 2 is the building block used to
construct a hierarchy of controllers. The top layer of this hierarchy
consists of controllers managing attached routers. The second layer
of the hierarchy has routers control the edge nodes. The approx-
imate simulating nature of the control architecture ensures that
high-level commands are faithfully executed by lower level nodes
even in the face of bounded disturbances to expected workload,
system topology and parameters.

Our prior work [43] andmore recent unpublished results support
the assertions made above regarding the benefits of this approach.
In particular, our recent work has demonstrated scalable and ro-
bust model following of a complex hopping robot [64] based solely
on data from detailed robot simulations. While these mechanical
systems are not large-scale IoT applications, the proposed frame-
work and design methods are independent of the application and
so these methods should also provide a way to manage an IoT
network’s average QoS. Current work is assessing the extent to
which this data-driven approach can be used to dynamically model
errors in voltage-scaled ASICs [35] and end-to-end delay in 6TiSCH
networks [86].
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3 DYNAMIC RESOURCE MANAGEMENT FOR
REAL-TIMEWIRELESS IOT NETWORKS

Real-time wireless networks (RTWNs) are a critical resource in
mission-critical IoT fabrics as they form the backbone that connect
edge devices with gateways and the cloud. In this section, we dis-
cuss challenges, related work and our vision on network resource
management for mission-critical IoT fabrics.

3.1 Challenges
In recent years, we have witnessed the rapid development and de-
ployment of real-time wireless technologies in various industrial
sectors, including but not limited to smart transportation and ad-
vanced industry automation [75, 82]. Compared with their wired
counterparts, RTWNs are featured with easier deployment, reduced
maintenance cost and enhanced device mobility. This paradigm
shift makes RTWNs the foundation of many existing and emerging
mission-critical IoT systems.

However, RTWNs face several unique challenges in their re-
source management. First of all, it is critical but challenging to
meet the stringent timing requirements of sensing and control
tasks running on RTWNs in mission-critical IoT applications. Tra-
ditional medium access mechanisms (e.g., CSMA/CA) may cause
unexpected packet loss and undetermined transmission latency.
In contrast, RTWNs typically adopt time division multiple access
(TDMA) based mechanisms to achieve deterministic end-to-end
message delivery. Packet scheduling in RTWNs thus plays a central
role in achieving the desired performance but becomes challenging
when the network scales up.

The second challenge lies in the fact that almost all RTWNs need
to deal with unexpected disturbances since they are typically de-
ployed in complex and mission-critical environments. Unexpected
disturbances in general can be classified into external disturbances
of the target physical systems (e.g., sudden pressure change in an oil
pipeline) and internal disturbances within the network fabric (e.g.,
link failure due to multi-user interference). To assure stable and
safe operations in the presence of external disturbances, mission-
critical tasks in the target system may increase their demands to
the network resources (e.g., requesting higher sampling rates). On
the other hand, internal disturbances may lead to permanent or
transient faults in the network which can also reduce the network’s
capacity. Therefore, disturbances will not only impact the RTWN’s
demand but also its supply of the network resources.

To handle unexpected disturbances without pessimistic resource
reservation, dynamic and distributed resource management so-
lutions need to be designed. However, finding the right level of
dynamic decision making is not trivial as it is a tradeoff between
efficient use of network resources (e.g., no wasted bandwidth) and
achievable Quality of Service (QoS) (e.g., the number of messages
missing end-to-end timing constraints).

3.2 Existing Work
Many RTWNs perform resource management via static data link
layer scheduling [31, 45, 68, 78, 90] to periodically gather the net-
work health status, and then recompute and distribute the updated
network schedule information. This process is slow, not scalable

and incurs considerable network overhead, and thus is not suit-
able for handling unexpected disturbances and can lead to less
responsive systems, which is not acceptable for mission-critical IoT
applications. In response to various disturbances, centralized link
layer scheduling approaches [10, 11, 13, 71, 72] have been proposed.
However, those protocols either are not able to respond to external
disturbances [13, 72], or assume that only a predetermined number
of link layer schedules are stored in the system [71].

There are a few work on adapting to unexpected external distur-
bances in control systems. For example, rate-adaptive and rhythmic
task models are introduced in [7] and [41], respectively. These mod-
els allow the system to adapt to external disturbances by changing
the periods and relative deadlines of the tasks in the run time. They,
however, cannot be straightforwardly applied to RTWNs because
their schedulability analyses do not consider the situation of end-
to-end packet delivery in mission-critical IoT systems.

To overcome the weakness of the prior work, we have developed
a suite of dynamic resource management techniques in RTWNs to
provide guaranteed QoS in the presence of unexpected disturbances.
The first work along this line is a hybrid dynamic packet scheduling
framework, referred to as D2-PaS, to handle external disturbances
which cause abruptly increased network traffic [97, 99]. Different
from traditional centralized resource management methods under
which a centralized control node undertakes all the work to han-
dle external disturbances, D2-PaS offloads the computation from
the centralized controller node to local nodes and only executes
a lightweight algorithm in the controller node to determine the
corresponding response to the external disturbance. In this way,
better QoS can be achieved. To handle the internal disturbances, we
further introduce a reliable dynamic packet scheduling framework,
called RD-PaS [26]. RD-PaS can not only react to on-line network
traffic changes caused by external disturbances in a dynamic fash-
ion, but also construct reliable schedules to deal with packet loss
caused by internal disturbances. Both D2-PaS and RD-PaS rely on
a centralized controller node to make on-line decisions. Such cen-
tralized approaches will cause scalability issue when the network
scales up. To address this issue, in our most recent work, a fully
distributed packet scheduling framework, referred to as FD-PaS, is
introduced [98, 100]. FD-PaS incorporates several key advances in
both algorithm design and data link layer protocol design to en-
able individual nodes to make on-line decisions locally and achieve
guaranteed response time to unexpected disturbances.

3.3 Vision
We envision that to effectively manage large-scale and heteroge-
neous RTWNs for mission-critical IoT applications, spatial channel
reuse must be exploited and hierarchical resource management
approaches should be considered.
Exploiting spatial channel reuse. The scalability of FD-PaS is
limited by a drawback that it only supports single-channel networks
without spatial channel reuse. This leads to severe resource under
utilization. The limitation of FD-PaS are due to the fact that each
device determines its local dynamic schedule independently only
based on the locally stored information (e.g., static schedule and
interference table). Thus a device’s decision is not known by other
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devices on the path of the mission-critical tasks and may result in
inconsistent usage of transmissions slots by different devices.

To address the inconsistency issue, we propose a successive and
distributed packet scheduling framework, SD-PaS. SD-PaS lets each
device along the transmission path of the mission-critical task take
turns to determine the dynamic schedule for their transmissions
and propagate the decision to the subsequent devices on the path.
To ensure SD-PaS always lead to consistent schedules with high
utilization, two technical challenges need to be tackled. For the first
challenge—how to avoid transmission interference and schedule
inconsistency when constructing dynamic schedules locally based
only on local interference information, we shall determine (i) the
essential information needed to generate local schedules, and (ii)
the essential information to be propagated at particular time along
the path of the mission-critical task. For the second challenge—how
to construct the dynamic local schedules that will collaboratively
result in theminimum number of dropped packets due to the system
overload caused by unexpected disturbances, one can consider to
formulate an optimization problem for dynamic local schedule
construction, analyze its complexity and propose both exact and
efficient approximation algorithms to meet the user requirements.
Hierarchical resource partitioning. Dynamic, distributed net-
work resource management techniques such as D2-PaS, RD-PaS,
FD-PaS and even SD-PaS only focus on a single RTWN. However, in
reality, for large-scale IoT fabrics, it is not uncommon that multiple
independent and heterogeneous RTWNs are deployed in the same
geographical area and share the same spectra. Without knowing
the exact communication schedules or the existence of one another,
these co-existing RTWNs may create severe interference to each
other and unavoidably degrade the QoS of all the networks.

We propose a hierarchical resource partitioning framework,
HARP, to manage the network resources among co-existing hetero-
geneous RTWNs. As shown in Fig. 3, HARP assumes the deploy-
ment of a high-level manager to collect abstract resource demands
(with no detailed schedules) from individual RTWNs. HARP then
allocates resource partitions (in the form of channel-time blocks)
accordingly to each RTWN. Based on the allocated resource par-
tition, the network manager of each RTWN constructs its own
communication schedule without interfering the operation of any
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Figure 3: Overview of the HARP framework.

other networks. When disturbances occur, the affected networks
can update their resource demands to the high-level resource man-
ager which in turn adapts the current partition and disseminates
the updated partition to all affected networks. To realize the con-
cept of HARP, we envision the following three key building blocks:
(i) a resource interface to capture the essential resource demands
from RTWNs; (ii) novel algorithms to construct resource partitions
for individual RTWNs; and (iii) partition adaptation semantics and
adaptation protocols to ensure timely update of partition informa-
tion in the presence of disturbances. HARP can be further integrated
with the hierarchical control architecture presented in Section 2
to determine the required update on the resource demands from
individual RTWNs based on the observed QoS at runtime.

4 VULNERABILITY DETECTION FOR IOT
SYSTEM THROUGH FORMAL METHOD

Two features of IoT system, heterogeneous and connectivity, lead
to the security threats of mission-critical IoT system. We discuss
the security issues into two categories – static and runtime. In this
section we focus on the static protection of the IoT system, while
the runtime protection is presented in the Section 5.

4.1 Challenges
The rapid growth of IoT industry put the threat of computer systems,
considering the collaboration of hardware and software together,
front and center among all security concerns. Heterogeneous appli-
cations in scalable IoT systems and platforms significantly expand
the attack surface and increase the vulnerability. In the meantime,
a large number of computing components are deployed and acces-
sible in the physical layer, introducing the security uncertainty in
the connectivity.

In detecting vulnerabilities of hardware system, formal methods
have been proved effective among all existing techniques [15, 16,
30, 33, 37, 38, 48, 65, 101]. However, very few of the current formal
verification approaches are scalable and practical in industry due
to the lack of automatic and efficient tools. Therefore, a framework
composed by the formal verification is needed to efficiently de-
tect vulnerabilities that may reside deeply in binaries deployed in
heterogeneous IoT devices.

4.2 Existing Work
To overcome these security challenges from hardware perspective,
numerous of research studies have been investigated.We discuss the
works of information flow tracking (IFT) and Satisfiability Modulo
Theories (SMT) solver as follows.

Information FlowTracking (IFT)We represent heterogeneous
applications as data-flow model and perform security checking
using IFT. IFT is a powerful approach to efficiently protect con-
fidentiality in a hardware system by detecting the sneaky path
of sensitive information leakage. IFT associates data or operations
with labels/taint indicating the security levels. Existing static IFT so-
lutions at RT-level require manual work in either annotating codes
or proving properties. These solutions enforce the noninterference
policy, which eliminates the dependency between lower sensitive
outputs and higher sensitive inputs. Given that the inner structure
of the system is treated as a black box, confidentiality of a system
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is presented as that an adversary learns no more information from
system executions than from direct observations. That is, from the
observable outputs, attackers cannot deduce anything about the se-
cret inputs [67]. Various secure RTL programming languages, such
as Caisson [47], Sapper [46], SecVerilog [95], etc. are developed to
check the noninterference property.

However, when applying these IFT solutions, users must learn
the complex tag system and manually denote labels standing for
the trust level to specify the information flow policy. QIF-Verilog
is then proposed to protect the confidentiality as an alternative
simplified and automatic solution [29]. QIF-Verilog only extends
one security label from the standard Verilog to reduce the cost of
learning from the developers’ side. It relaxes noninterference by
quantifying how much information is being leaked [76]. In QIF-
Verilog, an information leakage metric, called accumulated RU, is
generated through calculating the entropy to quantify the leakage
of labelled secrets in the hardware design. However, QIF-Verilog
can only protect confidentiality and validate IFT properties in IP
level.

Satisfiability Modulo Theories (SMT) Solver Satisfiability
(SAT) solvers have been used in many electronic design automa-
tion fields like logic synthesis, verification, and testing. The SAT
solvers are originally designed to solve the well-known Boolean
Satisfiability problem, which decides whether a propositional logic
formula can be satisfied given value assignments of the variables
in the formula. Based on SAT solver, satisfiability modulo theories
(SMT) solver is derived by including several first-order theories,
such as arithmetic, bit-vectors, quantifiers, etc [14]. However, due
to the high computational complexity, there is no hardware imple-
mentation for SMT solvers, and the software based SMT solver are
not scalable to large designs.

Symbolic execution is a program analysis technique that can
explore multiple paths that a program could take under different
inputs [5]. In this method, execution paths that the program should
take are explored systematically to avoid the space explosion prob-
lem. Specifically, inputs are represented as symbols and the solvers
are used to check whether there are counter examples of the prop-
erty. For each path, a Boolean formula is derived to describe the
conditions of the branches, while a symbolic memory is used to map
variables to symbolic expressions. The Boolean formula is updated
after executing the branch and the symbolic memory is updated
after each assignment. Integrating these two techniques overcome
the NP-Hard computation complexity issue in SAT solver and it
provides a comprehensive protection by automatically checking
the customized properties.

4.3 Vision
We propose a framework for detecting vulnerabilities from the bina-
ries to the whole IoT system statically. Checking in the SMT solver,
formal verification is utilized to protect the interactions among
different layers in the mission-critical IoT framework. The com-
munication and control protocols established between distributed
computing devices and network gateways as well as between gate-
ways and centralized servers are analyzed before the deployment.
At the system level, the information confidentiality is protected
against sneaky paths using IFT. Two levels of the privacy protection
are delivered – 1) privacy will not be leaked to a user who should

not be a receiver inside the system, and 2) privacy will not be leaked
outside the system.

In this framework, formal verification is utilized to protect the
interactions among different layers. The runtime overhead is elimi-
nated By validating the communication channels in the mission-
critical IoT framework statically. Specifically, communication and
control protocols established 1) between distributed computing
devices and network gateways and 2) between gateways and cen-
tralized servers will be analyzed before the deployment.

The SMT solver is adopted as the platform, which determines
the satisfiability of propositional complex formulas in theories such
as arithmetic, bit-vectors, quantifiers, etc. Given a proposition of
above formulas, the SMT solver decides whether the proposition can
result in a true conclusion through assigning appropriate value to
its variables. On the other hand, the SMT solver is able to efficiently
derive the satisfiability without compromising completeness or
full automation. In the past decade, SMT solver has become the
essential checking engine in a broad range of technologies and has
been widely used in formal verification, program analysis, testing,
and program synthesis.

The security properties are pre-defined depending on the se-
curity requirements which are various for different systems. A
library is also generated including general used security proper-
ties. By selecting appropriate combinations from the library, users
are capable to customize their own security policies. Meanwhile,
the developed verification method includes an extraction of the
behavior model from the communication protocols. A intermediate
representations (IR) format is developed to represent equivalent ex-
pressions derived from different protocols. The security properties
will also be presented using the same IR. The automated checking
will be performed to detect the mismatch between the model and
the properties. In order to protect the information confidentiality
from sneaky paths in the mission-critical IoT system, we first con-
vert the whole system or protocols’ IR to a data-flow graph (DFG),
then perform IFT on the generated DFG. This static checking pro-
cess is performed before the system deployment, hence, no runtime
overhead is introduced.

To enforce the confidentiality, two levels 𝐻 (high sensitive, aka
Private) and 𝐿 (low sensitive, aka Public) are designed and then 𝐻

labeled signals are restricted flowing to 𝐿 labeled signals. Note that
the reverse operation is allowed. The information tracking policy
is designed based on the sensitive levels which label the signals
transmitting in the system. All the distributed devices are treated as
nodes in the DFG. When considering the whole IoT, more dedicated
DFG model needs to be built. For instance, all DFGs are connected
and cover the entire IoT system. The sensitive labels inside this
DFG are initialized and propagated to check privacy confidentiality
within the IoT environment. Besides the IFT-based techniques, we
also envision an integration of formal methods and fuzz testing
techniques based on concrete execution [9, 50, 87]. The integrated
solution may help identify more vulnerabilities statically.

5 REAL-TIME ADAPTIVE SENSOR ATTACK
DETECTION FOR IOT SYSTEMS

Many mission-critical IoT systems tightly interact with the physical
system via sensors and actuators. One crucial security risk in such
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systems is sensor attacks. Acting on malicious sensing information
may drive the system to perform dangerous actions and cause
serious consequences. In this section, we discuss challenges, related
work and our vision on defending against sensor attacks formission-
critical IoT security. While Section 4 focuses on the cyber part and
offline design phase, this section complements it and targets the
physical aspect and runtime phase.

5.1 Challenges
We consider sensor attacks in IoT, where an attacker modifies sens-
ing information to negatively affect and even causes safety issues
to the physical system. Consider an example attack that alters mea-
surements of a speed sensor of an autonomous vehicle to smaller
values. Then, the attack can misguide the controller to speed up
a vehicle, and the actual speed may be greater than the desired
speed [32, 42, 96]. This may eventually result in an accident. Also,
changing temperature readings to smaller values can cause a power
plant overheated and even an explosion [18].

To defend against sensor attacks is challenging because of the
wide attack surface and runtime aspects including detection accu-
racy and timing constraints.

First, the sensor attack surface is wide. Sensor attacks can be
launched by compromising software or the communication between
sensors and controllers. Besides these convectional cyber attack
surfaces, sensors can be also corrupted by transduction attacks,
which manipulate the physical property to affect sensor measure-
ments [1, 2, 12, 34, 60, 63, 92, 102]. For example, an attacker can
inject fake GPS signals to misguide a yacht [66], compromise wheel
speed sensors to corrupt antilock braking systems [74], or affect
gyroscope readings by sound noises [77].

Second, the detection accuracy is important. We need to not
only consider false negatives that may cause safety validation but
also false alarms that decide the usability of an detection method.
That is, an undetected attack may drift off the system to the unsafe
region; and more false alarms will reduce the usability of a detector.

Third, timing of attack detection is also important. Untimely
detection, i.e., finding an attack after consequences happen, is just
as damaging. Consider the same example of the speed sensor attack
as above. The attack needs to be detected before the vehicle crashes;
otherwise, the detection result is useless even if it is accurate.

5.2 Existing Work
The threats and challenges mentioned above have motivated exten-
sive studies on sensor attack detection. The following will discuss
these studies from two orthogonal perspectives: system behavior
prediction and statistics tracking.

System Behavior Prediction. Existing studies can be divided
into several threads according to how they predict system behav-
iors. First, some works rely on sensor redundancy and conduct
cross-checking information of the redundant sensors for the de-
tection [19, 61, 93, 94]. Second, there are some signature-based
works that compare run-time patterns with a pre-defined dictio-
nary. The dictionary includes attack types or attack patterns already
known [21, 40]. Third, some works use behavioral rule-based detec-
tion, where the detector raises an alarm if a system does not follow
some specifications on state transitions or execution constraints
defined beforehand [4, 53, 54].

Fourth, a major thread of works studies how physical invariants
can be used to detect sensor attacks, where a physical invariant
follows certain physical laws. The basic idea here is first to extract
a physical invariant of a system beforehand and then compare the
observed sensor readings with the values predicted by the invariant
at runtime. If the difference between the two is greater than a pre-
defined threshold, an alert will be raised. There are two kinds of
physical invariants that are widely-used in the literature. The first
kind captures the dynamics of a physical system using a system
model described by differential or difference equations or learnt
models [12, 23, 27, 28, 52, 63]. The second kind of invariant refers to
sensor correlation. The correlation captures the fact that multiple
sensors react to the same physical phenomenon in a correlated
way [2, 20, 32, 59, 81]. For example, when braking a vehicle, the
vehicle speed and engine speed will both decrease and GPS readings
will be also affected accordingly.

Statistics Tracking. There are mainly two different methods
to track the statistics of difference between the predicted and the
observed behavior: stateless and stateful. For stateless detection
works, they raise an alarm for a considerable difference (called
residual) between a predicted value and an observed value by the
sensor at every single time point [32, 57, 58, 88]. For stateful de-
tection works, they use a statistic that keeps tracking of historical
residuals, e.g., average or cumulative sum. Then, they generate an
alarm if a persistent deviation across multiple time points is con-
firmed [8, 12, 63, 83, 84]. In general, stateful detection works come
with fewer false alarms (or higher usability) but longer detection
delay, while stateless detection works in the opposite way since
less data points are used for detection.

5.3 Vision
In spite of the large volume of existing works, the timing and
usability of sensor attack detection have not been well addressed.
The timing here refers to the detection delay, which is defined as the
time interval between the start of an attack and the detection of it.
The usability is tied to the false alarm rate, and a higher (lower) rate
means a worse (better) usability. Some works focus on improving
either the detection delay or false alarm rate. Other works attempt to
minimize the two metrics at the same time. However, this attempt is
deemed to hardly succeed because of the inherent trade-off between
the two metrics. That is, a lower detection delay usually comes with
more false alarms; and vice versa [2, 23, 83, 84]. Further, when a
system is closer to the unsafe region, there is less time remaining
for the detection and thus reducing the detection delay will have
higher priority than reducing false alarms; and vice versa. Hence,
we envision that attack detection should prefer different metrics
when a system runs in different states.

We propose real-time adaptive sensor attack detection formission-
critical IoT systems. First, we need a real-time detector to address
the timing challenge. As noted, untimely defense may also cause se-
rious consequences. Second, we need an adaptive detector that can
adjust its detection delay and false alarms. The real-time adaptive
detector will discover sensor attacks before the detection deadline
while improving its usability. To achieve this goal, we argue that a
detector needs to have the capabilities of computing the detection
deadline and adapting its detection delay. The following discusses
how to enable such capabilities for attack detection.
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EstimatingDetectionDeadline. Existing detectionworks usu-
ally do not consider the detection deadline as a design factor. In-
stead, they just report the resulted delay in their evaluations and
then claim fast detection [1, 2]. Further, they do not address how
fast is fast enough to avoid unsafe situations. We propose to use
the detection deadline to bound the detection delay. However, it is
challenging to calculate the detection deadline.

A multiple-step approach is proposed. First, we define the detec-
tion deadline as as the time interval between the current time and
a future time point when a system may reach the unsafe region.
Because sensor measurements can be arbitrarily modified by an
attacker, the generated control inputs are unpredictable. Therefore,
the detection deadline needs to be estimated in a conservative way
in order to cover the arbitrary sensor modification.

Second, the detection deadline changes as the system state varies.
If a system is already close to the unsafe region, then it will take less
time to touch the region (if it keeps moving towards the direction),
that is, a short or stringent detection deadline. Therefore, to obtain
the detection deadline offline is infeasible, and instead, it needs to
carry out estimation at run time. Third, the online estimation needs
to have low computational overhead; otherwise, after the computa-
tion completes, the resulted deadline may be already outdated in a
time-constraint environment.

Adjusting Detection Delay. We then need to adapt the detec-
tion delay of the detector according to the detection deadline. We
believe that adjusting the delay appropriately can not only guaran-
tee timely detection but also improve the usability of the detector.
However, little attention has been paid to how to adapt the detec-
tion delay [1, 2]. To enable such adaptability is not easy, and an
attack detector needs to have at least two features as follows.

First, the detection delay of the detector needs to be predictable
in the first place in order to be adjustable. This means that the delay
can bounded by a maximum value when identifying an attack,
i.e., the detected attack starts no earlier than a time point. Note
that this is meaningful only if the attack is detected; otherwise,
when the attack occurs is unknown as the detector fails to find
it. Further, cumulative sum (CUSUM) based detection approaches
tracks a trimmed sum of all historical residuals and thus do not have
predictable detection delay by nature [2, 63]. Second, to align with
the varying detection deadline, the detector needs to dynamically
change its detection delay at run time. Thus, stateless detection or
detection with fixed delay is inapplicable here.

The vision discussed above focuses on bridging the gap on the
timing aspects for attack detection. Thus, it is orthogonal to existing
works that are confined to the detection accuracy. We believe that
combining our vision with those existing works will yield both
timely and accurate detection.

6 LESSON LEARNED
To deploy a scalable, secure, and smart mission IoT systems, a multi-
faceted research approach is imperatively needed from different
domains. This position paper envisions such a problem from four
research areas: theory/algorithms, resource management, security,
and computer systems.

From the theory/algorithm perspective, we envision data-driven
distributed hierarchical control algorithms [24] based on moment-
matching [3] and approximate simulation [25] concepts that can
regulate application workload’s utilization of IoT real-time ser-
vices when the IoT infrastructure is overloaded. This is essential
to achieve scalable control of IoT systems through the distributed
nature of the hierarchical controls and smart control via a novel
mixture of supervised and unsupervised learning schemes that
identify moment-matching reduced order abstractions of the IoT
infrastructure’s behavior.

From the resource management perspective, we envisioned a
scalable runtime resource management framework based on decen-
tralized techniques for handling workload uncertainties caused by
changes in either the application environment or the IoT infras-
tructure itself. The considered resources encompass computing and
communication resources with considerations in real-time, relia-
bility, and energy consumption requirements. The framework can
be employed in tandem with the distributed hierarchical control
algorithms.

From the computer system and security perspectives, We en-
visioned a hybrid mechanism composed of both design-time and
runtime protection approaches for secure deployment of IoT sys-
tems. Design-time techniques (e.g., formal verification) focuses on
discovering vulnerabilities in cyber systems. However, this does
not protect the IoT system from attacks originated from physical
attackers; for example, sensor readings can be manipulated. Run-
time detection and recovery, especially under real-time constraints,
must be developed. The unique cyber-physical characteristic of IoT
systems calls for such hybrid protection mechanism.

7 CONCLUSION
The ever-increasing scale of the IoT infrastructure in mission-
critical applications poses emerging and serious threats to the func-
tionality and dependability of such applications. This perspective
paper elaborates the challenges in deploying a scalable, secure, and
smart mission-critical IoT system by reviewing existing literature
and identifying potential gaps. We stress that a cross-layer multi-
faceted approach is the key to address such challenges, and discuss
potential solutions including data-driven modeling, real-time re-
source management, formal methods-based vulnerability detection,
and adaptive sensor attack detection and recovery. We hope that
the paper provides possible directions for future research endeavors
in mission-critical IoT system deployment.

8 ACKNOWLEDGEMENTS
The work is supported in part by the National Science Foundation
through the PPoSS Planning Project (NSF-2028897, NSF-2028910,
NSF-2028875, NSF-2028879, NSF-2028889, and NSF-2028740).

REFERENCES
[1] Francis Akowuah and Fanxin Kong. Physical invariant based attack detection

for autonomous vehicles: Survey, vision, and challenges. In 4th International
Conference on Connected and Autonomous Driving (MetroCAD). IEEE, 2021.

[2] Francis Akowuah and Fanxin Kong. Real-time adaptive sensor attack detection
in autonomous cyber-physical systems. In 27th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2021.

[3] Alessandro Astolfi. Model reduction by moment matching for linear and non-
linear systems. IEEE Transactions on Automatic Control, 55(10):2321–2336, 2010.

8



[4] Stanley Bak, Karthik Manamcheri, Sayan Mitra, and Marco Caccamo. Sandbox-
ing controllers for cyber-physical systems. In 2011 IEEE/ACM Second Interna-
tional Conference on Cyber-Physical Systems, pages 3–12. IEEE, 2011.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. A survey of symbolic execution techniques. arXiv preprint
arXiv:1610.00502, 2016.

[6] S.L. Brunton, B.W. Brunton, J.L. Proctor, and J.N. Kutz. Koopman invariant
subspaces and finite linear representations of nonlinear dynamical systems for
control. PLoS ONE, 11(2-e0150171), 2016.

[7] Giorgio C Buttazzo, Enrico Bini, and Darren Buttle. Rate-adaptive tasks: Model,
analysis, and design issues. In 2014 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 1–6. IEEE, 2014.

[8] Alvaro A Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen
Huang, and Shankar Sastry. Attacks against process control systems: risk
assessment, detection, and response. In Proceedings of the 6th ACM symposium
on information, computer and communications security, pages 355–366, 2011.

[9] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou,
Xun Jiao, and Zhuo Su. Enfuzz: Ensemble fuzzing with seed synchronization
among diverse fuzzers. In 28th {USENIX} Security Symposium ({USENIX}
Security 19), pages 1967–1983, 2019.

[10] Octav Chipara, Chenyang Lu, and Gruia-Catalin Roman. Real-time query sched-
uling for wireless sensor networks. IEEE transactions on computers, 62(9):1850–
1865, 2013.

[11] Octav Chipara, Chengjie Wu, Chenyang Lu, andWilliam Griswold. Interference-
aware real-time flow scheduling for wireless sensor networks. In Real-Time
Systems (ECRTS), 2011 23rd Euromicro Conference on, pages 67–77. IEEE, 2011.

[12] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xiangyu Zhang,
Dongyan Xu, and Xinyan Deng. Detecting attacks against robotic vehicles: A
control invariant approach. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 801–816, 2018.

[13] Tanya L. Crenshaw, Spencer Hoke, Ajay Tirumala, and Marco Caccamo. Robust
implicit edf: A wireless mac protocol for collaborative real-time systems. ACM
Trans. Embed. Comput. Syst., 2007.

[14] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.

[15] Flavio M De Paula, Marcel Gort, Alan J Hu, Steven JE Wilton, and Jin Yang.
Backspace: formal analysis for post-silicon debug. In Proceedings of the 2008
International Conference on Formal Methods in Computer-Aided Design, page 5.
IEEE Press, 2008.

[16] S. Drzevitzky. Proof-carrying hardware: Runtime formal verification for secure
dynamic reconfiguration. In International Conference on Field Programmable
Logic and Applications, pages 255–258, 2010.

[17] Dave Evans. The internet of things: How the next evolution of the internet is
changing everything. CISCO white paper, 1(2011):1–11, 2011.

[18] James P Farwell and Rafal Rohozinski. Stuxnet and the future of cyber war.
Survival, 53(1):23–40, 2011.

[19] Fan Fei, Zhan Tu, Ruikun Yu, Taegyu Kim, Xiangyu Zhang, Dongyan Xu, and
Xinyan Deng. Cross-layer retrofitting of uavs against cyber-physical attacks.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
550–557. IEEE, 2018.

[20] Arun Ganesan, Jayanthi Rao, and Kang Shin. Exploiting consistency among
heterogeneous sensors for vehicle anomaly detection. Technical report, SAE
Technical Paper, 2017.

[21] Wei Gao and Thomas H Morris. On cyber attacks and signature based intru-
sion detection for modbus based industrial control systems. Journal of Digital
Forensics, Security and Law, 9(1):3, 2014.

[22] Arthur Gatouillat, Youakim Badr, and Bertrand Massot. Qos-driven self-
adaptation for critical iot-based systems. In International Conference on Service-
Oriented Computing, pages 93–105. Springer, 2017.

[23] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,
Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell.
A survey of physics-based attack detection in cyber-physical systems. ACM
Computing Surveys (CSUR), 51(4):1–36, 2018.

[24] Antoine Girard and George J Pappas. Hierarchical control system design using
approximate simulation. Automatica, 45(2):566–571, 2009.

[25] Antoine Girard and George J Pappas. Approximate bisimulation: A bridge
between computer science and control theory. European Journal of Control,
17(5-6):568–578, 2011.

[26] Tao Gong, Tianyu Zhang, Xiaobo Sharon Hu, Qingxu Deng, Michael Lemmon,
and Song Han. Reliable dynamic packet scheduling over lossy real-time wireless
networks. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[27] Pinyao Guo, Hunmin Kim, Nurali Virani, Jun Xu, Minghui Zhu, and Peng Liu.
Exploiting physical dynamics to detect actuator and sensor attacks in mobile
robots. arXiv preprint arXiv:1708.01834, 2017.

[28] Pinyao Guo, Hunmin Kim, Nurali Virani, Jun Xu, Minghui Zhu, and Peng Liu.
Roboads: Anomaly detection against sensor and actuator misbehaviors in mobile
robots. In 2018 48th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), pages 574–585. IEEE, 2018.
[29] Xiaolong Guo, Raj GautamDutta, Jiaji He, MarkMTehranipoor, and Yier Jin. Qif-

verilog: Quantitative information-flow based hardware description languages
for pre-silicon security assessment. In 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pages 91–100. IEEE, 2019.

[30] Xiaolong Guo, Raj Gautam Dutta, Yier Jin, Farimah Farahmandi, and Prabhat
Mishra. Pre-silicon security verification and validation: A formal perspective. In
Proceedings of the 52Nd Annual Design Automation Conference, DAC ’15, pages
145:1–145:6, 2015.

[31] Song Han, Xiuming Zhu, Aloysius K Mok, Deji Chen, and Mark Nixon. Reliable
and real-time communication in industrial wireless mesh networks. In 2011 17th
IEEE Real-Time and Embedded Technology and Applications Symposium, pages
3–12. IEEE, 2011.

[32] Tianjia He, Lin Zhang, Fanxin Kong, and Asif Salekin. Exploring inherent sensor
redundancy for automotive anomaly detection. In 57th Design Automation
Conference, 2020.

[33] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Soft-
ware verification with blast. In Model Checking Software, pages 235–239.
Springer, 2003.

[34] Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo. Cyber-physical
systems security—a survey. IEEE Internet of Things Journal, 4(6):1802–1831,
2017.

[35] Xun Jiao, Dongning Ma, Wanli Chang, and Yu Jiang. Levax: An input-aware
learning-based error model of voltage-scaled functional units. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(12):5032–5041,
2020.

[36] Cheng Jin, David X Wei, and Steven H Low. Fast tcp: motivation, architecture,
algorithms, performance. In IEEE INFOCOM 2004, volume 4, pages 2490–2501.
IEEE, 2004.

[37] Yier Jin. Design-for-security vs. design-for-testability: A case study on dft chain
in cryptographic circuits. In IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 19–24, 2014.

[38] Yier Jin, Bo Yang, and Yiorgos Makris. Cycle-accurate information assurance by
proof-carrying based signal sensitivity tracing. In IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pages 99–106, 2013.

[39] Mason Kamb, Eurika Kaiser, Steven L Brunton, and J Nathan Kutz. Time-delay
observables for koopman: Theory and applications. SIAM Journal on Applied
Dynamical Systems, 19(2):886–917, 2020.

[40] Sanmeet Kaur and Maninder Singh. Automatic attack signature generation
systems: A review. IEEE Security & Privacy, 11(6):54–61, 2013.

[41] Junsung Kim, K. Lakshmanan, and R. Rajkumar. Rhythmic tasks: A new
task model with continually varying periods for cyber-physical systems. In
IEEE/ACM Third International Conference on Cyber-Physical Systems (ICCPS),
pages 55–64, 2012.

[42] Fanxin Kong, Meng Xu, James Weimer, Oleg Sokolsky, and Insup Lee. Cyber-
physical system checkpointing and recovery. In 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS), pages 22–31. IEEE, 2018.

[43] Vince Kurtz, Patrick M Wensing, Michael D Lemmon, and Hai Lin. Ap-
proximate simulation for template-based whole-body control. arXiv preprint
arXiv:2006.09921, 2020.

[44] J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor.
Dynamic mode decomposition: data-driven modeling of complex systems. SIAM,
2016.

[45] Quan Leng, Yi-Hung Wei, Song Han, Aloysius K Mok, Wenlong Zhang, and
Masayoshi Tomizuka. Improving control performance by minimizing jitter in
rt-wifi networks. In 2014 IEEE Real-Time Systems Symposium, pages 63–73. IEEE,
2014.

[46] Xun Li, Vineeth Kashyap, Jason K Oberg, Mohit Tiwari, Vasanth Ram Rajarathi-
nam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T Chong.
Sapper: A language for hardware-level security policy enforcement. In ACM
SIGARCH Computer Architecture News, volume 42, pages 97–112. ACM, 2014.

[47] Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth Kashyap, Frederic T Chong,
Timothy Sherwood, and Ben Hardekopf. Caisson: a hardware description
language for secure information flow. In ACM SIGPLAN Notices, volume 46,
pages 109–120. ACM, 2011.

[48] E. Love, Y. Jin, and Y. Makris. Proof-carrying hardware intellectual property:
A pathway to trusted module acquisition. IEEE Transactions on Information
Forensics and Security (TIFS), 7(1):25–40, 2012.

[49] Steven H Low and David E Lapsley. Optimization flow control. i. basic algorithm
and convergence. IEEE/ACM Transactions on networking, 7(6):861–874, 1999.

[50] Dongning Ma, Jianmin Guo, Yu Jiang, and Xun Jiao. Hdtest: Differential fuzz
testing of brain-inspired hyperdimensional computing. In IEEE/ACM Design
Automation Conference (DAC), 2021.

[51] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[52] Robert Mitchell and Ing-Ray Chen. A survey of intrusion detection techniques

for cyber-physical systems. ACM Computing Surveys (CSUR), 46(4):1–29, 2014.
[53] Robert Mitchell and Ray Chen. Adaptive intrusion detection of malicious

unmanned air vehicles using behavior rule specifications. IEEE Transactions on

9



Systems, Man, and Cybernetics: Systems, 44(5):593–604, 2013.
[54] Robert Mitchell and Ray Chen. Behavior rule specification-based intrusion

detection for safety critical medical cyber physical systems. IEEE Transactions
on Dependable and Secure Computing, 12(1):16–30, 2014.

[55] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529–533, 2015.

[56] Mehdi Mohammadi, Ala Al-Fuqaha, Mohsen Guizani, and Jun-Seok Oh. Semisu-
pervised deep reinforcement learning in support of iot and smart city services.
IEEE Internet of Things Journal, 5(2):624–635, 2017.

[57] Carlos Murguia and Justin Ruths. Cusum and chi-squared attack detection of
compromised sensors. In 2016 IEEE Conference on Control Applications (CCA),
pages 474–480. IEEE, 2016.

[58] Carlos Murguia and Justin Ruths. On reachable sets of hidden cps sensor attacks.
In 2018 Annual American Control Conference (ACC), pages 178–184. IEEE, 2018.

[59] Michael Müter, André Groll, and Felix C Freiling. A structured approach to
anomaly detection for in-vehicle networks. In 2010 Sixth International Conference
on Information Assurance and Security, pages 92–98. IEEE, 2010.

[60] Miroslav Pajic, James Weimer, Nicola Bezzo, Paulo Tabuada, Oleg Sokolsky,
Insup Lee, and George J Pappas. Robustness of attack-resilient state estimators.
In ACM/IEEE 5th International Conference on Cyber-Physical Systems (ICCPS),
pages 163–174. IEEE Computer Society, 2014.

[61] Junkil Park, Radoslav Ivanov, James Weimer, Miroslav Pajic, and Insup Lee.
Sensor attack detection in the presence of transient faults. In Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems, 2015.

[62] Xin Peng, Bihuan Chen, Yijun Yu, and Wenyun Zhao. Self-tuning of software
systems through dynamic quality tradeoff and value-based feedback control
loop. Journal of Systems and Software, 85(12):2707–2719, 2012.

[63] Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman, Alvaro Cardenas, and
Zhiqiang Lin. SAVIOR: Securing autonomous vehicles with robust physical
invariants. In 29th USENIX Security Symposium (USENIX Security 20), 2020.

[64] Marc H Raibert. Legged robots that balance. MIT press, 1986.
[65] Jeyavijayan Rajendran, Vivekananda Vedula, and Ramesh Karri. Detecting

malicious modifications of data in third-party intellectual property cores. In
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), DAC ’15,
pages 112:1–112:6, New York, NY, USA, 2015.

[66] Aviva Hope Rutkin. “Spoofers" use fake gps signals to knock a yacht off course,
August 14, 2013.

[67] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow
security. IEEE Journal on selected areas in communications, 21(1):5–19, 2003.

[68] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Real-time sched-
uling for wirelesshart networks. In Real-Time Systems Symposium (RTSS), 2010
IEEE 31st, pages 150–159. IEEE, 2010.

[69] Keisuke Sato, Yuichi Kawamoto, Hiroki Nishiyama, Nei Kato, and Yoshitaka
Shimizu. A modeling technique utilizing feedback control theory for perfor-
mance evaluation of iot system in real-time. In 2015 International Conference on
Wireless Communications & Signal Processing (WCSP), pages 1–5. IEEE, 2015.

[70] Giordano Scarciotti and Alessandro Astolfi. Data-driven model reduction by
moment matching for linear and nonlinear systems. Automatica, 79:340–351,
2017.

[71] Mo Sha, Rahav Dor, Gregory Hackmann, Chenyang Lu, Tae-Suk Kim, and
Taerim Park. Self-adapting mac layer for wireless sensor networks. In Real-Time
Systems Symposium (RTSS), 2013 IEEE 34th, pages 192–201. IEEE, 2013.

[72] Wei Shen, Tingting Zhang, Mikael Gidlund, and Felix Dobslaw. SAS-TDMA: a
source aware scheduling algorithm for real-time communication in industrial
wireless sensor networks. Wireless Networks, 2013.

[73] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[74] Yasser Shoukry, Paul Martin, Paulo Tabuada, and Mani Srivastava. Non-invasive
spoofing attacks for anti-lock braking systems. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 55–72. Springer, 2013.

[75] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael
Gidlund. Industrial internet of things: Challenges, opportunities, and directions.
IEEE Transactions on Industrial Informatics, 2018.

[76] Geoffrey Smith. On the foundations of quantitative information flow. In
International Conference on Foundations of Software Science and Computational
Structures, pages 288–302. Springer, 2009.

[77] Yunmok Son, Hocheol Shin, Dongkwan Kim, Youngseok Park, Juhwan Noh,
Kibum Choi, Jungwoo Choi, and Yongdae Kim. Rocking drones with intentional
sound noise on gyroscopic sensors. In 24th USENIX Security Symposium (USENIX
Security 15), pages 881–896, 2015.

[78] Jianping Song, SongHan, AlMok, Deji Chen,Mike Lucas,MarkNixon, andWally
Pratt. Wirelesshart: Applying wireless technology in real-time industrial process
control. In 2008 IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 377–386. IEEE, 2008.

[79] John A Stankovic. Research directions for the internet of things. IEEE internet
of things journal, 1(1):3–9, 2014.

[80] Petcharat Suriyachai, Utz Roedig, and Andrew Scott. A survey of mac protocols
for mission-critical applications in wireless sensor networks. IEEE Communica-
tions Surveys & Tutorials, 14(2):240–264, 2011.

[81] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly detection
in automobile control network data with long short-term memory networks.
In 2016 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pages 130–139. IEEE, 2016.

[82] Federico Tramarin, Aloysius K Mok, and Song Han. Real-time and reliable
industrial control overwireless lans: Algorithms, protocols, and future directions.
Proceedings of the IEEE, 2019.

[83] Rohit Tunga, Carlos Murguia, and Justin Ruths. Tuning windowed chi-squared
detectors for sensor attacks. In 2018 Annual American Control Conference (ACC),
pages 1752–1757. IEEE, 2018.

[84] David I Urbina, Jairo A Giraldo, Alvaro A Cardenas, Nils Ole Tippenhauer, Junia
Valente, Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg.
Limiting the impact of stealthy attacks on industrial control systems. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1092–1105, 2016.

[85] A.J. Van der Schaft. L2-gain and passivity techniques in nonlinear control. Springer,
2000.

[86] Jiachen Wang, Tianyu Zhang, Dawei Shen, X.S. Hu, and Song Han. APaS:
an adaptive parition-based scheduling framework for 6TiSCH networks. In
Proceedings 27th IEEE Real-time and Embedded Technology and Applications
Symposium (RTAS 2021), 2021.

[87] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin
Zhao, and Jiaguang Sun. Safl: increasing and accelerating testing coverage with
symbolic execution and guided fuzzing. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, pages 61–64. ACM,
2018.

[88] Ruixuan Wang, Fanxin Kong, Hasshi Sudler, and Xun Jiao. Hdad: Hyperdi-
mensional computing-based anomaly detection for automotive sensor attacks.
In 27th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), Brief Industry Paper Track. IEEE, 2021.

[89] Xin Wei, Jialin Zhao, Liang Zhou, and Yi Qian. Broad reinforcement learning for
supporting fast autonomous iot. IEEE Internet of Things Journal, 7(8):7010–7020,
2020.

[90] Yi-Hung Wei, Quan Leng, Song Han, Aloysius K Mok, Wenlong Zhang, and
Masayoshi Tomizuka. Rt-wifi: Real-time high-speed communication protocol
for wireless cyber-physical control applications. In 2013 IEEE 34th Real-Time
Systems Symposium, pages 140–149. IEEE, 2013.

[91] Yifei Wei, F Richard Yu, Mei Song, and Zhu Han. Joint optimization of caching,
computing, and radio resources for fog-enabled iot using natural actor–critic
deep reinforcement learning. IEEE Internet of Things Journal, 6, 2018.

[92] Chen Yan, Hocheol Shin, Connor Bolton, Wenyuan Xu, Yongdae Kim, and Kevin
Fu. Sok: A minimalist approach to formalizing analog sensor security. In 2020
IEEE Symposium on Security and Privacy (SP), pages 480–495, 2020.

[93] Man-Ki Yoon, Bo Liu, Naira Hovakimyan, and Lui Sha. Virtualdrone: virtual
sensing, actuation, and communication for attack-resilient unmanned aerial
systems. In Proceedings of the 8th International Conference on Cyber-Physical
Systems, pages 143–154, 2017.

[94] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. Securecore:
A multicore-based intrusion detection architecture for real-time embedded
systems. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 21–32. IEEE, 2013.

[95] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. A hardware
design language for timing-sensitive information-flow security. ACM SIGPLAN
Notices, 50(4):503–516, 2015.

[96] Lin Zhang, Xin Chen, Fanxin Kong, and Alvaro A. Cardenas. Real-time recovery
for cyber-physical systems using linear approximations. In 41st IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2020.

[97] Tianyu Zhang, Tao Gong, Chuancai Gu, Huayi Ji, Song Han, Qingxu Deng,
and Xiaobo Sharon Hu. Distributed dynamic packet scheduling for handling
disturbances in real-time wireless networks. In RTAS, 2017.

[98] Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and X Sharon Hu. Fully
distributed packet scheduling framework for handling disturbances in lossy
real-time wireless networks. IEEE Transactions on Mobile Computing, 2019.

[99] Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and Xiaobo Sharon Hu.
Distributed dynamic packet scheduling framework for handling disturbances in
real-time wireless networks. IEEE Transactions on Mobile Computing, 2018.

[100] Tianyu Zhang, Tao Gong, Zelin Yun, Song Han, Qingxu Deng, and Xi-
aobo Sharon Hu. Fd-pas: A fully distributed packet scheduling framework
for handling disturbances in real-time wireless networks. In RTAS, 2018.

[101] Xuehui Zhang and M Tehranipoor. Case study: Detecting hardware trojans in
third-party digital ip cores. In HOST, pages 67–70, 2011.

[102] Youqian Zhang and KB Rasmussen. Detection of electromagnetic interference
attacks on sensor systems. In IEEE Symposium on Security and Privacy (S&P),
2020.

10


