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Abstract

Wireless networks are susceptible to malicious attacks, especially those involving eavesdropping and jamming. In this paper, we consider
a communication scenario involving a transmitter who wishes to communicate secretly and reliably with a receiver, while an adversary wants
to obstruct this communication by means of either eavesdropping or jamming. The transmitter as well as the adversary wants to achieve
its own goal in a manner that is as unpredictable as possible to its rival. We model this problem by a non-zero sum game. The expected
throughput that is delivered secretly and non-jammed to the receiver is considered as the metric that reflects communication secrecy and
reliability. The entropy of the player’s strategies is considered as the metric to reflect the player’s unpredictability. The equilibrium is found
in closed form, and parameters of the transmitter’s utility supporting both goals are optimized via a proportional fairness approach.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The problem of establishing secret communication between
a transmitter and a receiver is fundamental to building secure
communication systems. Physical layer security problems have
commonly been studied under the threat of passive eavesdrop-
pers [1–3]. Some works have studied how an active eavesdrop-
per with the dual capability of either eavesdropping passively
or jamming any ongoing transmission can disrupt the security
and reliability of wireless communications networks [4–9]. In
all of these works, the anti-adversary strategy was focused
on the basic goal of maximizing the expected throughput
delivered secretly and non-jammed to a receiver. Meanwhile,
the adversary strategy was focused on minimizing such a
payoff.

In this paper, different from prior works, we design a new
class of transmitter and adversary strategies, which we call
sophisticated strategies. For a sophisticated adversary, beyond
the basic goal to obstruct communication of the transmitter
with a receiver by means of combined eavesdropping and
jamming attack, the adversary also has a secondary goal to
achieve such objective in the most unpredictable way for the
transmitter. A sophisticated transmitter also, beyond the basic
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goal of communicating secretly and reliably, has a secondary
goal to achieve such objective in the most unpredictable way
to the adversary. The problem is modeled in the framework
of a game-theoretical approach. The expected throughput de-
livered secretly and un-jammed to the receiver is considered
as a metric that reflects the basic goal of the players. The
entropy of the player’s strategies is implemented as a metric
to reflect secondary goals. In particular, proven uniqueness
of designed anti-adversary strategy reflects its stability to
combined eavesdropping and jamming attack.

2. Short overview of communication model

Our communication scenario involves a transmitter who
wishes to communicate secretly and reliably with a receiver.
The adversary aims to obstruct this communication by means
of either eavesdropping or jamming. A wireless transmis-
sion with n subcarriers using orthogonal frequency-division
multiplexing (OFDM) is considered as the basic example of
such communication. These sub-carriers are affected by fading
channel gains hi , i = 1, . . . , n. The sub-carriers from adver-
sary to transmitter have corresponding eavesdropping channel
gains hEi , where hEi/σ

2
E ≤ hi/σ

2 for i = 1, . . . , n, and
σ 2

E and σ 2 are the variances of additive white Gaussian noise
processes at adversary’s and receiver’s receivers, respectively,
while the fading channel coefficients from adversary to re-
ceiver are represented by gi (Fig. 1). Let P = (P1, . . . , Pn)
be a power allocation strategy for the transmitter, where P
phisticated players, ICT Express (2022), https://doi.org/10.1016/j.icte.2022.06.002.
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Fig. 1. Communication model between transmitter (T ) and receiver (R) in
resence of adversary (A).

s a power allocated by the transmitter to communicate with
eceiver through sub-carrier i , and

∑n
i=1 Pi = Ptotal with Ptotal

s the total transmission power. Let J = (J1, . . . , Jn) be a
power allocation strategy for the adversary, where Ji is the
jamming power employed by the adversary to jam sub-carrier
, and

∑n
i=1 Ji = Jtotal with Jtotal is the total jamming power

budget. Let P and J be sets of all feasible power allocation
strategies of transmitter and adversary, respectively.

The adversary can implement one of two malicious attack
(modes): eavesdropping or jamming.

Under an eavesdropping attack, the maximum achievable
rate (secrecy rate) for transmission from transmitter to re-
ceiver is given by the secrecy capacity as follows: uSC (P) ≜
max {u(P, 0) − uE (P), 0}, where u(P, J) is the capacity, or,
more loosely, the throughput, of direct transmission between
transmitter and receiver if transmitter and adversary apply
strategies P and J, respectively, and uE (P) is the capacity of
adversary as a receiver in the eavesdropper mode.

In eavesdropping mode, the adversary eavesdrops, i.e., J =

0. Then the optimal strategy for the transmitter is the one
which maximizes its secrecy capacity, i.e.,

PE ≜ argmax{uSC (P) : P ∈ P}. (1)

In jamming mode, the adversary wants to implement a
power allocation strategy that minimizes throughput u(P, J)
at the receiver, while the transmitter wants to implement a
power allocation strategy to maximize such throughput. Thus,
the transmitter and adversary want to implement Nash equi-
librium (NE) strategies in a zero-sum game with u(P, J) as
the payoff and cost function for the transmitter and adversary,
respectively, i.e., a pair of strategies (PJ , JJ ) for which each
of them is the best response to the other, i.e. the following
relations hold

PJ ≜ argmax{u(P, JJ ) : P ∈ P}, (2)

JJ ≜ argmin{u(PJ , J) : J ∈ J }. (3)

In particular, for the basic OFDM scenario, we have

uSC (P) =

n∑
i=1

ln
(
1 + hi Pi/σ

2)
− ln

(
1 + hEi Pi/σ

2
E

)
, (4)

uE (P) =

n∑
i=1

ln
(
1 + hEi Pi/σ

2
E

)
, (5)

u(P, J) =

n∑
i=1

ln
(
1 + hi Pi/(σ 2

+ gi Ji )
)
, (6)
2

and PE and (PJ , JJ ) can be found via [10,11], respectively.
Also, without loss of generality we can assume that PE ̸= PJ .

In the following lemma we establish relations between
transmitter’s payoffs in dependence on the modes the trans-
mitter and adversary implement.

Proposition 1. Let A ≜ uSC (PE ), a ≜ uSC (PJ ), B ≜
u(PJ , JJ ) and b ≜ u(PE , JJ ). Between these payoffs the
following relations hold:

A > a and B > b. (7)

Proof. Since PE ̸= PJ , relations (1)–(3) imply (7) . ■

In the following corollary we establish the relationship
between the sums of the transmitter’s payoffs if both players
implement the same mode and if both players implement
different modes.

Proposition 2. The following relation holds

D > 0, (8)

where

D ≜ A + B − a − b. (9)

Proof. The result follows from (7). ■

3. Eavesdropping and jamming dilemma

Now suppose the adversary can choose whether to eaves-
drop or jam, but it cannot tune its jamming power. The
transmitter does not know whether the adversary is going to
eavesdrop or jam, and it must choose whether to transmit as
if it is being jammed or being eavesdropped upon. Thus, the
adversary has two malicious strategies: to implement eaves-
dropping or jamming mode, denoted by E and J, respectively.
In jamming mode, the adversary implements the corresponding
optimal power allocation strategy JJ for jamming.

The transmitter, on the other hand, chooses between two
modes to communicate with the receiver: (a) mode E, to im-
plement power allocation strategy PE which is optimal to deal
with an eavesdropping attack, and (b) mode J, to implement
power allocation strategy PJ that is optimal to deal with a
jamming attack. This scenario leads to the following payoff
matrix M , where the rows and columns are the transmitter’s
and adversary’s strategies, respectively:

M =

(E J

E A b

J a B

)
. (10)

4. Sophisticated transmitter and adversary

Let the transmitter, with probabilities x and 1 − x , im-
plement transmission power allocation strategies PE and PJ
corresponding to transmission modes E and J, respectively.
Similarly, let the adversary, corresponding to adversary modes
E and J, eavesdrop or implement jamming power allocation

strategy JJ with probabilities y and 1−y, respectively (Fig. 1).
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Let probability vectors x = (x, x) and y = (y, y)1 be
trategies for transmitter and adversary, respectively. Then,
y (10), the expected throughput secured and non-jammed
elivered to receiver is given as follows:

(x, y) ≜ Axy + bx y + ax y + Bx y. (11)

Traditionally, in secrecy communication problems the adver-
sary and transmitter are antagonists. Specifically, the adversary
wants to reduce the secret and non-jammed throughput deliv-
ered to the receiver by means of a combined eavesdropping
and jamming attack, and the transmitter wants to increase it.

Meanwhile, the (sophisticated) transmitter wants to find a
trade-off between two goals: (i) the basic goal, to increase the
secret and non-jammed throughput delivered to the receiver,
and (ii) the secondary goal, to achieve this increase in the
most unpredictable way for the adversary. As a metric for
the transmitter to confuse the adversary, we consider the
(informational) entropy of its strategy, i.e.,

H (x) ≜ −x ln(x) − x ln(x). (12)

The payoff for such a transmitter is taken as a weighted sum
the expected throughput and secrecy rate, and the entropy of
its strategy, i.e.,

vT (x, y) = wT T(x, y) + wT H (x), (13)

where wT = 1 − wT and wT are non-negative normalized
weighting coefficients.

The (sophisticated) adversary wants to find a trade-off
between two goals: (i) the basic goal, to reduce the secret
and non-jammed throughput delivered to the receiver by means
of a combined eavesdropping and jamming attack, and (ii)
the secondary goal, to achieve this reduction in the most
unpredictable way for the transmitter. The payoff for such
an adversary is taken as difference between weighted entropy
of its strategy and the expected throughput and secrecy rate
delivered to a receiver, i.e.,

vA(x, y) = −wA T(x, y) + wA H (y), (14)

where wA = 1 − wA and wA are non-negative normalized
eighting coefficients.
Thus, the transmitter and adversary want to implement NE

trategies in a non-zero-sum game with vT (x, y) and vA(x, y)
s payoffs to the transmitter and adversary, respectively, i.e., a
air of strategies (x, y) for which each of them is the best
esponse to the other, i.e., the following relations hold

= BRT (y) ≜ argmax
x̃

vT (x̃, y), (15)

y = BRA(x) ≜ argmax
ỹ

vA(x, ỹ). (16)

enote this non-zero sum game by Γ .

roposition 3. In game Γ there exists at least one NE.

roof. By (11)–(13), for wT = 0 we have that vT (x, y) is lin-
ar on x. Meanwhile for wT > 0 we have that ∂v2

T (x, y)/∂x2
=

1 In the paper we use the following notation: ξ ≜ 1 − ξ .
3

−wT /(x(1 − x)) < 0. Thus, vT (x, y) is concave in x. Sim-
larly, by (11), (12) and (14), for wA = 0 we have that
A(x, y) is linear on y. Meanwhile, for wA > 0 we have

hat ∂v2
A(x, y)/∂y2

= −wA/(y(1 − y)) < 0. Thus, vA(x, y)
s concave in y, and the result follows from Nash’s theo-
em [12] since the set of feasible strategies for each player
s compact. ■

Further, we find equilibrium strategies in closed form us-
ng a constructive approach by solving the best response
quations (15) and (16).

. Best response strategies

In this section we derive in closed form the best response
trategies for the players.

Note that here and throughout the rest part of the paper
e will label the strategies of transmitter x = (x, x) and

adversary y = (y, y) by their first components x and y,
respectively, since they uniquely define probability vectors x
and y, respectively.

Proposition 4. (a) For a fixed y ∈ [0, 1], the best response
x = BRT (y) of transmitter is given as follows:

RT (y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
1 + exp((Y0 − y) ηT )

, wT > 0,⎧⎪⎨⎪⎩
1, y > Y0,

∈ [0, 1], y = Y0,

0, y < Y0,

wT = 0,

(17)

where

Y0 ≜ (B − b)/D and ηT ≜ wT /(DwT ). (18)

(b) For a fixed x ∈ [0, 1], the best response y = BRA(x) of
adversary is given as follows:

BRA(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
1 + exp ((x − X0) ηA)

, wA > 0,⎧⎪⎨⎪⎩
1, x < X0,

∈ [0, 1], x = X0,

0, x > X0,

wA = 0,

(19)

here

X0 ≜ (B − a)/D and ηA ≜ wA/(DwA). (20)

roof. By (11)- (13), we have that

∂vT (x, y)
∂x

= wT (Dy + b − B) + wT ln (x/x) . (21)

with D given by (9). Thus, for wT > 0 we have that
∂vT (x, y)/∂x is decreasing from infinity for x ↓ 0 to negative
nfinity for x ↑ 1. Thus, for a fixed y ∈ [0, 1], the best re-
ponse x is given as the unique root of the following equation:

wT (Dy + b − B) + wT ln (x/x) = 0. Solving this equation by
x implies the first row of (17).

For wT = 0, by (21), we have that ∂vT (x, y)/∂x = Dy +

b − B, i.e., this derivative is a constant on x, and the second
row of (17) follows.
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By (11), (12) and (14), we have that
∂vA(x, y)

∂x
= wA(B − a − Dx) + wA ln (y/y) . (22)

hus, for wA > 0 we have that ∂vA(x, y)/∂y is decreasing
rom infinity for y ↓ 0 to negative infinity for y ↑ 1. This
mplies that for a fixed x ∈ [0, 1] the best response y is given
s the unique root of equation: wA(B−a−Dx)+wA ln (y/y) =

0 with D given by (9). Solving this equation by y implies
the first row of (19). For wA = 0, by (22), we have that
vA(x, y)/∂y = B − a − Dx , and the second row of (19)
ollows. ■

. Nash Equilibrium

In this section we prove uniqueness of NE and derive it
n closed form. In Theorems 1–4 we consider separately all
ases which could arise depending on whether all weighting
oefficients wT and wA are positive or at least one of them

equals zero.

Theorem 1. Let wT > 0 and wA > 0. Then NE is unique
n game Γ , and it is equal to (x∗, BRA(x∗)), where x∗ is the
nique root in (0, 1) of the equation

F(x∗) = 0, (23)

here

F(x) ≜ x − BRT (BRA(x)). (24)

his root x∗ can be found via the bisection method.

roof. Since wT > 0, by (8), (17) and (18), we have that
RT (y) is increasing in y. Since wA > 0, by (8), (19) and (20),
e have that BRA(x) is decreasing in x . Thus, BRT (BRA(x)) is
ecreasing in x as a superposition of decreasing and increasing
unctions BRA(·) and BRT (·), respectively. Thus, function

F(x) given by (24) is strictly increasing in [0, 1]. Moreover, by
17), (19) and (24), we have that F(0) = −BRT (BRA(0)) < 0
nd F(1) = 1 − BRT (BRA(1)) > 0. Thus, the root x∗ of (23)
s the unique, and it can be found via the bisection method.
his, jointly with (19) and (23), imply that (x∗, BRA(x∗)) is

he unique NE of the game Γ . ■

heorem 2. Let wT > 0 and wA = 0. Then NE (x, y) is
nique in game Γ , except of the only case in (26) where a
ontinuum of equilibrium strategies arises, and it is given as
ollows:

(a) if wT < 1 then

x, y) =

⎧⎪⎨⎪⎩
(1, 1), BRT (1) ≤ X0,

(X0, BR−1
T (X0)), BRT (0) < X0 < BRT (1),

(0, 0), X0 ≤ BRT (0),
(25)

here BRT (·) is given by the first row of (17), and, so,
R−1

T (X0) = Y0 − ln(1/X0 − 1)/ηT ,
(b) if wT = 1 then x = 1/2 and

y

⎧⎪⎨⎪⎩
= 1, 1/2 < X0,

∈ [0, 1], 1/2 = X0, (26)

= 0, 1/2 > X0. i

4

Note that, in case (b), the transmitter’s payoff is equal to
T (1/2, y) = − ln(1/2) = 0.693 independently to adversary’s
trategy y, which reflects stability in communication protocol
ven under the worst network parameters with X0 = 1/2
here a continuum of adversary equilibrium strategies arises.

roof of Theorem 2. BRT (y), given by the first row of (17),
s increasing in y. Then, substituting such BRT (y) and (19)
ith wA = 0 into (15) and (16), and solving by (x, y) implies

25). Finally, x = 1/2 for wT = 1. Substituting such x and
A = 0 into (19) implies (26). ■

heorem 3. Let wT = 0 and wA > 0. Then NE (x, y) is
nique in game Γ , except for the only case in (28) where a
ontinuum of equilibrium strategies arises, and it is given as
ollows:

(a) if wA < 1 then

x, y) =

⎧⎪⎨⎪⎩
(0, 0), BRA(0) ≤ Y0,

(BR−1
A (Y0), Y0), BRA(1) < Y0 < BRA(0),

(1, 1), Y0 ≤ BRA(1),
(27)

here BRA(·) is given by the first row of (19), and, so,
R−1

A (Y0) = X0 + ln(1/Y0 − 1)/ηA,
(b) if wA = 1 then y = 1/2 and

x

⎧⎪⎨⎪⎩
= 1, 1/2 > Y0,

∈ [0, 1], 1/2 = Y0,

= 0, 1/2 < Y0.

(28)

Note that, here in case (b) with Y0 = 1/2, T(x, 1/2) =

B + a)/2 for all x which reflects that even the case of mul-
iple equilibria cannot have an impact on the communication
tability via the suggested protocol.

roof of Theorem 3. Function BRA(x), given by the first row
f (19), is decreasing in x . Then, substituting such BRA(x)
nd (17) with wT = 0 into (15) and (16), and solving by
x, y) implies (27). Finally, y = 1/2 for wA = 1. Substituting

y = 1/2 and wT = 0 into (17) implies (28). ■

heorem 4. Let wT = 0 and wA = 0. Then NE (x, y) is
niquely given as follows:

x, y) =

⎧⎪⎨⎪⎩
(0, 0), X0 < 0,

(X0, Y0), 0 < X0 < 1,

(1, 1), 1 < X0.

(29)

roof. By (7)–(9) and (18), we have that 0 < Y0 < 1. Then,
ubstituting (17) with wT = 0 into (19) with wA = 0 and
olving by (x, y) implies (29). ■

. Numerical illustration

To illustrate how the equilibrium strategies given by Theo-
ems 1–4 depend on the weighting coefficients of the trans-
itter’s payoff let us consider a communication example
nvolving n = 4 sub-carries with main channel gains h =
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Fig. 2. (a) Strategies x and y, (b) expected throughput and secrecy rate T,
(c) entropy H as functions on wT , and (d) parameterized set G in plane
(H,T) with wA = 1/2.

(7.1, 5.9, 9.8, 10.6), jamming channel gains g = (7.1, 5.9, 9.8,

10.6), and eavesdropping channel gains hE = (0.9, 2.85, 5.7,

3.53). Let also background noises be σ 2
= σ 2

E = 1, total
transmission and jamming powers be Ptotal = Jtotal =

3, and weighting coefficient of the adversary be wA =

0, 0.5, 1. We can find the equilibrium power allocation strategy
PE = (0.316, 1.296, 0.682, 0.488, 0.217) via the waterfill-
ing algorithm [10, Theorem 1]. Equilibrium power alloca-
tion strategies PJ = (0.147, 0.319, 0.670, 0.776, 1.086) and
JJ = (0.067, 0.330, 0.717, 0.910, 0.974) can be found via
the superposition of two bisection algorithms [11, Section
4 “Algorithm”]. This leads to entries of the matrix (10) as
follows: A = 0.936, a = 0.741, B = 3.014 and b = 2.536.
Thus, Y0 = 0.710 and X0 = 3.377, by (18) and (20),
respectively. Note that the boundary case wT = 0 and wA = 0,
i.e., both players are not sophisticated, corresponds to the
classical 2 × 2 matrix game [12]. For this boundary case, the
NE is (1,1) (see, Fig. 2(a)) which corresponds to the minimal
entropy (0,0) for both players (see, Fig. 2(c)), and such a
classical solution is the most predictable for both players.
Fig. 2(a) illustrates that the transmitter’s equilibrium strategy
monotonically tends to x = 1/2 with an increase in wT , which
corresponds to the equilibrium strategy where the transmitter
focuses only on the objective to maximize unpredictability in
its communication.

Moreover, an increase in wT leads to a decrease in the
expected throughput and secrecy rate (see, Fig. 2(b)), and an
increase in entropy of the transmitter’s strategy (see, Fig. 2(c)).
Thus, a question arises for the transmitter as to which weight-
ing coefficient w is preferable to maintain both of its goals.
T

5

We derive such weighting coefficient wT by applying a pro-
portional fairness criteria. Let us denote by xwT and ywT ,
the equilibrium strategies of the transmitter and adversary,
respectively, parameterized by weighting coefficient wT . Let G
be the set of all possible pairs of transmitter payoffs for both its
objectives (see, Fig. 2(d)), i.e., G ≜

{
(H (xwT ),T(xwT , ywT )) :

0 ≤ wT ≤ 1
}
. Then, the trade-off weighting coefficient wT

can be found by maximizing the proportional fairness utility
given as follows

ϕwT ≜ ln(T(xwT , ywT ) − T(x1, y1))

+ ln(H (xwT ) − H (x0)), (30)

here: (a) T(xwT , ywT ) − T(x1, y1) reflects an increase in the
xpected throughput and secrecy rate in comparison with its
inimum achieved at wT = 1, and (b) H (xwT )−H (x0) reflects

n increase in the entropy of the strategy in comparison with
ts minimum achieved at wT = 0. In the considered example,
he trade-off value for the weighting coefficient is wT = 0.059
ith the expected throughput and secrecy rate and entropy
eing equal to 1.161 and 0.478, respectively.

. Conclusions

In this paper, a problem involving the secret and reliable
ommunication of a transmitter with a receiver in the presence
f an adversary has been modeled in a game theoretical frame-
ork with the transmitter and adversary as players. We have

ntroduced a new type of player called a sophisticated player.
pecifically, such a sophisticated player has two goals: a basic
oal and a secondary goal. Regarding the basic goal, the ad-
ersary and transmitter are antagonists. The adversary wants to
educe the secret and non-jammed throughput delivered to the
eceiver by means of a combined eavesdropping and jamming
ttack, meanwhile the transmitter wants to increase it. Regard-
ng the secondary goal, each of the players wants to achieve its
asic goal in a manner that is as unpredictable as possible to
he other player. We consider the entropy of player’s strategy
s a metric for such unpredictability. The equilibrium has been
ound in closed form, and its proven uniqueness demonstrates
he stability of the suggested transmission protocol. Finally, the
arameters of the transmitter’s utility supporting both its goals
ere optimized via proportional fairness approach. A goal of
ur future research is to generalize the eavesdropping and
amming dilemma to dynamic models described by stochastic
ames with sophisticated players.

RediT authorship contribution statement

Andrey Garnaev: Conceptualization, Writing – original
raft, Formal analysis. Wade Trappe: Writing – review &
diting, Project administration.

eclaration of competing interest

The authors declare that they have no known competing
nancial interests or personal relationships that could have
ppeared to influence the work reported in this paper.



A. Garnaev and W. Trappe ICT Express xxx (xxxx) xxx

A

F

R

cknowledgment

This work was supported in part by the National Science
oundation under grants CNS-1909186 and ECCS-2128451.

eferences

[1] L. Yin, H. Haas, Physical-layer security in multiuser visible light
communication networks, IEEE J. Sel. Areas Commun. 36 (2018)
162–174.

[2] F. Tian, X. Chen, S. Liu, X. Yuan, D. Li, X. Zhang, Z. Yang, Secrecy
rate optimization in wireless multi-hop full duplex networks, IEEE
Access 6 (2018) 5695–5704.

[3] A. Garnaev, W. Trappe, Bargaining over the fair trade-off between
secrecy and throughput in OFDM communications, IEEE Trans. Inf.
Forensics Secur. 12 (2017) 242–251.

[4] X. Tang, P. Ren, Y. Wang, Z. Han, Combating full-duplex active
eavesdropper: A hierarchical game perspective, IEEE Trans. Commun.
65 (2017) 1379–1395.

[5] A. Mukherjee, A.L. Swindlehurst, Jamming games in the MIMO
wiretap channel with an active eavesdropper, IEEE Trans. Signal
Process. 61 (2013) 82–91.
6

[6] K. Wang, L. Yuan, T. Miyazaki, Y. Chen, Y. Zhang, Jamming and
eavesdropping defense in green cyber-physical transportation systems
using a Stackelberg game, IEEE Trans. Ind. Inf. 14 (2018) 4232–4242.

[7] A. Garnaev, M. Baykal-Gursoy, H.V. Poor, A game theoretic
analysis of secret and reliable communication with active and pas-
sive adversarial modes, IEEE Trans. Wirel. Commun. 15 (2016)
2155–2163.

[8] A. Mukherjee, A.L. Swindlehurst, Optimal strategies for counter-
ing dual-threat jamming/eavesdropping-capable adversaries in MIMO
channels, in: Proc. IEEE Military Communications Conference
(MILCOM), 2010, pp. 1695–1700.

[9] Q. Zhu, W. Saad, Z. Han, H.V. Poor, T. Basar, Eavesdropping and jam-
ming in next-generation wireless networks: A game-theoretic approach,
in: Proc. IEEE Military Communications Conference (MILCOM),
2011, pp. 119–124.

[10] A. Garnaev, W. Trappe, Secret communication when the eavesdropper
might be an active adversary, in: M. Jonsson, A. Vinel, B. Bellalta, E.
Belyaev (Eds.), MACOM 2014, in: LNCS, vol. 8715, Springer, 2014,
pp. 121–136.

[11] E. Altman, K. Avrachenkov, A. Garnaev, Jamming game in wireless
networks with transmission cost, in: T. Chahed, B. Tuffin (Eds.),
Network Control and Optimization, in: LNCS, vol. 4465, Springer,
2007, pp. 1–12.

[12] G. Owen, Game Theory, Academic Press, New York, 1982.

http://refhub.elsevier.com/S2405-9595(22)00091-1/sb1
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb1
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb1
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb1
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb1
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb2
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb2
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb2
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb2
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb2
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb3
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb3
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb3
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb3
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb3
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb4
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb4
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb4
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb4
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb4
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb5
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb5
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb5
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb5
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb5
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb6
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb6
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb6
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb6
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb6
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb7
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb7
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb7
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb7
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb7
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb7
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb7
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb10
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb10
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb10
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb10
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb10
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb10
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb10
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb11
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb11
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb11
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb11
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb11
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb11
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb11
http://refhub.elsevier.com/S2405-9595(22)00091-1/sb12

	An eavesdropping and jamming dilemma with sophisticated players
	Introduction
	Short overview of communication model
	Eavesdropping and jamming dilemma
	Sophisticated transmitter and adversary
	Best response strategies
	Nash Equilibrium
	Numerical illustration
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


