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Abstract—Bosonic channels describe quantum-mechanically
many practical communication links such as optical, microwave,
and radiofrequency. We investigate the maximum rates for the
bosonic multiple access channel (MAC) in the presence of thermal
noise added by the environment and when the transmitters
utilize Gaussian state inputs. We develop an outer bound for
the capacity region for the thermal-noise lossy bosonic MAC. We
additionally find that the use of coherent states at the transmitters
is capacity-achieving in the limits of high and low mean input
photon numbers. Furthermore, we verify that coherent states
are capacity-achieving for the sum rate of the channel. In the
non-asymptotic regime, when a global mean photon-number
constraint is imposed on the transmitters, coherent states are
the optimal Gaussian state. Surprisingly however, the use of
single-mode squeezed states can increase the capacity over that
afforded by coherent state encoding when each transmitter is
photon number constrained individually.

I. INTRODUCTION

The multiple access channel (MAC) is the principal building
block of many practical networks. Indeed, quantum method-
ologies are being considered for inclusion in 6G wireless
networks [1]. Quantum information [2], [3] governs the fun-
damental limits of physical channels comprising any network,
and offers substantial benefits in their performance [4]-[7] and
security [8]-[12]. While the MAC has been studied extensively
in classical network information theory [13], the quantum per-
spective has been underexplored. With exception of [14], [15],
previous work has largely focused on the quantum channels
that act on finite-dimensional qudits [16]-[18]. While recent
results focused on coding [19]-[21], entanglement-assisted
communication [22]-[25], and secrecy [26], [27], there is a
gap in understanding of the fundamental limits of the bosonic
multiple access communication with thermal-noise.

While bosonic channels model quantum-mechanically many
practical channels (including free-space and fiber optical, mi-
crowave, and radiofrequency (RF)), they are particularly useful
in optical communications. This is because noises of quantum-
mechanical origin limit the performance of advanced high-
sensitivity photodetection systems [28]-[30] and the bosonic
MAC in particular accurately represents high-speed optical
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interconnects between and within silicon microchips. Fur-
thermore, quantum methodology includes resources such as
squeezed states, shared entanglement, and joint detection re-
ceivers that can substantially increase communication capacity.
Indeed, the bosonic channel model allows the fundamental
limits in throughput and security to be explored by lifting all
the assumptions on the transceiver and the adversary except
those allowed by the laws of physics. Previous work developed
and analyzed the pure-loss bosonic MAC when no excess
noise was injected by the environment and the transmitters
were restricted to Gaussian inputs [14], [15]. However, such a
model does not completely describe practical communication
systems as it does not take into account noise in the system.
Progress has also been made on the use of entanglement-
assistance in the bosonic MAC [22], but the capacity region for
the unassisted thermal-noise lossy bosonic MAC still remains
underexplored.

We present a model that allows for thermal noise from
the environment to be injected into the system. This model
allows us to analyze the thermal-noise lossy bosonic MAC via
development of maximum rates when Gaussian state inputs are
used at the receivers. It additionally allows for the investiga-
tion of capacity bounds when asymptotically large and small
mean photon number at the transmitters are employed. The
inclusion of thermal noise and understanding the limit of low
signal power are essential in performing covert communication
analysis where an adversary is unable to distinguish between
a signal from the transmitter(s) and background noise [10]-
[12], [31]-[34]. In evaluating the asymptotic limits of high and
low mean photon number at the inputs, we find that coherent
states are capacity-achieving (Lemmas 1 and 2, respectively).
However, in the finite mean photon-number regime we find
that the use of single-mode squeezed states can be beneficial
over the use of coherent states unless there is a global mean
photon-number constraint at the transmitters in which case
coherent states are the optimal Gaussian states (Section III-C).

After formally defining our channel model and stating
necessary previous technical results in Section II, in Section
III we build on [14], [15] to develop the maximum rates for
the lossy thermal-noise bosonic MAC when the transmitters
are limited to Gaussian inputs. We conclude in Section IV with
discussion of the implications of our results on future work.
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Fig. 1. The generalized three-input, three-output, lossy thermal-noise MAC
modeled by beamsplitters with transmissivity 71, 72,73, an assumed known
phase shift set to zero for each beamsplitter, and modal input and output op-
erators a, b, é, €1, é2, ¢. Input modal annihilation operators @ and b represent
transmitters Alice and Bob while the third é is the environment. The receiver,
Charlie, is modeled by output modal annihilation operator ¢ while é1,éa
account for photon loss to the environment. The path photons take from each
of the input modes and arrive at the receiver is highlighted.

II. PRELIMINARIES
A. Thermal-Noise Bosonic MAC

The pure-loss channel analyzed by Yen and Shapiro in [14],
[15] consists of two input ports, (Alice and Bob), two output
ports (Charlie and the environment) and a single beamsplitter.
However, the applications of this channel in [14], [15] are lim-
ited to systems that are not afflicted by excess thermal noise.
Thus, we analyze a richer model via the inclusion of thermal
noise. This channel is depicted in Fig. 1. Transmitters are given
by modes a, 5, and the environment mode, é, can inject thermal
noise. This model requires three beamsplitters 71, 72, and 73
[35], [36] where we ignore phase shifts as is customary in the
literature. The output modes consist of the receiver Charlie,
¢, and two environment modes, é; and é», which account for
photon loss to the environment when traced out. The modal
relationship between the input modes and the output mode ¢
is given by ¢ = /mim2a + /(1 — n1)n20 + /T —12€. This
model can be generalized to K > 2 transmitters [35], [36].
Here, we focus on K = 2 as seen in Fig. 1.

A ((2"Fa 27E5) n) code for the two-input MAC includes
two input encoders and an output decoder. Alice and Bob
independently encode their messages W4 and Wy respectively
into length n codewords. Charlie then decodes and estimates
the message pair as (WA, WB). The probability of error is
then P, = P((WA, WB) # (Wu,Wg)). A rate pair (R4, Rp)
is achievable if there exists a sequence of ((2"f*4,2"%5) p)
codes such that the P, — 0 as n — oo. Winter developed the
capacity region for the quantum MAC [16] requiring finite-
dimensional Hilbert spaces. Nevertheless, we can use Winter’s
capacity region by extending it to infinite-dimension Hilbert
spaces via a limiting argument [14, Appendix A.1]. The
capacity region for the two-sender bosonic MAC is defined as
the closure of the union of all achievable rate pairs satisfying
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where o, 5 € C are Alice and Bob’s inputs with distributions
pale),pp(B8) and p2t, o5, p (see [37] for their explicit defini-
tions) are the mean density operators at the receiver for Alice,
Bob and over the product distribution p 4 («)pp(8) for the joint
quantum state p(«, 8) at the input ports. Here, S(-) is the von
Neumann entropy with S = [ pa(a)pp(8)S(p(c, 8))dadB.
While the sum-rate capacity, (3), is achieved using coherent-
state encoding described in Sec. II-E, only the bounds exist for
the individual capacities, the exact solution is an open problem.
As such, we consider Gaussian state inputs described next.

B. Gaussian-Input Bosonic MAC

A single-mode quantum state p is called Gaussian if its
Wigner function is of the form [38]:

1 =\ T y1—1 =
exp [—3(p—p) ' (p— @)
Q 274/ |X|
where |A| and AT respectively denote the determinant and
transpose of matrix A. The mean (displacement) g =
2 2

711 fi2] T and covariance matrix ¥ = |4t 712
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terize p, and are given for quadrature components p = Im ()
and ¢ = Re(a) of the annihilation operator a. We do not
employ entanglement between quadratures, setting o7, =

o3, = 0. States of particular interest to us are:
o vacuum states: 1 =0,0%, =03, = 1

« coherent states: |fi| > 0,0% =03, = 1

« single-mode squeezed states: |i| > 0,0%, = 1e?", 03, =
ie*% where r € R is the squeezing parameter

o thermal states: & = 0,07, = 03, = +(Ar + 3) where

np > 0 is the mean photon number.

fully charac-

The squeezed, coherent, and vacuum states are minimum
uncertainty states, the product of their quadrature variances is
%. When squeezing in one quadrature the uncertainty in that
quadrature is decreased while the other is increased at the cost
of $(e*" +e %) — 5 = 5 cosh(2r) — 3 additional photons.

The generalized bosonic channel described in Section II-A
preserves Gaussianity. Thus, if Alice and Bob employ Gaus-
sian input states, then Charlie’s state is also Gaussian. The
covariance matrix at the receiver in terms of the covariance
matrices of the three inputs is given by:

V=mmX+1-n)nY +(1-n)Z, 5)
where
1 BQTA 0 1 627“3 0
X‘Z{ 0 62“]’ Y‘Z{ 0 e‘”B] ©
. 1 {27 +1 0 _ Vi Vi
Z‘Z{ 0 QﬁT—I—I]’ V‘[vm V|

Alice and Bob’s squeezing parameters are given by r,7p
respectively, X, Y, Z are the covariance matrices for the input
modes a, 13, and é respectively, and V is the covariance matrix
at Charlie’s output mode ¢.

Additionally, if Alice is constrained to mean photon number
nyg and when r4 # 0, then she can only use n, =

na — gcosh(2ry) + 5 = na — X1 — X + 5 photons for



modulating the mean of her Gaussian input state with the
rest of the photons reserved for squeezing. Similarly, for Bob:
ng =np — Y1 — Yo + % The fractional signal mean photon
numbers received by Charlie from Alice and Bob are

N& = mmna =mnz (na — X1 — X2 +1/2)  (7)
NE=(1—-m)mp(Ap Y1 —Yo+1/2). (8)

C. Coherent Receivers

It is useful to examine coherent receivers (homodyne and
heterodyne) when considering channel capacity as they are
commonly used in practice [38, Section IL.LE]. Homodyne
receivers are maximized with Gaussian inputs, and the sum-
rate capacity (3) of squeezed state homodyne detection for the
Alice-to-Charlie channel in Fig. 1 is [39, eq. 7.51]

= (1—m1)
1 4(fg + 7171[3)
Chom = 510g (1 + 24 (1—m1) 2rp ; 1—m2 1 20 '
e?ra 4 Seerrs + SmR (14 ”T)(g
)

Similarly, coherent states maximize the sum-rate for hetero-
dyne detection, yielding a capacity of [39, eq. 7.43]

(10)
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1+ 2222 (1 + 2nr)

Additionally, the individual-user capacities of homodyne
and heterodyne detection are given by

ChetB = C'het |

ChomB = Ch0m|ﬁA:0 .

(1)
12)

ChetA = Chet|ﬁB:0 ) na=0

C1](1010(1A = Ch0m|ﬁB:()7

D. Quantum Gaussian MAC

Yen and Shapiro extended the Holevo-Sohma-Hirota classi-
cal capacity of quantum point-to-point Gaussian channels for
squeezed states [4] to two users [14], [15]. The maximum rates
of the channel are given by a piecewise function, which we
restate here using the following three functions:

1
G11(N,V)—9<V1+V2+N—2>, (13)

2
Vi — V)2 N
Gi2(N,V))=g|2]|- \/( 12 2) +V122—5

. (V+V+N) !
2 2]’
(14)
Ga(vV) =g (2172 - 1) (15)
where ¢(-) is defined as
gx)=1+2x)log(1+z)—zlogz. (16)

The sum rate for the MAC is
Rmasans if NAVB > \/(Vi = V)° + 4V

Ruwanz if NA2 < (Vi — Vo) + 4V
(17)
where N4T5 = N& + NE, Ruaxaps = G1i(NGTE, V) —

G2(V), and Rupaxapz = Gia(NZT2, V) — G2(V). The
individual rate is

RmaxAB =

Rt if N& > \/(Vi — 0)° 4V

Rma»xA2 if Né < \/(‘/1 — ‘/2)2 + 4V122
(18)

where Riaxa1r = G11(N&,V) — G2(V), and Rpaxa2 =
Glg(Né, V) — G2(V'). An expression for Ry,.xp is obtained
by swapping N4 with NE. For the states we are interested in,
Via = 0 and the threshold in (18) evaluates to N4 < Vi — V4.
A similar condition also holds for (17).

RmaxA =

E. Coherent-State Gaussian Random Code

Consider input with block size of M bits and codewords of
length n. Then a channel code’s rate is R = M /n bits/symbol.
Let p(«) be a coherent state with mean o € C. Then suppose
the encoder generates 2" codewords for codebook C =
(@217 (0m) 12, each according to p(®7,_y pi(crm)) =
% _ip(ayy), where p(a) = e*|°“2/ﬁ/(7rﬁ) is the circularly-
symmetric complex Gaussian distribution, ®j.; denotes the
n-mode tensor product, and 7 is the mean photon number per
symbol. Yen and Shapiro showed that such a random code
combined with a joint measurement receiver maximizes the
sum rate R,,xap for the pure-loss bosonic MAC. Moreover,
such encoding also was shown to be optimal for the sum rate
for the generalized phase-insensitive bosonic MAC [22]. We
employ this code for both transmitters in the next section.

III. THERMAL-NOISE LOSSY BOSONIC MULTIPLE ACCESS
CHANNEL CAPACITY

In this section we investigate the capacity for the thermal-
noise lossy bosonic MAC and its asymptotic limits.

A. Individual Rate Outer Bounds

It was conjectured in [6] and later proven in [7] that for
the point-to-point thermal-noise lossy bosonic channel, the
capacity is reached with coherent-state encoding. For a general
point-to-point lossy thermal-noise channel, given z as the
mean photon number of the signal from the transmitter at the
receiver and g as the mean photon number of the thermal noise
at the receiver, the capacity is:

C(z,9) =g9(+7) — 9(7)

Thus, the capacity of Alice-to-Charlie (point-to-point) channel
when Bob inputs vacuum is:

19)

Ca = C(mmzna, (1 —n2)nr). (20

For our two-user thermal-noise MAC, the ultimate upper
bound (ub), regardless of input state (Gaussian or otherwise)



for the individual rates ignores the interference from the other
user. This corresponds to a nonphysical receiver that can undo
the beamsplitter between the two transmitters yielding

(2D
(22)

Rpaxa < Rupa = C(nania, (1 —n2)nr)
RuaxB < Rups = C(n2fip, (1 — n2)nr).

B. Asymptotics of Photon-Number Constraints

The sum-rate capacity is achieved through the use of coher-
ent Gaussian states [7], [22],

Ra+ Rp < C(n2(mna+ (1 —m)ng), (1 —n2)nr), (23)

where the RHS is equivalent to substituting coherent states
in (17) and C(Z,y) is defined in (19). Now, we evaluate the
scaling of the individual rate for Alice with respect to the
upper bounds in (21) in the case of asymptotically large input
power noting that the same process applies for Bob and (22).
Lemma 1: A random code with coherent-state encoding with
heterodyne detection achieves the individual rate capacity of
the thermal-noise lossy bosonic MAC in the asymptotic limit
of large transmitter input power with constant thermal noise.
Proof: For coherent-state inputs (r4 = rp = 0) at Alice
and Bob and a heterodyne detector at the receiver, Charlie, the
capacities Cpeta and Chetp are given by (11). Then

. C1he1;A
lim =
naA—>00 RubA

C(hetB

=1.
np—00 RubB

(24)

Evaluation of the limits are performed using L Hopital’s
rule and derived in [37, Appendix A]. Hence, coherent-state
encoding with heterodyne detection yields the individual rate
upper bounds as n4 — 0o and np — 0. [ |

For homodyne detection utilizing coherent states or
squeezed states, the scaling of the individual rate for Alice
with respect to the upper bound in (21) is evaluated as follows:
CVhom 1

lim max lim max = -, (25)
MA—00 TA NB—00 TR RubA 2

where the maximization over g in the inner limit as ng — oo
puts all the energy available to Bob into squeezing, that is,
optimal rg — —oo. This contrasts the pure-loss channel result
in [14], [15] where (25) evaluates to unity.

Lemma 2: In the limit of small photon number and constant
thermal noise, utilizing a random code with coherent-state
encoding at Alice and Bob and a joint detection receiver
at Charlie achieves the capacity of the thermal-noise lossy
bosonic MAC.

Proof: We evaluate the three cases corresponding to the
order in which photon numbers input by Alice and Bob decay
to zero.

Case 1. Bob’s input photon number decays to zero first:

. . anaxA
lim lim ————
aa—0ag—0 Ch

=1 (26)
When Bob’s photon number decays to zero first, he effectively
has no photons for squeezing guaranteeing that N’C4 >V -
V| and Rpaxa = Rmaxa1- Hence, the MAC reduces to a
point-to-point channel in which Alice’s signal photon number

is attenuated by an 7172 term and coherent-state encoding
achieves the capacity Cy in (20). This demonstrates that (21)
can be made tighter in the asymptotic limit of small input
power. Limits in (26) are evaluated by inspection.

Case 2. Alice’s input photon number decays to zero first:

Rmax
lim lim A

np—0n,—0 OA

=1 (27)
We allow Bob to perform an arbitrary amount of squeezing,
setting his squeezing parameter to rp = sinh ™' (y/7p). If Al-
ice’s input photon number decays to zero first, N4 < |[V; — V5|
and RyaxA = Rmaxa2. The first limit (n4 — 0) is evaluated
using a single application of L’Hdpital’s rule, yielding a simple
expression that allows the second limit (np — 0) to be
evaluated by inspection. Details are in [37, Appendix B1].

Case 3. Alice and Bob’s input photon numbers decay to
zero simultaneously. Let ng = an,np = bn with arbitrary
constants a,b > 0. We show that

. RmaxA
hm e

=1. (28)

n—0 CA
First consider N(‘;‘ > |Vi — Va| when Rpaxa =
Then any squeezing at Alice is sub-optimal because

G11(N&, V) = g (mmean + (1 — 1) n2bn + (1 — n2)nr)

is a function of the total photon number an at Alice and does
not depend on squeezing parameter 4. Furthermore |V| in
(15) is minimized for coherent-state input at Alice. Therefore,
since g(-) is monotonic, Ryaxa1 is maximized by setting 74 =
0. When Bob and Alice both use coherent-state encoding:

RmaxAl .

lim w —1. (29)
a—0 Ch

To show that any squeezing at Bob’s transmitter cannot help,
we first note that the only impact from Bob’s transmissions on
Rpyaxa1 is through transmission of squeezed states. Suppose
that Bob is allowed to squeeze arbitrarily. As b is arbitrary,
let Bob’s squeezing parameter be rp = sinh™'(v/b7), and
Alice is transmitting an optimal coherent state (r4 = 0) as
discussed previously. However, the constraint Né > |1 = V3
upper bounds b as

m =1+ +/1+m(2—m(l - 4a®n?))

bmaxa1 < - 30
axAl > 2(1 — 771)” ( )
Note that b is dependent on 7. Then, to upper bound Bob’s
possible arbitrary squeezing, let b = Kbpaxa1 Where k is

arbitray and x € [0,1]. Hence the limit involving Ryaxa1
becomes

RmaXA1|TA:O,TB:sinh’1(\/m) o
Ca B
Evaluation of the limit involves an application of L’Hopital’s
rule and is shown in [37, Appendix B2]. Thus, squeezing does
not help when N4 > |V; — Va|.
Now consider N(‘}‘ < |Vi — Vi| when Rpaxa =
Rpaxaz- For Gaussian state inputs, Glg(Né7 V) =
92/Vi(mnepaan + Vo) — §) for Vi > V, (with V;

lim
n—0

1. 31)




and Vs swapped when Vo > Vj), where py € [0,1] is the
fraction of photons Alice uses for displacement and (1 —py4)
used for squeezing. Additionally, for coherent-state encoding,
G11 (N4, V) = g(mmean + (1 — n2)ir). Now

im G12(Né4, V)
—0 Gll(Név V)l a=rs=0

=1, (32)

1

n
which is derived using meticulous expansion of the terms and
taking their corresponding limit in [37, Appendix B3]. As
Rpaxa1 and Ryaxa2 both include Go (V') terms

R
maxA2 <1.

ra=rp=>0

(33)

lim
n—0 RmaxAl

Squeezing by Alice or Bob increases G2(V') as g(-) is
monotonic, and when 7ip > 0, |V is an increasing function of
r 4 and 5. Thus, including G2(V') terms causes the numerator
of (32) to decay faster than the denominator. Therefore, any
squeezing by Alice and Bob in R,,,xa2 is at best equivalent
to the optimal rate defined by Ryaxa1 With 74 =7 =0 in
the asymptotic limit of small input power.

Employing Bob’s maximum rate R,.xp and corresponding
Ca =C((L—=mn1)manp, (1 —n2)ny) instead of Ryaxa results
in limits above also evaluating to 1 as expected. |

We note that when we replace Raxa in (28) with coherent
or squeezed homodyne or coherent heterodyne capacities, the
limit evaluates to zero. Therefore achieving bosonic MAC
capacity requires more complex receiver designs.

C. Fixed Mean Photon-Number Constraints

While utilization of coherent states are optimal at both
asymptotically high and low input mean photon number, most
practical systems operate in a finite mean photon number
regime of fixed input power. There are two possible ways to fix
the input power, via a global mean photon-number constraint
that is spread across all transmitters, and a mean photon-
number constraint for each of the individual transmitters.

We first examine the global mean photon number constraint
ng, for both the transmitters. Let the fractional photon-number
constraint for Alice be ngy = sng and likewise for Bob,
ap = (1 — s)ig where s € [0,1]. As this constraint is
global, we assume Alice and Bob can control s. Only the
photons Bob uses for squeezing affect Alice’s rate as they
introduce additional noise in the channel. In this case, we can
treat the channel as a point-to-point channel from Alice to
Charlie with a mean photon-number constraint g such that
sfig photons are used for the signal and (1 — s)fig photons
are used for squeezing by the transmitter. As mentioned in
Sec. III-A, coherent states are optimal in the point-to-point
channel, which corresponds to Alice using all ng photons for
displacement, s = 1. For the sum rate R, .xaB, substituting
(5), (7), and (8) into G11(NN, V) yields GH(NéH'B,V) =
g(ip + (np — nr + (Ra — fip)n1)n2), without squeezing
parameter dependence. Similarly, G12(NS TP, V') is strictly
smaller than Gll(Né+B, V). Thus maximization of R,axAB
reduces to the minimization of of G3(V), or |V, as g(+)

R, (nats)

Fig. 2. Individual rates generated for all possible squeezed states given
input parameters n4 = 4,np = 8,nr = 4,m = 02,72 = 0.9.
pa = sinh?(r4)/fia and pp = sinh?(rp)/fp are fractions of the total
photon number utilized for squeezing by Alice and Bob respectively. The
dark red plane indicates the rate achieved utilizing coherent-state encoding
(pa = pp = 0) at both transmitters.
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Fig. 3. Capacity region given for rates (17), (18) (and corresponding

Raxp) for the use of coherent Gaussian states and joint detection, coherent
homodyne, coherent heterodyne detection, Gaussian squeezed states, and the
outer bound defined in (21). Here, n4 = 1,np = 1000,nr = 1,1 =
0.25, 72 = 0.9, and in the case of the squeezed state region, 74 = 0,rp = 3.

is monotonic. The minimum occurs for coherent-state inputs
(r4 = rp = 0) and matches the results in [14], [15], [22].
On the other hand, if the transmitters are under individual
mean photon-number constraints i.e. not allowed to share their
power, coherent-state encoding does not necessarily maximize
the individual rates. While squeezing does not encode infor-
mation directly, an example of squeezed states outperforming
coherent-state encoding is shown in Fig. 2. The non-linear op-
timization of squeezing parameters is analytically intractable.
However, with known channel parameters, a numeric search
quickly shows whether squeezing helps and the corresponding
values for the squeezing parameters. In Fig. 3 we plot the
capacity rate region for coherent homodyne and heterodyne,
coherent encoding and squeezed state encoding with optimal
joint detection, and the individual rate outer bound in (21). In
this example, utilizing squeezed states extends R4 beyond the
coherent encoding envelope at the expense of reduced Rp.



IV. DISCUSSION AND CONCLUSION

Given a total mean photon-number constraint on the sys-
tem, Alice and Bob can do no better than the capacity of
coherent-state encoding, allocating all of the power to Alice
or Bob depending on the transmission goal. For individual
mean photon-number constraints, or when Alice and Bob
lack control over total power allocation, Figs. 2 and 3 show
that squeezing can improve the individual rates, although an
intuitive explanation for this remains elusive. Characterizing
the benefit of such “local” quantum enhancement at the
transmitters is a compelling direction for future work. It is
possible non-Gaussian states can reach the outer bound and
further exploration of these states remains an open problem.

In Lemmas 1-2 we prove that in asymptotic regimes of both
high and low SNR, coherent-state encoding is optimal. The
fact that coherent states are capacity-achieving for asymp-
totically low mean photon number lays the foundation for
performing covert communication analysis and is a logical
next step. However, unlike the high SNR regime, neither
homodyne nor heterodyne detection are capacity-achieving
and other physically realizable receivers should be explored.
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