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Abstract—Bosonic channels describe quantum-mechanically
many practical communication links such as optical, microwave,
and radiofrequency. We investigate the maximum rates for the
bosonic multiple access channel (MAC) in the presence of thermal
noise added by the environment and when the transmitters
utilize Gaussian state inputs. We develop an outer bound for
the capacity region for the thermal-noise lossy bosonic MAC. We
additionally find that the use of coherent states at the transmitters
is capacity-achieving in the limits of high and low mean input
photon numbers. Furthermore, we verify that coherent states
are capacity-achieving for the sum rate of the channel. In the
non-asymptotic regime, when a global mean photon-number
constraint is imposed on the transmitters, coherent states are
the optimal Gaussian state. Surprisingly however, the use of
single-mode squeezed states can increase the capacity over that
afforded by coherent state encoding when each transmitter is
photon number constrained individually.

I. INTRODUCTION

The multiple access channel (MAC) is the principal building

block of many practical networks. Indeed, quantum method-

ologies are being considered for inclusion in 6G wireless

networks [1]. Quantum information [2], [3] governs the fun-

damental limits of physical channels comprising any network,

and offers substantial benefits in their performance [4]–[7] and

security [8]–[12]. While the MAC has been studied extensively

in classical network information theory [13], the quantum per-

spective has been underexplored. With exception of [14], [15],

previous work has largely focused on the quantum channels

that act on finite-dimensional qudits [16]–[18]. While recent

results focused on coding [19]–[21], entanglement-assisted

communication [22]–[25], and secrecy [26], [27], there is a

gap in understanding of the fundamental limits of the bosonic

multiple access communication with thermal-noise.

While bosonic channels model quantum-mechanically many

practical channels (including free-space and fiber optical, mi-

crowave, and radiofrequency (RF)), they are particularly useful

in optical communications. This is because noises of quantum-

mechanical origin limit the performance of advanced high-

sensitivity photodetection systems [28]–[30] and the bosonic

MAC in particular accurately represents high-speed optical
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interconnects between and within silicon microchips. Fur-

thermore, quantum methodology includes resources such as

squeezed states, shared entanglement, and joint detection re-

ceivers that can substantially increase communication capacity.

Indeed, the bosonic channel model allows the fundamental

limits in throughput and security to be explored by lifting all

the assumptions on the transceiver and the adversary except

those allowed by the laws of physics. Previous work developed

and analyzed the pure-loss bosonic MAC when no excess

noise was injected by the environment and the transmitters

were restricted to Gaussian inputs [14], [15]. However, such a

model does not completely describe practical communication

systems as it does not take into account noise in the system.

Progress has also been made on the use of entanglement-

assistance in the bosonic MAC [22], but the capacity region for

the unassisted thermal-noise lossy bosonic MAC still remains

underexplored.

We present a model that allows for thermal noise from

the environment to be injected into the system. This model

allows us to analyze the thermal-noise lossy bosonic MAC via

development of maximum rates when Gaussian state inputs are

used at the receivers. It additionally allows for the investiga-

tion of capacity bounds when asymptotically large and small

mean photon number at the transmitters are employed. The

inclusion of thermal noise and understanding the limit of low

signal power are essential in performing covert communication

analysis where an adversary is unable to distinguish between

a signal from the transmitter(s) and background noise [10]–

[12], [31]–[34]. In evaluating the asymptotic limits of high and

low mean photon number at the inputs, we find that coherent

states are capacity-achieving (Lemmas 1 and 2, respectively).

However, in the finite mean photon-number regime we find

that the use of single-mode squeezed states can be beneficial

over the use of coherent states unless there is a global mean

photon-number constraint at the transmitters in which case

coherent states are the optimal Gaussian states (Section III-C).

After formally defining our channel model and stating

necessary previous technical results in Section II, in Section

III we build on [14], [15] to develop the maximum rates for

the lossy thermal-noise bosonic MAC when the transmitters

are limited to Gaussian inputs. We conclude in Section IV with

discussion of the implications of our results on future work.





modulating the mean of her Gaussian input state with the

rest of the photons reserved for squeezing. Similarly, for Bob:

n̄β = n̄B − Y1 − Y2 +
1
2 . The fractional signal mean photon

numbers received by Charlie from Alice and Bob are

NA
C = η1η2n̄α = η1η2 (n̄A −X1 −X2 + 1/2) (7)

NB
C = (1− η1)η2 (n̄B − Y1 − Y2 + 1/2) . (8)

C. Coherent Receivers

It is useful to examine coherent receivers (homodyne and

heterodyne) when considering channel capacity as they are

commonly used in practice [38, Section II.E]. Homodyne

receivers are maximized with Gaussian inputs, and the sum-

rate capacity (3) of squeezed state homodyne detection for the

Alice-to-Charlie channel in Fig. 1 is [39, eq. 7.51]

Chom =
1

2
log

(

1 +
4(n̄α + (1−η1)

η1
n̄β)

e2rA + (1−η1)
η1

e2rB + 1−η2

η1η2
(1 + 2n̄T )

)

.

(9)

Similarly, coherent states maximize the sum-rate for hetero-

dyne detection, yielding a capacity of [39, eq. 7.43]

Chet = log

(

1 +
η1n̄A + (1− η1)n̄B

1 + 1−η2

η2
(1 + 2n̄T )

)

. (10)

Additionally, the individual-user capacities of homodyne

and heterodyne detection are given by

ChetA = Chet|n̄B=0 , ChetB = Chet|n̄A=0 (11)

ChomA = Chom|n̄B=0 , ChomB = Chom|n̄A=0 . (12)

D. Quantum Gaussian MAC

Yen and Shapiro extended the Holevo-Sohma-Hirota classi-

cal capacity of quantum point-to-point Gaussian channels for

squeezed states [4] to two users [14], [15]. The maximum rates

of the channel are given by a piecewise function, which we

restate here using the following three functions:

G11(N,V ) = g

(

V1 + V2 +N − 1

2

)

, (13)

G12(N,V )) = g


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(14)

G2(V ) = g

(

2|V |1/2 − 1

2

)

(15)

where g(·) is defined as

g(x) ≡ (1 + x) log (1 + x)− x log x. (16)

The sum rate for the MAC is

RmaxAB =







RmaxAB1 if NA+B
C ≥

√

(V1 − V2)
2
+ 4V 2

12

RmaxAB2 if NA+B
C <

√

(V1 − V2)
2
+ 4V 2

12

(17)

where NA+B
C = NA

C + NB
C , RmaxAB1 = G11(N

A+B
C ,V ) −

G2(V ), and RmaxAB2 = G12(N
A+B
C ,V ) − G2(V ). The

individual rate is

RmaxA =







RmaxA1 if NA
C ≥

√

(V1 − V2)
2
+ 4V 2

12

RmaxA2 if NA
C <

√

(V1 − V2)
2
+ 4V 2

12

(18)

where RmaxA1 = G11(N
A
C ,V ) − G2(V ), and RmaxA2 =

G12(N
A
C ,V )−G2(V ). An expression for RmaxB is obtained

by swapping NA
C with NB

C . For the states we are interested in,

V12 = 0 and the threshold in (18) evaluates to NA
C ≶ |V1−V2|.

A similar condition also holds for (17).

E. Coherent-State Gaussian Random Code

Consider input with block size of M bits and codewords of

length n. Then a channel code’s rate is R = M/n bits/symbol.

Let ρ̂(α) be a coherent state with mean α ∈ C. Then suppose

the encoder generates 2nR codewords for codebook C =
{⊗n

m=1ρ̂k(αm)}2nR

k=1 each according to p(⊗n
m=1ρ̂k(αm)) =

Πn
m=1p(αm), where p(α) = e−|α|2/n̄/(πn̄) is the circularly-

symmetric complex Gaussian distribution, ⊗n
i=1 denotes the

n-mode tensor product, and n̄ is the mean photon number per

symbol. Yen and Shapiro showed that such a random code

combined with a joint measurement receiver maximizes the

sum rate RmaxAB for the pure-loss bosonic MAC. Moreover,

such encoding also was shown to be optimal for the sum rate

for the generalized phase-insensitive bosonic MAC [22]. We

employ this code for both transmitters in the next section.

III. THERMAL-NOISE LOSSY BOSONIC MULTIPLE ACCESS

CHANNEL CAPACITY

In this section we investigate the capacity for the thermal-

noise lossy bosonic MAC and its asymptotic limits.

A. Individual Rate Outer Bounds

It was conjectured in [6] and later proven in [7] that for

the point-to-point thermal-noise lossy bosonic channel, the

capacity is reached with coherent-state encoding. For a general

point-to-point lossy thermal-noise channel, given x̄ as the

mean photon number of the signal from the transmitter at the

receiver and ȳ as the mean photon number of the thermal noise

at the receiver, the capacity is:

C(x̄, ȳ) = g(x̄+ ȳ)− g(ȳ). (19)

Thus, the capacity of Alice-to-Charlie (point-to-point) channel

when Bob inputs vacuum is:

CA = C(η1η2n̄A, (1− η2)n̄T ). (20)

For our two-user thermal-noise MAC, the ultimate upper

bound (ub), regardless of input state (Gaussian or otherwise)



for the individual rates ignores the interference from the other

user. This corresponds to a nonphysical receiver that can undo

the beamsplitter between the two transmitters yielding

RmaxA ≤ RubA = C(η2n̄A, (1− η2)n̄T ) (21)

RmaxB ≤ RubB = C(η2n̄B , (1− η2)n̄T ). (22)

B. Asymptotics of Photon-Number Constraints

The sum-rate capacity is achieved through the use of coher-

ent Gaussian states [7], [22],

RA +RB ≤ C(η2(η1n̄A + (1− η1)n̄B), (1− η2)n̄T ), (23)

where the RHS is equivalent to substituting coherent states

in (17) and C(x̄, ȳ) is defined in (19). Now, we evaluate the

scaling of the individual rate for Alice with respect to the

upper bounds in (21) in the case of asymptotically large input

power noting that the same process applies for Bob and (22).

Lemma 1: A random code with coherent-state encoding with

heterodyne detection achieves the individual rate capacity of

the thermal-noise lossy bosonic MAC in the asymptotic limit

of large transmitter input power with constant thermal noise.

Proof: For coherent-state inputs (rA = rB = 0) at Alice

and Bob and a heterodyne detector at the receiver, Charlie, the

capacities ChetA and ChetB are given by (11). Then

lim
n̄A→∞

ChetA

RubA
= lim

n̄B→∞
ChetB

RubB
= 1. (24)

Evaluation of the limits are performed using L’Hôpital’s

rule and derived in [37, Appendix A]. Hence, coherent-state

encoding with heterodyne detection yields the individual rate

upper bounds as n̄A → ∞ and n̄B → ∞.

For homodyne detection utilizing coherent states or

squeezed states, the scaling of the individual rate for Alice

with respect to the upper bound in (21) is evaluated as follows:

lim
n̄A→∞

max
rA

lim
n̄B→∞

max
rB

Chom

RubA
=

1

2
, (25)

where the maximization over rB in the inner limit as n̄B → ∞
puts all the energy available to Bob into squeezing, that is,

optimal rB → −∞. This contrasts the pure-loss channel result

in [14], [15] where (25) evaluates to unity.

Lemma 2: In the limit of small photon number and constant

thermal noise, utilizing a random code with coherent-state

encoding at Alice and Bob and a joint detection receiver

at Charlie achieves the capacity of the thermal-noise lossy

bosonic MAC.

Proof: We evaluate the three cases corresponding to the

order in which photon numbers input by Alice and Bob decay

to zero.

Case 1. Bob’s input photon number decays to zero first:

lim
n̄A→0

lim
n̄B→0

RmaxA

CA

= 1 (26)

When Bob’s photon number decays to zero first, he effectively

has no photons for squeezing guaranteeing that NA
C ≥ |V1 −

V2| and RmaxA = RmaxA1. Hence, the MAC reduces to a

point-to-point channel in which Alice’s signal photon number

is attenuated by an η1η2 term and coherent-state encoding

achieves the capacity CA in (20). This demonstrates that (21)

can be made tighter in the asymptotic limit of small input

power. Limits in (26) are evaluated by inspection.

Case 2. Alice’s input photon number decays to zero first:

lim
n̄B→0

lim
n̄A→0

RmaxA

CA

= 1 (27)

We allow Bob to perform an arbitrary amount of squeezing,

setting his squeezing parameter to rB = sinh−1(
√
n̄B). If Al-

ice’s input photon number decays to zero first, NA
C < |V1−V2|

and RmaxA = RmaxA2. The first limit (n̄A → 0) is evaluated

using a single application of L’Hôpital’s rule, yielding a simple

expression that allows the second limit (n̄B → 0) to be

evaluated by inspection. Details are in [37, Appendix B1].

Case 3. Alice and Bob’s input photon numbers decay to

zero simultaneously. Let n̄A = an̄, n̄B = bn̄ with arbitrary

constants a, b > 0. We show that

lim
n̄→0

RmaxA

CA

= 1. (28)

First consider NA
C ≥ |V1 − V2| when RmaxA = RmaxA1.

Then any squeezing at Alice is sub-optimal because

G11(N
A
C ,V ) = g (η1η2an̄+ (1− η1) η2bn̄+ (1− η2)n̄T )

is a function of the total photon number an̄ at Alice and does

not depend on squeezing parameter rA. Furthermore |V | in

(15) is minimized for coherent-state input at Alice. Therefore,

since g(·) is monotonic, RmaxA1 is maximized by setting rA =
0. When Bob and Alice both use coherent-state encoding:

lim
n̄→0

RmaxA1|rA=rB=0

CA

= 1. (29)

To show that any squeezing at Bob’s transmitter cannot help,

we first note that the only impact from Bob’s transmissions on

RmaxA1 is through transmission of squeezed states. Suppose

that Bob is allowed to squeeze arbitrarily. As b is arbitrary,

let Bob’s squeezing parameter be rB = sinh−1(
√
bn̄), and

Alice is transmitting an optimal coherent state (rA = 0) as

discussed previously. However, the constraint NA
C ≥ |V1−V2|

upper bounds b as

bmaxA1 ≤ η1 − 1 +
√

1 + η1(2− η1(1− 4a2n̄2))

2(1− η1)n̄
. (30)

Note that b is dependent on n̄. Then, to upper bound Bob’s

possible arbitrary squeezing, let b = κbmaxA1 where κ is

arbitray and κ ∈ [0, 1]. Hence the limit involving RmaxA1

becomes

lim
n̄→0

RmaxA1|rA=0,rB=sinh−1(
√
κbmaxA1n̄)

CA

= 1. (31)

Evaluation of the limit involves an application of L’Hôpital’s

rule and is shown in [37, Appendix B2]. Thus, squeezing does

not help when NA
C ≥ |V1 − V2|.

Now consider NA
C < |V1 − V2| when RmaxA =

RmaxA2. For Gaussian state inputs, G12(N
A
C ,V ) =

g(2
√

V1(η1η2pAan̄+ V2) − 1
2 ) for V1 > V2 (with V1





IV. DISCUSSION AND CONCLUSION

Given a total mean photon-number constraint on the sys-

tem, Alice and Bob can do no better than the capacity of

coherent-state encoding, allocating all of the power to Alice

or Bob depending on the transmission goal. For individual

mean photon-number constraints, or when Alice and Bob

lack control over total power allocation, Figs. 2 and 3 show

that squeezing can improve the individual rates, although an

intuitive explanation for this remains elusive. Characterizing

the benefit of such ”local” quantum enhancement at the

transmitters is a compelling direction for future work. It is

possible non-Gaussian states can reach the outer bound and

further exploration of these states remains an open problem.

In Lemmas 1-2 we prove that in asymptotic regimes of both

high and low SNR, coherent-state encoding is optimal. The

fact that coherent states are capacity-achieving for asymp-

totically low mean photon number lays the foundation for

performing covert communication analysis and is a logical

next step. However, unlike the high SNR regime, neither

homodyne nor heterodyne detection are capacity-achieving

and other physically realizable receivers should be explored.
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N. Lütkenhaus, and M. Peev, “The security of practical quantum key
distribution,” Rev. Mod. Phys., vol. 81, pp. 1301–1350, Sep. 2009.

[9] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar,
R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira,
M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Vallone,
P. Villoresi, and P. Wallden, “Advances in quantum cryptography,” Adv.

Opt. Photon., vol. 12, no. 4, pp. 1012–1236, Dec 2020.
[10] B. A. Bash, A. H. Gheorghe, M. Patel, J. L. Habif, D. Goeckel,

D. Towsley, and S. Guha, “Quantum-secure covert communication on
bosonic channels,” Nat. Commun., vol. 6, Oct. 2015.

[11] M. S. Bullock, C. N. Gagatsos, S. Guha, and B. A. Bash, “Fundamental
limits of quantum-secure covert communication over bosonic channels,”
IEEE J. Sel. Areas Commun., vol. 38, no. 3, pp. 471–482, Mar. 2020.

[12] C. N. Gagatsos, M. S. Bullock, and B. A. Bash, “Covert capacity of
bosonic channels,” IEEE J. Sel. Areas Inf. Theory, vol. 1, pp. 555–567,
2020.

[13] A. E. Gamal and Y.-H. Kim, Network Information Theory. New York,
NY, USA: Cambridge University Press, 2012.

[14] B. J. Yen and J. H. Shapiro, “Multiple-access bosonic communications,”
Phys. Rev. A, vol. 72, no. 6, p. 062312, Dec. 2005.

[15] B. J. Yen, “Multiple-user quantum optical communication,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, 2005.

[16] A. Winter, “The capacity of the quantum multiple-access channel,” IEEE

Trans. Inf. Theory, vol. 47, no. 7, pp. 3059–3065, 2001.
[17] J. Yard, I. Devetak, and P. Hayden, “Capacity theorems for quantum

multiple access channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
2005, pp. 884–888.

[18] R. Ahlswede and N. Cai, A Strong Converse Theorem for Quantum

Multiple Access Channels. Berlin, Heidelberg: Springer-Verlag, 2006,
pp. 460–485.

[19] H. Qi, Q. Wang, and M. M. Wilde, “Applications of position-based
coding to classical communication over quantum channels,” J. Phys. A:

Math. Theor., vol. 51, no. 44, p. 444002, Oct. 2018.
[20] M. Hayashi and N. Cai, “Universal classical-quantum multiple access

channel coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2021, pp.
402–407.

[21] M. Hayashi and A. Vázquez-Castro, “Computation-aided classical-
quantum multiple access to boost network communication speeds,” Phys.

Rev. Applied, vol. 16, p. 054021, Nov 2021.
[22] H. Shi and Q. Zhuang, “Computable limits of optical multiple-access

communications,” Phys. Rev. A, vol. 105, p. 022429, Feb 2022.
[23] H. Shi, M.-H. Hsieh, S. Guha, Z. Zhang, and Q. Zhuang, “Entanglement-

assisted capacity regions and protocol designs for quantum multiple-
access channels,” npj Quantum Information, vol. 7, no. 1, pp. 1–9, 2021.

[24] R. Laurenza and S. Pirandola, “General bounds for sender-receiver
capacities in multipoint quantum communications,” Physical Review A,
vol. 96, no. 3, p. 032318, 2017.

[25] A. Anshu, R. Jain, and N. A. Warsi, “On the near-optimality of
one-shot classical communication over quantum channels,” Journal of

Mathematical Physics, vol. 60, no. 1, p. 012204, 2019.
[26] H. Aghaee and B. Akhbari, “Private classical information over a quan-

tum multiple access channel: One-shot secrecy rate region,” in 2020 10th

Int. Symp. on Telecommunications (IST). IEEE, 2020, pp. 222–226.
[27] ——, “Classical-quantum multiple access wiretap channel,” in 2019

16th Int. ISC (Iranian Society of Cryptology) Conference on Information

Security and Cryptology (ISCISC). IEEE, 2019, pp. 99–103.
[28] A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D.

Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave
multiplexed readout of DC-biased superconducting nanowire detectors,”
IEEE Trans. Appl. Supercond., vol. 29, no. 5, Aug. 2019.

[29] A. N. McCaughan, D. M. Oh, and S. W. Nam, “A stochastic SPICE
model for superconducting nanowire single photon detectors and other
nanowire devices,” IEEE Trans. Appl. Supercond., vol. 29, no. 5, Aug
2019.
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