

Intra-specific variability in plant hydraulic parameters inferred from model inversion of sap flux data

Yaojie Lu¹, Brandon Sloan^{1,2}, Sally E. Thompson³, Alexandra G. Konings⁴, Gil Bohrer⁵,

Ashley Matheny⁶, Xue Feng^{1,2}

5 ¹Department of Civil, Environmental, and Geo-Engineering, University of Minnesota,
6 Minneapolis, MN 55455, USA

7 ²Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55455, USA

8 ³Department of Civil, Environmental and Mining Engineering, University of Western Australia,
9 WA 6009, Australia

10 ⁴Department of Earth System Science, Stanford University, CA, 94305, USA

11 ⁵Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, OH
12 43210, USA

13 ⁶Department of Geological Sciences, Jackson School of Geosciences, University of Texas at
14 Austin, Austin, TX, USA

15 Corresponding authors:

16 Yaojie Lu: <https://orcid.org/0000-0002-5215-6109>; tanisraistlin@gmail.com;

17 Xue Feng: <https://orcid.org/0000-0003-1381-3118>; feng@umn.edu

18 **Key points**

19 • Plant hydraulic parameters are inferred with low uncertainty from sap flow data
20 • Inferred parameter values capture whole-plant response and water use strategies instead
21 of leaf or branch-level responses
22 • The model inversion method complements field measurement of plant hydraulic traits

23 **Abstract**

24 Understanding plant hydraulic regulation is critical for predicting plant and ecosystem responses
25 to projected increases in drought stress. Plant hydraulic regulation is controlled by observable,
26 diverse plant hydraulic traits that can vary as much across individuals of the same species as they
27 do across different species. Direct measurements of plant hydraulic traits from a range of
28 ecosystems remain limited in comparison to other, more readily measured traits (e.g., specific
29 leaf area). Furthermore, plant hydraulic trait measurements, often made at leaf or branch levels,
30 are not easily scaled to whole-plant values that are typically used to predict plant and ecosystem
31 fluxes. In this study, multiple whole-plant hydraulic parameters are inferred from observations of
32 plant water use (i.e., sap flow), soil properties, and meteorological data. We use a Markov Chain
33 Monte Carlo model inversion approach to obtain the best estimates and uncertainty of plant
34 hydraulic parameters that capture whole-plant effective embolism resistance and stomatal
35 sensitivity to decreasing plant water potential. We then use the inferred values in the model to
36 estimate whole-tree water use and isohydricity. This approach reliably infers whole-plant
37 parameter values with enough specificity to resolve inter- and intra-specific differences, and thus
38 supplements time- and labor-intensive direct measurements of traits.

39 **Key words:** plant hydraulics, xylem vulnerability, model inversion, MCMC, sap flow

1 Introduction

41 The increasing frequency and severity of drought in many parts of the world (Field et al. 2012)
42 contributes to water stress (Dai, 2011; Feng et al., 2019; Williams et al., 2013) and mortality in
43 plant communities (Allen et al., 2010; De Kauwe et al., 2020; McLaughlin et al., 2020; Novick et
44 al., 2016; Young et al., 2017), with subsequent changes in ecosystem water, carbon, and energy
45 cycling (Bonan, 2008). Plant response and vulnerability to drought, as well as recovery after
46 drought, are controlled by a combination of root, xylem, and leaf hydraulic traits and stomatal
47 responses. For example, under drought conditions, stomatal closure closely coordinates with
48 xylem resistance to embolism (measured by the water potentials at 12% (P12) and 50% (P50)
49 loss of conductance in xylem) across different taxonomic (gymnosperm and angiosperm) and
50 functional (evergreen and deciduous) groups to regulate plant water use, plant water potential,
51 and the extent of xylem embolism (Bartlett et al., 2016; Martin-StPaul et al., 2017). This
52 coordination of multiple plant hydraulic traits, including stomatal control and xylem embolism
53 resistance, also influence the timing of hydraulic failure in plants (Blackman et al., 2019).
54 Finally, by regulating whole-tree carbon allocation, plant hydraulic traits, including P50 and
55 maximum xylem hydraulic conductance, can explain leaf area dynamics, delayed mortality, and
56 xylem damage recovery post drought (Trugman et al., 2019, 2018).

57 Plant hydraulic traits are also critical for prediction, particularly as; parameters in physically-
58 based Plant Hydraulic Models (PHMs). PHMs represent water transport through the soil-plant-
59 atmosphere continuum via flux-gradient relationships (based on Hagen-Poiseuille flow or porous
60 media flow). Hydraulic parameters are needed to describe the functional form of their
61 conductance vulnerability curves (Mencuccini et al., 2019) and stomatal responses
62 (Mirfenderesgi et al., 2019). The recent implementations of PHMs into terrestrial biosphere

63 models have shown promising corrections of previous prediction biases in gross primary
64 productivity and evapotranspiration (Bonan et al., 2014; Eller et al., 2020; Kennedy et al., 2019;
65 Li et al., 2021; Powell et al., 2013; Sabot et al., 2020; Xu et al., 2016) as well as soil water
66 balance (Kennedy et al., 2019), especially under drought conditions. However, the use of PHMs
67 in models is still hindered by the need to acquire plant hydraulic traits for parameterization
68 (Feng, 2020; Paschalis et al., 2020; Sloan et al., 2021).

69 Plant hydraulic traits exhibit large intraspecific (Martínez-Vilalta et al., 2009; Pritzkow et al.,
70 2020; Rosas et al., 2019) and interspecific variability (Choat et al., 2012; Maherli et al., 2006)
71 that must be accounted for when considering ecosystem-level response to drought. For example,
72 trait interspecific variability better explains interannual variability in the ecosystem fluxes of
73 carbon, water, and energy at global scales than do community-weighted trait values (Anderegg et
74 al., 2018). Although no comprehensive assessment of intraspecific variability exists, one meta-
75 analysis has shown that intraspecific variability of P50 can account for a significant portion
76 (33%) of interspecific variability within a genus (Anderegg, 2015). Therefore, a detailed
77 characterization of both inter- and intraspecific hydraulic trait variability is necessary for
78 predicting ecosystem response to drought.

79 Despite the obvious need, comprehensive plant hydraulic trait measurements are far less
80 available than many other plant traits, e.g., specific leaf area (Belluau and Shipley, 2018). This
81 limitation may be attributed to the time-consuming and expensive nature of hydraulic trait
82 measurements. For example, the traditional bench dehydration technique to measure P50 at leaf
83 or branch scales usually takes hours to days for samples to dehydrate and requires multiple
84 measurements of water potentials (Tyree and Sperry, 1988). Additionally, hydraulic trait
85 measurements commonly made at leaf or branch scales are difficult to scale up to the

86 representative whole-plant parameter values required for modeling plant hydraulic regulation. To
87 address these data needs, in this study, we aim to facilitate the estimation of plant hydraulic traits
88 by using a model inversion approach to infer whole-plant parameter values, and their associated
89 variability, indirectly from existing sap flow measurements. Model inversion allows the use of
90 existing data (e.g., sap flow) to constrain the model parameters that represent effective whole-
91 plant hydraulic traits, yielding parameter estimates enabling the model to best approximate
92 reality (Luo et al., 2011). We focus on sap flow because it provides species-specific observation
93 of transpiration, rather than the plot level estimate provided from eddy covariance flux towers,
94 which mix the contribution of all species in a large observation footprint.

95 Among common model inversion techniques (e.g., frequentist methods or Kalman filter, (Mo et
96 al., 2008)), we select Markov Chain Monte Carlo (MCMC) for parameter estimation, primarily
97 because it quantifies the epistemic uncertainty associated with each model parameter in addition
98 to its best estimates (Wu et al., 2014). It has also been successfully used for inversion of plant
99 hydraulic models in eddy covariance (Liu et al., 2020) and remote sensing (Liu et al., 2021)
100 settings. In our case, we use MCMC to estimate the whole-plant effective values of plant
101 hydraulic traits as parameters in a physiologically informed sap flow model using local soil water
102 potential and atmospheric conditions as inputs to the model. The model includes the following
103 hydraulic trait parameters: P50, stomatal sensitivity to decreasing water potential, a scaling
104 parameter from the model of Medlyn et al., (2011), which is inversely proportional to plant
105 marginal water-use efficiency, and two more parameters aggregating maximum plant hydraulic
106 conductance, leaf area, and sapwood area per ground area (see Tables 2 & 4) as these traits
107 cannot be inferred independently (see Section 2.2 Sap flow model).

108 The uncertainty estimates provided by MCMC also allow for further investigation of the factors
109 contributing to the parameter uncertainties. Parameter uncertainties are important because they
110 determine the range of potential model outcomes. Of the multiple sources of uncertainty that can
111 affect parameter estimates (Raupach et al., 2005), we will investigate the relative contributions of
112 (1) low model sensitivity to parameters; (2) measurement error; and (3) lack of prior knowledge
113 about the unknown parameters. Note that we assume a single model structure with enough
114 flexibility to simulate observed plant hydraulic behavior (Xiao et al., 2014) and do not attempt to
115 quantify the role of uncertainty in the model structure.

116 This paper aims to address the following questions: 1) Can MCMC be used to reliably infer
117 inter- and intra- specific variability in plant hydraulic parameters using measurements of sap
118 flow, meteorological, and soil moisture data? 2) To what extent do model sensitivity,
119 measurement error, and lack of prior knowledge contribute to the uncertainty associated with
120 parameter estimates? Additionally, compared to other environmental variables that are
121 commonly measured (e.g., air temperature, solar irradiance, or vapor pressure deficit), far fewer
122 measurements of soil water potential are taken in the field. Thus, we also ask 3) What is the
123 consequence of missing or biased measurements of soil water potential during parameter
124 inference? By addressing these questions, we demonstrate that MCMC model inversion can be
125 applied to the increasingly available environmental and sap flow data from sap flow monitoring
126 networks (e.g., SAPFLUXNET, Poyatos et al., 2019) to reliably infer difficult-to-measure
127 hydraulic parameters and advance our understanding and prediction of ecosystem response to
128 climate change.

129 **2 Materials and Methods**

130 **2.1 Site and data description**

131 The study site consists of temperate mixed forest located within the footprint of the US-UMB
132 Ameriflux eddy covariance tower at the University of Michigan Biological Station (UMBS) in
133 northern Michigan, U.S.A. The long-term mean annual precipitation for the region is 766 mm
134 with a mean annual temperature of 5.5 °C (Matheny et al., 2017). Local soils are composed of
135 92.2% sand, 6.5% silt, and 0.6% clay (Nave et al., 2011). The UMBS forest is a relatively evenly
136 aged stand (mean tree age ~95 years) transitioning from an aspen (*Populus grandidentata*) and
137 birch (*Betula papyrifera*) dominated stand to one dominated by red maple (*Acer rubrum*), white
138 pine (*Pinus strobus*), red oak (*Quercus rubra*), American beech (*Fagus grandifolia*), and sugar
139 maple (*Acer saccharum*). The primary research area consists of the 180 ha footprint of the US-
140 UMB flux tower. In this area, stand density is roughly 750 trees per hectare, mean canopy height
141 is ~25m, and mean growing-season peak leaf area index is, on average, $3.9 \text{ m}^2 \text{ m}^{-2}$. Additional
142 relevant hydrophysiological and stand contribution data are presented in Table 1.

143 **Table 1.** Additional hydrophysiological and stand contribution data, including average diameter
 144 at breast height (DBH) of instrumented trees (cm), average height of instrumented trees (m),
 145 fraction of total stand area (%), average leaf to sapwood area of instrumented trees ($m^2 m^{-2}$),
 146 xylem architecture, isohydricity, wood density ($g cm^{-3}$).

	Average DBH cm (\pm std)	Average Height m (\pm std)	Fraction of total stand area	Average leaf to sapwood area ($m^2 m^{-2}$)	Xylem architecture	Isohydricity	Wood Density ($g cm^{-3}$)
Red maple	15.16 (5.2)	19.69 (7.6)	19.48%	2161.8	Diffuse porous	Isohydric	0.546
Paper birch	17.14 (5.3)	24.08 (7.9)	7.79%	1365.8	Diffuse porous	Unknown	0.600
Bigtooth aspen	23.48 (4.5)	28.98 (6.4)	52.27%	897.1	Semi-ring porous	Relatively anisohydric	0.412
White pine	11.5 (5.4)	13.01 (5.0)	8.44%	4165.4	Tracheid	Unknown	0.373

148 Meteorological measurements, including air temperature, T ($^{\circ}\text{C}$), relative humidity, RH
 149 (unitless), and photosynthetic photon flux density, I ($\mu\text{mol m}^{-2} \text{s}^{-1}$), were collected at the eddy-
 150 covariance tower at one-minute intervals. Relative volumetric soil water contents, s_d (%), were
 151 measured near the tower at the depths d of 15, 30, and 60 cm at ten-minute intervals. All
 152 meteorological and soil observations were averaged to half-hourly resolution. We obtained the
 153 processed half-hourly observation from Ameriflux, site US-UMB (Gough et al., 1999).
 154 Measurement setup and error correction are detailed elsewhere for meteorological conditions
 155 (Gough et al., 2013) and volumetric soil water content (He et al., 2013).
 156 Leaf-to-air vapor mole fraction difference (the leaf-to-air vapor pressure difference divided by
 157 atmospheric pressure), D (unitless), was calculated from air temperature and humidity data
 158 following Monteith and Unsworth (2013):

$$D = \frac{(1 - RH)D_a \exp\left(\frac{D_b T}{T + D_c}\right)}{D_d} \quad (1)$$

159 where D_a , D_b , and D_c are model parameters with values of 0.61, 17.27, and 237.3, respectively.
 160 D_d is the atmospheric pressure, assumed to have a standard value of 101.3 kPa. Soil water
 161 potential at each depth, Ψ_{sd} (MPa), was calculated from s_d using the van Genuchten model (Hou
 162 and Rubin, 2005; van Genuchten, 1980)

$$\Psi_{sd} = \frac{s_b}{s_a} \left(\left(\frac{s_s - s_r}{s_a - s_r} \right)^{\frac{\eta}{\eta-1}} - 1 \right)^{\frac{1}{\eta}} \quad (2)$$

163 where s_a , s_r , s_s , and η are fitted parameters from a previous analysis at our site (see details in He
 164 et al., 2014) with values of -5.2, 0.04, 0.37, and 1.68, respectively. The term s_b (=0.0098)

165 converts water potential from m to MPa. The s_d measurements were used to calculate Ψ_{sd} and, in
166 turn, the depth-averaged soil water potential Ψ_s .

167 Sap flow per sapwood area, v_n (g H₂O m⁻² xylem s⁻¹), was monitored for individual trees at one-
168 minute intervals and averaged to half-hourly intervals (Matheny et al., 2017). Sap-flux data for
169 the US-UMB site was obtained from SAPFLUXNET (Poyatos et al., 2020, 2016). We assumed
170 all trees experienced the same environmental conditions measured from one location (i.e., the
171 measurements of T , I , D , and s_d at all the depths). Further site details on sap-flow data collection
172 can be found in Matheny et al. (2014). Measurements were available from 2010 to 2016, and we
173 focused on the year 2015 as it had the greatest amount of data available. Of the sap flux data
174 available for the site, we excluded measurements from trees with more than 20% missing values.
175 Furthermore, we removed two individuals showing irregular sap flow dynamics: one maintained
176 90% of maximum sap flow regardless of Ψ_s , and another's sap flow dropped to zero when $\Psi_s <$
177 -0.5 MPa, while all other individuals had non-zero sap flow over the whole period. In total, this
178 study used observations from 23 individual trees of four canopy-dominant species: 8 red maple,
179 5 paper birch, 5 bigtooth aspen, and 5 white pine trees.

180 Finally, we converted the half-hourly data to daily for all of the variables. We used only
181 measurements under high solar irradiance (i.e., $I > 10 \mu\text{mol m}^{-2} \text{ s}^{-1}$), assuming that these
182 measurements corresponded to periods of active transpiration. With this subset of high
183 irradiance, we calculated the daily mean values for T , I , and v_n , the daily minimum value for Ψ_s ,
184 and the daily maximum value for D . For conciseness, we used the same symbols for all the
185 variables before and after the conversion to daily values. In summary, our dataset consisted of
186 the daily measurements of T , I , D , and Ψ_s , at the site level and v_n at the individual level.

187 **2.2 Sap flow model**

188 We aimed to infer whole-plant hydraulic parameters using MCMC inversion of a whole-plant,
189 daily-averaged sap flow model in combination with the sap flow data of individual trees and
190 local soil water potential and atmospheric data. Our model targets the bulk water transport within
191 plants and thus excludes the complexities of belowground water movement (e.g., resistance
192 between soils and roots) and assumes the soil water potential is representative of conditions near
193 plants' fine roots. In addition, this model does not account for plant water-storage effects and
194 assumes that its effect on variations in plant hydraulic conductance is smoothed out over time.

195 The sap flow model is derived from equations of plant hydraulics and stomatal regulation. First,
196 we assume that daily, whole-plant transpiration, E ($\text{m}^3 \text{ m}^{-2} \text{ ground s}^{-1}$), is determined by the
197 balance between stomatal-mediated transpiration from atmospheric demand and the supply of
198 water transported from soil to leaf driven by water potential differences (McDowell and Allen,
199 2015):

$$E = a \cdot l \cdot L \cdot g_s \cdot D = 10^{-3} \cdot l \cdot k_x(\Psi_x) \cdot (\Psi_s - \Psi_x) \quad (3)$$

200 where a (=1.6) is the ratio of water vapor and CO_2 diffusivities, l ($\text{m}^3 \text{ mol}^{-1}$) converts H_2O from
201 mol (gas) to m^3 (liquid), L ($\text{m}^2 \text{ leaf m}^{-2} \text{ ground}$) is leaf area index, g_s ($\text{mol m}^{-2} \text{ leaf s}^{-1}$) is stomatal
202 (and aerodynamic) conductance, Ψ_x (MPa) is plant water potential, and $k_x(\Psi_x)$ (mmol m^{-2}
203 $\text{ground s}^{-1} \text{ MPa}^{-1}$) is the whole-plant effective xylem hydraulic conductance (Eq. 4). Due to lack
204 of data, we assume leaf area index remains constant over the whole observation period and infer
205 its value. Because we focus our analysis on the peak of the growing season between May 30,
206 2015, and September 16, 2015, we expect all species were equally affected by this assumption of
207 constant leaf area index. All the fitting parameters are listed in Table 2 and model parameters
208 with prescribed values in Table 3.

209 The function $k_x(\Psi_x)$ represents reducing whole-plant hydraulic conductance with decreasing Ψ_x
 210 due to xylem embolism. Following Martin-StPaul et al., (2017), xylem conductance is modeled
 211 by

$$k_x(\Psi_x) = k_{x\max} \cdot \left(1 - \frac{1}{1 + e^{\frac{k_a + k_b e^{P_{50}}}{k_c} (\Psi_x - P_{50})}} \right) \quad (4)$$

212 where $k_{x\max}$ (mmol m⁻² ground s⁻¹ MPa⁻¹) is the maximum, whole-plant xylem hydraulic
 213 conductance, P_{50} (MPa) is the Ψ_x at 50% loss of k_x , and k_a , k_b , and k_c are all fitting parameters
 214 from Martin-StPaul et al., (2017) with values of 16, 1092, and 25, respectively.

215 In order to represent stomatal regulation on transpiration we use the following empirical model
 216 of stomatal conductance:

$$g_s = \left(1 + \frac{g_1}{\sqrt{D}} \right) \cdot \frac{A(g_s, T, I)}{c_a} \cdot e^{(-c \cdot f_{PLC}(\Psi_x))} \approx \frac{g_1}{\sqrt{D}} \cdot \frac{A(g_s, T, I)}{c_a} \cdot e^{(-c \cdot f_{PLC}(\Psi_x))} \quad (5)$$

217 where the percentage of loss in xylem conductivity, f_{PLC} (unitless), is defined as

$$f_{PLC}(\Psi_x) = 1 - \frac{k_x(\Psi_x)}{k_{x\max}}; \quad (6)$$

218 g_1 (unitless) is inversely related to plant marginal water use-efficiency (Medlyn et al., 2011), the
 219 function A (μmol m⁻² leaf s⁻¹) is the carbon assimilation rate as determined by the Farquhar-von
 220 Caemmerer-Berry photosynthesis model (Farquhar et al., 1980), c_a (ppm) is the ambient CO₂
 221 concentration, and c (unitless) represents stomatal sensitivity to decreasing water potential (i.e.,
 222 stomatal drought sensitivity). We use species-specific values (i.e., the mean values in the TRY
 223 database, Kattge et al., (2020)) of photosynthetic carboxylation capacity ($V_{c\max}$) and
 224 photosynthetic electron transport capacity per leaf area (J_{\max}) at 25°C. The parameters $V_{c\max}$
 225 (micro mol m⁻² s⁻¹) and J_{\max} (micro mol m⁻² s⁻¹) are set to be: 31 and 48 for red maple; 56 and

226 144 for paper birch, 61 and 122 for bigtooth aspen, and 63 and 142 for white pine. The first two
227 terms in Eq. 5 follow Medlyn et al., (2011) who has also shown that the term g_1/\sqrt{D} tends to
228 dominate the term $(1 + g_1/\sqrt{D})$. The last exponential term captures the generally observed
229 Weibull stomatal closure to plant water potential (Klein, 2014). The choice to independently
230 downregulate stomatal conductance with plant water potential follows Jarvis (1976) as well as
231 similar formulations derived from optimal stomatal response under water stress (Manzoni et al.,
232 2011; Zhou et al., 2013; Wolf et al., 2016). Although questions exist around *a priori* defining a
233 $g_s - \Psi_x$ relationship (Anderegg and Venturas, 2020), this formulation remains common in PHM
234 implementation for terrestrial biosphere models (De Kauwe et al. 2015; Xu et al., 2016;
235 Christofferson et al., 2016; Kennedy et al., 2019).

236 Lastly, under the assumptions that sap flow measurements are taken on the main stem and there
237 is no storage in the tree, we model E to be proportional to sap flow, v_n ($\text{g H}_2\text{O m}^{-2} \text{xylem s}^{-1}$) as
238 follows:

$$\frac{v_n \cdot \alpha}{\rho} = E \quad (7)$$

239 where α ($\text{m}^2 \text{ sapwood m}^{-2} \text{ ground}$) is the sapwood area per ground area; ρ ($=997,000 \text{ g m}^{-3}$) is the
240 water density.

241 In the sap flow model consisting of Eqs. 3-7, we defined six unknown parameters: L , k_{xmax} , P50,
242 g_1 , c , and α (Table 2). By simply rearranging the above equations, we can show that k_{xmax} , L and
243 α cannot be inferred independently. Instead, they can only be inferred in an aggregated form -
244 here as k_{xmax}/L and α/L . To demonstrate this, we combine Eqs. 3-5 and solve for g_s to obtain

$$g_s = \frac{k_{xmax}}{L} \cdot \frac{10^{-3} (1 - f_{PLC}(\Psi_x)) \cdot (\Psi_s - \Psi_x)}{\alpha \cdot D}. \quad (8)$$

245 Then, by expanding Eq. 7 using Eqs. 3-6, we obtain

$$v_n = 10^{-3} \cdot \rho \cdot l \cdot \frac{\frac{k_{xmax}}{L}}{\frac{\alpha}{L}} \cdot (1 - f_{PLC}(\Psi_x)) \cdot (\Psi_s - \Psi_x). \quad (9)$$

246 Now Eqs. 6, 8 & 9 define the complete sap flow model by Eqs. 3-7. We can solve them for the
 247 three unknown state variables (i.e., g_s , Ψ_x , and v_n). Notice that L , k_{xmax} , and α now only appear in
 248 an aggregated form as k_{xmax}/L and α/L . Consequently, we can infer five unknown parameters
 249 independently (i.e., Ψ_{x50} , g_1 , c , k_{xmax}/L and α/L).

250 **Table 2.** Description of symbols, along with definitions, units of measurement of the unknown
 251 model parameters

Symbol	Definition	Unit
c	Stomatal sensitivity to decreasing xylem water potential	—
g_1	Fitting parameter from Medlyn et al., (2011)	—
k_{xmax}	Maximum whole-plant xylem conductance	mmol m ⁻² ground s ⁻¹ MPa ⁻¹
L	Leaf area index	m ² leaf m ⁻² ground
α	Sapwood area per ground area	m ² sapwood m ⁻² ground
P50	Xylem water potential at 50% loss of conductivity	MPa

252

253 **Table 3.** Description of symbols, along with definitions, units of measurement, and default
 254 parameter values. For a model variable, its definition equation is given in the ‘Value’ column.
 255 For an input variable, its value is given as ‘—’.

Symbol	Definition	Unit	Value
A	Ratio of the diffusivities of water vapor and air	—	1.6
c_a	Ambient CO_2 concentration	ppm	400
g_s	Stomatal conductance to CO_2	$\text{mol m}^{-2} \text{ leaf s}^{-1}$	Eqs. 3 & 6
k_x	Xylem hydraulic conductance	$\text{mmol m}^{-2} \text{ ground s}^{-1} \text{ MPa}^{-1}$	Eq. 4
L	Converting H_2O from mol (gas) to m^3 (liquid)	$\text{m}^3 \text{ mol}^{-1}$	1.8×10^{-5}
v_n	Daily-averaged sap flow	$\text{g H}_2\text{O m}^{-2} \text{ xylem s}^{-1}$	—
A	Photosynthesis rate	$\mu\text{mol m}^{-2} \text{ leaf s}^{-1}$	—
D	Leaf-to-air vapor mole fraction difference	—	—
E	Transpiration rate	$\text{m}^3 \text{ m}^{-2} \text{ ground s}^{-1}$	Eq. 3
I	Solar irradiance	$\mu\text{mol m}^{-2} \text{ s}^{-1}$	—
f_{PLC}	Percentage loss of hydraulic conductivity	—	Eq. 6
T	Temperature	$^{\circ}\text{C}$	—
ρ	Water density	g m^{-3}	997000
Ψ_s	Soil water potential	MPa	—
Ψ_x	Xylem water potential	MPa	Eqs. 3 & 6

258 We estimated the fitting parameters for each individual tree using MCMC. The MCMC updates
259 the prior distribution of each fitting parameter based on the available data, including T , I , D , Ψ_s ,
260 and v_n . The assumed prior distribution of each unknown parameter is given in Table 4. The prior
261 distributions were selected to 1) reflect reasonable and physically realistic ranges of each
262 parameter (Kattge et al., 2020 for P50; Li et al., 2018 for c ; Lin et al., 2015 for g_1 ; Matheny et
263 al., 2014 for α/L ; Mirfenderesgi et al., 2019 for k_{xmax}/L) and 2) result in peaked P50 posterior
264 distribution within the support of its prior distribution. The prior distributions given in Table 4
265 were applied to all individuals with exception of the three paper birch individuals. For these
266 individuals, we had to use a modified prior distribution of c with a smaller support (Uniform: [5,
267 10]) for the posterior distribution of P50 to be peaked within the support of its prior distribution.
268 MCMC was implemented in Python using the PyMC package (Patil et al., 2010).

269 **Table 4.** Prior distribution of the unknown parameters. The prior distributions were selected to
270 reflect reasonable and physically realistic ranges of each parameter.

Symbol	Prior distribution
c	Uniform: [5, 30]
g_1	Uniform: [0.01, 1]
k_{xmax}/L	Log uniform: [0, 3]
α/L	Log uniform: [-5, 0]
P50	Uniform: [-5, -0.1]

271

272 **2.4 Synthetic experiments**

273 We use three synthetic experiments to examine the impacts of 1) measurement error and 2) prior
274 knowledge on the accuracy of the estimated parameter – two of the three sources of estimation
275 uncertainty investigated in this study. Two synthetic experiments will address two types of
276 measurement errors: 1) the noise in sap flow data and 2) the bias in soil water potential. The
277 reason we choose to focus on the bias rather than the noise in soil water potential as a
278 measurement error is that it is more likely that the sitewide soil water potential used in this study
279 is consistently higher or lower than the actual soil water potential for every individual tree. The
280 third synthetic experiment will examine the effect of limited prior knowledge on the posterior
281 distribution.

282 In the first synthetic experiment, we simulate noisy sap flow measurements by generating
283 synthetic sap flow data over a series of noise levels . We generate the baseline synthetic sap flow
284 data with zero noise by running the sap flow model forwards with prescribed parameter values (c
285 $= 13, g_1 = 20, k_{xmax}/L = 1000, \alpha/L = 0.01, P50 = -2.5$) and the measured environmental inputs
286 from the UMBS dataset. We then generate five sets of noisy sap flow data by adding Gaussian
287 noise with zero mean to the synthetic baseline sap flow data, each with a different level of
288 correlation to the synthetic baseline sap flow data itself. The correlation coefficients between the
289 baseline synthetic sap flow data and the five sets of noisy sap flow data are 0.95, 0.9, 0.85, 0.8,
290 and 0.75. We then infer the hydraulic parameters using the MCMC process, after replacing
291 observed UMBS sap flux with the six synthetic datasets (which consist of noise-free baseline or
292 noisy synthetic sap flow data and the environmental input data of T, I, D , and Ψ_s from the UMBS
293 dataset) and compare the estimated hydraulic parameters with the true (i.e. prescribed) parameter
294 values.

295 In the second experiment, we create the baseline synthetic soil water potential data by first
296 lowering the soil water potential data from the UMBS dataset by an artificial bias of 1 MPa. This
297 reduction avoids the risk of generating positive soil water potential values in the synthetic soil
298 water potential data that are to be created subsequently. We generate the synthetic sap flow data
299 by running the sap flow model forwards with this baseline synthetic soil water potential data, the
300 prescribed parameter values (the same as in the first experiment, $c = 13$, $g_1 = 20$, $k_{xmax}/L = 1000$,
301 $\alpha/L = 0.01$, $P50 = -2.5$), and the original data for the other environmental inputs (i.e., T , I , and D)
302 from the UMBS dataset. Then, to simulate the biased soil water potential measurement, we
303 generate two biased sets of synthetic soil water potential data by setting their values to be
304 consistently lower and higher than the baseline synthetic soil water potential data by 1 MPa over
305 the whole period, respectively, while using the same data from the baseline dataset for all the
306 other inputs, including T , I , D , and modeled sap flow. Finally, to evaluate the effect of bias in
307 soil water potential measurement on parameter estimation, we infer the hydraulic parameters
308 estimated from MCMC using these three synthetic datasets and compare them to the synthetic
309 truth.

310 In the third experiment, to examine the effect of prior knowledge on parameter estimation, we
311 also use the baseline synthetic dataset from the first synthetic experiment. Two prior
312 distributions, the uniform, and a truncated normal distribution, are proposed to represent low and
313 high amounts of prior information concerning parameters, respectively. By comparing the results
314 of posterior distributions, we can evaluate the effect of prior information on parameter inference.

315 **2.5 Sensitivity analysis**

316 To explore the effect of parameter sensitivity – our final source of uncertainty – on parameter
317 inference, we carry out a Sobol global sensitivity analysis (Sobol, 2001) to identify the
318 importance of each parameter in determining the model output (i.e., sap flow). We expect a
319 parameter with a higher sensitivity to have a lower variance in its posterior distribution. The
320 first-order indices from a Sobol sensitivity analysis measure the contribution to the output
321 variance of the main effect of each parameter (i.e., the effect of varying each parameter alone)
322 while the total-order indices measure the output variance of each parameter, including all
323 variance caused by its interaction with any other parameters. For each parameter, we define its
324 parameter range for the sensitivity analysis based on the supports of its posterior distributions of
325 all the tree individuals from the UMBS dataset, which we consider as the realistic parameter
326 range.

327 Because the soil water potential data is not as widely available as the other environmental
328 conditions (e.g., T , I , and D), we examine the effects of soil water potential data availability on
329 the resulting model sensitivities by running the sensitivity analysis with Ψ_s as either a known
330 input or as an unknown constant. Based on the sensitivity of soil water potential and its influence
331 in the sensitivities of other unknown parameters, we evaluate the importance of the availability
332 of soil water potential data. We define the range for soil water potential (when treating it as an
333 unknown parameter) based on the maximum and minimum values in the UMBS dataset. In the
334 first scenario, Ψ_s data is considered to be available – we use the complete set of environmental
335 inputs, including T , I , D , and Ψ_s , from the UMBS dataset as the known environmental inputs for
336 the sensitivity analysis. In the second scenario, we run the sensitivity analysis with the soil water
337 potential as an unknown constant. We repeat this analysis independently on every single day
338 with varying environmental conditions over the whole observation period in both scenarios.

339 **2.6 Prediction of sapflow and whole-tree water use behaviors**

340 To verify that the inferred hydraulic traits can indeed be used to predict whole-plant water use
341 behaviors, we compared our predicted sap flow against existing measurements. Furthermore, we
342 contextualized the plant water-use strategy under water stress using the isohydricity framework
343 proposed by Martinez-Vilalta et al. (2014). We use the median predicted plant water potential
344 (ψ_x) and the input soil water potential (ψ_s) to fit a simple linear relationship, $\psi_x = \sigma\psi_s + \Lambda$,
345 where the intercept (Λ) represents the plant water potential under well-watered conditions ($\psi_s \approx$
346 0) and the slope (σ) indicates stomatal response to soil water stress, i.e., isohydricity. An
347 isohydric plant will have $\sigma \approx 0$ as it will close stomata to maintain a near-constant ψ_x value
348 regardless of ψ_s , representing a more risk-averse strategy to hydraulic damage. Alternately, as σ
349 increases, the plant moves towards anisohydric behavior, where it allows ψ_x to decline (by
350 regulating stomata less) with ψ_s in order to prolong transpiration at the risk of hydraulic damage.
351 Although there are confounding factors to the isohydricity concept (Novick et al., 2019; Feng et
352 al., 2019), σ nevertheless provides useful insight into the inter- and intraspecific variability of
353 plant water use strategies (Kannenberg et al., 2021). We fit the isohydricity index, σ , to each site
354 and performed a species-level comparison using a single factor ANOVA and pairwise t-tests
355 using Tukey's HSD test to determine if σ values for each species differed and by how much.
356 Tukey's HSD allows pairwise t-tests while accounting for p-value inflation while performing
357 multiple hypothesis tests (Efron and Hastie, 2016). We performed ordinary least squares fitting
358 and hypothesis testing using the statsmodel package in Python (Seabold and Pektold, 2010).

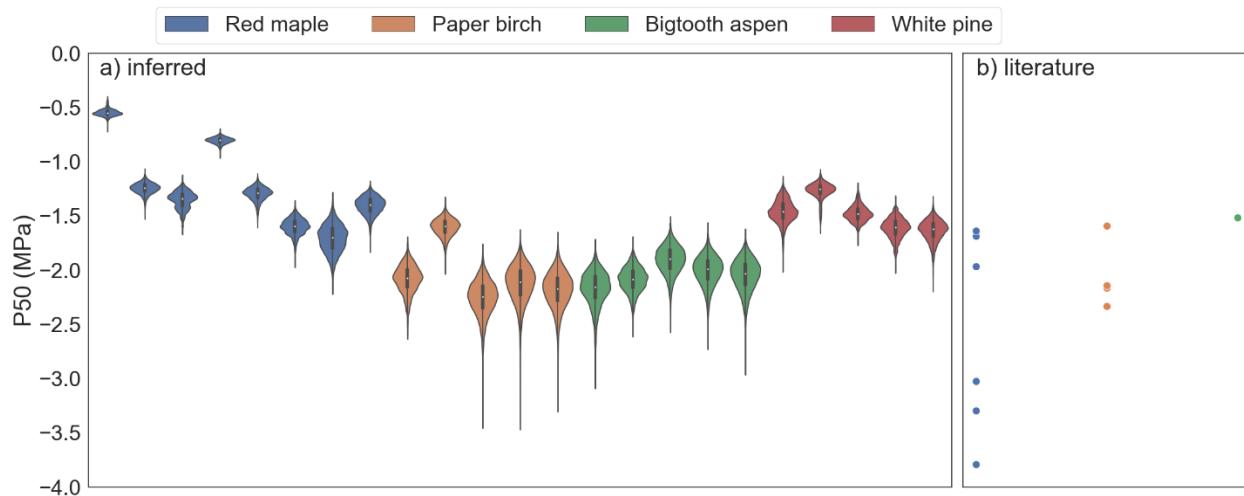
359 **3 Results**

360 We first present the results of MCMC inversion of our sap flow model, including the posterior
361 distributions, the ensemble prediction of sap flow, as well as the estimated isohydricity based on
362 predictions of plant water potential. Then, we analyze the uncertainties associated with parameter
363 estimation, due to 1) low parameter sensitivity, 2) measurement error, including the noise in sap
364 flow data and the bias in soil water potential, and 3) the lack of prior information on the fitting
365 parameters. The sensitivities of model parameters are represented by Sobol first-order and total-
366 order sensitivity indices. We demonstrate the effects of measurement error and prior information
367 based on three synthetic experiments, then, based on these results, make recommendations to
368 potentially reduce estimation errors.

369 **3.1 MCMC inference of plant hydraulic parameters**

370 The whole-plant effective value of xylem water potential at 50% loss of hydraulic conductivity,
371 P50, is an important trait that characterizes plant drought tolerance (Brodribb and Cochard,
372 2009). In Fig. 1a, we show the posterior distributions of P50 for each individual. All the P50
373 estimates have low uncertainty, with a maximum coefficient of variation below 0.08 and
374 standard deviation below 0.2 MPa. These posterior distributions show an order of magnitude
375 reduction in uncertainty compared to the prior distribution of P50, which is uniformly distributed
376 between -5 MPa and -0.1 MPa. This low uncertainty allows us to easily detect both the inter- and
377 intraspecific difference in P50. Generally, red maple and white pine have similar inferred P50
378 values at around -1.5 MPa (Fig. 1a). Paper birch and bigtooth aspen have slightly more negative
379 P50 at around -2.0 MPa. Fig. 1b shows measured P50 values compiled from the TRY dataset and
380 other literature sources (Deacon et al., 2019; Kattge et al., 2020, Fig. 1b) for each of these
381 species. For red maple, the inferred P50 values are at the higher bound of the P50 data from the
382 TRY database. This difference relative to previous measurements may be due to intra-specific

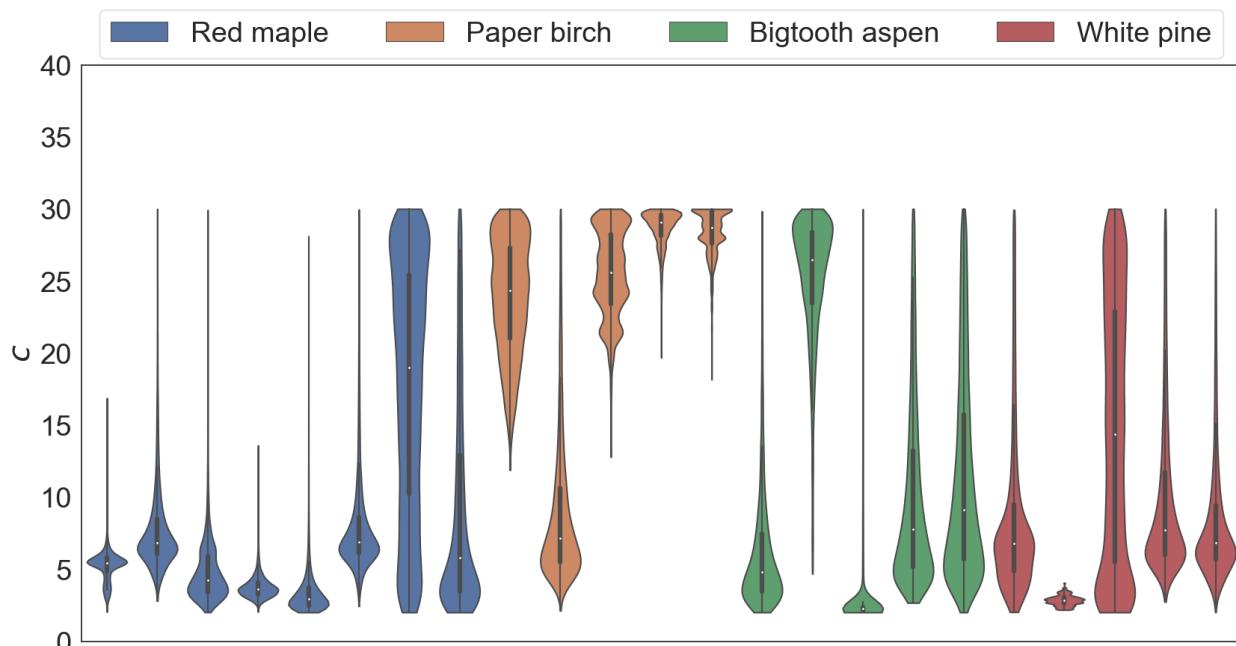
383 variability, or may be related to the fact that, unlike the field measurements of P50, which are
 384 commonly made at leaf or branch scales, our inferred P50 values represent the effective whole-
 385 plant value of this trait. Specifically, based on a modeling analysis (see Supporting Information,
 386 Fig. S1), we show that the effective whole-plant P50 is more likely to be lower than the segment
 387 P50 in the roots, and higher in the segments that are further away from the soil (i.e., closer to
 388 leaves). The P50 data for the other species are scarce (three data points for paper birch (Kattge et
 389 al., 2020); one for bigtooth aspen (Deacon et al., 2019), and none for white pine), although our
 390 estimates of P50 for paper birch and bigtooth aspen are still consistent with measurements.



391
 392 **Figure 1.** a) Posterior distributions of P50. Each bar represents an individual tree. Color
 393 indicates species: blue for red maple, yellow for paper birch, green for bigtooth aspen, and red
 394 for white pine. b) Measurements from the literature (data for red maple and paper birch are from
 395 the TRY database (Kattge et al., 2020); data for bigtooth aspen are from Deacon et al., (2019);
 396 no data have been found for white pine).

397 We quantified the intraspecific variation in P50 using the coefficient of variation of the mean of
 398 the posterior distributions of all the individuals from the same species. Red maple shows the

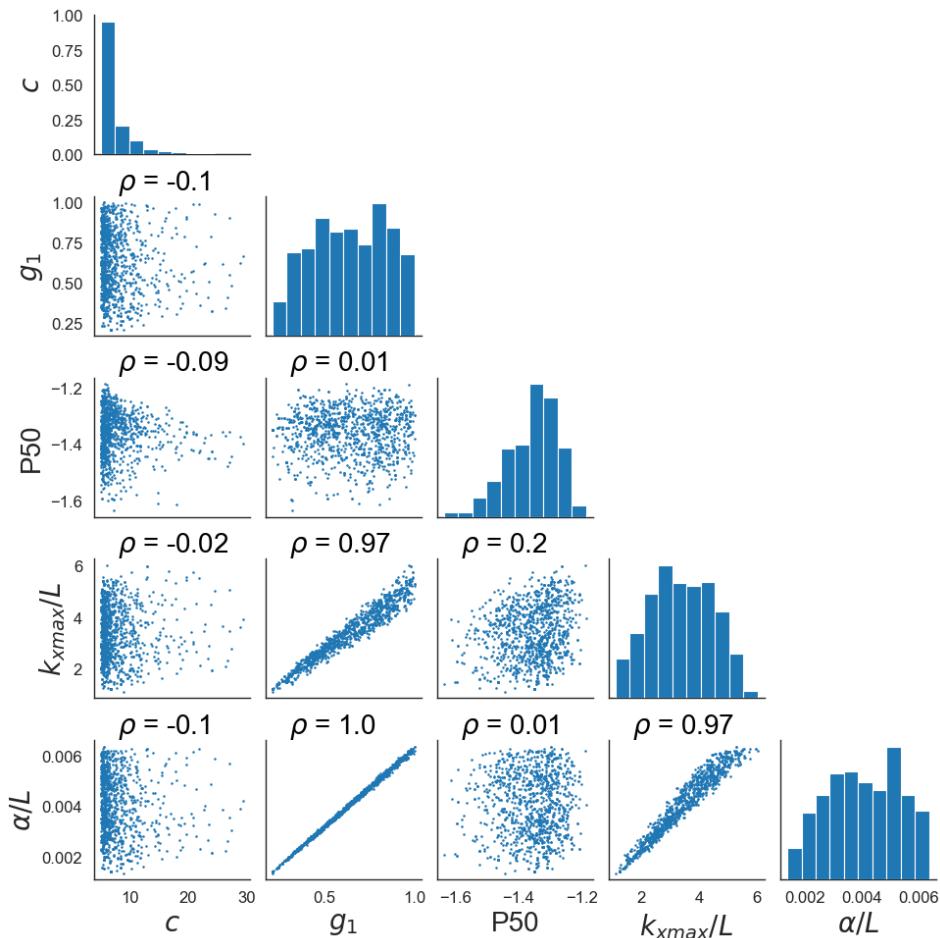
399 greatest intra-specific variability in Fig. 1a and has a higher standard deviation in the mean (0.36
400 MPa) across individuals than the rest (0.23 for paper birch; 0.09 for bigtooth aspen; 0.13 for
401 white pine). Compared with the species-level mean P50, none of the species shows a coefficient
402 of variation higher than 0.3 (0.29 for red maple; 0.11 for paper birch; 0.04 for bigtooth aspen;
403 0.09 for white pine), indicating a low intraspecific variation in P50.



405 **Figure 2.** Posterior distributions of c (stomatal sensitivity to decreasing xylem water potential)
406 with prior distribution as Uniform [2, 30]. Each bar represents an individual tree. Color indicates
407 species: blue for red maple, yellow for paper birch, green for bigtooth aspen, and red for white
408 pine.

409 The parameter that captures stomatal sensitivity to drought, c , describes how quickly plants close
410 stomata in response to decreasing plant water potential. A higher value of c indicates an earlier
411 stomatal closure with decreasing plant water potential (Eq. 5). Fig. 2 shows that most of the
412 posterior distributions of c have strong positive skew with a peak near 2, the lower bound of the

413 support of its prior distribution. Compared with P50, almost all c estimates have a much larger
 414 variance, with the mean coefficient of variation around 0.38 (0.06 for P50). Also, for most
 415 individuals, the supports of their posterior distributions of c are not smaller than those of their
 416 prior distributions, a uniform distribution between 2 and 30. This difference in the inference
 417 uncertainty between P50 and c is mainly caused by our model having significantly less
 418 sensitivity to c than to P50.



419

420 **Figure 3.** MCMC results of a red maple tree with the original parameters. Diagonal: posterior
 421 distributions of the fitting parameters. Off-diagonal: covariation of each pair of parameters. The
 422 Pearson correlation coefficient is denoted by ρ .

423 The MCMC results indicate that the values of k_{xmax}/L , a/L , and g_1 are not well constrained with
 424 our model inversion approach, due to the strong correlation among them (with correlation
 425 coefficients near 1 for almost all individuals). A typical example of this strong correlation is
 426 shown in Fig. 3 for a red maple tree. The correlation coefficients among these three parameters
 427 are near 1 in the MCMC outputs of almost all individuals. The correlation between k_{xmax}/L and
 428 a/L is understandable, as it is due to the fact that their ratio that determines how transpiration rate
 429 scales with the observed sap flow (defined in Eq. 9). However, the linear correlation between
 430 k_{xmax}/L and g_1 can only be expected when stomatal conductance g_s is high. To illustrate this, we
 431 note that our model (see Eq. 5) contains specifies a nonlinear relationship between k_{xmax}/L and g_1 ,
 432 which is introduced by due to the nonlinearity in the Farquhar-von Caemmerer-Berry
 433 photosynthesis model (Farquhar et al., 1980) with respect to g_s (see Eq. 5). Only when g_s takes
 434 high values does A become practically independent of g_s (i.e., photosynthesis is CO₂-saturated)
 435 and becomes concentrated around its maximum value, A_{max} , which eliminates the nonlinearity
 436 within the Farquhar model. Specifically, under this assumption, Eq. 5 can be simplified as

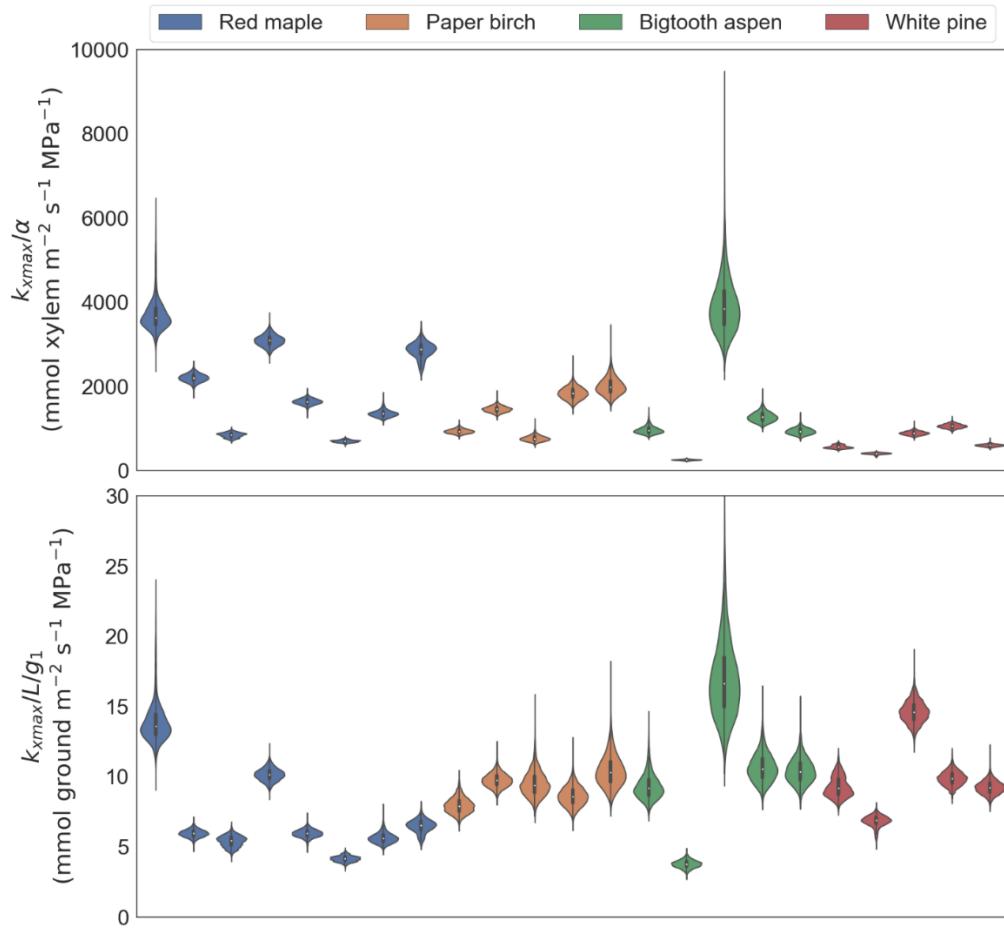
$$g_s \approx \frac{g_1}{\sqrt{D}} \frac{A_{max}}{c_a} e^{(-c f_{PLC}(\Psi_x))} \quad (10)$$

437 Then, by combining Eqs. 8 & 10, we obtain

$$\frac{k_{xmax}}{L} \frac{1}{g_1 \sqrt{D}} \approx \frac{a A_{max}}{10^{-3} c_a} \frac{e^{(-c f_{PLC}(\Psi_x))}}{(1 - f_{PLC}(\Psi_x))(\Psi_s - \Psi_x)}, \quad (11)$$

438 which suggests the observed linearity between k_{xmax}/L and g_1 on the left-hand side.
 439 The physiological meaning of the aggregated parameter $k_{xmax}/L/g_1$ can be framed in terms of
 440 differential sap flow sensitivities to soil water stress compared to atmospheric water stress. The
 441 left-hand side of Eq. 11 decreases with increasing D while its right-hand side decreases with

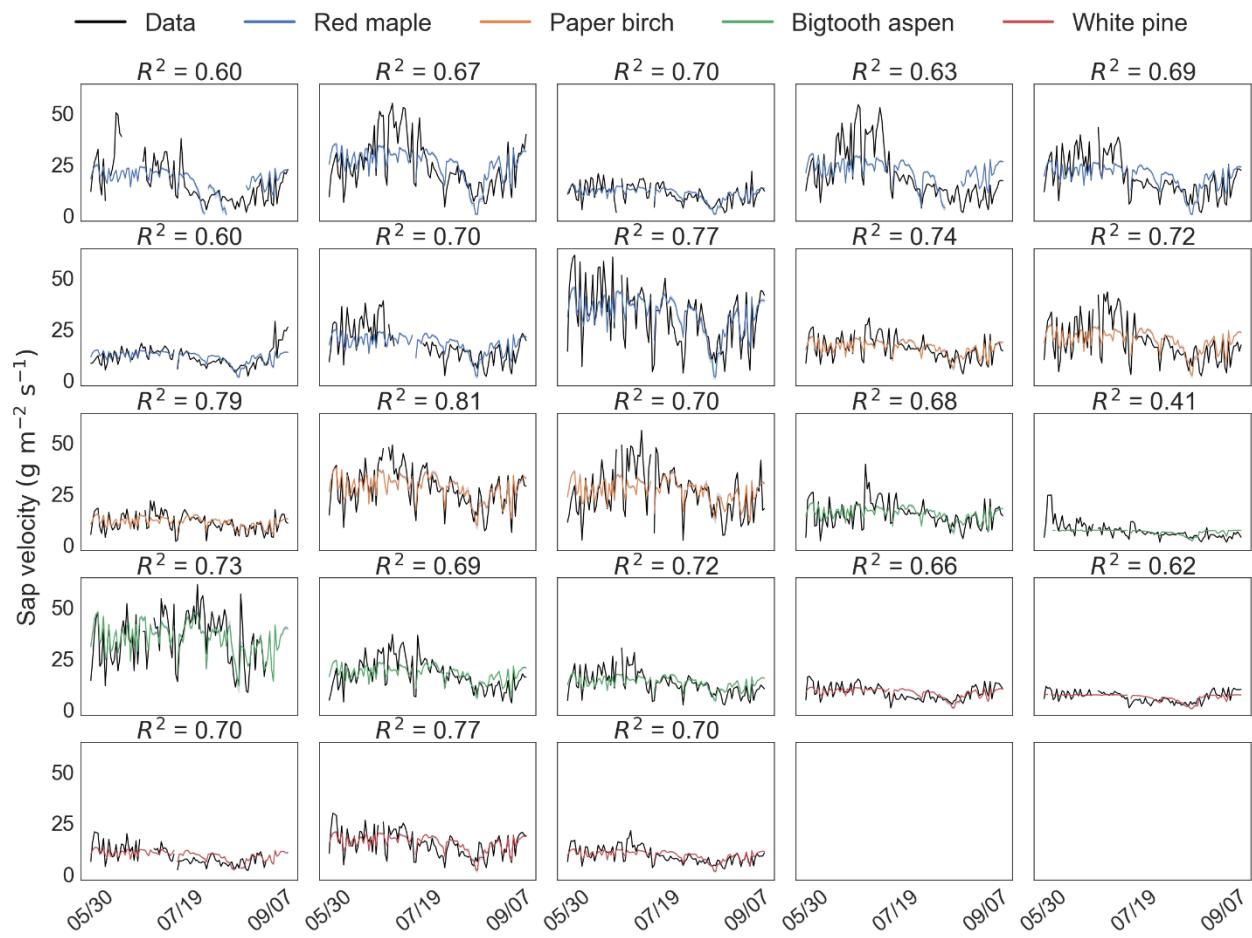
442 decreasing Ψ_x (these trends occur under value of c larger than 2, and f_{PLC} lower than 50%, which
 443 is typically applicable for our dataset). Because, $k_{xmax}/L/g_1$ controls the relative impacts of the
 444 left- vs. right-hand side of Eq. 11 on stomatal conductance g_s , $k_{xmax}/L/g_1$ can be thought of as an
 445 indicator of the relative sensitivity to plant water potential vs. vapor pressure deficit – with any
 446 given D , a higher value of $k_{xmax}/L/g_1$ results in a less negative Ψ_x at a constant stomatal
 447 conductance.



448

449 **Figure 4.** Posterior distributions of $k_{xmax}/L/g_1$ (lower) and k_{xmax}/α (upper) where k_{xmax} is the
 450 maximum whole-plant xylem conductance, L is the leaf area index, g_1 is inversely related to
 451 plant marginal water-use efficiency and α is the sapwood area per ground area. Color indicates
 452 species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine).

453 Unlike its two strongly correlated component parameters, k_{xmax}/L and g_1 (Fig. 3), we display our
 454 results in terms of this aggregated parameter $k_{xmax}/L/g_1$ (left hand side of Eq. 11), which is well
 455 constrained with our model inversion approach and has very low uncertainty for every individual
 456 (Fig. 4, lower panel). Similarly, the other aggregated parameter, k_{xmax}/α , which represents the
 457 maximum xylem conductance per xylem sapwood area, is also well constrained and inferred
 458 with low uncertainty (Fig. 4, upper panel). These results suggest that, in addition to a range of
 459 drought tolerance (based on results for P50; Fig. 1), these individuals also exhibit variations in
 460 their relative sensitivities to atmospheric drought (through vapor pressure deficit) or water status
 461 (through plant water potentials).



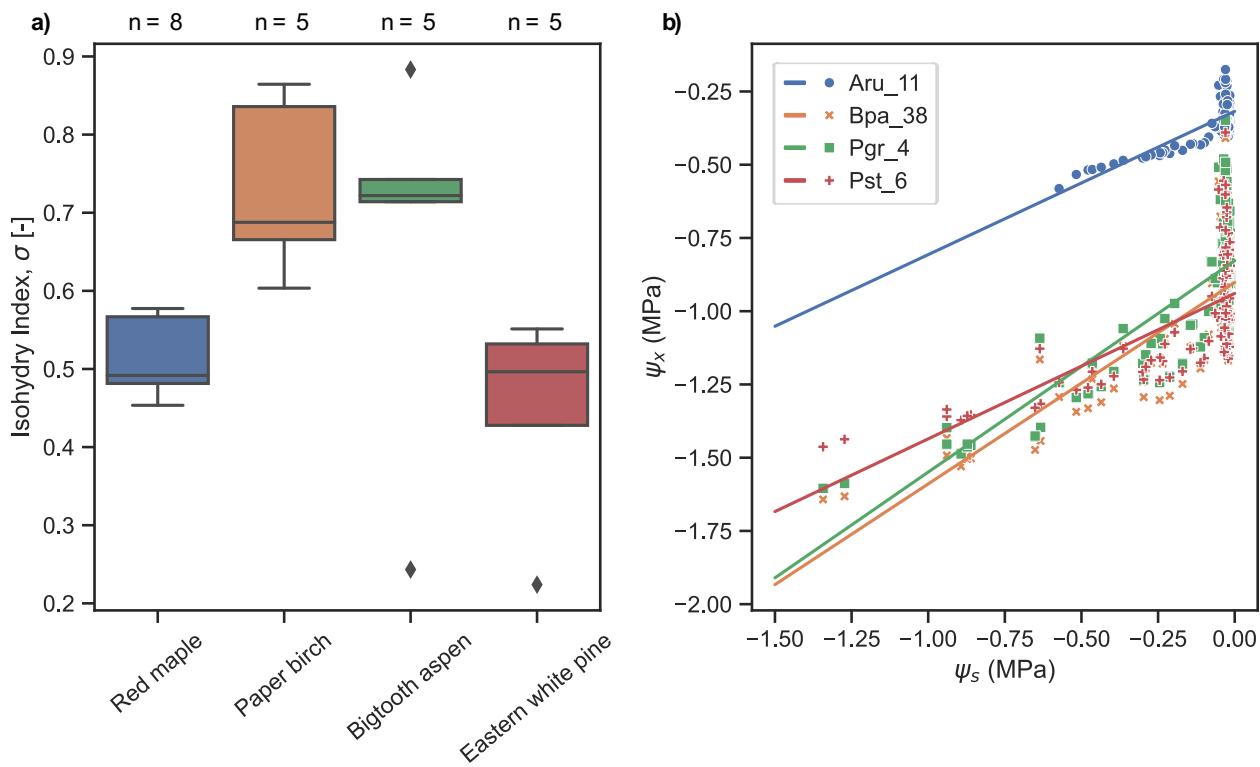
462

463 **Figure 5.** Estimates of sap flow. The 5th, 50th, and 95th percentiles of 1000 MCMC estimates of
464 the sap flow time series are in close agreement with the input data (black). Color indicates
465 species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine).

466 **3.2 MCMC predictions of sap flow, plant water potential, and isohydricity**

467 We confirm that our inferred parameters can be used to adequately capture the seasonal variation
468 in the observed sap flow. Fig. 5 shows that the ensemble prediction matches reasonably with the
469 observed daily average sap flow in the input sapflow data and has very low uncertainty (where
470 the uncertainty is defined as the interval between the 5th and 95th percentiles of the ensemble
471 prediction of sap flow; note that both the 5th and 95th percentiles of the ensemble prediction are
472 too close to the median to be visually identified in Fig. 5). The correlation between the observed
473 sap flow and the median of the ensemble model prediction is generally strong. The mean
474 correlation coefficient across all individuals is 0.69. However, Fig. 5 also shows that our
475 approach seems to be only able to capture the overall seasonal trend in the observed dynamics of
476 sap flow, but not the oscillation on finer (e.g., daily) time scales. The inferred parameters can also
477 be used to capture inter- and intraspecies isohydricity variability through σ (Figure 6a), defined
478 by the decline in plant water potential with soil water potential (Figure 6b). The paper birch and
479 bigtooth aspen allow Ψ_x to decline faster with Ψ_s compared to the red maple and eastern white
480 pine, corresponding to more anisohydric behavior consistent with previous knowledge shown in
481 Table 1. The fits for the remaining trees (Figure S6) show much scatter near soil saturation,
482 which is due to variability in D . We also tested the statistical significance of the interspecies
483 differences in σ (Figure S8). A single factor ANOVA confirmed that the species-specific σ
484 values are statistically different ($p = 0.014$); however, the pairwise t-tests using Tukey's HSD
485 struggled to find significant differences between the species σ values due to the large intra-

486 species variability for aspen and pine (Fig. 6a). Tukey's HSD only yields a statistically
 487 significant difference between pine and birch ($p = 0.022$), while the difference in birch and
 488 maple ($p = 0.06$) and aspen and pine ($p = 0.1$) were above the 5% significance level (note that
 489 Tukey's HSD tends to be extremely conservative, which may lower the power of the test (Efron
 490 and Hastie, 2016)). Nevertheless, these results illustrate the importance in accounting for the
 491 intraspecies variability, as it can potentially overtake the range in interspecific variability.



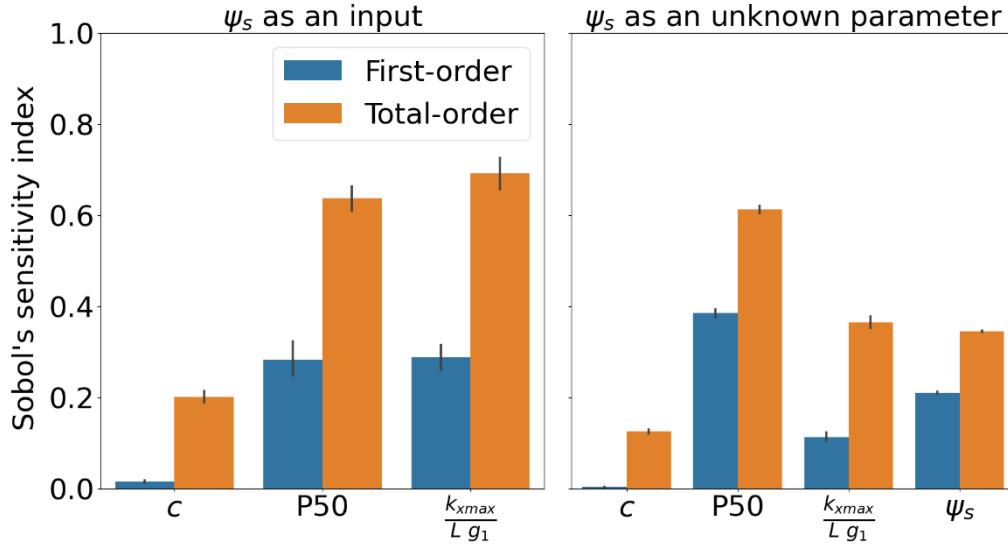
492

493 **Figure 6. a)** Isohydricity indices (σ) extracted from ψ_x and ψ_s values at each site. Values closer
 494 to 0 indicate isohydric and values closer to 1 indicate anisohydric behavior. **b)** Actual water
 495 potential data (dots) and fit lines used to extract σ for one site of each species. Specifically, we
 496 are showing the trees that contained the median σ for each species. The individual fits for each
 497 site are shown in Fig. S6.

498

3.3 Uncertainty analysis

499 In this subsection, we report the effects of three main contributors to the uncertainty associated
500 with parameter estimation: 1) low parameter sensitivity, 2) measurement error, and 3) the lack of
501 prior information on the fitting parameters. First, we examine the effects of parameter sensitivity
502 and focus on the comparison between two parameters, plant vulnerability to embolism, P50, and
503 c . In this study, they show contrasting degrees of inference uncertainty – the posterior
504 distributions of P50 have a much smaller variance than those for c (Figs. 1 & 2). Our sensitivity
505 analysis shows that this difference can be explained by the different degrees to which the model
506 output (i.e., sap flow) is sensitive to each parameter. As shown in Fig. 7 (left panel), P50 has a
507 much larger Sobol's total-order sensitivity index than c (the mean total-order index is 0.64 for
508 P50 and 0.20 for c). Also, the first-order index of c is close to zero (about 0.015), indicating that
509 this parameter has a very limited effect on the modeled sap flow on its own. These results
510 confirm that our sap flow model is much more sensitive to the change in P50 than to c .
511 Necessarily, this leads to a larger uncertainty in estimates of c relative to P50. These relative
512 degrees of parameter sensitivity hold whether soil water potential is known or unknown: in the
513 absence of soil water potential data, the model remains much more sensitive to P50 rather than c
514 (Fig. 7, right panel).



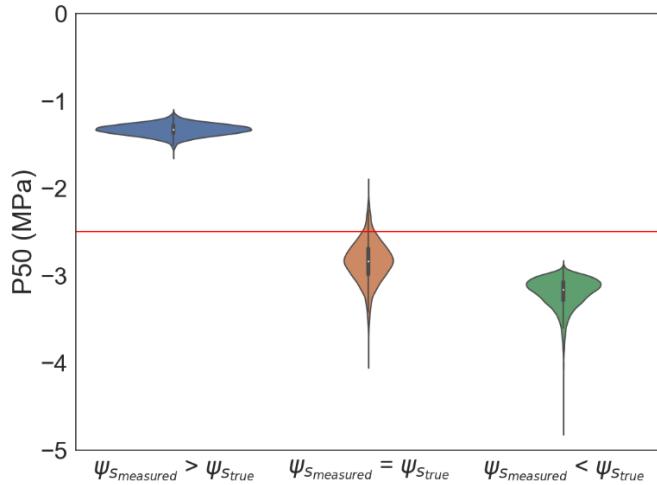
515

516 **Figure 7.** Sobol's first-order and total order sensitivity indices. We consider two scenarios: the
 517 soil water potential as a model input (left panel) and a fitting parameter (right panel).

518 We also evaluate the consequence of absent soil water potential measurements during parameter
 519 inference by inferring it as an unknown parameter. In Fig. 7 (right panel), we show that soil
 520 water potential as a model parameter is very sensitive as both its first- and total-order indices are
 521 high (its mean first- and total-order indices are 0.21 and 0.35, respectively).

522 We analyze the next two sources of uncertainty – measurement error and low prior knowledge –
 523 based on synthetic experiments (Section 2.4). Here, we use P50 as an example and demonstrate
 524 the effects of measurement error on its posterior distribution. Noise in sap flow data creates
 525 irregular uncertainty in P50 (Fig. S4), with no consistent trend in bias and uncertainty of the P50
 526 estimate as the noise level increases. In contrast to noise in the sap flow data, bias in the soil
 527 water potential measurements does have large impacts on the estimated value of P50. While all
 528 the above model inversion results (Figs. 1-5) are based on the assumption of our soil water
 529 potential measurement (Section 2.1) being accurate, Fig. 8 shows that when soil water potential
 530 measurements are systematically more negative than their true values, MCMC tends to

531 underestimate the true synthetic value of P50, resulting in more negative P50, and vice versa.

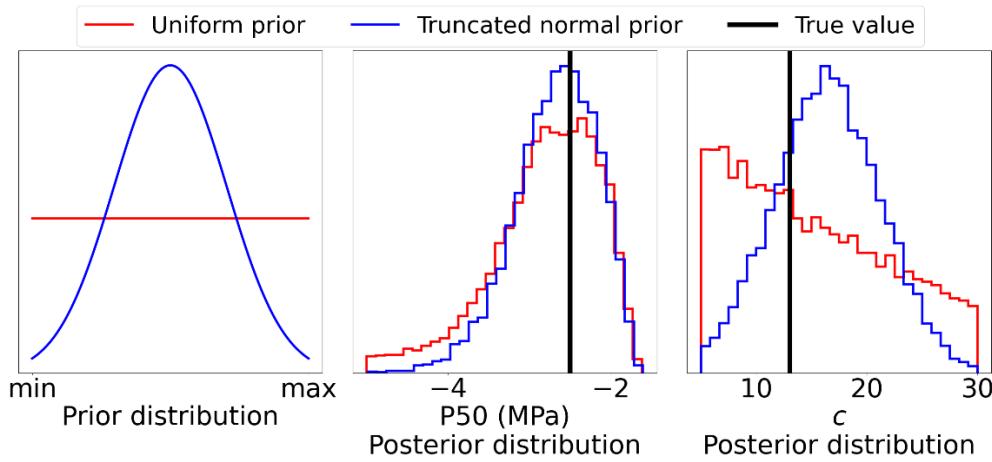


532

533 **Figure 8.** Posterior distributions of P50 inferred using soil water potential data at different bias
534 levels. The horizontal line labels the prescribed synthetic truth.

535 Finally, the uncertainty in parameter estimation may also be attributed to the lack of detailed
536 prior knowledge of the fitting parameter. Our analysis shows that the effect of prior knowledge
537 on the accuracy of different parameters' estimates varies strongly with model sensitivity to that
538 parameter. For both P50 and c , we evaluate the impact of prior knowledge qualitatively by
539 comparing the posterior distribution of each parameter based on an MCMC inversion with a
540 noninformative uniform prior with the posterior distribution using an informative truncated
541 normal prior distribution (see Fig. 9a). In Fig. 9, we show that with more prior information
542 (using the truncated normal distribution), the uncertainty of the c estimate decreases
543 significantly. This improvement in the estimate for c does *not* come from making use of
544 information contained in the data, because the posterior distribution (Fig. 9, right panel, blue)
545 largely overlaps with the prior distribution (Fig. 9, left panel, blue). This presumably reflects the
546 low sensitivity of c (c.f. Fig. 7). By contrast, more prior knowledge barely improves the estimate
547 of P50: the two posterior distributions resulting from the uniform and truncated normal prior

548 distributions are similar (Fig. 9, middle panel). There is higher certainty in the P50 posterior
 549 distributions, regardless of prior knowledge, relative to c , because the sap flow constrains the
 550 highly sensitive P50 parameter very well (see Fig. 7). Under these circumstances, an informative
 551 prior cannot provide much additional information to reduce the uncertainty in the P50 estimate,
 552 relative to a flat prior.



553 **Figure 9.** Prior distributions (left) and the corresponding posterior distributions of P50 (middle)
 554 and c (right). Color indicates the type of prior distribution: red for uniform distribution and blue
 555 for truncated normal distribution. The vertical black lines in the middle and right panels indicate
 556 the true values of P50 and c , respectively.

558 **4 Discussion**

559 **4.1 MCMC model inversion reliably predicts seasonal sap flow variations**

560 With the use of a simple model in combination with sap flow, soil water potential, and
 561 atmospheric data, we have demonstrated that an MCMC model inversion approach is able to
 562 predict seasonal sap flow variations across a range of environmental conditions (e.g., solar
 563 irradiance, vapor pressure deficit, temperature, and soil water potential; Figure 5). This ability to

564 capture seasonal sap flow variations is an indication that the simple model used is realistic
565 enough to represent complex plant behaviors. It also supports the assumption of strong
566 coordination between stomatal conductance and plant water potential (Anderegg et al., 2017)
567 embedded within Eq. 5, which results in stomatal closure occurring substantially earlier than any
568 significant hydraulic impairment (Fig. S5), as commonly observed (e.g., Bartlett et al., 2016;
569 Martin-StPaul et al., 2017).

570 **4.2 Whole-plant hydraulic parameters inferred through model inversion**

571 The accuracy with which the MCMC approach predicted sap flow variations (Figure 5) suggest
572 that hydraulic parameters (Figures 1-4) can be reliably estimated. Our MCMC model inversion
573 approach provides a means to infer whole-plant parameters values without scaling leaf or
574 branch-level trait measurements. Typically, a plant is segmented into roots, xylem, and leaf for
575 measurement (Sperry et al., 1998), requiring time consuming measurements in each segment
576 (e.g., bench dehydration of a branch to find P50) and questions as to how well these local
577 measurements can be representative of the whole-plant response. Instead, by using a model that
578 captures whole-plant level sap flow as a starting point, the inferred parameters are directly
579 applicable for whole-plant predictions (subject to the assumption that sap flow measurements are
580 taken on the main stem, and with negligible effects of xylem capacitance, which is assumed by
581 state-of-the-art terrestrial biosphere models (Kennedy et al., 2019; Eller et al., 2020; Sabot et al.,
582 2020)). These whole-plant parameter values are particularly useful to parameterize PHMs that do
583 not separate branches from other plant components. For the same reason, values derived from
584 this approach may be difficult to compare to current measurements. For example, our analysis
585 (Supporting Information) shows that the effective whole-plant P50 is likely to be lower than P50
586 in the roots and higher than P50 in the stems closer to the canopy. This is consistent with our

587 results (Fig. 1) that show higher values of whole-plant inferred P50 than measured leaf or branch
588 P50 for red maple and, to a lesser extent, paper birch. It is also consistent with the P50 values
589 inferred from eddy covariance by MCMC in Liu et al (2020), for which in situ measurements of
590 branch P50 were generally higher than the inferred whole-plant values.

591 **4.3 Intra- and inter- specific variations in plant water use strategies**

592 The low uncertainty around most inferred parameters (except for c) allows for the quantification
593 of inter- and intraspecific variability in hydraulic traits. Trait variability has been observed in
594 P50 and other hydraulic traits measured at the stem and branch levels (Anderegg et al., 2018;
595 Bartlett et al., 2014; Trugman et al., 2019). Our analysis provides a preliminary look at whole-
596 plant trait variability among and within four tree species (Figs. 1, 2, & 4) that can be used to
597 improve predictions of ecosystem scale fluxes. The low intraspecific variability in P50 for all
598 species (Fig. 1) may be explained by the fact that all individuals grow on the same site and by
599 our assumption that all trees experience the same environment. Further work must be done to
600 ensure that sap flux measurements of individuals are representative of the species in the
601 ecosystem and evaluate the extent to which these parameter values may vary across sites.

602 The prediction of plant water potential based on inferred traits allowed us to characterize the
603 water use strategies of each individual using an isohydricity index (Figure 6), which confirmed
604 prior knowledge of aspen and maple at the site (Table 1), while providing new insights on birch
605 and pine. More importantly, our analysis highlighted the intraspecies variability of plant water-
606 use strategy that emerges from hydraulic trait variability. In particular, aspen and pine contained
607 one very isohydric outlier each (site Pgr-27 and site Pst-14 shown in Figure S7) relative to the
608 other four trees in each species group. Although the MCMC inversion for these two individuals
609 yielded relatively insensitive stomata (low c), their low xylem conductance per sapwood area

610 (k_{xmax}/α) caused enhanced stomatal closure and relatively stable plant water potential under soil
611 water stress (see Figure S7). To the best of our knowledge, there were no extenuating
612 circumstances (e.g., mortality, differing soil water conditions) or noticeable measurement errors
613 that could explain these outliers. Therefore, barring significant deficiencies in our MCMC
614 inversion, this result reinforces the importance of understanding intra-species variability of
615 hydraulic traits, especially to understand plant response to water stress.

616 **4.4 Reducing uncertainties via additional soil and plant water potential data**

617 The MCMC results also help inform the collection of new soil or plant hydraulic data and extract
618 additional information from existing datasets. For example, the results show that measured soil
619 water potential at sites where sap flow measurements are taken is essential for reliable parameter
620 inference (Fig. 7) and its accuracy has a great impact on the bias in parameter inference (Fig. 8).
621 Therefore, study sites should be set up with at least a single profile of soil water potential to help
622 interpret and extend the utility of sap flow measurements. Systematic biases in soil water
623 potential measurement can be almost certainly expected from the use of a site-wide soil water
624 potential measurement. This bias has been shown to strongly increase the uncertainty in
625 hydraulic model prediction (e.g., soil water budget and transpiration) (Baroni et al., 2017; Zhu et
626 al., 2018). In Chirico et al., (2010), the soil water potential bias is introduced specifically by the
627 parameter uncertainty in pedotransfer functions (which converts soil moisture into soil water
628 potential). The lack of continuously measured soil water potential data at many monitoring sites
629 remains a challenge for leveraging flux data to advance our understanding of land-atmosphere
630 interactions (Novick et al., 2019).

631 Alternatively, measurements of soil moisture, which are much more widely available, can be
632 converted to soil water potentials using measured soil water retention curves, as in this study.

633 However, this conversion can be challenging in complex and heterogeneous soil substrates and
634 must be accurate enough to ensure the quality of hydraulic model predictions (Chirico et al.,
635 2010).

636 **4.5 Implications of limitations in model structure**

637 While $P50$, $k_{xmax}/L/g_1$, k_{xmax}/α are well-constrained at this site and for these species, estimates of
638 the stomatal sensitivity to drought (i.e., c) are much more uncertain for almost all individuals in
639 the UMBS dataset. This uncertainty is mainly driven by the lack of sensitivity to c of the sap
640 flow model (Fig. 7). This means that estimation of c cannot be further improved by inversion of
641 the sap flux model. Alternative model structures could be considered, but the adoption of
642 alternative models is constrained by the data available to serve as model inputs and outputs.
643 Some datasets could potentially better constrain some model parameters than others (Luo et al.,
644 2009), because these datasets might be more compatible with models that are sensitive to
645 specific parameters. Thus, while we have shown the value of sap flux data for inferring $P50$, its
646 utility for inferring stomatal closure parameters may be more limited unless coupled to additional
647 measurements that are not available in this study (e.g., plant water potential).

648 **5 Conclusions**

649 Here, we have demonstrated that PHM hydraulic parameters can be inferred at the individual
650 level using a MCMC inversion approach using measured sap flow. Reliable and simultaneous
651 inference of multiple hydraulic model parameters has great potential to assist model
652 parametrization, which remains a major impediment to the adoption of PHMs (Feng, 2020;
653 Paschalis et al., 2020; Sloan et al. 2021). The inferred hydraulic traits – including the whole-
654 plant effective embolism vulnerability and maximum xylem conductance – are subject to a

655 number of uncertainties related to model structure and input data availability but capture well the
656 inter and intra-specific variability in plant water use and hydraulic vulnerability. Inferring plant
657 hydraulic traits using sap flow data based on MCMC relies on accurate measurement of soil
658 water potential with minimum bias, suggesting that measurements of soil water potential could
659 be usefully incorporated into ecohydrological and ecophysiological observation campaigns for
660 this purpose. While soil moisture data is commonly used as a substitute in practice, the
661 conversion of soil moisture into soil water potential can be particularly challenging in any site
662 with complex belowground structure. Furthermore, the accuracy of the model predictions can be
663 further enhanced by comparison to plant water potential data. We conclude that although the
664 MCMC inversion approach does not estimate all hydraulic parameters equally well, it is possible
665 to infer some plant hydraulic traits using readily available indirect measurements (e.g., sap flow
666 and meteorological data) with low uncertainty, and thus to augment time- and labor-intensive
667 direct measurements.

668 **Acknowledgements**

669 Funding for US-UMB AmeriFlux core site was provided by the U.S. Department of Energy's
670 Office of Science. Sap flux observations in US-UMB were funded by NSF award 1521238. We
671 thank Jesse Hahm and Yanlan Liu for insightful discussions and suggestions during the course of
672 this project. Special thanks are also due to the Minnesota Supercomputer Institute (MSI)
673 computing facilities. A.M. was supported by the US Department of Energy TES grant DE-
674 SC0020116 and the US National Science Foundation EAR CAREER award #2046768. A.G.K.
675 was supported by NSF DEB award 1942133 and by NASA Carbon Cycle Science grant
676 80NSSC21K1712. X.F. and B.S. were supported by NSF DEB award 2045610. G.B. was
677 supported by BARD award IS-5304-20.

678 **Data Availability Statement**

679 All data used in this study are publicly available. Meteorological, soil moisture and surface
680 fluxes data are available through Ameriflux, site-ID US-UMB (Gough et al. 1999)
681 <https://ameriflux.lbl.gov/sites/siteinfo/US-UMB>. The sap flux dataset is available from the
682 SAPFLUXNET (Poyatos et al., 2020, 2016)
683 <https://zenodo.org/record/3971689#.YlQpeOjMKUk>.

684 **References**

685 Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M.,
686 Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted), Gonzalez, P., Fensham,
687 R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci,
688 A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals
689 emerging climate change risks for forests. *Forest Ecology and Management, Adaptation*
690 of Forests and Forest Management to Changing Climate

691 259, 660–684.
<https://doi.org/10.1016/j.foreco.2009.09.001>

692 Anderegg, W. R. L., Venturas, M. D., 2020. Plant hydraulics play a critical role in Earth system
693 fluxes. *New Phytologist*, 4. <https://doi.org/10.1111/nph.16548>

694 Anderegg, W.R.L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D.J., Jansen, S., Kolb, T.,
695 Li, S., Meinzer, F., Pita, P., Dios, V.R. de, Sperry, J.S., Wolfe, B.T., Pacala, S., 2017.
696 Plant water potential improves prediction of empirical stomatal models. *PLOS ONE* 12,
697 e0185481. <https://doi.org/10.1371/journal.pone.0185481>

698 Anderegg, L.D.L., Berner, L.T., Badgley, G., Sethi, M.L., Law, B.E., HilleRisLambers, J., 2018.
699 Within-species patterns challenge our understanding of the leaf economics spectrum.
700 *Ecology Letters* 21, 734–744. <https://doi.org/10.1111/ele.12945>

701 Anderegg, W.R.L., 2015. Spatial and temporal variation in plant hydraulic traits and their
702 relevance for climate change impacts on vegetation. *New Phytologist* 205, 1008–1014.
703 <https://doi.org/10.1111/nph.12907>

704 Baroni, G., Zink, M., Kumar, R., Samaniego, L., Attinger, S., 2017. Effects of uncertainty in soil
705 properties on simulated hydrological states and fluxes at different spatio-temporal scales.
706 *Hydrology and Earth System Sciences* 21, 2301–2320. <https://doi.org/10.5194/hess-21-2301-2017>

708 Bartlett, M.K., Klein, T., Jansen, S., Choat, B., Sack, L., 2016. The correlations and sequence of
709 plant stomatal, hydraulic, and wilting responses to drought. *PNAS* 113, 13098–13103.
710 <https://doi.org/10.1073/pnas.1604088113>

711 Bartlett, M.K., Zhang, Y., Kreidler, N., Sun, S., Ardy, R., Cao, K., Sack, L., 2014. Global
712 analysis of plasticity in turgor loss point, a key drought tolerance trait. *Ecology Letters*
713 17, 1580–1590. <https://doi.org/10.1111/ele.12374>

714 Belluau, M., Shipley, B., 2018. Linking hard and soft traits: Physiology, morphology and
715 anatomy interact to determine habitat affinities to soil water availability in herbaceous
716 dicots. *PLOS ONE* 13, e0193130. <https://doi.org/10.1371/journal.pone.0193130>

717 Blackman, C.J., Creek, D., Maier, C., Aspinwall, M.J., Drake, J.E., Pfautsch, S., O’Grady, A.,
718 Delzon, S., Medlyn, B.E., Tissue, D.T., Choat, B., 2019. Drought response strategies and
719 hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic
720 failure. *Tree Physiology* 39, 910–924. <https://doi.org/10.1093/treephys/tpz016>

721 Bonan, G.B., 2008. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits
722 of Forests. *Science* 320, 1444–1449. <https://doi.org/10.1126/science.1155121>

723 Bonan, G.B., Williams, M., Fisher, R.A., Oleson, K.W., 2014. Modeling stomatal conductance in
724 the earth system: linking leaf water-use efficiency and water transport along the soil–
725 plant–atmosphere continuum. *Geosci. Model Dev.* 7, 2193–2222.
726 <https://doi.org/10.5194/gmd-7-2193-2014>

727 Brodribb, T.J., Cochard, H., 2009. Hydraulic Failure Defines the Recovery and Point of Death in
728 Water-Stressed Conifers. *Plant Physiology* 149, 575–584.
729 <https://doi.org/10.1104/pp.108.129783>

730 Chirico, G.B., Medina, H., Romano, N., 2010. Functional evaluation of PTF prediction
731 uncertainty: An application at hillslope scale. *Geoderma* 155, 193–202.
732 <https://doi.org/10.1016/j.geoderma.2009.06.008>

733 Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Feild,
734 T.S., Gleason, S.M., Hacke, U.G., Jacobsen, A.L., Lens, F., Maherli, H., Martínez-
735 Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P.J., Nardini, A., Pittermann, J., Pratt,
736 R.B., Sperry, J.S., Westoby, M., Wright, I.J., Zanne, A.E., 2012. Global convergence in
737 the vulnerability of forests to drought. *Nature* 491, 752–755.
738 <https://doi.org/10.1038/nature11688>

739 Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., ...
740 Meir, P., 2016. Linking hydraulic traits to tropical forest function in a size-structured and
741 trait-driven model (TFS v.1-Hydro). *Geoscientific Model Development*, 9(11), 4227–
742 4255. <https://doi.org/10.5194/gmd-9-4227-2016>

743 Dai, A., 2011. Drought under global warming: a review. *WIREs Climate Change* 2, 45–65.
744 <https://doi.org/10.1002/wcc.81>

745 Deacon, N.J., Grossman, J.J., Cavender-Bares, J., 2019. Drought and freezing vulnerability of
746 the isolated hybrid aspen *Populus x smithii* relative to its parental species, *P. tremuloides*
747 and *P. grandidentata*. *Ecology and Evolution* 9, 8062–8074.
748 <https://doi.org/10.1002/ece3.5364>

749 De Kauwe, M.G., Medlyn, B.E., Ukkola, A.M., Mu, M., Sabot, M.E.B., Pitman, A.J., Meir, P.,
750 Cernusak, L.A., Rifai, S.W., Choat, B., Tissue, D.T., Blackman, C.J., Li, X., Roderick,
751 M., Briggs, P.R., 2020. Identifying areas at risk of drought-induced tree mortality across
752 South-Eastern Australia. *Global Change Biology* 26, 5716–5733.
753 <https://doi.org/10.1111/gcb.15215>

754 De Kauwe, M. G., Zhou, S.-X., Medlyn, B. E., Pitman, A. J., Wang, Y.-P., Duursma, R. A.,
755 Prentice, I. C., 2015. Do land surface models need to include differential plant species
756 responses to drought? Examining model predictions across a mesic-xeric gradient in
757 Europe. *Biogeosciences*, 12, 7503–7518. <https://doi.org/10.5194/bg-12-7503-2015>

758 Efron, B., & Hastie, T. (2016). Computer age statistical inference: Algorithms, evidence, and
759 data science. *Computer Age Statistical Inference: Algorithms, Evidence, and Data*
760 [Science](https://doi.org/10.1017/CBO9781316576533). <https://doi.org/10.1017/CBO9781316576533>

761 Eller, C.B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper, A., Medlyn, B.E.,
762 Wagner, Y., Klein, T., Teodoro, G.S., Oliveira, R.S., Matos, I.S., Rosado, B.H.P., Fuchs,
763 K., Wohlfahrt, G., Montagnani, L., Meir, P., Sitch, S., Cox, P.M., 2020. Stomatal
764 optimization based on xylem hydraulics (SOX) improves land surface model simulation
765 of vegetation responses to climate. *New Phytologist* 226, 1622–1637.
766 <https://doi.org/10.1111/nph.16419>

767 Farquhar, G.D., Caemmerer, S. von, Berry, J.A., 1980. A biochemical model of photosynthetic
768 CO₂ assimilation in leaves of C3 species. *Planta* 149, 78–90.
769 <https://doi.org/10.1007/BF00386231>

770 Feng, X., 2020. Marching in step: The importance of matching model complexity to data
771 availability in terrestrial biosphere models. *Global Change Biology* 26, 3190–3192.
772 <https://doi.org/10.1111/gcb.15090>

773 Feng, X., Ackerly, D.D., Dawson, T.E., Manzoni, S., McLaughlin, B., Skelton, R.P., Vico, G.,
774 Weitz, A.P., Thompson, S.E., 2019. Beyond isohydricity: The role of environmental
775 variability in determining plant drought responses. *Plant Cell Environ* 42, 1104–1111.
776 <https://doi.org/10.1111/pce.13486>

777 Field, C.B., Barros, V., Stocker, T.F., Dahe, Q. (Eds.), 2012. *Managing the Risks of Extreme
778 Events and Disasters to Advance Climate Change Adaptation: Special Report of the
779 Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge.
780 <https://doi.org/10.1017/CBO9781139177245>

781 Gough, C.M., Hardiman, B.S., Nave, L.E., Bohrer, G., Maurer, K.D., Vogel, C.S., Nadelhoffer,
782 K.J., Curtis, P.S., 2013. Sustained carbon uptake and storage following moderate
783 disturbance in a Great Lakes forest. *Ecological Applications* 23, 1202–1215.
784 <https://doi.org/10.1890/12-1554.1>

785 Gough, C.M., Bohrer, G., Curtis, P.S., 1999. AmeriFlux US-UMB Univ. of Mich. Biological
786 Station, Dataset. <https://doi.org/10.17190/AMF/1246107>

787 He, L., Ivanov, V.Y., Bohrer, G., Maurer, K.D., Vogel, C.S., Moghaddam, M., 2014. Effects of
788 fine-scale soil moisture and canopy heterogeneity on energy and water fluxes in a

789 northern temperate mixed forest. Agricultural and Forest Meteorology 184, 243–256.

790 <https://doi.org/10.1016/j.agrformet.2013.10.006>

791 He, L., Ivanov, V.Y., Bohrer, G., Thomsen, J.E., Vogel, C.S., Moghaddam, M., 2013. Temporal

792 dynamics of soil moisture in a northern temperate mixed successional forest after a

793 prescribed intermediate disturbance. Agricultural and Forest Meteorology 180, 22–33.

794 <https://doi.org/10.1016/j.agrformet.2013.04.014>

795 Hou, Z., Rubin, Y., 2005. On minimum relative entropy concepts and prior compatibility issues

796 in vadose zone inverse and forward modeling. Water Resources Research 41.

797 <https://doi.org/10.1029/2005WR004082>

798 Kannenberg, S. A., Guo, J. S., Novick, K. A., Anderegg, W. R. L., Feng, X., Kennedy, D., et al.

799 (2021). Opportunities, challenges and pitfalls in characterizing plant water-use strategies.

800 Functional Ecology, n/a(n/a). <https://doi.org/10.1111/1365-2435.13945>

801 Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner,

802 G.D.A., Aakala, T., Abedi, M., Acosta, A.T.R., Adamidis, G.C., Adamson, K., Aiba, M.,

803 Albert, C.H., Alcántara, J.M., C, C.A., Aleixo, I., Ali, H., Amiaud, B., Ammer, C.,

804 Amoroso, M.M., Anand, M., Anderson, C., Anten, N., Antos, J., Apgaua, D.M.G.,

805 Ashman, T.-L., Asmara, D.H., Asner, G.P., Aspinwall, M., Atkin, O., Aubin, I.,

806 Baastrup-Spohr, L., Bahalkeh, K., Bahn, M., Baker, T., Baker, W.J., Bakker, J.P.,

807 Baldocchi, D., Baltzer, J., Banerjee, A., Baranger, A., Barlow, J., Barneche, D.R.,

808 Baruch, Z., Bastianelli, D., Battles, J., Bauerle, W., Bauters, M., Bazzato, E., Beckmann,

809 M., Beeckman, H., Beierkuhnlein, C., Bekker, R., Belfry, G., Belluau, M., Beloiu, M.,

810 Benavides, R., Benomar, L., Berdugo-Lattke, M.L., Berenguer, E., Bergamin, R.,

811 Bergmann, J., Carlucci, M.B., Berner, L., Bernhardt-Römermann, M., Bigler, C.,

812 Bjorkman, A.D., Blackman, C., Blanco, C., Blonder, B., Blumenthal, D., Bocanegra-
813 González, K.T., Boeckx, P., Bohlman, S., Böhning-Gaese, K., Boisvert-Marsh, L., Bond,
814 W., Bond-Lamberty, B., Boom, A., Boonman, C.C.F., Bordin, K., Boughton, E.H.,
815 Boukili, V., Bowman, D.M.J.S., Bravo, S., Brendel, M.R., Broadley, M.R., Brown, K.A.,
816 Bruelheide, H., Brumnick, F., Bruun, H.H., Bruy, D., Buchanan, S.W., Bucher, S.F.,
817 Buchmann, N., Buitenwerf, R., Bunker, D.E., Bürger, J., Burrascano, S., Burslem,
818 D.F.R.P., Butterfield, B.J., Byun, C., Marques, M., Scalon, M.C., Caccianiga, M.,
819 Cadotte, M., Cailleret, M., Camac, J., Camarero, J.J., Campany, C., Campetella, G.,
820 Campos, J.A., Cano-Arboleda, L., Canullo, R., Carbognani, M., Carvalho, F., Casanoves,
821 F., Castagneyrol, B., Catford, J.A., Cavender-Bares, J., Cerabolini, B.E.L., Cervellini, M.,
822 Chacón-Madrigal, E., Chapin, K., Chapin, F.S., Chelli, S., Chen, S.-C., Chen, A.,
823 Cherubini, P., Chianucci, F., Choat, B., Chung, K.-S., Chytrý, M., Ciccarelli, D., Coll, L.,
824 Collins, C.G., Conti, L., Coomes, D., Cornelissen, J.H.C., Cornwell, W.K., Corona, P.,
825 Coyea, M., Craine, J., Craven, D., Cromsigt, J.P.G.M., Csecserits, A., Cufar, K., Cuntz,
826 M., Silva, A.C. da, Dahlin, K.M., Dainese, M., Dalke, I., Fratte, M.D., Dang-Le, A.T.,
827 Danihelka, J., Dannoura, M., Dawson, S., Beer, A.J. de, Frutos, A.D., Long, J.R.D.,
828 Dechant, B., Delagrange, S., Delpierre, N., Derroire, G., Dias, A.S., Diaz-Toribio, M.H.,
829 Dimitrakopoulos, P.G., Dobrowolski, M., Doktor, D., Dřevojan, P., Dong, N., Dransfield,
830 J., Dressler, S., Duarte, L., Ducouret, E., Dullinger, S., Durka, W., Duursma, R.,
831 Dymova, O., E-Vojtkó, A., Eckstein, R.L., Ejtehadi, H., Elser, J., Emilio, T., Engemann,
832 K., Erfanian, M.B., Erfmeier, A., Esquivel-Muelbert, A., Esser, G., Estiarte, M.,
833 Domingues, T.F., Fagan, W.F., Fagúndez, J., Falster, D.S., Fan, Y., Fang, J., Farris, E.,
834 Fazlioglu, F., Feng, Y., Fernandez-Mendez, F., Ferrara, C., Ferreira, J., Fidelis, A.,

835 Finegan, B., Firn, J., Flowers, T.J., Flynn, D.F.B., Fontana, V., Forey, E., Forgiarini, C.,
836 François, L., Frangipani, M., Frank, D., Frenette-Dussault, C., Freschet, G.T., Fry, E.L.,
837 Fyllas, N.M., Mazzochini, G.G., Gachet, S., Gallagher, R., Ganade, G., Ganga, F.,
838 García-Palacios, P., Gargaglione, V., Garnier, E., Garrido, J.L., Gasper, A.L. de, Gea-
839 Izquierdo, G., Gibson, D., Gillison, A.N., Giroldo, A., Glasenhardt, M.-C., Gleason, S.,
840 Gliesch, M., Goldberg, E., Göldel, B., Gonzalez-Akre, E., Gonzalez-Andujar, J.L.,
841 González-Melo, A., González-Robles, A., Graae, B.J., Granda, E., Graves, S., Green,
842 W.A., Gregor, T., Gross, N., Guerin, G.R., Günther, A., Gutiérrez, A.G., Haddock, L.,
843 Haines, A., Hall, J., Hambuckers, A., Han, W., Harrison, S.P., Hattingh, W., Hawes, J.E.,
844 He, T., He, P., Heberling, J.M., Helm, A., Hempel, S., Hentschel, J., Hérault, B., Hereş,
845 A.-M., Herz, K., Heuertz, M., Hickler, T., Hietz, P., Higuchi, P., Hipp, A.L., Hirons, A.,
846 Hock, M., Hogan, J.A., Holl, K., Honnay, O., Hornstein, D., Hou, E., Hough-Snee, N.,
847 Hovstad, K.A., Ichie, T., Igić, B., Illa, E., Isaac, M., Ishihara, M., Ivanov, L., Ivanova, L.,
848 Iversen, C.M., Izquierdo, J., Jackson, R.B., Jackson, B., Jactel, H., Jagodzinski, A.M.,
849 Jandt, U., Jansen, S., Jenkins, T., Jentsch, A., Jespersen, J.R.P., Jiang, G.-F., Johansen,
850 J.L., Johnson, D., Jokela, E.J., Joly, C.A., Jordan, G.J., Joseph, G.S., Junaedi, D., Junker,
851 R.R., Justes, E., Kabzems, R., Kane, J., Kaplan, Z., Kattenborn, T., Kavelenova, L.,
852 Kearsley, E., Kempel, A., Kenzo, T., Kerkhoff, A., Khalil, M.I., Kinlock, N.L., Kissling,
853 W.D., Kitajima, K., Kitzberger, T., Kjøller, R., Klein, T., Kleyer, M., Klimešová, J.,
854 Klipel, J., Kloepel, B., Klotz, S., Knops, J.M.H., Kohyama, T., Koike, F., Kollmann, J.,
855 Komac, B., Komatsu, K., König, C., Kraft, N.J.B., Kramer, K., Kreft, H., Kühn, I.,
856 Kumarathunge, D., Kuppler, J., Kurokawa, H., Kurosawa, Y., Kuyah, S., Laclau, J.-P.,
857 Lafleur, B., Lallai, E., Lamb, E., Lamprecht, A., Larkin, D.J., Laughlin, D., Bagousse-

858 Pinguet, Y.L., Maire, G. le, Roux, P.C. le, Roux, E. le, Lee, T., Lens, F., Lewis, S.L.,
859 Lhotsky, B., Li, Y., Li, X., Lichstein, J.W., Liebergesell, M., Lim, J.Y., Lin, Y.-S.,
860 Linares, J.C., Liu, C., Liu, D., Liu, U., Livingstone, S., Llusià, J., Lohbeck, M., López-
861 García, Á., Lopez-Gonzalez, G., Lososová, Z., Louault, F., Lukács, B.A., Lukeš, P., Luo,
862 Y., Lussu, M., Ma, S., Pereira, C.M.R., Mack, M., Maire, V., Mäkelä, A., Mäkinen, H.,
863 Malhado, A.C.M., Mallik, A., Manning, P., Manzoni, S., Marchetti, Z., Marchino, L.,
864 Marcilio-Silva, V., Marcon, E., Marignani, M., Markesteijn, L., Martin, A., Martínez-
865 Garza, C., Martínez-Vilalta, J., Mašková, T., Mason, K., Mason, N., Massad, T.J., Masse,
866 J., Mayrose, I., McCarthy, J., McCormack, M.L., McCulloh, K., McFadden, I.R., McGill,
867 B.J., McPartland, M.Y., Medeiros, J.S., Medlyn, B., Meerts, P., Mehrabi, Z., Meir, P.,
868 Melo, F.P.L., Mencuccini, M., Meredieu, C., Messier, J., Mészáros, I., Metsaranta, J.,
869 Michaletz, S.T., Michelaki, C., Migalina, S., Milla, R., Miller, J.E.D., Minden, V., Ming,
870 R., Mokany, K., Moles, A.T., Molnár, A., Molofsky, J., Molz, M., Montgomery, R.A.,
871 Monty, A., Moravcová, L., Moreno-Martínez, A., Moretti, M., Mori, A.S., Mori, S.,
872 Morris, D., Morrison, J., Mucina, L., Mueller, S., Muir, C.D., Müller, S.C., Munoz, F.,
873 Myers-Smith, I.H., Myster, R.W., Nagano, M., Naidu, S., Narayanan, A., Natesan, B.,
874 Negoita, L., Nelson, A.S., Neuschulz, E.L., Ni, J., Niedrist, G., Nieto, J., Niinemets, Ü.,
875 Nolan, R., Nottebrock, H., Nouvellon, Y., Novakovskiy, A., Nystuen, K.O., O'Grady, A.,
876 O'Hara, K., O'Reilly-Nugent, A., Oakley, S., Oberhuber, W., Ohtsuka, T., Oliveira, R.,
877 Öllerer, K., Olson, M.E., Onipchenko, V., Onoda, Y., Onstein, R.E., Ordonez, J.C.,
878 Osada, N., Ostonen, I., Ottaviani, G., Otto, S., Overbeck, G.E., Ozinga, W.A., Pahl, A.T.,
879 Paine, C.E.T., Pakeman, R.J., Papageorgiou, A.C., Parfionova, E., Pärtel, M., Patacca,
880 M., Paula, S., Paule, J., Pauli, H., Pausas, J.G., Peco, B., Penuelas, J., Perea, A., Peri,

881 P.L., Petisco-Souza, A.C., Petraglia, A., Petritan, A.M., Phillips, O.L., Pierce, S., Pillar,
882 V.D., Pisek, J., Pomogaybin, A., Poorter, H., Portsmuth, A., Poschlod, P., Potvin, C.,
883 Pounds, D., Powell, A.S., Power, S.A., Prinzing, A., Puglielli, G., Pyšek, P., Raevel, V.,
884 Rammig, A., Ransijn, J., Ray, C.A., Reich, P.B., Reichstein, M., Reid, D.E.B., Réjou-
885 Méchain, M., Dios, V.R. de, Ribeiro, S., Richardson, S., Riibak, K., Rillig, M.C., Riviera,
886 F., Robert, E.M.R., Roberts, S., Robroek, B., Roddy, A., Rodrigues, A.V., Rogers, A.,
887 Rollinson, E., Rolo, V., Römermann, C., Ronzhina, D., Roscher, C., Rosell, J.A.,
888 Rosenfield, M.F., Rossi, C., Roy, D.B., Royer-Tardif, S., Rüger, N., Ruiz-Peinado, R.,
889 Rumpf, S.B., Rusch, G.M., Ryo, M., Sack, L., Saldaña, A., Salgado-Negret, B., Salguero-
890 Gomez, R., Santa-Regina, I., Santacruz-García, A.C., Santos, J., Sardans, J., Schamp, B.,
891 Scherer-Lorenzen, M., Schleuning, M., Schmid, B., Schmidt, M., Schmitt, S., Schneider,
892 J.V., Schowanek, S.D., Schrader, J., Schrodt, F., Schuldt, B., Schurr, F., Garvizu, G.S.,
893 Semchenko, M., Seymour, C., Sfair, J.C., Sharpe, J.M., Sheppard, C.S., Sheremetiev, S.,
894 Shiodera, S., Shipley, B., Shovon, T.A., Siebenkäs, A., Sierra, C., Silva, V., Silva, M.,
895 Sitzia, T., Sjöman, H., Slot, M., Smith, N.G., Sodhi, D., Soltis, P., Soltis, D., Somers, B.,
896 Sonnier, G., Sørensen, M.V., Sosinski, E.E., Soudzilovskaia, N.A., Souza, A.F.,
897 Spasojevic, M., Sperandii, M.G., Stan, A.B., Stegen, J., Steinbauer, K., Stephan, J.G.,
898 Sterck, F., Stojanovic, D.B., Strydom, T., Suarez, M.L., Svenning, J.-C., Svitková, I.,
899 Svitok, M., Svoboda, M., Swaine, E., Swenson, N., Tabarelli, M., Takagi, K., Tappeiner,
900 U., Tarifa, R., Tauugourdeau, S., Tavsanoglu, C., Beest, M. te, Tedersoo, L., Thiffault,
901 N., Thom, D., Thomas, E., Thompson, K., Thornton, P.E., Thuiller, W., Tichý, L.,
902 Tissue, D., Tjoelker, M.G., Tng, D.Y.P., Tobias, J., Török, P., Tarin, T., Torres-Ruiz,
903 J.M., Tóthmérész, B., Treurnicht, M., Trivellone, V., Trolliet, F., Trotsiuk, V., Tsakalos,

904 J.L., Tsiripidis, I., Tysklind, N., Umehara, T., Usoltsev, V., Vadeboncoeur, M., Vaezi, J.,
905 Valladares, F., Vamosi, J., Bodegom, P.M. van, Breugel, M. van, Cleemput, E.V., Weg,
906 M. van de, Merwe, S. van der, Plas, F. van der, Sande, M.T. van der, Kleunen, M. van,
907 Meerbeek, K.V., Vanderwel, M., Vanselow, K.A., Vårhammar, A., Varone, L.,
908 Valderrama, M.Y.V., Vassilev, K., Vellend, M., Veneklaas, E.J., Verbeeck, H.,
909 Verheyen, K., Vibrans, A., Vieira, I., Villacís, J., Violle, C., Vivek, P., Wagner, K.,
910 Waldram, M., Waldron, A., Walker, A.P., Waller, M., Walther, G., Wang, H., Wang, F.,
911 Wang, W., Watkins, H., Watkins, J., Weber, U., Weedon, J.T., Wei, L., Weigelt, P.,
912 Weiher, E., Wells, A.W., Wellstein, C., Wenk, E., Westoby, M., Westwood, A., White,
913 P.J., Whitten, M., Williams, M., Winkler, D.E., Winter, K., Womack, C., Wright, I.J.,
914 Wright, S.J., Wright, J., Pinho, B.X., Ximenes, F., Yamada, T., Yamaji, K., Yanai, R.,
915 Yankov, N., Yguel, B., Zanini, K.J., Zanne, A.E., Zelený, D., Zhao, Y.-P., Zheng,
916 Jingming, Zheng, Ji, Ziemińska, K., Zirbel, C.R., Zizka, G., Zo-Bi, I.C., Zott, G., Wirth,
917 C., 2020. TRY plant trait database – enhanced coverage and open access. *Global Change
918 Biology* 26, 119–188. <https://doi.org/10.1111/gcb.14904>

919 Kennedy, D., Swenson, S., Oleson, K.W., Lawrence, D.M., Fisher, R., Lola da Costa, A.C.,
920 Gentine, P., 2019. Implementing Plant Hydraulics in the Community Land Model,
921 Version 5. *J. Adv. Model. Earth Syst.* 11, 485–513.
922 <https://doi.org/10.1029/2018MS001500>

923 Klein, T., 2014. The variability of stomatal sensitivity to leaf water potential across tree species
924 indicates a continuum between isohydric and anisohydric behaviours. *Funct Ecol* 28,
925 1313–1320. <https://doi.org/10.1111/1365-2435.12289>

926 Li, X., Blackman, C.J., Choat, B., Duursma, R.A., Rymer, P.D., Medlyn, B.E., Tissue, D.T.,
927 2018. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across
928 a rainfall gradient. *Plant, Cell & Environment* 41, 646–660.
929 <https://doi.org/10.1111/pce.13129>

930 Li, L., Yang, Z.-L., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D. M., et al. (2021).
931 Representation of Plant Hydraulics in the Noah-MP Land Surface Model: Model
932 Development and Multiscale Evaluation. *Journal of Advances in Modeling Earth
933 Systems*, 13(4), e2020MS002214. <https://doi.org/10.1029/2020MS002214>

934 Lin, Y.-S., Medlyn, B.E., Duursma, R.A., Prentice, I.C., Wang, H., Baig, S., Eamus, D., de Dios,
935 V.R., Mitchell, P., Ellsworth, D.S., de Beeck, M.O., Wallin, G., Uddling, J., Tarvainen,
936 L., Linderson, M.-L., Cernusak, L.A., Nippert, J.B., Ocheltree, T.W., Tissue, D.T.,
937 Martin-StPaul, N.K., Rogers, A., Warren, J.M., De Angelis, P., Hikosaka, K., Han, Q.,
938 Onoda, Y., Gimeno, T.E., Barton, C.V.M., Bennie, J., Bonal, D., Bosc, A., Löw, M.,
939 Macinins-Ng, C., Rey, A., Rowland, L., Setterfield, S.A., Tausz-Posch, S., Zaragoza-
940 Castells, J., Broadmeadow, M.S.J., Drake, J.E., Freeman, M., Ghannoum, O., Hutley,
941 L.B., Kelly, J.W., Kikuzawa, K., Kolari, P., Koyama, K., Limousin, J.-M., Meir, P., Lola
942 da Costa, A.C., Mikkelsen, T.N., Salinas, N., Sun, W., Wingate, L., 2015. Optimal
943 stomatal behaviour around the world. *Nature Climate Change* 5, 459–464.
944 <https://doi.org/10.1038/nclimate2550>

945 Liu, Y., Holtzman, N. M., & Konings, A. G. (2021). Global ecosystem-scale plant hydraulic
946 traits retrieved using model–data fusion. *Hydrology and Earth System Sciences*, 25(5),
947 2399–2417. <https://doi.org/10.5194/hess-25-2399-2021>

948 Liu, Y., Kumar, M., Katul, G.G., Feng, X., Konings, A.G., 2020. Plant hydraulics accentuates
949 the effect of atmospheric moisture stress on transpiration. *Nature Climate Change* 10,
950 691–695. <https://doi.org/10.1038/s41558-020-0781-5>

951 Luo, Y., Ogle, K., Tucker, C., Fei, S., Gao, C., LaDeau, S., Clark, J.S., Schimel, D.S., 2011.
952 Ecological forecasting and data assimilation in a data-rich era. *Ecological Applications*
953 21, 1429–1442. <https://doi.org/10.1890/09-1275.1>

954 Luo, Y., Weng, E., Wu, X., Gao, C., Zhou, X., Zhang, L., 2009. Parameter Identifiability,
955 Constraint, and Equifinality in Data Assimilation with Ecosystem Models. *Ecological
956 Applications* 19, 571–574.

957 Maherali, H., Moura, C. E., Caldeira, M. C., Willson, C. J., & Jackson, R. B. (2006). Functional
958 coordination between leaf gas exchange and vulnerability to xylem cavitation in
959 temperate forest trees. *Plant, Cell & Environment*, 29(4), 571–583.
960 <https://doi.org/10.1111/j.1365-3040.2005.01433.x>

961 Manzoni, S., Vico, G., Katul, G., Fay, P. A., Polley, W., Palmroth, S., Porporato, A., 2011.
962 Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-
963 analysis across plant functional types and climates. *Functional Ecology*, 25(3), 456–467.
964 <https://doi.org/10.1111/j.1365-2435.2010.01822.x>

965 Martínez-Vilalta, J., Cochard, H., Mencuccini, M., Sterck, F., Herrero, A., Korhonen, J.F.J.,
966 Llorens, P., Nikinmaa, E., Nolè, A., Poyatos, R., Ripullone, F., Sass-Klaassen, U.,
967 Zweifel, R., 2009. Hydraulic adjustment of Scots pine across Europe. *New Phytologist*
968 184, 353–364. <https://doi.org/10.1111/j.1469-8137.2009.02954.x>

969 Martin-StPaul, N., Delzon, S., Cochard, H., 2017. Plant resistance to drought depends on timely
970 stomatal closure. *Ecology Letters* 20, 1437–1447. <https://doi.org/10.1111/ele.12851>

971 Matheny, A.M., Bohrer, G., Vogel, C.S., Morin, T.H., He, L., Frasson, R.P. de M.,
972 Mirfenderesgi, G., Schäfer, K.V.R., Gough, C.M., Ivanov, V.Y., Curtis, P.S., 2014.
973 Species-specific transpiration responses to intermediate disturbance in a northern
974 hardwood forest. *Journal of Geophysical Research: Biogeosciences* 119, 2292–2311.
975 <https://doi.org/10.1002/2014JG002804>

976 Matheny, A.M., Fiorella, R.P., Bohrer, G., Poulsen, C.J., Morin, T.H., Wunderlich, A., Vogel,
977 C.S., Curtis, P.S., 2017. Contrasting strategies of hydraulic control in two codominant
978 temperate tree species. *Ecohydrology* 10, e1815. <https://doi.org/10.1002/eco.1815>

979 McDowell, N.G., Allen, C.D., 2015. Darcy's law predicts widespread forest mortality under
980 climate warming. *Nature Climate Change* 5, 669–672.
981 <https://doi.org/10.1038/nclimate2641>

982 McLaughlin, B.C., Blakey, R., Weitz, A.P., Feng, X., Brown, B.J., Ackerly, D.D., Dawson, T.E.,
983 Thompson, S.E., 2020. Weather underground: Subsurface hydrologic processes mediate
984 tree vulnerability to extreme climatic drought. *Global Change Biology* 26, 3091–3107.
985 <https://doi.org/10.1111/gcb.15026>

986 Medlyn, B.E., Duursma, R.A., Eamus, D., Ellsworth, D.S., Prentice, I.C., Barton, C.V.M., Crous,
987 K.Y., De Angelis, P., Freeman, M., Wingate, L., 2011. Reconciling the optimal and
988 empirical approaches to modelling stomatal conductance. *Global Change Biology* 17,
989 2134–2144. <https://doi.org/10.1111/j.1365-2486.2010.02375.x>

990 Mencuccini, M., Manzoni, S., Christoffersen, B., 2019. Modelling water fluxes in plants: from
991 tissues to biosphere. *New Phytologist*. <https://doi.org/10.1111/nph.15681>

992 Mirfenderesgi, G., Matheny, A.M., Bohrer, G., 2019. Hydrodynamic trait coordination and cost-
993 benefit trade-offs throughout the isohydric-anisohydric continuum in trees:

994 Hydrodynamic Trait Coordination and Cost-Benefit Trade-offs in Trees. *Ecohydrology*
995 12, e2041. <https://doi.org/10.1002/eco.2041>

996 Mo, X., Chen, J.M., Ju, W., Black, T.A., 2008. Optimization of ecosystem model parameters
997 through assimilating eddy covariance flux data with an ensemble Kalman filter.
998 *Ecological Modelling* 217, 157–173. <https://doi.org/10.1016/j.ecolmodel.2008.06.021>

999 Monteith, J.L., Unsworth, M.H. (Eds.), 2013. Principles of Environmental Physics, in: *Principles*
1000 of Environmental Physics (Fourth Edition). Academic Press, Boston, p. i.
1001 <https://doi.org/10.1016/B978-0-12-386910-4.00018-4>

1002 Nave, L.E., Gough, C.M., Maurer, K.D., Bohrer, G., Hardiman, B.S., Moine, J.L., Munoz, A.B.,
1003 Nadelhoffer, K.J., Sparks, J.P., Strahm, B.D., Vogel, C.S., Curtis, P.S., 2011. Disturbance
1004 and the resilience of coupled carbon and nitrogen cycling in a north temperate forest.
1005 *Journal of Geophysical Research: Biogeosciences* 116.
1006 <https://doi.org/10.1029/2011JG001758>

1007 Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A.,
1008 Blanken, P.D., Noormets, A., Sulman, B.N., Scott, R.L., Wang, L., Phillips, R.P., 2016.
1009 The increasing importance of atmospheric demand for ecosystem water and carbon
1010 fluxes. *Nature Climate Change* 6, 1023–1027. <https://doi.org/10.1038/nclimate3114>

1011 Novick, K.A., Konings, A.G., Gentine, P., 2019. Beyond soil water potential: An expanded view
1012 on isohydricity including land–atmosphere interactions and phenology. *Plant, Cell &*
1013 *Environment* 42, 1802–1815. <https://doi.org/10.1111/pce.13517>

1014 Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., Chang, J., Kauwe,
1015 M.D., Estiarte, M., Goll, D., Hanson, P.J., Harper, A.B., Hou, E., Kigel, J., Knapp, A.K.,
1016 Larsen, K.S., Li, W., Lienert, S., Luo, Y., Meir, P., Nabel, J.E.M.S., Ogaya, R., Parolari,

1017 A.J., Peng, C., Peñuelas, J., Pongratz, J., Rambal, S., Schmidt, I.K., Shi, H., Sternberg,
1018 M., Tian, H., Tschumi, E., Ukkola, A., Vicca, S., Viovy, N., Wang, Y.-P., Wang, Z.,
1019 Williams, K., Wu, D., Zhu, Q., 2020. Rainfall manipulation experiments as simulated by
1020 terrestrial biosphere models: Where do we stand? *Global Change Biology* 26, 3336–
1021 3355. <https://doi.org/10.1111/gcb.15024>

1022 Patil, A., Huard, D., Fonnesbeck, C., 2010. PyMC: Bayesian Stochastic Modelling in Python. *J.
1023 Stat. Soft.* 35. <https://doi.org/10.18637/jss.v035.i04>

1024 Powell, T.L., Galbraith, D.R., Christoffersen, B.O., Harper, A., Imbuzeiro, H.M.A., Rowland, L.,
1025 Almeida, S., Brando, P.M., Costa, A.C.L. da, Costa, M.H., Levine, N.M., Malhi, Y.,
1026 Saleska, S.R., Sotta, E., Williams, M., Meir, P., Moorcroft, P.R., 2013. Confronting
1027 model predictions of carbon fluxes with measurements of Amazon forests subjected to
1028 experimental drought. *New Phytologist* 200, 350–365. <https://doi.org/10.1111/nph.12390>

1029 Poyatos, R., Granda, V., Flo, V., Adams, M.A., Adorján, B., Aguadé, D., Aidar, M.P.M., Allen,
1030 S., Alvarado-Barrientos, M.S., Anderson-Teixeira, K.J., Aparecido, L.M., Arain, M.A.,
1031 Aranda, I., Asbjornsen, H., Baxter, R., Beamesderfer, E., Berry, Z.C., Berveiller, D.,
1032 Blakely, B., Boggs, J., Bohrer, G., Bolstad, P.V., Bonal, D., Bracho, R., Brito, P.,
1033 Brodeur, J., Casanoves, F., Chave, J., Chen, H., Cisneros, C., Clark, K., Cremonese, E.,
1034 David, J.S., David, T.S., Delpierre, N., Desai, A.R., Do, F.C., Dohnal, M., Domec, J.-C.,
1035 Dzikiti, S., Edgar, C., Eichstaedt, R., El-Madany, T.S., Elbers, J., Eller, C.B., Euskirchen,
1036 E.S., Ewers, B., Fonti, P., Forner, A., Forrester, D.I., Freitas, H.C., Galvagno, M., Garcia-
1037 Tejera, O., Ghimire, C.P., Gimeno, T.E., Grace, J., Granier, A., Griebel, A., Guangyu, Y.,
1038 Gush, M.B., Hanson, P., Hasselquist, N.J., Heinrich, I., Hernandez-Santana, V.,
1039 Herrmann, V., Hölttä, T., Holwerda, F., Hongzhong, D., Irvine, J., Isarangkool Na

1040 Ayutthaya, S., Jarvis, P.G., Jochheim, H., Joly, C.A., Kaplick, J., Kim, H.S.,
1041 Klemedtsson, L., Kropp, H., Lagergren, F., Lane, P., Lang, P., Lapenas, A., Lechuga, V.,
1042 Lee, M., Leuschner, C., Limousin, J.-M., Linares, J.C., Linderson, M.-L., Lindroth, A.,
1043 Llorens, P., López-Bernal, Á., Loranty, M.M., Lütschwager, D., Macinnis-Ng, C.,
1044 Maréchaux, I., Martin, T.A., Matheny, A., McDowell, N., McMahon, S., Meir, P.,
1045 Mészáros, I., Migliavacca, M., Mitchell, P., Mölder, M., Montagnani, L., Moore, G.W.,
1046 Nakada, R., Niu, F., Nolan, R.H., Norby, R., Novick, K., Oberhuber, W., Obojes, N.,
1047 Oishi, C.A., Oliveira, R.S., Oren, R., Ourcival, J.-M., Paljakka, T., Perez-Priego, O., Peri,
1048 Peters, R.L., Pfautsch, S., Pockman, W.T., Preisler, Y., Rascher, K., Robinson, G.,
1049 Rocha, H., Rocheteau, A., Röll, A., Rosado, B., Rowland, L., Rubtsov, A.V., Sabaté, S.,
1050 Salmon, Y., Salomón, R.L., Sánchez-Costa, E., Schäfer, K.V.R., Schuldt, B., Shashkin,
1051 Stahl, C., Stojanović, M., Suárez, J.C., Sun, G., Szatniewska, J., Tatarinov, F., Tesař,
1052 M., Thomas, F.M., Tor-ngern, P., Urban, J., Valladares, F., van der Tol, C., van
1053 Meerveld, I., Varlagin, A., Voigt, H., Warren, J., Werner, C., Werner, W., Wieser, G.,
1054 Wingate, L., Wullschleger, S., Yi, K., Zweifel, R., Steppe, K., Mencuccini, M., Martínez-
1055 Vilalta, J., 2020. Global transpiration data from sap flow measurements: the
1056 SAPFLUXNET database. *Earth System Science Data Discussions* 1–57.
1057 <https://doi.org/10.5194/essd-2020-227>
1058 Poyatos, R., Granda, V., Molowny-Horas, R., Mencuccini, M., Steppe, K., Martínez-Vilalta, J.,
1059 2016. SAPFLUXNET: towards a global database of sap flow measurements. *Tree
1060 Physiology* 36, 1449–1455. <https://doi.org/10.1093/treephys/tpw110>

1061 Pritzkow, C., Williamson, V., Szota, C., Trouvé, R., Arndt, S.K., 2020. Phenotypic plasticity and
1062 genetic adaptation of functional traits influences intra-specific variation in hydraulic
1063 efficiency and safety. *Tree Physiol* 40, 215–229. <https://doi.org/10.1093/treephys/tpz121>

1064 Rafael Poyatos, Víctor Granda, Víctor Flo, Roberto Molowny-Horas, Kathy Steppe, Maurizio
1065 Mencuccini, Jordi Martínez-Vilalta, 2019. SAPFLUXNET: A global database of sap flow
1066 measurements. <https://doi.org/10.5281/zenodo.2530798>

1067 Raupach, M.R., Rayner, P.J., Barrett, D.J., DeFries, R.S., Heimann, M., Ojima, D.S., Quegan, S.,
1068 Schmullius, C.C., 2005. Model–data synthesis in terrestrial carbon observation: methods,
1069 data requirements and data uncertainty specifications. *Global Change Biology* 11, 378–
1070 397. <https://doi.org/10.1111/j.1365-2486.2005.00917.x>

1071 Rosas, T., Mencuccini, M., Barba, J., Cochard, H., Saura-Mas, S., Martínez-Vilalta, J., 2019.
1072 Adjustments and coordination of hydraulic, leaf and stem traits along a water availability
1073 gradient. *New Phytologist* 223, 632–646. <https://doi.org/10.1111/nph.15684>

1074 Sabot, M.E.B., Kauwe, M.G.D., Pitman, A.J., Medlyn, B.E., Verhoef, A., Ukkola, A.M.,
1075 Abramowitz, G., 2020. Plant profit maximization improves predictions of European
1076 forest responses to drought. *New Phytologist* 226, 1638–1655.
1077 <https://doi.org/10.1111/nph.16376>

1078 Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical modeling with
1079 python. In 9th Python in Science Conference.

1080 Sloan, B. P., Thompson, S. E., & Feng, X. (2021). Plant hydraulic transport controls
1081 transpiration sensitivity to soil water stress. *Hydrology and Earth System Sciences*, 25(8),
1082 4259–4274. <https://doi.org/10.5194/hess-25-4259-2021>

1083 Sobol, I.M., 2001. Global sensitivity indices for nonlinear mathematical models and their Monte
1084 Carlo estimates. *Mathematics and Computers in Simulation, The Second IMACS*
1085 Seminar on Monte Carlo Methods

1086 55, 271–280. [https://doi.org/10.1016/S0378-4754\(00\)00270-6](https://doi.org/10.1016/S0378-4754(00)00270-6)

1087 Sperry, J.S., Adler, F.R., Campbell, G.S., Comstock, J.P., 1998. Limitation of plant water use by
1088 rhizosphere and xylem conductance: results from a model. *Plant, Cell & Environment* 21,
1089 347–359. <https://doi.org/10.1046/j.1365-3040.1998.00287.x>

1090 Thomsen, J.E., Bohrer, G., Matheny, A.M., Ivanov, V.Y., He, L., Renninger, H.J., Schäfer,
1091 K.V.R., 2013. Contrasting Hydraulic Strategies during Dry Soil Conditions in *Quercus*
1092 *rubra* and *Acer rubrum* in a Sandy Site in Michigan. *Forests* 4, 1106–1120.
1093 <https://doi.org/10.3390/f4041106>

1094 Trugman, A.T., Anderegg, L.D.L., Wolfe, B.T., Birami, B., Ruehr, N.K., Detto, M., Bartlett,
1095 M.K., Anderegg, W.R.L., 2019. Climate and plant trait strategies determine tree carbon
1096 allocation to leaves and mediate future forest productivity. *Global Change Biology* 25,
1097 3395–3405. <https://doi.org/10.1111/gcb.14680>

1098 Trugman, A.T., Medvigy, D., Mankin, J.S., Anderegg, W.R.L., 2018. Soil Moisture Stress as a
1099 Major Driver of Carbon Cycle Uncertainty. *Geophysical Research Letters* 45, 6495–
1100 6503. <https://doi.org/10.1029/2018GL078131>

1101 Tyree, M.T., Sperry, J.S., 1988. Do Woody Plants Operate Near the Point of Catastrophic Xylem
1102 Dysfunction Caused by Dynamic Water Stress? Answers from a Model. *Plant Physiol.*
1103 88, 574–580. <https://doi.org/10.1104/pp.88.3.574>

1104 van Genuchten, M.Th., 1980. CLOSED-FORM EQUATION FOR PREDICTING THE
1105 HYDRAULIC CONDUCTIVITY OF UNSATURATED SOILS. *Soil Science Society of
1106 America Journal* 44, 892–898.

1107 Williams, P.A., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M.,
1108 Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook,
1109 E.R., Gangodagamage, C., Cai, M., McDowell, N.G., 2013. Temperature as a potent
1110 driver of regional forest drought stress and tree mortality. *Nature Climate Change* 3, 292–
1111 297. <https://doi.org/10.1038/nclimate1693>

1112 Wolf, A., Anderegg, W. R. L., Pacala, S. W., 2016. Optimal stomatal behavior with competition
1113 for water and risk of hydraulic impairment. *Proceedings of the National Academy of
1114 Sciences of the United States of America*, 113(46), E7222–E7230.
1115 <https://doi.org/10.1073/pnas.1615144113>

1116 Wu, Y., Liu, S., Huang, Z., Yan, W., 2014. Parameter optimization, sensitivity, and uncertainty
1117 analysis of an ecosystem model at a forest flux tower site in the United States. *J. Adv.
1118 Model. Earth Syst.* 6, 405–419. <https://doi.org/10.1002/2013MS000298>

1119 Xiao, J., Davis, K.J., Urban, N.M., Keller, K., 2014. Uncertainty in model parameters and
1120 regional carbon fluxes: A model-data fusion approach. *Agricultural and Forest
1121 Meteorology* 189–190, 175–186. <https://doi.org/10.1016/j.agrformet.2014.01.022>

1122 Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., & Guan, K., 2016. Diversity in plant
1123 hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in
1124 seasonally dry tropical forests. *New Phytologist*, 212(1), 80–95.
1125 <https://doi.org/10.1111/nph.14009>

1126 Young, D.J.N., Stevens, J.T., Earles, J.M., Moore, J., Ellis, A., Jirka, A.L., Latimer, A.M., 2017.

1127 Long-term climate and competition explain forest mortality patterns under extreme

1128 drought. *Ecol Lett* 20, 78–86. <https://doi.org/10.1111/ele.12711>

1129 Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G., Prentice, I. C., 2013. How should we

1130 model plant responses to drought? An analysis of stomatal and non-stomatal responses to

1131 water stress. *Agricultural and Forest Meteorology*, 182–183, 204–214.

1132 <https://doi.org/10.1016/J.AGRFORMAT.2013.05.009>

1133 Zhu, Q., Castellano, M.J., Yang, G., 2018. Coupling soil water processes and the nitrogen cycle

1134 across spatial scales: Potentials, bottlenecks and solutions. *Earth-Science Reviews* 187,

1135 248–258. <https://doi.org/10.1016/j.earscirev.2018.10.005>

1136

1137 **Supporting information**

1138 **Multi-segment xylem model**

1139 Let us compare a whole-plant model with a single segment from a multi-segment model.

1140 Assuming they have the same flux, we get

$$1141 \quad k_{whole}(\Psi_{whole}, \Psi_{50whole}) \Delta\Psi_{whole} = k_{segment}(\Psi_{segment}, \Psi_{50segment}) \Delta\Psi_{segment}$$

1142 where k , Ψ , and $\Delta\Psi$ denote the plant hydraulic conductance, plant water potential, and the water
1143 potential gradient, respectively; and the subscripts, whole and segment, represent the two
1144 corresponding models.

1145 As it is fair to consider

$$1146 \quad \Delta\Psi_{whole} > \Delta\Psi_{segment},$$

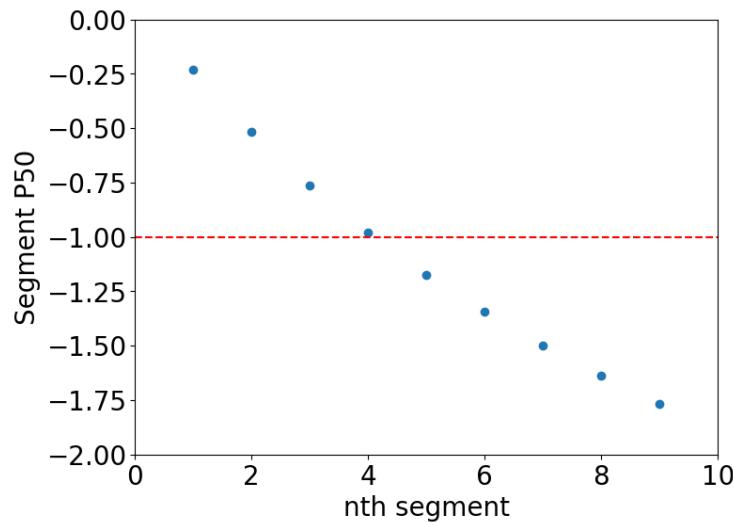
1147 it follows

$$1148 \quad k_{whole}(\Psi_{whole}, \Psi_{50whole}) < k_{segment}(\Psi_{segment}, \Psi_{50segment}).$$

1149 The above inequality suggests that the whole plant model has a more vulnerable xylem (*i.e.*,
1150 $\Psi_{50whole} > \Psi_{50segment}$) and/or a more negative water potential (*i.e.*, $\Psi_{whole} < \Psi_{segment}$).
1151 Alternatively, the above inequality can also be satisfied with the whole plant model having a
1152 stronger xylem (*i.e.*, $\Psi_{50whole} < \Psi_{50segment}$), which is more likely when Ψ_{whole} is much lower
1153 than $\Psi_{segment}$. This later scenario is more realistic when comparing the whole plant model with
1154 the segment that is close to the root (as the water potential there is close to the soil water
1155 potential) in a multi-segment model.

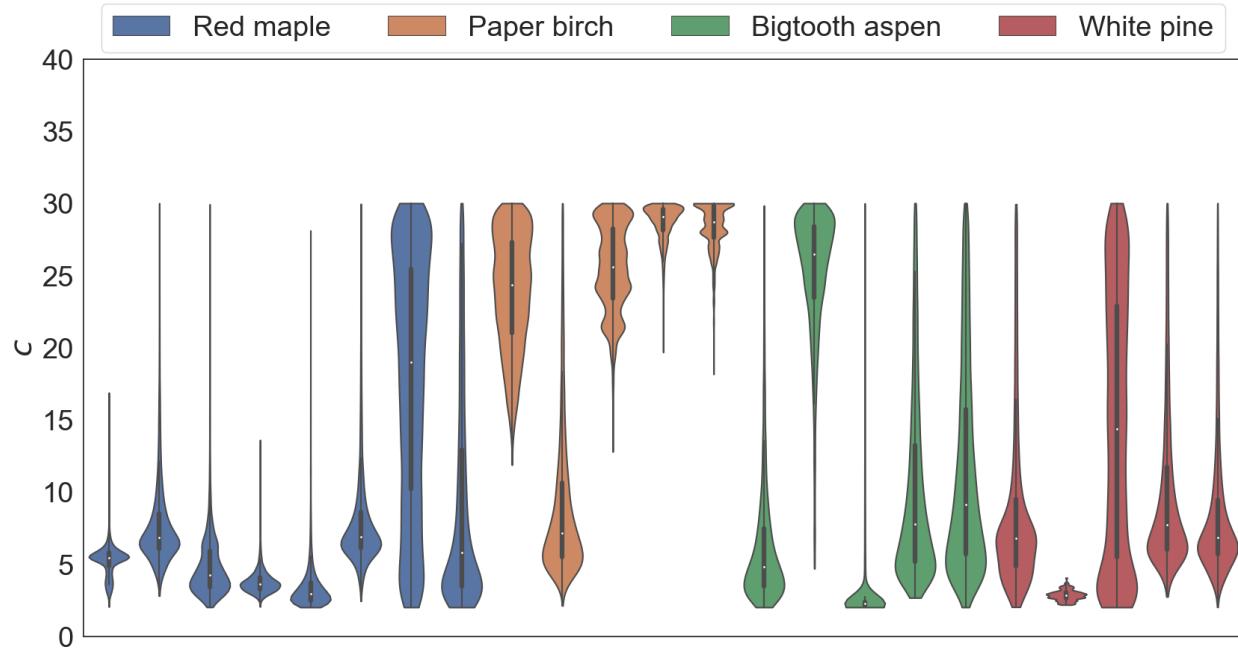
1156 We explored the above ideas with a simple simulation experiment. In this experiment, we
1157 assume that 1) the two models share the soil water potential and 2) the water potential drop in the
1158 whole-plant model is larger than that in the multi-segment model.

1159 As shown in Fig. S1, given the P50 for the whole plant model (red) and water potential drops for
1160 the two models, we found that the inferred P50 for each segment in the multi-segment model
1161 becomes more negative for the segments that are further away from the soil where the red
1162 horizontal dashed line indicates the given value for the P50 for the whole plant model and the
1163 first segment is the segment that contains the fine roots.



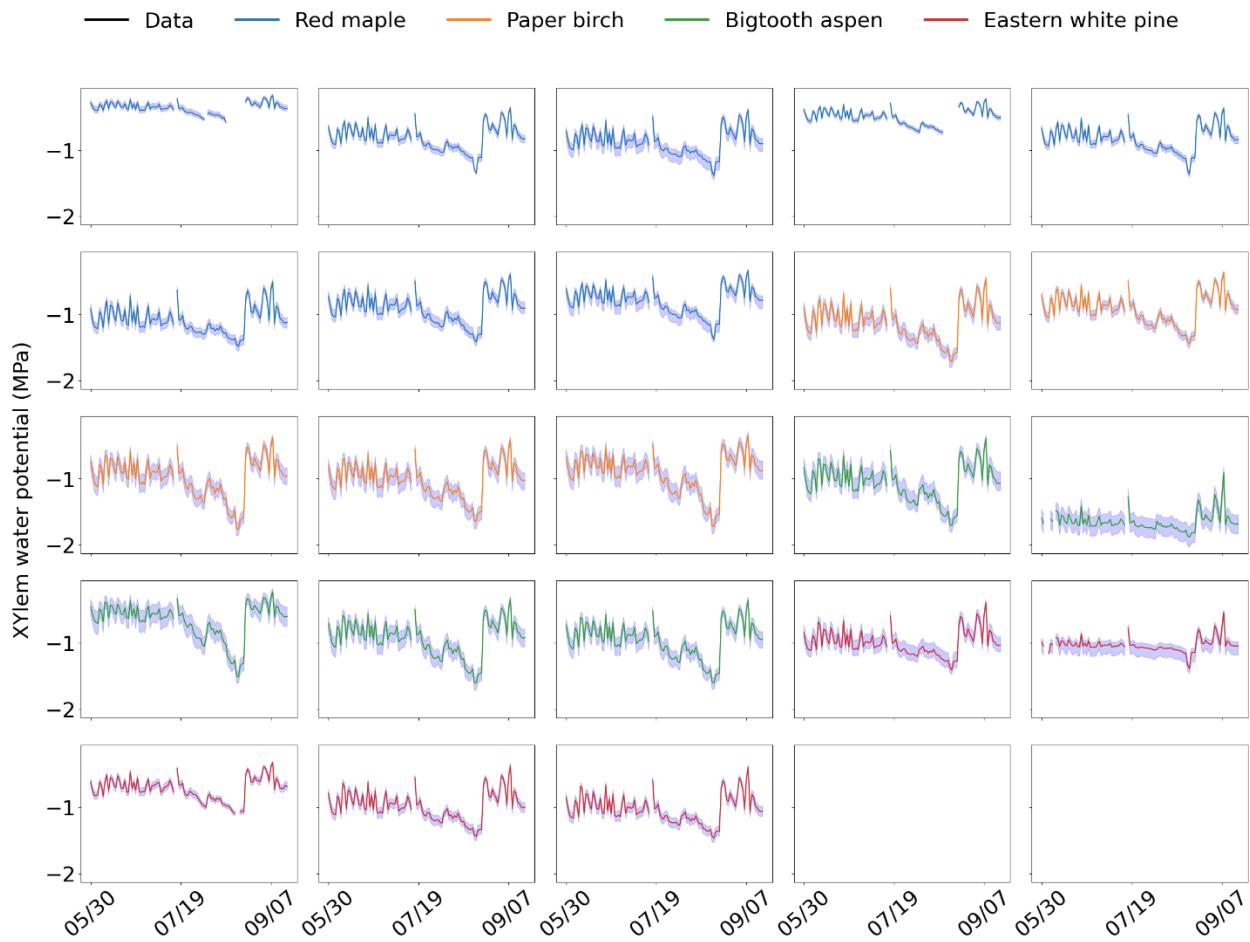
1164

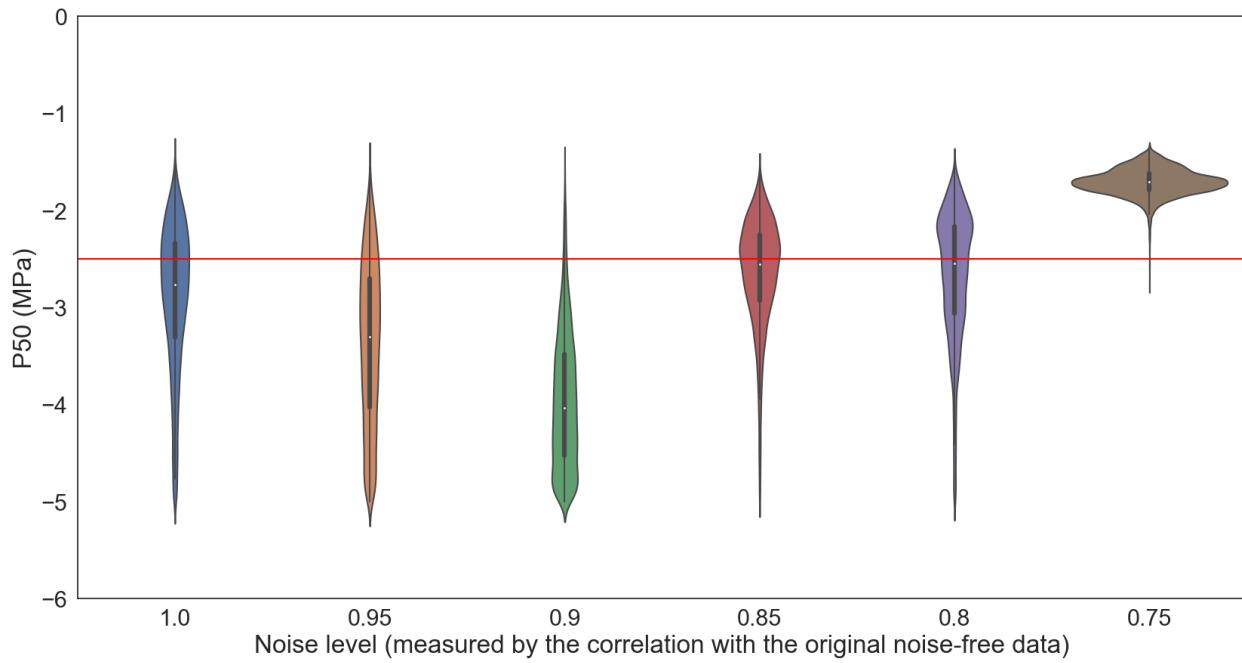
1165 **Figure S1.** P50 at each segment in a plant with n (=10) segments. The horizontal red dashed line
1166 indicates the corresponding whole-plant P50 value.



1167

1168 **Figure S2.** Posterior distributions of c with prior distribution as Uniform [2, 30]. Each bar
1169 represents an individual tree. Color indicates species: blue for red maple, yellow for paper birch,
1170 green for bigtooth aspen, and red for white pine.

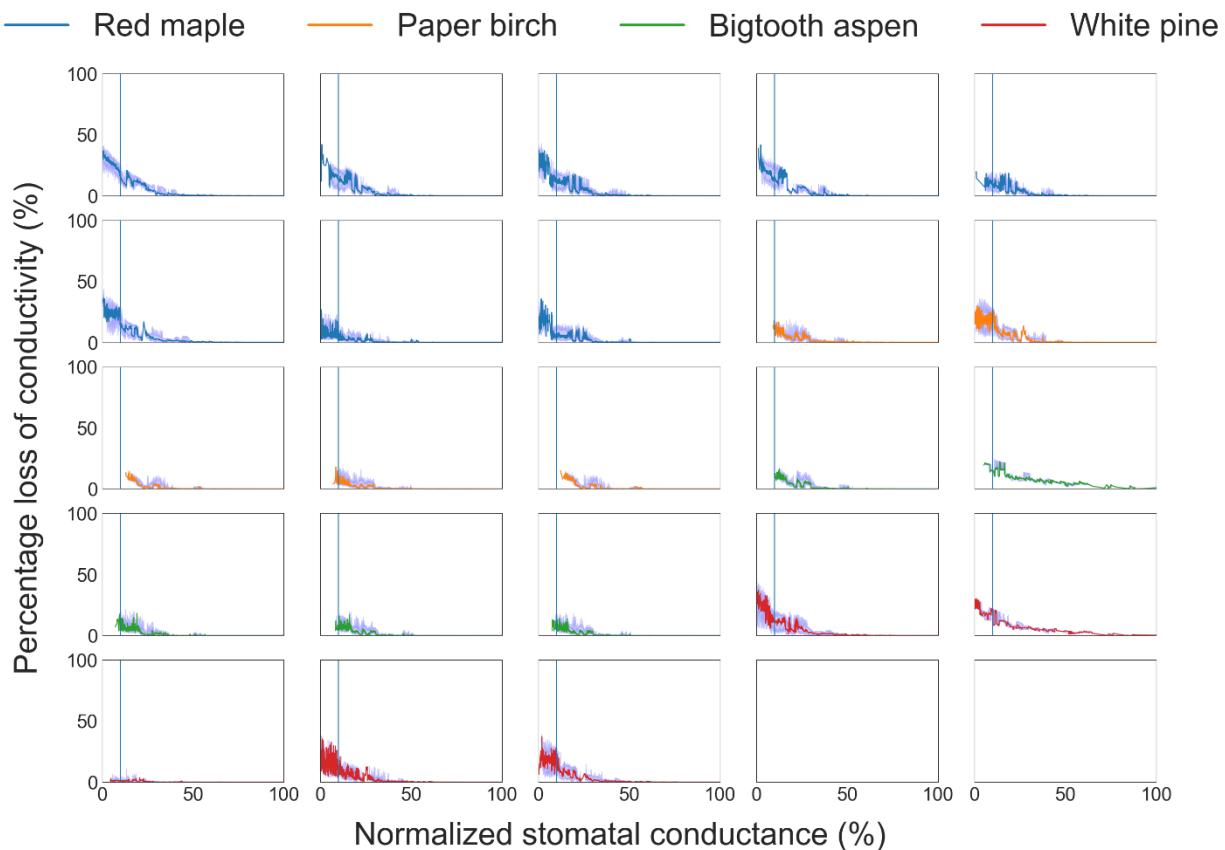




1177

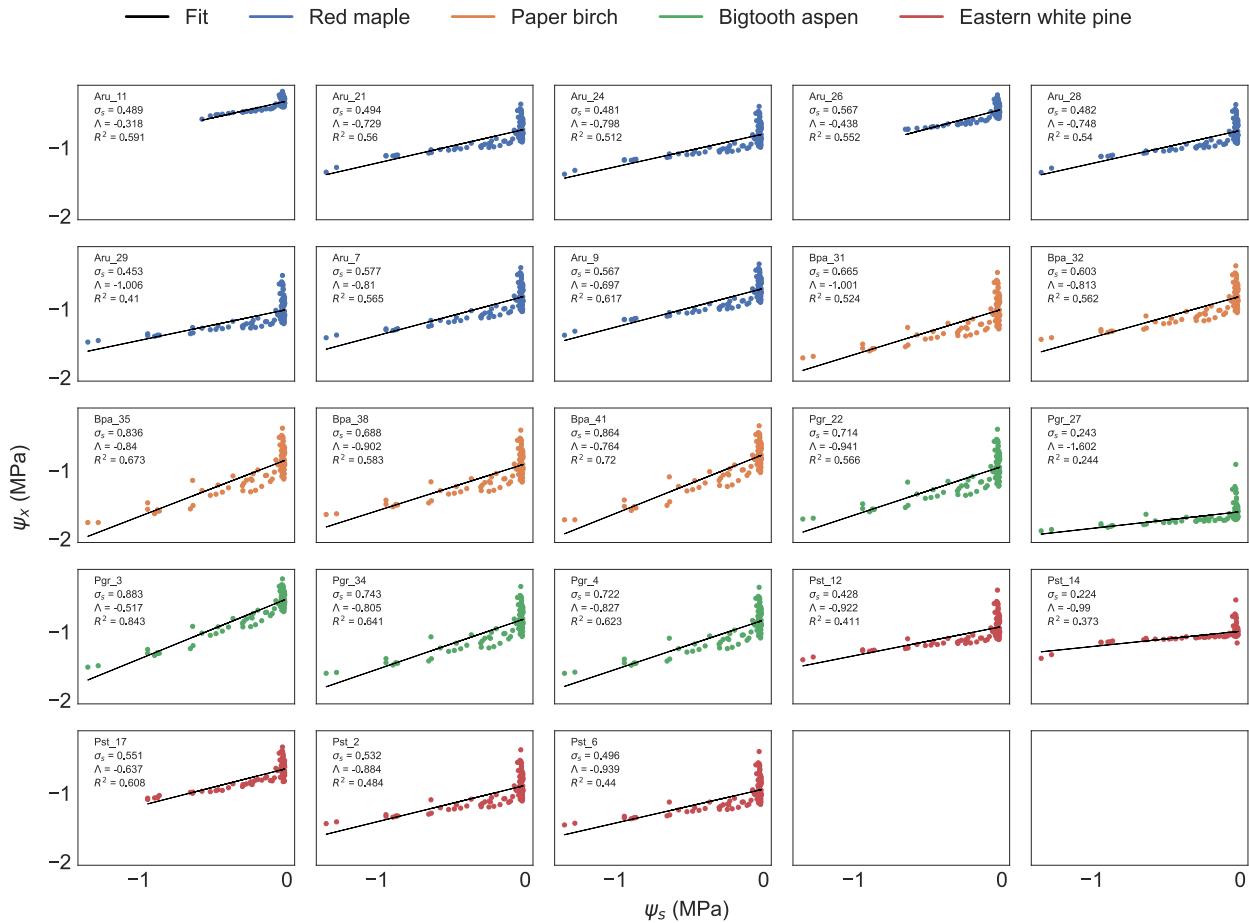
1178 **Figure S4.** Posterior distributions of P50 inferred using sap flow data at different noise levels.

1179 The horizontal line labels the synthetic truth.



1180

1181 **Figure S5.** Estimates of PLC given stomatal closure. The 5th, 50th, and 95th percentiles of 1000
 1182 MCMC estimates of PLC are shown. Color indicates species (blue: red maple; brown: paper
 1183 birch; green: bigtooth aspen; red: white pine). The vertical line indicates 90% stomatal closure.



1184

1185 **Figure S6.** Linear relation between inferred plant water potential to observed soil water potential
 1186 used to identify the isohydricity index σ (slope) for each site (see Sect. 2.6 for details). Color
 1187 indicates species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine).
 1188 The site ID, slope (σ), intercept (Λ), and coefficient of determination (R^2) are shown for each
 1189 site. The σ values are used to create Figure 6a in the main text.

Multiple Comparison of Means - Tukey HSD, FWER=0.05						
group1	group2	meandiff	p-adj	lower	upper	reject
Bigtooth aspen	Eastern white pine	-0.2147	0.1081	-0.4647	0.0353	False
Bigtooth aspen	Paper birch	0.0704	0.8448	-0.1796	0.3203	False
Bigtooth aspen	Red maple	-0.1472	0.2878	-0.3725	0.0782	False
Eastern white pine	Paper birch	0.2851	0.0221	0.0351	0.5351	True
Eastern white pine	Red maple	0.0675	0.8169	-0.1578	0.2929	False
Paper birch	Red maple	-0.2175	0.0608	-0.4429	0.0078	False

1190

1191 **Figure S7.** Output for pairwise t-tests performed in Tukey's HSD test by the Python package
1192 *statsmodel*.