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Key points

e Plant hydraulic parameters are inferred with low uncertainty from sap flow data
e Inferred parameter values capture whole-plant response and water use strategies instead
of leaf or branch-level responses

e The model inversion method complements field measurement of plant hydraulic traits

Abstract

Understanding plant hydraulic regulation is critical for predicting plant and ecosystem responses
to projected increases in drought stress. Plant hydraulic regulation is controlled by observable,
diverse plant hydraulic traits that can vary as much across individuals of the same species as they
do across different species. Direct measurements of plant hydraulic traits from a range of
ecosystems remain limited in comparison to other, more readily measured traits (e.g., specific
leaf area). Furthermore, plant hydraulic trait measurements, often made at leaf or branch levels,
are not easily scaled to whole-plant values that are typically used to predict plant and ecosystem
fluxes. In this study, multiple whole-plant hydraulic parameters are inferred from observations of
plant water use (i.e., sap flow), soil properties, and meteorological data. We use a Markov Chain
Monte Carlo model inversion approach to obtain the best estimates and uncertainty of plant
hydraulic parameters that capture whole-plant effective embolism resistance and stomatal
sensitivity to decreasing plant water potential. We then use the inferred values in the model to
estimate whole-tree water use and isohydricity. This approach reliably infers whole-plant
parameter values with enough specificity to resolve inter- and intra-specific differences, and thus

supplements time- and labor-intensive direct measurements of traits.

Key words: plant hydraulics, xylem vulnerability, model inversion, MCMC, sap flow
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1 Introduction

The increasing frequency and severity of drought in many parts of the world (Field et al. 2012)
contributes to water stress (Dai, 2011; Feng et al., 2019; Williams et al., 2013) and mortality in
plant communities (Allen et al., 2010; De Kauwe et al., 2020; McLaughlin et al., 2020; Novick et
al., 2016; Young et al., 2017), with subsequent changes in ecosystem water, carbon, and energy
cycling (Bonan, 2008). Plant response and vulnerability to drought, as well as recovery after
drought, are controlled by a combination of root, xylem, and leaf hydraulic traits and stomatal
responses. For example, under drought conditions, stomatal closure closely coordinates with
xylem resistance to embolism (measured by the water potentials at 12% (P12) and 50% (P50)
loss of conductance in xylem) across different taxonomic (gymnosperm and angiosperm) and
functional (evergreen and deciduous) groups to regulate plant water use, plant water potential,
and the extent of xylem embolism (Bartlett et al., 2016; Martin-StPaul et al., 2017). This
coordination of multiple plant hydraulic traits, including stomatal control and xylem embolism
resistance, also influence the timing of hydraulic failure in plants (Blackman et al., 2019).
Finally, by regulating whole-tree carbon allocation, plant hydraulic traits, including P50 and
maximum xylem hydraulic conductance, can explain leaf area dynamics, delayed mortality, and

xylem damage recovery post drought (Trugman et al., 2019, 2018).

Plant hydraulic traits are also critical for prediction, particularly as; parameters in physically-
based Plant Hydraulic Models (PHMs). PHMs represent water transport through the soil-plant-
atmosphere continuum via flux-gradient relationships (based on Hagen-Poiseuille flow or porous
media flow). Hydraulic parameters are needed to describe the functional form of their
conductance vulnerability curves (Mencuccini et al., 2019) and stomatal responses

(Mirfenderesgi et al., 2019). The recent implementations of PHMs into terrestrial biosphere
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models have shown promising corrections of previous prediction biases in gross primary
productivity and evapotranspiration (Bonan et al., 2014; Eller et al., 2020; Kennedy et al., 2019;
Lietal., 2021; Powell et al., 2013; Sabot et al., 2020; Xu et al., 2016) as well as soil water
balance (Kennedy et al., 2019), especially under drought conditions. However, the use of PHMs
in models is still hindered by the need to acquire plant hydraulic traits for parameterization

(Feng, 2020; Paschalis et al., 2020; Sloan et al., 2021).

Plant hydraulic traits exhibit large intraspecific (Martinez-Vilalta et al., 2009; Pritzkow et al.,
2020; Rosas et al., 2019) and interspecific variability (Choat et al., 2012; Maherali et al., 2006)
that must be accounted for when considering ecosystem-level response to drought. For example,
trait interspecific variability better explains interannual variability in the ecosystem fluxes of
carbon, water, and energy at global scales than do community-weighted trait values (Anderegg et
al., 2018). Although no comprehensive assessment of intraspecific variability exists, one meta-
analysis has shown that intraspecific variability of P50 can account for a significant portion
(33%) of interspecific variability within a genus (Anderegg, 2015). Therefore, a detailed
characterization of both inter- and intraspecific hydraulic trait variability is necessary for

predicting ecosystem response to drought.

Despite the obvious need, comprehensive plant hydraulic trait measurements are far less
available than many other plant traits, e.g., specific leaf area (Belluau and Shipley, 2018). This
limitation may be attributed to the time-consuming and expensive nature of hydraulic trait
measurements. For example, the traditional bench dehydration technique to measure P50 at leaf
or branch scales usually takes hours to days for samples to dehydrate and requires multiple
measurements of water potentials (Tyree and Sperry, 1988). Additionally, hydraulic trait

measurements commonly made at leaf or branch scales are difficult to scale up to the
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representative whole-plant parameter values required for modeling plant hydraulic regulation. To
address these data needs, in this study, we aim to facilitate the estimation of plant hydraulic traits
by using a model inversion approach to infer whole-plant parameter values, and their associated
variability, indirectly from existing sap flow measurements. Model inversion allows the use of
existing data (e.g., sap flow) to constrain the model parameters that represent effective whole-
plant hydraulic traits, yielding parameter estimates enabling the model to best approximate
reality (Luo et al., 2011). We focus on sap flow because it provides species-specific observation
of transpiration, rather than the plot level estimate provided from eddy covariance flux towers,

which mix the contribution of all species in a large observation footprint.

Among common model inversion techniques (e.g., frequentist methods or Kalman filter, (Mo et
al., 2008)), we select Markov Chain Monte Carlo (MCMC) for parameter estimation, primarily
because it quantifies the epistemic uncertainty associated with each model parameter in addition
to its best estimates (Wu et al., 2014). It has also been successfully used for inversion of plant
hydraulic models in eddy covariance (Liu et al., 2020) and remote sensing (Liu et al., 2021)
settings. In our case, we use MCMC to estimate the whole-plant effective values of plant
hydraulic traits as parameters in a physiologically informed sap flow model using local soil water
potential and atmospheric conditions as inputs to the model. The model includes the following
hydraulic trait parameters: P50, stomatal sensitivity to decreasing water potential, a scaling
parameter from the model of Medlyn et al., (2011), which is inversely proportional to plant
marginal water-use efficiency, and two more parameters aggregating maximum plant hydraulic
conductance, leaf area, and sapwood area per ground area (see Tables 2 & 4) as these traits

cannot be inferred independently (see Section 2.2 Sap flow model).
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The uncertainty estimates provided by MCMC also allow for further investigation of the factors
contributing to the parameter uncertainties. Parameter uncertainties are important because they
determine the range of potential model outcomes. Of the multiple sources of uncertainty that can
affect parameter estimates (Raupach et al., 2005), we will investigate the relative contributions of
(1) low model sensitivity to parameters; (2) measurement error; and (3) lack of prior knowledge
about the unknown parameters. Note that we assume a single model structure with enough
flexibility to simulate observed plant hydraulic behavior (Xiao et al., 2014) and do not attempt to

quantify the role of uncertainty in the model structure.

This paper aims to address the following questions: 1) Can MCMC be used to reliably infer
inter- and intra- specific variability in plant hydraulic parameters using measurements of sap
flow, meteorological, and soil moisture data? 2) To what extent do model sensitivity,
measurement error, and lack of prior knowledge contribute to the uncertainty associated with
parameter estimates? Additionally, compared to other environmental variables that are
commonly measured (e.g., air temperature, solar irradiance, or vapor pressure deficit), far fewer
measurements of soil water potential are taken in the field. Thus, we also ask 3) What is the
consequence of missing or biased measurements of soil water potential during parameter
inference? By addressing these questions, we demonstrate that MCMC model inversion can be
applied to the increasingly available environmental and sap flow data from sap flow monitoring
networks (e.g., SAPFLUXNET, Poyatos et al., 2019) to reliably infer difficult-to-measure
hydraulic parameters and advance our understanding and prediction of ecosystem response to

climate change.

2  Materials and Methods
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2.1 Site and data description

The study site consists of temperate mixed forest located within the footprint of the US-UMB
Ameriflux eddy covariance tower at the University of Michigan Biological Station (UMBS) in
northern Michigan, U.S.A. The long-term mean annual precipitation for the region is 766 mm
with a mean annual temperature of 5.5 °C (Matheny et al., 2017). Local soils are composed of
92.2% sand, 6.5% silt, and 0.6% clay (Nave et al., 2011). The UMBS forest is a relatively evenly
aged stand (mean tree age ~95 years) transitioning from an aspen (Populus grandientata) and
birch (Betula papyrifera) dominated stand to one dominated by red maple (Acer rubrum), white
pine (Pinus strobus), red oak (Quercus rubra), American beech (Fagus grandifolia), and sugar
maple (Acer saccharum). The primary research area consists of the 180 ha footprint of the US-
UMB flux tower. In this area, stand density is roughly 750 trees per hectare, mean canopy height
is ~25m, and mean growing-season peak leaf area index is, on average, 3.9 m’m2. Additional

relevant hydrophysiological and stand contribution data are presented in Table 1.
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Table 1. Additional hydrophysiological and stand contribution data, including average diameter

144  at breast height (DBH) of instrumented trees (cm), average height of instrumented trees (m),
145  fraction of total stand area (%), average leaf to sapwood area of instrumented trees (m? m2),
146  xylem architecture, isohydricity, wood density (g cm™).
Average
Average Fraction of | leafto Wood
Average DBH Height m | total stand | sapwood Xylel.n Isohydricity | Density
cm (* std) architecture .
(* std) area area (g cm3)
(m?m?)
Red 1516 (5.2) | 19.69 (7.6) | 19.48% | 21618 | Diffuse Isohydric | 0.546
maple porous
Paper | 1, 14(53) |2408(7.9) | 7.79% | 13658 | Diffuse Unknown | 0.600
birch porous
Bigtooth | 5 45 45) | 2898 (64) | 52.27% go7.q | Semiring | Relatively |, .,
aspen porous anisohydric
ri,::::e 11.5(5.4) 13.01 (5.0) 8.44% 4165.4 Tracheid Unknown 0.373

147
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Meteorological measurements, including air temperature, 7 (°C), relative humidity, RH
(unitless), and photosynthetic photon flux density, 7 (umol m s™), were collected at the eddy-
covariance tower at one-minute intervals. Relative volumetric soil water contents, sq (%), were
measured near the tower at the depths d of 15, 30, and 60 cm at ten-minute intervals. All
meteorological and soil observations were averaged to half-hourly resolution. We obtained the
processed half-hourly observation from Ameriflux, site US-UMB (Gough et al., 1999).
Measurement setup and error correction are detailed elsewhere for meteorological conditions

(Gough et al., 2013) and volumetric soil water content (He et al., 2013).

Leaf-to-air vapor mole fraction difference (the leaf-to-air vapor pressure difference divided by
atmospheric pressure), D (unitless), was calculated from air temperature and humidity data

following Monteith and Unsworth (2013):

D, T
(1 —RH)D, exp (#Dc)
Dqy

D (1)

where D,, Dy, and D, are model parameters with values of 0.61, 17.27, and 237.3, respectively.
Dy is the atmospheric pressure, assumed to have a standard value of 101.3 kPa. Soil water
potential at each depth, Wsq (MPa), was calculated from sy using the van Genuchten model (Hou

and Rubin, 2005; van Genuchten, 1980)

1
o 7
S S — S -
Wsd=—”<( — 1—1) @)
Sa Sa Sr

where sq, s/, S5, and 7 are fitted parameters from a previous analysis at our site (see details in He

et al., 2014) with values of -5.2, 0.04, 0.37, and 1.68, respectively. The term s, (=0.0098)



165  converts water potential from m to MPa. The s; measurements were used to calculate ¥, and, in

166  turn, the depth-averaged soil water potential ¥.

167  Sap flow per sapwood area, v, (g H2O m xylem s!), was monitored for individual trees at one-
168  minute intervals and averaged to half-hourly intervals (Matheny et al., 2017). Sap-flux data for
169  the US-UMB site was obtained from SAPFLUXNET (Poyatos et al., 2020, 2016). We assumed
170  all trees experienced the same environmental conditions measured from one location (i.e., the
171  measurements of 7, I, D, and sy at all the depths). Further site details on sap-flow data collection
172 can be found in Matheny et al. (2014). Measurements were available from 2010 to 2016, and we
173 focused on the year 2015 as it had the greatest amount of data available. Of the sap flux data
174  available for the site, we excluded measurements from trees with more than 20% missing values.
175  Furthermore, we removed two individuals showing irregular sap flow dynamics: one maintained
176 90% of maximum sap flow regardless of ¥, and another’s sap flow dropped to zero when ¥ <
177  —0.5 MPa, while all other individuals had non-zero sap flow over the whole period. In total, this
178  study used observations from 23 individual trees of four canopy-dominant species: 8 red maple,

179 5 paper birch, 5 bigtooth aspen, and 5 white pine trees.

180  Finally, we converted the half-hourly data to daily for all of the variables. We used only

181  measurements under high solar irradiance (i.e., /> 10 umol m? s!), assuming that these

182  measurements corresponded to periods of active transpiration. With this subset of high

183  irradiance, we calculated the daily mean values for 7, 7, and v,, the daily minimum value for Vs,
184  and the daily maximum value for D. For conciseness, we used the same symbols for all the

185  wvariables before and after the conversion to daily values. In summary, our dataset consisted of

186  the daily measurements of 7, I, D, and Vs, at the site level and v, at the individual level.

187 2.2 Sap flow model
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We aimed to infer whole-plant hydraulic parameters using MCMC inversion of a whole-plant,
daily-averaged sap flow model in combination with the sap flow data of individual trees and
local soil water potential and atmospheric data. Our model targets the bulk water transport within
plants and thus excludes the complexities of belowground water movement (e.g., resistance
between soils and roots) and assumes the soil water potential is representative of conditions near
plants’ fine roots. In addition, this model does not account for plant water-storage effects and

assumes that its effect on variations in plant hydraulic conductance is smoothed out over time.

The sap flow model is derived from equations of plant hydraulics and stomatal regulation. First,
we assume that daily, whole-plant transpiration, £ (m* m ground s'!), is determined by the
balance between stomatal-mediated transpiration from atmospheric demand and the supply of
water transported from soil to leaf driven by water potential differences (McDowell and Allen,

2015):

E=a-l-L-gs-D=10"3 1k, (%) (¥ —¥) 3)
where a (=1.6) is the ratio of water vapor and CO, diffusivities, / (m* mol!) converts H>O from
mol (gas) to m? (liquid), L (m? leaf m ground) is leaf area index, g; (mol m™ leaf s™!) is stomatal
(and aerodynamic) conductance, Wx (MPa) is plant water potential, and kx (¥x) (mmol m™
ground s”! MPa™!) is the whole-plant effective xylem hydraulic conductance (Eq. 4). Due to lack
of data, we assume leaf area index remains constant over the whole observation period and infer
its value. Because we focus our analysis on the peak of the growing season between May 30,
2015, and September 16, 2015, we expect all species were equally affected by this assumption of
constant leaf area index. All the fitting parameters are listed in Table 2 and model parameters

with prescribed values in Table 3.
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The function kx (‘Px) represents reducing whole-plant hydraulic conductance with decreasing P«
due to xylem embolism. Following Martin-StPaul et al., (2017), xylem conductance is modeled
by

1
kx(qjx) = kxmax | 1- 4)

kg+kpePso
%'(IPJ{_PSO)

1+e ke

where kxmax (mmol m2 ground s'! MPa'!) is the maximum, whole-plant xylem hydraulic
conductance, P50 (MPa) is the Wx at 50% loss of kx, and kq, ks, and k. are all fitting parameters

from Martin-StPaul et al., (2017) with values of 16, 1092, and 25, respectively.

In order to represent stomatal regulation on transpiration we use the following empirical model

of stomatal conductance:

o= (1+%) AGeTD | eppicrn) o IL AWSTD | oppewn) (5
) VD

where the percentage of loss in xylem conductivity, fpLc (unitless), is defined as

ke (P)

kxmax

fPLC(qu) =1- ; (6)

g1 (unitless) is inversely related to plant marginal water use-efficiency (Medlyn et al., 2011), the
function 4 (umol m leaf s7!) is the carbon assimilation rate as determined by the Farquhar-von
Caemmerer-Berry photosynthesis model (Farquhar et al., 1980), ¢, (ppm) is the ambient CO»
concentration, and ¢ (unitless) represents stomatal sensitivity to decreasing water potential (i.e.,
stomatal drought sensitivity). We use species-specific values (i.e., the mean values in the TRY
database, Kattge et al., (2020)) of photosynthetic carboxylation capacity (Vemax) and
photosynthetic electron transport capacity per leaf area (Jnax) at 25°C. The parameters Vemax

(micro mol m2 s7') and Jye (micro mol m s7!) are set to be: 31 and 48 for red maple; 56 and



226 144 for paper birch, 61 and 122 for bigtooth aspen, and 63 and 142 for white pine. The first two
227  terms in Eq. 5 follow Medlyn et al., (2011) who has also shown that the term g, /v/D tends to
228  dominate the term (1 + g,/ND ) The last exponential term captures the generally observed
229  Weibull stomatal closure to plant water potential (Klein, 2014). The choice to independently
230  downregulate stomatal conductance with plant water potential follows Jarvis (1976) as well as
231  similar formulations derived from optimal stomatal response under water stress (Manzoni et al.,
232 2011; Zhou et al., 2013; Wolf et al., 2016). Although questions exist around a priori defining a
233 g, - Wxrelationship (Anderegg and Venturas, 2020), this formulation remains common in PHM
234  implementation for terrestrial biosphere models (De Kauwe et al. 2015; Xu et al., 2016;

235  Christofferson et al., 2016; Kennedy et al., 2019).

236  Lastly, under the assumptions that sap flow measurements are taken on the main stem and there
237 s no storage in the tree, we model E to be proportional to sap flow, v, (g H2O m™ xylem s!) as

238  follows:

=E
0 (7)

239  where a (m? sapwood m ground) is the sapwood area per ground area; p (=997,000 g m™) is the

240  water density.

241  In the sap flow model consisting of Egs. 3-7, we defined six unknown parameters: L, kxmax, P50,
242 g1, ¢, and a (Table 2). By simply rearranging the above equations, we can show that kcnar, L and
243 o cannot be inferred independently. Instead, they can only be inferred in an aggregated form -

244 here as kunax/L and a/L. To demonstrate this, we combine Egs. 3-5 and solve for g, to obtain



kxmax . 1073 (1 - fPLC(lPx)) ' (lps - lpx)

= 8
95 =771 a-D ®)
245  Then, by expanding Eq. 7 using Egs. 3-6, we obtain
kxmax
Uy =107 p - L —f—+ (1= fruc (W) - (% — %), ©)
L

246  Now Egs. 6, 8 & 9 define the complete sap flow model by Egs. 3-7. We can solve them for the
247  three unknown state variables (i.e., gs, Wx, and v,)). Notice that L, kumar, and a now only appear in
248  an aggregated form as kuna/L and a/L. Consequently, we can infer five unknown parameters

249  independently (i.e., Wxs0, g1, ¢, kxmar/L and o/L).

250  Table 2. Description of symbols, along with definitions, units of measurement of the unknown

251  model parameters

Symbol Definition Unit

c Stomatal sensitivity to decreasing xylem water potential | —

g1 Fitting parameter from Medlyn et al., (2011) —

kxmax Maximum whole-plant xylem conductance mmol m ground s! MPa"!
L Leaf area index m? leaf m? ground

a Sapwood area per ground area m? sapwood m ground
P50 Xylem water potential at 50% loss of conductivity MPa

252

253  Table 3. Description of symbols, along with definitions, units of measurement, and default
254  parameter values. For a model variable, its definition equation is given in the ‘Value’ column.

255  For an input variable, its value is given as ‘- *.



Symbol Definition Unit Value

A Ratio of the diffusivities of water vapor and air | — 1.6

Ca Ambient CO; concentration ppm 400

gs Stomatal conductance to CO- mol m™? leaf s! Eqgs.3& 6

kx Xylem hydraulic conductance mmol m ground s' MPa! | Eq. 4

L Converting H>O from mol (gas) to m? (liquid) | m?® mol! 1.8x1073

Vn Daily-averaged sap flow g H,O m? xylem s°! —

A Photosynthesis rate umol m? leaf s™!

D Leaf-to-air vapor mole fraction difference — -

E Transpiration rate m?® m ground s! Eq. 3

I Solar irradiance pumol m2 st —

fric Percentage loss of hydraulic conductivity — Eq. 6

T Temperature °C -

P Water density gm? 997000

s Soil water potential MPa —

Py Xylem water potential MPa Eqgs.3& 6
256
257 2.3 MCMC implementation
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We estimated the fitting parameters for each individual tree using MCMC. The MCMC updates
the prior distribution of each fitting parameter based on the available data, including 7, I, D, Vs,
and v,. The assumed prior distribution of each unknown parameter is given in Table 4. The prior
distributions were selected to 1) reflect reasonable and physically realistic ranges of each
parameter (Kattge et al., 2020 for P50; Li et al., 2018 for ¢; Lin et al., 2015 for g1; Matheny et
al., 2014 for a/L; Mirfenderesgi et al., 2019 for kuna/L) and 2) result in peaked P50 posterior
distribution within the support of its prior distribution. The prior distributions given in Table 4
were applied to all individuals with exception of the three paper birch individuals. For these
individuals, we had to use a modified prior distribution of ¢ with a smaller support (Uniform: [5,
10]) for the posterior distribution of P50 to be peaked within the support of its prior distribution.

MCMC was implemented in Python using the PyMC package (Patil et al., 2010).

Table 4. Prior distribution of the unknown parameters. The prior distributions were selected to

reflect reasonable and physically realistic ranges of each parameter.

Symbol Prior distribution

c Uniform: [5, 30]

g1 Uniform: [0.01, 1]

kxmax/L | Log uniform: [0, 3]

o/L Log uniform: [-5, 0]

P50 Uniform: [-5, -0.1]

2.4 Synthetic experiments
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We use three synthetic experiments to examine the impacts of 1) measurement error and 2) prior
knowledge on the accuracy of the estimated parameter — two of the three sources of estimation
uncertainty investigated in this study. Two synthetic experiments will address two types of
measurement errors: 1) the noise in sap flow data and 2) the bias in soil water potential. The
reason we choose to focus on the bias rather than the noise in soil water potential as a
measurement error is that it is more likely that the sitewide soil water potential used in this study
is consistently higher or lower than the actual soil water potential for every individual tree. The
third synthetic experiment will examine the effect of limited prior knowledge on the posterior

distribution.

In the first synthetic experiment, we simulate noisy sap flow measurements by generating
synthetic sap flow data over a series of noise levels . We generate the baseline synthetic sap flow
data with zero noise by running the sap flow model forwards with prescribed parameter values (¢
=13, g1 =20, kumar/L = 1000, /L = 0.01, P50 = -2.5) and the measured environmental inputs
from the UMBS dataset. We then generate five sets of noisy sap flow data by adding Gaussian
noise with zero mean to the synthetic baseline sap flow data, each with a different level of
correlation to the synthetic baseline sap flow data itself. The correlation coefficients between the
baseline synthetic sap flow data and the five sets of noisy sap flow data are 0.95, 0.9, 0.85, 0.8,
and 0.75. We then infer the hydraulic parameters using the MCMC process, after replacing
observed UMBS sap flux with the six synthetic datasets (which consist of noise-free baseline or
noisy synthetic sap flow data and the environmental input data of 7, 7, D, and ¥s from the UMBS
dataset) and compare the estimated hydraulic parameters with the true (i.e. prescribed) parameter

values.
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In the second experiment, we create the baseline synthetic soil water potential data by first
lowering the soil water potential data from the UMBS dataset by an artificial bias of 1 MPa. This
reduction avoids the risk of generating positive soil water potential values in the synthetic soil
water potential data that are to be created subsequently. We generate the synthetic sap flow data
by running the sap flow model forwards with this baseline synthetic soil water potential data, the
prescribed parameter values (the same as in the first experiment, ¢ = 13, g1 = 20, kxnax/L = 1000,
o/L =0.01, P50 = -2.5), and the original data for the other environmental inputs (i.e., 7, I, and D)
from the UMBS dataset. Then, to simulate the biased soil water potential measurement, we
generate two biased sets of synthetic soil water potential data by setting their values to be
consistently lower and higher than the baseline synthetic soil water potential data by 1 MPa over
the whole period, respectively, while using the same data from the baseline dataset for all the
other inputs, including 7, I, D, and modeled sap flow. Finally, to evaluate the effect of bias in
soil water potential measurement on parameter estimation, we infer the hydraulic parameters
estimated from MCMC using these three synthetic datasets and compare them to the synthetic

truth.

In the third experiment, to examine the effect of prior knowledge on parameter estimation, we
also use the baseline synthetic dataset from the first synthetic experiment. Two prior
distributions, the uniform, and a truncated normal distribution, are proposed to represent low and
high amounts of prior information concerning parameters, respectively. By comparing the results

of posterior distributions, we can evaluate the effect of prior information on parameter inference.

2.5 Sensitivity analysis
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To explore the effect of parameter sensitivity — our final source of uncertainty — on parameter
inference, we carry out a Sobol global sensitivity analysis (Sobol, 2001) to identify the
importance of each parameter in determining the model output (i.e., sap flow). We expect a
parameter with a higher sensitivity to have a lower variance in its posterior distribution. The
first-order indices from a Sobol sensitivity analysis measure the contribution to the output
variance of the main effect of each parameter (i.e., the effect of varying each parameter alone)
while the total-order indices measure the output variance of each parameter, including all
variance caused by its interaction with any other parameters. For each parameter, we define its
parameter range for the sensitivity analysis based on the supports of its posterior distributions of
all the tree individuals from the UMBS dataset, which we consider as the realistic parameter

range.

Because the soil water potential data is not as widely available as the other environmental
conditions (e.g., 7, I, and D), we examine the effects of soil water potential data availability on
the resulting model sensitivities by running the sensitivity analysis with ¥s as either a known
input or as an unknown constant. Based on the sensitivity of soil water potential and its influence
in the sensitivities of other unknown parameters, we evaluate the importance of the availability
of soil water potential data. We define the range for soil water potential (when treating it as an
unknown parameter) based on the maximum and minimum values in the UMBS dataset. In the
first scenario, W5 data is considered to be available — we use the complete set of environmental
inputs, including 7, I, D, and ¥, from the UMBS dataset as the known environmental inputs for
the sensitivity analysis. In the second scenario, we run the sensitivity analysis with the soil water
potential as an unknown constant. We repeat this analysis independently on every single day

with varying environmental conditions over the whole observation period in both scenarios.
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2.6 Prediction of sapflow and whole-tree water use behaviors

To verify that the inferred hydraulic traits can indeed be used to predict whole-plant water use
behaviors, we compared our predicted sap flow against existing measurements. Furthermore, we
contextualized the plant water-use strategy under water stress using the isohydricity framework
proposed by Martinez-Vilalta et al. (2014). We use the median predicted plant water potential
(y,) and the input soil water potential (1) to fit a simple linear relationship, Y, = o) + A,
where the intercept (A) represents the plant water potential under well-watered conditions (5 =
0) and the slope (o) indicates stomatal response to soil water stress, i.e., isohydricity. An
isohydric plant will have o = 0 as it will close stomata to maintain a near-constant 1, value
regardless of Y, representing a more risk-averse strategy to hydraulic damage. Alternately, as o
increases, the plant moves towards anisohydric behavior, where it allows ¥, to decline (by
regulating stomata less) with 1) in order to prolong transpiration at the risk of hydraulic damage.
Although there are confounding factors to the isohydricity concept (Novick et al., 2019; Feng et
al., 2019), o nevertheless provides useful insight into the inter- and intraspecific variability of
plant water use strategies (Kannenberg et al., 2021). We fit the isohydricity index, o, to each site
and performed a species-level comparison using a single factor ANOVA and pairwise t-tests
using Tukey’s HSD test to determine if o values for each species differed and by how much.
Tukey’s HSD allows pairwise t-tests while accounting for p-value inflation while performing
multiple hypothesis tests (Efron and Hastie, 2016). We performed ordinary least squares fitting

and hypothesis testing using the statsmodel package in Python (Seabold and Pektold, 2010).

3 Results
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We first present the results of MCMC inversion of our sap flow model, including the posterior
distributions, the ensemble prediction of sap flow, as well as the estimated isohydricity based on
predictions of plant water potential. Then, we analyze the uncertainties associated with parameter
estimation, due to 1) low parameter sensitivity, 2) measurement error, including the noise in sap
flow data and the bias in soil water potential, and 3) the lack of prior information on the fitting
parameters. The sensitivities of model parameters are represented by Sobol first-order and total-
order sensitivity indices. We demonstrate the effects of measurement error and prior information
based on three synthetic experiments, then, based on these results, make recommendations to

potentially reduce estimation errors.

3.1 MCMC inference of plant hydraulic parameters

The whole-plant effective value of xylem water potential at 50% loss of hydraulic conductivity,
P50, is an important trait that characterizes plant drought tolerance (Brodribb and Cochard,
2009). In Fig. 1a, we show the posterior distributions of P50 for each individual. All the P50
estimates have low uncertainty, with a maximum coefficient of variation below 0.08 and
standard deviation below 0.2 MPa. These posterior distributions show an order of magnitude
reduction in uncertainty compared to the prior distribution of P50, which is uniformly distributed
between -5 MPa and -0.1 MPa. This low uncertainty allows us to easily detect both the inter- and
intraspecific difference in P50. Generally, red maple and white pine have similar inferred P50
values at around -1.5 MPa (Fig. 1a). Paper birch and bigtooth aspen have slightly more negative
P50 at around -2.0 MPa. Fig. 1b shows measured P50 values compiled from the TRY dataset and
other literature sources (Deacon et al., 2019; Kattge et al., 2020, Fig. 1b) for each of these
species. For red maple, the inferred P50 values are at the higher bound of the P50 data from the

TRY database. This difference relative to previous measurements may be due to intra-specific
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variability, or may be related to the fact that, unlike the field measurements of P50, which are
commonly made at leaf or branch scales, our inferred P50 values represent the effective whole-
plant value of this trait. Specifically, based on a modeling analysis (see Supporting Information,
Fig. S1), we show that the effective whole-plant P50 is more likely to be lower than the segment
P50 in the roots, and higher in the segments that are further away from the soil (i.e., closer to
leaves). The P50 data for the other species are scarce (three data points for paper birch (Kattge et
al., 2020); one for bigtooth aspen (Deacon et al., 2019), and none for white pine), although our

estimates of P50 for paper birch and bigtooth aspen are still consistent with measurements.

I Red maple [ Paper birch [ Bigtooth aspen I White pine

a) inferred b) literature

SRV

Figure 1. a) Posterior distributions of P50. Each bar represents an individual tree. Color
indicates species: blue for red maple, yellow for paper birch, green for bigtooth aspen, and red
for white pine. b) Measurements from the literature (data for red maple and paper birch are from
the TRY database (Kattge et al., 2020); data for bigtooth aspen are from Deacon et al., (2019);

no data have been found for white pine).

We quantified the intraspecific variation in P50 using the coefficient of variation of the mean of

the posterior distributions of all the individuals from the same species. Red maple shows the
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greatest intra-specific variability in Fig. 1a and has a higher standard deviation in the mean (0.36
MPa) across individuals than the rest (0.23 for paper birch; 0.09 for bigtooth aspen; 0.13 for
white pine). Compared with the species-level mean P50, none of the species shows a coefficient
of variation higher than 0.3 (0.29 for red maple; 0.11 for paper birch; 0.04 for bigtooth aspen;

0.09 for white pine), indicating a low intraspecific variation in P50.

I Red maple [ Paper birch I Bigtooth aspen B \White pine
40
35

t K‘l A ‘¢l

Figure 2. Posterior distributions of ¢ (stomatal sensitivity to decreasing xylem water potential)

with prior distribution as Uniform [2, 30]. Each bar represents an individual tree. Color indicates
species: blue for red maple, yellow for paper birch, green for bigtooth aspen, and red for white

pine.

The parameter that captures stomatal sensitivity to drought, ¢, describes how quickly plants close
stomata in response to decreasing plant water potential. A higher value of ¢ indicates an earlier
stomatal closure with decreasing plant water potential (Eq. 5). Fig. 2 shows that most of the

posterior distributions of ¢ have strong positive skew with a peak near 2, the lower bound of the
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support of its prior distribution. Compared with P50, almost all ¢ estimates have a much larger
variance, with the mean coefficient of variation around 0.38 (0.06 for P50). Also, for most
individuals, the supports of their posterior distributions of ¢ are not smaller than those of their
prior distributions, a uniform distribution between 2 and 30. This difference in the inference
uncertainty between P50 and ¢ is mainly caused by our model having significantly less

sensitivity to ¢ than to P50.

g1

P50

=
= 0.004
(s

4 6 0002 0004 0006

2
C g1 Kxmax/L a/L

Figure 3. MCMC results of a red maple tree with the original parameters. Diagonal: posterior
distributions of the fitting parameters. Off-diagonal: covariation of each pair of parameters. The

Pearson correlation coefficient is denoted by p.



423 The MCMC results indicate that the values of kuma/L, a/L, and g1 are not well constrained with
424 our model inversion approach, due to the strong correlation among them (with correlation

425  coefficients near 1 for almost all individuals). A typical example of this strong correlation is

426  shown in Fig. 3 for a red maple tree. The correlation coefficients among these three parameters
427  are near 1 in the MCMC outputs of almost all individuals. The correlation between kxmar/L and
428  a/L is understandable, as it is due to the fact that their ratio that determines how transpiration rate
429  scales with the observed sap flow (defined in Eq. 9). However, the linear correlation between
430  kwma/L and g1 can only be expected when stomatal conductance gs is high. To illustrate this, we
431  note that our model (see Eq. 5) contains specifies a nonlinear relationship between kyna/L and g1,
432 which is introduced by due to the nonlinearity in the Farquhar-von Caemmerer-Berry

433  photosynthesis model (Farquhar et al., 1980) with respect to g (see Eq. 5). Only when gy takes
434  high values does 4 become practically independent of g; (i.e., photosynthesis is CO»-saturated)
435  and becomes concentrated around its maximum value, Auqx, Which eliminates the nonlinearity

436  within the Farquhar model. Specifically, under this assumption, Eq. 5 can be simplified as

A
g, =~ \% rcnax e(=cfpLc(¥) (10)
a

437  Then, by combining Egs. 8 & 10, we obtain

k
% _1 aAmax e(_CfPLC(llux)) (1 1)

91 VD - 1073¢, (1 - fPLC(qu))(lPs )

438  which suggests the observed linearity between kxmax/L and g1 on the left-hand side.

439  The physiological meaning of the aggregated parameter kvna/L/g1 can be framed in terms of
440  differential sap flow sensitivities to soil water stress compared to atmospheric water stress. The

441  left-hand side of Eq. 11 decreases with increasing D while its right-hand side decreases with
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decreasing Wx (these trends occur under value of ¢ larger than 2, and fpLc lower than 50%, which
is typically applicable for our dataset). Because, kwmax/L/g1 controls the relative impacts of the
left- vs. right-hand side of Eq. 11 on stomatal conductance gs, kxmax/L/g1 can be thought of as an
indicator of the relative sensitivity to plant water potential vs. vapor pressure deficit — with any
given D, a higher value of kuna/L/g1 results in a less negative Wy at a constant stomatal

conductance.

Il Red maple [ Paper birch [ Bigtooth aspen I White pine
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Figure 4. Posterior distributions of kuma/L/g1 (lower) and kumar/o (upper) where kimax 1s the
maximum whole-plant xylem conductance, L is the leaf area index, g1 is inversely related to
plant marginal water-use efficiency and « is the sapwood area per ground area. Color indicates

species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine).
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Unlike its two strongly correlated component parameters, kmna/L and g1 (Fig. 3), we display our
results in terms of this aggregated parameter kuna/L/g1 (left hand side of Eq. 11), which is well
constrained with our model inversion approach and has very low uncertainty for every individual
(Fig. 4, lower panel). Similarly, the other aggregated parameter, kxna/o, which represents the
maximum xylem conductance per xylem sapwood area, is also well constrained and inferred
with low uncertainty (Fig. 4, upper panel). These results suggest that, in addition to a range of
drought tolerance (based on results for P50; Fig. 1), these individuals also exhibit variations in
their relative sensitivities to atmospheric drought (through vapor pressure deficit) or water status

(through plant water potentials).
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Figure 5. Estimates of sap flow. The 5%, 50, and 95" percentiles of 1000 MCMC estimates of
the sap flow time series are in close agreement with the input data (black). Color indicates

species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine).
3.2 MCMC predictions of sap flow, plant water potential, and isohydricity

We confirm that our inferred parameters can be used to adequately capture the seasonal variation
in the observed sap flow. Fig. 5 shows that the ensemble prediction matches reasonably with the
observed daily average sap flow in the input sapflow data and has very low uncertainty (where
the uncertainty is defined as the interval between the 5™ and 95" percentiles of the ensemble
prediction of sap flow; note that both the 5" and 95" percentiles of the ensemble prediction are
too close to the median to be visually identified in Fig. 5). The correlation between the observed
sap flow and the median of the ensemble model prediction is generally strong. The mean
correlation coefficient across all individuals is 0.69. However, Fig. 5 also shows that our
approach seems to be only able to capture the overall seasonal trend in the observed dynamics of
sap flow, but not the oscillation on finer (e.g., daily) time scales.The inferred parameters can also
be used to capture inter- and intraspecies isohydricity variability through o (Figure 6a), defined
by the decline in plant water potential with soil water potential (Figure 6b). The paper birch and
bigtooth aspen allow Wx to decline faster with s compared to the red maple and eastern white
pine, corresponding to more anisohydric behavior consistent with previous knowledge shown in
Table 1. The fits for the remaining trees (Figure S6) show much scatter near soil saturation,
which is due to variability in D.We also tested the statistical significance of the interspecies
differences in ¢ (Figure S8). A single factor ANOVA confirmed that the species-specific o
values are statistically different (p = 0.014); however, the pairwise t-tests using Tukey’s HSD

struggled to find significant differences between the species ¢ values due to the large intra-
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species variability for aspen and pine (Fig. 6a). Tukey’s HSD only yields a statistically
significant difference between pine and birch (p = 0.022), while the difference in birch and
maple (p = 0.06) and aspen and pine (p = 0.1) were above the 5% significance level (note that
Tukey’s HSD tends to be extremely conservative, which may lower the power of the test (Efron
and Hastie, 2016)). Nevertheless, these results illustrate the importance in accounting for the

intraspecies variability, as it can potentially overtake the range in interspecific variability.
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Figure 6. a) Isohydricity indices (o) extracted from 1, and 1) values at each site. Values closer
to 0 indicate isohydric and values closer to 1 indicate anisohydric behavior. b) Actual water
potential data (dots) and fit lines used to extract ¢ for one site of each species. Specifically, we
are showing the trees that contained the median ¢ for each species. The individual fits for each

site are shown in Fig. S6.

3.3 Uncertainty analysis
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In this subsection, we report the effects of three main contributors to the uncertainty associated
with parameter estimation: 1) low parameter sensitivity, 2) measurement error, and 3) the lack of
prior information on the fitting parameters. First, we examine the effects of parameter sensitivity
and focus on the comparison between two parameters, plant vulnerability to embolism, P50, and
c. In this study, they show contrasting degrees of inference uncertainty — the posterior
distributions of P50 have a much smaller variance than those for ¢ (Figs. 1 & 2). Our sensitivity
analysis shows that this difference can be explained by the different degrees to which the model
output (i.e., sap flow) is sensitive to each parameter. As shown in Fig. 7 (left panel), P50 has a
much larger Sobol’s total-order sensitivity index than ¢ (the mean total-order index is 0.64 for
P50 and 0.20 for ¢). Also, the first-order index of c is close to zero (about 0.015), indicating that
this parameter has a very limited effect on the modeled sap flow on its own. These results
confirm that our sap flow model is much more sensitive to the change in P50 than to c.
Necessarily, this leads to a larger uncertainty in estimates of ¢ relative to P50. These relative
degrees of parameter sensitivity hold whether soil water potential is known or unknown: in the
absence of soil water potential data, the model remains much more sensitive to P50 rather than ¢

(Fig. 7, right panel).
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Figure 7. Sobol’s first-order and total order sensitivity indices. We consider two scenarios: the

soil water potential as a model input (left panel) and a fitting parameter (right panel).

We also evaluate the consequence of absent soil water potential measurements during parameter
inference by inferring it as an unknown parameter. In Fig. 7 (right panel), we show that soil
water potential as a model parameter is very sensitive as both its first- and total-order indices are

high (its mean first- and total-order indices are 0.21 and 0.35, respectively).

We analyze the next two sources of uncertainty — measurement error and low prior knowledge —
based on synthetic experiments (Section 2.4). Here, we use P50 as an example and demonstrate
the effects of measurement error on its posterior distribution. Noise in sap flow data creates
irregular uncertainty in P50 (Fig. S4), with no consistent trend in bias and uncertainty of the P50
estimate as the noise level increases. In contrast to noise in the sap flow data, bias in the soil
water potential measurements does have large impacts on the estimated value of P50. While all
the above model inversion results (Figs. 1-5) are based on the assumption of our soil water
potential measurement (Section 2.1) being accurate, Fig. 8 shows that when soil water potential

measurements are systematically more negative than their true values, MCMC tends to
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Figure 8. Posterior distributions of P50 inferred using soil water potential data at different bias

levels. The horizontal line labels the prescribed synthetic truth.

Finally, the uncertainty in parameter estimation may also be attributed to the lack of detailed
prior knowledge of the fitting parameter. Our analysis shows that the effect of prior knowledge
on the accuracy of different parameters’ estimates varies strongly with model sensitivity to that
parameter. For both P50 and ¢, we evaluate the impact of prior knowledge qualitatively by
comparing the posterior distribution of each parameter based on an MCMC inversion with a
noninformative uniform prior with the posterior distribution using an informative truncated
normal prior distribution (see Fig. 9a). In Fig. 9, we show that with more prior information
(using the truncated normal distribution), the uncertainty of the ¢ estimate decreases
significantly. This improvement in the estimate for ¢ does not come from making use of
information contained in the data, because the posterior distribution (Fig. 9, right panel, blue)
largely overlaps with the prior distribution (Fig. 9, left panel, blue). This presumably reflects the
low sensitivity of ¢ (c.f. Fig. 7). By contrast, more prior knowledge barely improves the estimate

of P50: the two posterior distributions resulting from the uniform and truncated normal prior
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distributions are similar (Fig. 9, middle panel). There is higher certainty in the P50 posterior
distributions, regardless of prior knowledge, relative to ¢, because the sap flow constrains the
highly sensitive P50 parameter very well (see Fig. 7). Under these circumstances, an informative
prior cannot provide much additional information to reduce the uncertainty in the P50 estimate,

relative to a flat prior.

—— Uniform prior —— Truncated normal prior === True value
min max -4 -2 10 20 30
Prior distribution P50 (MPa) c
Posterior distribution Posterior distribution

Figure 9. Prior distributions (left) and the corresponding posterior distributions of P50 (middle)
and c (right). Color indicates the type of prior distribution: red for uniform distribution and blue
for truncated normal distribution. The vertical black lines in the middle and right panels indicate

the true values of P50 and c, respectively.

4 Discussion

4.1 MCMC model inversion reliably predicts seasonal sap flow variations

With the use of a simple model in combination with sap flow, soil water potential, and
atmospheric data, we have demonstrated that an MCMC model inversion approach is able to
predict seasonal sap flow variations across a range of environmental conditions (e.g., solar

irradiance, vapor pressure deficit, temperature, and soil water potential; Figure 5). This ability to
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capture seasonal sap flow variations is an indication that the simple model used is realistic
enough to represent complex plant behaviors. It also supports the assumption of strong
coordination between stomatal conductance and plant water potential (Anderegg et al., 2017)
embedded within Eq. 5, which results in stomatal closure occurring substantially earlier than any
significant hydraulic impairment (Fig. S5), as commonly observed (e.g., Bartlett et al., 2016;

Martin-StPaul et al., 2017).

4.2 Whole-plant hydraulic parameters inferred through model inversion

The accuracy with which the MCMC approach predicted sap flow variations (Figure 5) suggest
that hydraulic parameters (Figures 1-4) can be reliably estimated. Our MCMC model inversion
approach provides a means to infer whole-plant parameters values without scaling leaf or
branch-level trait measurements. Typically, a plant is segmented into roots, xylem, and leaf for
measurement (Sperry et al., 1998), requiring time consuming measurements in each segment
(e.g., bench dehydration of a branch to find P50) and questions as to how well these local
measurements can be representative of the whole-plant response. Instead, by using a model that
captures whole-plant level sap flow as a starting point, the inferred parameters are directly
applicable for whole-plant predictions (subject to the assumption that sap flow measurements are
taken on the main stem, and with negligible effects of xylem capacitance, which is assumed by
state-of-the-art terrestrial biosphere models (Kennedy et al., 2019; Eller et al., 2020; Sabot et al.,
2020)).These whole-plant parameter values are particularly useful to parameterize PHMs that do
not separate branches from other plant components. For the same reason, values derived from
this approach may be difficult to compare to current measurements. For example, our analysis
(Supporting Information) shows that the effective whole-plant P50 is likely to be lower than P50

in the roots and higher than P50 in the stems closer to the canopy. This is consistent with our
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results (Fig. 1) that show higher values of whole-plant inferred P50 than measured leaf or branch
P50 for red maple and, to a lesser extent, paper birch. It is also consistent with the P50 values
inferred from eddy covariance by MCMC in Liu et al (2020), for which in situ measurements of

branch P50 were generally higher than the inferred whole-plant values.

4.3 Intra- and inter- specific variations in plant water use strategies

The low uncertainty around most inferred parameters (except for c¢) allows for the quantification
of inter- and intraspecific variability in hydraulic traits. Trait variability has been observed in
P50 and other hydraulic traits measured at the stem and branch levels (Anderegg et al., 2018;
Bartlett et al., 2014; Trugman et al., 2019). Our analysis provides a preliminary look at whole-
plant trait variability among and within four tree species (Figs. 1, 2, & 4) that can be used to
improve predictions of ecosystem scale fluxes. The low intraspecific variability in P50 for all
species (Fig. 1) may be explained by the fact that all individuals grow on the same site and by
our assumption that all trees experience the same environment. Further work must be done to
ensure that sap flux measurements of individuals are representative of the species in the

ecosystem and evaluate the extent to which these parameter values may vary across sites.

The prediction of plant water potential based on inferred traits allowed us to characterize the
water use strategies of each individual using an isohydricity index (Figure 6), which confirmed
prior knowledge of aspen and maple at the site (Table 1), while providing new insights on birch
and pine. More importantly, our analysis highlighted the intraspecies variability of plant water-
use strategy that emerges from hydraulic trait variability. In particular, aspen and pine contained
one very isohydric outlier each (site Pgr-27 and site Pst-14 shown in Figure S7) relative to the
other four trees in each species group. Although the MCMC inversion for these two individuals

yielded relatively insensitive stomata (low ¢), their low xylem conductance per sapwood area
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(kxmax/a) caused enhanced stomatal closure and relatively stable plant water potential under soil
water stress (see Figure S7). To the best of our knowledge, there were no extenuating
circumstances (e.g., mortality, differing soil water conditions) or noticeable measurement errors
that could explain these outliers. Therefore, barring significant deficiencies in our MCMC
inversion, this result reinforces the importance of understanding intra-species variability of

hydraulic traits, especially to understand plant response to water stress.

4.4 Reducing uncertainties via additional soil and plant water potential data

The MCMC results also help inform the collection of new soil or plant hydraulic data and extract
additional information from existing datasets. For example, the results show that measured soil
water potential at sites where sap flow measurements are taken is essential for reliable parameter
inference (Fig. 7) and its accuracy has a great impact on the bias in parameter inference (Fig. 8).
Therefore, study sites should be set up with at least a single profile of soil water potential to help
interpret and extend the utility of sap flow measurements. Systematic biases in soil water
potential measurement can be almost certainly expected from the use of a site-wide soil water
potential measurement. This bias has been shown to strongly increase the uncertainty in
hydraulic model prediction (e.g., soil water budget and transpiration) (Baroni et al., 2017; Zhu et
al., 2018). In Chirico et al., (2010), the soil water potential bias is introduced specifically by the
parameter uncertainty in pedotransfer functions (which converts soil moisture into soil water
potential). The lack of continuously measured soil water potential data at many monitoring sites
remains a challenge for leveraging flux data to advance our understanding of land-atmosphere

interactions (Novick et al., 2019).

Alternatively, measurements of soil moisture, which are much more widely available, can be

converted to soil water potentials using measured soil water retention curves, as in this study.
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However, this conversion can be challenging in complex and heterogeneous soil substrates and
must be accurate enough to ensure the quality of hydraulic model predictions (Chirico et al.,

2010).

4.5 Implications of limitations in model structure

While P50, kxmax/L/g1, kxmax/a are well-constrained at this site and for these species, estimates of
the stomatal sensitivity to drought (i.e., ¢) are much more uncertain for almost all individuals in
the UMBS dataset. This uncertainty is mainly driven by the lack of sensitivity to ¢ of the sap
flow model (Fig. 7). This means that estimation of ¢ cannot be further improved by inversion of
the sap flux model. Alternative model structures could be considered, but the adoption of
alternative models is constrained by the data available to serve as model inputs and outputs.
Some datasets could potentially better constrain some model parameters than others (Luo et al.,
2009), because these datasets might be more compatible with models that are sensitive to
specific parameters. Thus, while we have shown the value of sap flux data for inferring P50, its
utility for inferring stomatal closure parameters may be more limited unless coupled to additional

measurements that are not available in this study (e.g., plant water potential).

5 Conclusions

Here, we have demonstrated that PHM hydraulic parameters can be inferred at the individual
level using a MCMC inversion approach using measured sap flow. Reliable and simultaneous
inference of multiple hydraulic model parameters has great potential to assist model
parametrization, which remains a major impediment to the adoption of PHMs (Feng, 2020;
Paschalis et al., 2020; Sloan et al. 2021). The inferred hydraulic traits — including the whole-

plant effective embolism vulnerability and maximum xylem conductance — are subject to a
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number of uncertainties related to model structure and input data availability but capture well the
inter and intra-specific variability in plant water use and hydraulic vulnerability.Inferring plant
hydraulic traits using sap flow data based on MCMC relies on accurate measurement of soil
water potential with minimum bias, suggesting that measurements of soil water potential could
be usefully incorporated into ecohydrological and ecophysiological observation campaigns for
this purpose. While soil moisture data is commonly used as a substitute in practice, the
conversion of soil moisture into soil water potential can be particularly challenging in any site
with complex belowground structure. Furthermore, the accuracy of the model predictions can be
further enhanced by comparison to plant water potential data. We conclude that although the
MCMC inversion approach does not estimate all hydraulic parameters equally well, it is possible
to infer some plant hydraulic traits using readily available indirect measurements (e.g., sap flow
and meteorological data) with low uncertainty, and thus to augment time- and labor-intensive

direct measurements.
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Supporting information
Multi-segment xylem model

Let us compare a whole-plant model with a single segment from a multi-segment model.

Assuming they have the same flux, we get

kwhole (lpwhole) qJSOWhole)quwhole = ksegment(qjsegmentr lpSOsegment)Aquegment

where &, ¥, and AY denote the plant hydraulic conductance, plant water potential, and the water
potential gradient, respectively; and the subscripts, whole and segment, represent the two

corresponding models.
As it is fair to consider
quwhole > Alpsegment'

it follows

kwhole (quhole' leSOwhole) < ksegment (lpsegment' WSOsegment)-

The above inequality suggests that the whole plant model has a more vulnerable xylem (i.e.,

Ysowhote > ¥Ys0segment) and/or a more negative water potential (i.e., ¥y note < Wsegment)-
Alternatively, the above inequality can also be satisfied with the whole plant model having a
stronger xylem (i.e., Ysownote < Wsosegment)> Which is more likely when W, 1,4, is much lower
than W, gmene. This later scenario is more realistic when comparing the whole plant model with

the segment that is close to the root (as the water potential there is close to the soil water

potential) in a multi-segment model.



1156  We explored the above ideas with a simple simulation experiment. In this experiment, we
1157  assume that 1) the two models share the soil water potential and 2) the water potential drop in the

1158  whole-plant model is larger than that in the multi-segment model.

1159  As shown in Fig. S1, given the P50 for the whole plant model (red) and water potential drops for
1160  the two models, we found that the inferred P50 for each segment in the multi-segment model
1161  becomes more negative for the segments that are further away from the soil where the red

1162  horizontal dashed line indicates the given value for the P50 for the whole plant model and the

1163  first segment is the segment that contains the fine roots.
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1165  Figure S1. P50 at each segment in a plant with n (=10) segments. The horizontal red dashed line

1166  indicates the corresponding whole-plant P50 value.
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Figure S2. Posterior distributions of ¢ with prior distribution as Uniform [2, 30]. Each bar
represents an individual tree. Color indicates species: blue for red maple, yellow for paper birch,

green for bigtooth aspen, and red for white pine.
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Figure S3. Estimates of plant water potential over time. The 5™, 50", and 95" percentiles of
1000 MCMC estimates of plant water potential are shown. Color indicates species (blue: red
maple; brown: paper birch; green: bigtooth aspen; red: white pine). Similar ranges in xylem
water potentials (0 to -0.6MPa) are observed for red maple species in a different year (Thomsen

2013) for a number of our red maple individuals.
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1178  Figure S4. Posterior distributions of P50 inferred using sap flow data at different noise levels.

1179  The horizontal line labels the synthetic truth.
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Figure S5. Estimates of PLC given stomatal closure. The 5%, 50, and 95" percentiles of 1000
MCMC estimates of PLC are shown. Color indicates species (blue: red maple; brown: paper

birch; green: bigtooth aspen; red: white pine). The vertical line indicates 90% stomatal closure.
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Figure S6. Linear relation between inferred plant water potential to observed soil water potential
used to identify the isohydricity index o (slope) for each site (see Sect. 2.6 for details). Color
indicates species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine).
The site ID, slope (o), intercept (A), and coefficient of determination (R?) are shown for each

site. The o values are used to create Figure 6a in the main text.
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1191  Figure S7. Output for pairwise t-tests performed in Tukey’s HSD test by the Python package

1192  statsmodel.



