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Key points 18 

• Plant hydraulic parameters are inferred with low uncertainty from sap flow data 19 

• Inferred parameter values capture whole-plant response and water use strategies instead 20 

of leaf or branch-level responses 21 

• The model inversion method complements field measurement of plant hydraulic traits 22 

Abstract 23 

Understanding plant hydraulic regulation is critical for predicting plant and ecosystem responses 24 

to projected increases in drought stress. Plant hydraulic regulation is controlled by observable, 25 

diverse plant hydraulic traits that can vary as much across individuals of the same species as they 26 

do across different species. Direct measurements of plant hydraulic traits from a range of 27 

ecosystems remain limited in comparison to other, more readily measured traits (e.g., specific 28 

leaf area). Furthermore, plant hydraulic trait measurements, often made at leaf or branch levels, 29 

are not easily scaled to whole-plant values that are typically used to predict plant and ecosystem 30 

fluxes. In this study, multiple whole-plant hydraulic parameters are inferred from observations of 31 

plant water use (i.e., sap flow), soil properties, and meteorological data. We use a Markov Chain 32 

Monte Carlo model inversion approach to obtain the best estimates and uncertainty of plant 33 

hydraulic parameters that capture whole-plant effective embolism resistance and stomatal 34 

sensitivity to decreasing plant water potential. We then use the inferred values in the model to 35 

estimate whole-tree water use and isohydricity. This approach reliably infers whole-plant 36 

parameter values with enough specificity to resolve inter- and intra-specific differences, and thus 37 

supplements time- and labor-intensive direct measurements of traits. 38 
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1 Introduction 40 

The increasing frequency and severity of drought in many parts of the world (Field et al. 2012) 41 

contributes to water stress (Dai, 2011; Feng et al., 2019; Williams et al., 2013) and mortality in 42 

plant communities (Allen et al., 2010; De Kauwe et al., 2020; McLaughlin et al., 2020; Novick et 43 

al., 2016; Young et al., 2017), with subsequent changes in ecosystem water, carbon, and energy 44 

cycling (Bonan, 2008). Plant response and vulnerability to drought, as well as recovery after 45 

drought, are controlled by a combination of root, xylem, and leaf hydraulic traits and stomatal 46 

responses. For example, under drought conditions, stomatal closure closely coordinates with 47 

xylem resistance to embolism (measured by the water potentials at 12% (P12) and 50% (P50) 48 

loss of conductance in xylem) across different taxonomic (gymnosperm and angiosperm) and 49 

functional (evergreen and deciduous) groups to regulate plant water use, plant water potential, 50 

and the extent of xylem embolism (Bartlett et al., 2016; Martin‐StPaul et al., 2017). This 51 

coordination of multiple plant hydraulic traits, including stomatal control and xylem embolism 52 

resistance, also influence the timing of hydraulic failure in plants (Blackman et al., 2019). 53 

Finally, by regulating whole-tree carbon allocation, plant hydraulic traits, including P50 and 54 

maximum xylem hydraulic conductance, can explain leaf area dynamics, delayed mortality, and 55 

xylem damage recovery post drought (Trugman et al., 2019, 2018). 56 

Plant hydraulic traits are also critical for prediction, particularly as; parameters in physically-57 

based Plant Hydraulic Models (PHMs). PHMs represent water transport through the soil-plant-58 

atmosphere continuum via flux-gradient relationships (based on Hagen-Poiseuille flow or porous 59 

media flow). Hydraulic parameters are needed to describe the functional form of their 60 

conductance vulnerability curves (Mencuccini et al., 2019) and stomatal responses 61 

(Mirfenderesgi et al., 2019). The recent implementations of PHMs into terrestrial biosphere 62 



models have shown promising corrections of previous prediction biases in gross primary 63 

productivity and evapotranspiration (Bonan et al., 2014; Eller et al., 2020; Kennedy et al., 2019; 64 

Li et al., 2021; Powell et al., 2013; Sabot et al., 2020; Xu et al., 2016) as well as soil water 65 

balance (Kennedy et al., 2019), especially under drought conditions. However, the use of PHMs 66 

in models is still hindered by the need to acquire plant hydraulic traits for parameterization 67 

(Feng, 2020; Paschalis et al., 2020; Sloan et al., 2021). 68 

Plant hydraulic traits exhibit large intraspecific (Martínez‐Vilalta et al., 2009; Pritzkow et al., 69 

2020; Rosas et al., 2019) and interspecific variability (Choat et al., 2012; Maherali et al., 2006) 70 

that must be accounted for when considering ecosystem-level response to drought. For example, 71 

trait interspecific variability better explains interannual variability in the ecosystem fluxes of 72 

carbon, water, and energy at global scales than do community-weighted trait values (Anderegg et 73 

al., 2018). Although no comprehensive assessment of intraspecific variability exists, one meta-74 

analysis has shown that intraspecific variability of P50 can account for a significant portion 75 

(33%) of interspecific variability within a genus (Anderegg, 2015). Therefore, a detailed 76 

characterization of both inter- and intraspecific hydraulic trait variability is necessary for 77 

predicting ecosystem response to drought. 78 

Despite the obvious need, comprehensive plant hydraulic trait measurements are far less 79 

available than many other plant traits, e.g., specific leaf area (Belluau and Shipley, 2018). This 80 

limitation may be attributed to the time-consuming and expensive nature of hydraulic trait 81 

measurements. For example, the traditional bench dehydration technique to measure P50 at leaf 82 

or branch scales usually takes hours to days for samples to dehydrate and requires multiple 83 

measurements of water potentials (Tyree and Sperry, 1988). Additionally, hydraulic trait 84 

measurements commonly made at leaf or branch scales are difficult to scale up to the 85 



representative whole-plant parameter values required for modeling plant hydraulic regulation. To 86 

address these data needs, in this study, we aim to facilitate the estimation of plant hydraulic traits 87 

by using a model inversion approach to infer whole-plant parameter values, and their associated 88 

variability, indirectly from existing sap flow measurements. Model inversion allows the use of 89 

existing data (e.g., sap flow) to constrain the model parameters that represent effective whole-90 

plant hydraulic traits, yielding parameter estimates enabling the model to best approximate 91 

reality (Luo et al., 2011). We focus on sap flow because it provides species-specific observation 92 

of transpiration, rather than the plot level estimate provided from eddy covariance flux towers, 93 

which mix the contribution of all species in a large observation footprint. 94 

Among common model inversion techniques (e.g., frequentist methods or Kalman filter, (Mo et 95 

al., 2008)), we select Markov Chain Monte Carlo (MCMC) for parameter estimation, primarily 96 

because it quantifies the epistemic uncertainty associated with each model parameter in addition 97 

to its best estimates (Wu et al., 2014). It has also been successfully used for inversion of plant 98 

hydraulic models in eddy covariance (Liu et al., 2020) and remote sensing (Liu et al., 2021) 99 

settings. In our case, we use MCMC to estimate the whole-plant effective values of plant 100 

hydraulic traits as parameters in a physiologically informed sap flow model using local soil water 101 

potential and atmospheric conditions as inputs to the model. The model includes the following 102 

hydraulic trait parameters: P50, stomatal sensitivity to decreasing water potential, a scaling 103 

parameter from the model of Medlyn et al., (2011), which is inversely proportional to plant 104 

marginal water-use efficiency, and two more parameters aggregating maximum plant hydraulic 105 

conductance, leaf area, and sapwood area per ground area (see Tables 2 & 4) as these traits 106 

cannot be inferred independently (see Section 2.2 Sap flow model). 107 



The uncertainty estimates provided by MCMC also allow for further investigation of the factors 108 

contributing to the parameter uncertainties. Parameter uncertainties are important because they 109 

determine the range of potential model outcomes. Of the multiple sources of uncertainty that can 110 

affect parameter estimates (Raupach et al., 2005), we will investigate the relative contributions of 111 

(1) low model sensitivity to parameters; (2) measurement error; and (3) lack of prior knowledge 112 

about the unknown parameters. Note that we assume a single model structure with enough 113 

flexibility to simulate observed plant hydraulic behavior (Xiao et al., 2014) and do not attempt to 114 

quantify the role of uncertainty in the model structure. 115 

This paper aims to address the following questions: 1) Can MCMC be used to reliably infer 116 

inter- and intra- specific variability in plant hydraulic parameters using measurements of sap 117 

flow, meteorological, and soil moisture data? 2) To what extent do model sensitivity, 118 

measurement error, and lack of prior knowledge contribute to the uncertainty associated with 119 

parameter estimates? Additionally, compared to other environmental variables that are 120 

commonly measured (e.g., air temperature, solar irradiance, or vapor pressure deficit), far fewer 121 

measurements of soil water potential are taken in the field. Thus, we also ask 3) What is the 122 

consequence of missing or biased measurements of soil water potential during parameter 123 

inference? By addressing these questions, we demonstrate that MCMC model inversion can be 124 

applied to the increasingly available environmental and sap flow data from sap flow monitoring 125 

networks (e.g., SAPFLUXNET, Poyatos et al., 2019) to reliably infer difficult-to-measure 126 

hydraulic parameters and advance our understanding and prediction of ecosystem response to 127 

climate change. 128 

2 Materials and Methods 129 



2.1 Site and data description 130 

The study site consists of temperate mixed forest located within the footprint of the US-UMB 131 

Ameriflux eddy covariance tower at the University of Michigan Biological Station (UMBS) in 132 

northern Michigan, U.S.A. The long-term mean annual precipitation for the region is 766 mm 133 

with a mean annual temperature of 5.5 °C (Matheny et al., 2017). Local soils are composed of 134 

92.2% sand, 6.5% silt, and 0.6% clay (Nave et al., 2011). The UMBS forest is a relatively evenly 135 

aged stand (mean tree age ~95 years) transitioning from an aspen (Populus grandientata) and 136 

birch (Betula papyrifera) dominated stand to one dominated by red maple (Acer rubrum), white 137 

pine (Pinus strobus), red oak (Quercus rubra), American beech (Fagus grandifolia), and sugar 138 

maple (Acer saccharum). The primary research area consists of the 180 ha footprint of the US-139 

UMB flux tower. In this area, stand density is roughly 750 trees per hectare, mean canopy height 140 

is ~25m, and mean growing-season peak leaf area index is, on average, 3.9 m2m-2. Additional 141 

relevant hydrophysiological and stand contribution data are presented in Table 1. 142 



Table 1. Additional hydrophysiological and stand contribution data, including average diameter 143 

at breast height (DBH) of instrumented trees (cm), average height of instrumented trees (m), 144 

fraction of total stand area (%), average leaf to sapwood area of instrumented trees (m2 m-2), 145 

xylem architecture, isohydricity, wood density (g cm-3). 146 

	 Average	DBH	
cm	(±	std)	

Average	
Height	m	
(±	std)	

Fraction	of	
total	stand	
area	

Average	
leaf	to	
sapwood	
area	
(m2m-2)	

Xylem	
architecture	 Isohydricity	

Wood	
Density	
(g	cm-3)	

Red	
maple	 15.16	(5.2)	 19.69	(7.6)	 19.48%	 2161.8	 Diffuse	

porous	 Isohydric	 0.546	

Paper	
birch	 17.14	(5.3)	 24.08	(7.9)	 7.79%	 1365.8	 Diffuse	

porous	 Unknown	 0.600	

Bigtooth	
aspen	 23.48	(4.5)	 28.98	(6.4)	 52.27%	 897.1	 Semi-ring	

porous	
Relatively	
anisohydric	 0.412	

White	
pine	 11.5	(5.4)	 13.01	(5.0)	 8.44%	 4165.4	 Tracheid	 Unknown	 0.373	

  147 



Meteorological measurements, including air temperature, T (°C), relative humidity, RH 148 

(unitless), and photosynthetic photon flux density, I (μmol m-2 s-1), were collected at the eddy-149 

covariance tower at one-minute intervals. Relative volumetric soil water contents, sd (%), were 150 

measured near the tower at the depths d of 15, 30, and 60 cm at ten-minute intervals. All 151 

meteorological and soil observations were averaged to half-hourly resolution. We obtained the 152 

processed half-hourly observation from Ameriflux, site US-UMB (Gough et al., 1999). 153 

Measurement setup and error correction are detailed elsewhere for meteorological conditions 154 

(Gough et al., 2013) and volumetric soil water content (He et al., 2013). 155 

Leaf-to-air vapor mole fraction difference (the leaf-to-air vapor pressure difference divided by 156 

atmospheric pressure), D (unitless), was calculated from air temperature and humidity data 157 

following Monteith and Unsworth (2013): 158 

 𝐷 =
(1 − 𝑅𝐻)𝐷! 𝑒𝑥𝑝 	-

𝐷"𝑇
𝑇 + 𝐷#

0	

𝐷$
	 (1) 

where Da, Db, and Dc are model parameters with values of 0.61, 17.27, and 237.3, respectively. 159 

Dd is the atmospheric pressure, assumed to have a standard value of 101.3 kPa. Soil water 160 

potential at each depth, Ψsd (MPa), was calculated from sd using the van Genuchten model (Hou 161 

and Rubin, 2005; van Genuchten, 1980) 162 
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where sa, sr, ss, and η are fitted parameters from a previous analysis at our site (see details in He 163 

et al., 2014) with values of -5.2, 0.04, 0.37, and 1.68, respectively. The term sb (=0.0098) 164 



converts water potential from m to MPa. The sd measurements were used to calculate 𝛹%$ and, in 165 

turn, the depth-averaged soil water potential 𝛹%. 166 

Sap flow per sapwood area, vn (g H2O m-2 xylem s-1), was monitored for individual trees at one-167 

minute intervals and averaged to half-hourly intervals (Matheny et al., 2017). Sap-flux data for 168 

the US-UMB site was obtained from SAPFLUXNET (Poyatos et al., 2020, 2016). We assumed 169 

all trees experienced the same environmental conditions measured from one location (i.e., the 170 

measurements of T, I, D, and sd at all the depths). Further site details on sap-flow data collection 171 

can be found in Matheny et al. (2014). Measurements were available from 2010 to 2016, and we 172 

focused on the year 2015 as it had the greatest amount of data available. Of the sap flux data 173 

available for the site, we excluded measurements from trees with more than 20% missing values. 174 

Furthermore, we removed two individuals showing irregular sap flow dynamics: one maintained 175 

90% of maximum sap flow regardless of 𝛹%, and another’s sap flow dropped to zero when 𝛹% <176 

−0.5 MPa, while all other individuals had non-zero sap flow over the whole period. In total, this 177 

study used observations from 23 individual trees of four canopy-dominant species: 8 red maple, 178 

5 paper birch, 5 bigtooth aspen, and 5 white pine trees. 179 

Finally, we converted the half-hourly data to daily for all of the variables. We used only 180 

measurements under high solar irradiance (i.e., I > 10 μmol m-2 s-1), assuming that these 181 

measurements corresponded to periods of active transpiration. With this subset of high 182 

irradiance, we calculated the daily mean values for T, I, and vn, the daily minimum value for Ψs, 183 

and the daily maximum value for D. For conciseness, we used the same symbols for all the 184 

variables before and after the conversion to daily values. In summary, our dataset consisted of 185 

the daily measurements of T, I, D, and Ψs, at the site level and vn at the individual level. 186 

2.2 Sap flow model 187 



We aimed to infer whole-plant hydraulic parameters using MCMC inversion of a whole-plant, 188 

daily-averaged sap flow model in combination with the sap flow data of individual trees and 189 

local soil water potential and atmospheric data. Our model targets the bulk water transport within 190 

plants and thus excludes the complexities of belowground water movement (e.g., resistance 191 

between soils and roots) and assumes the soil water potential is representative of conditions near 192 

plants’ fine roots. In addition, this model does not account for plant water-storage effects and 193 

assumes that its effect on variations in plant hydraulic conductance is smoothed out over time. 194 

The sap flow model is derived from equations of plant hydraulics and stomatal regulation. First, 195 

we assume that daily, whole-plant transpiration, E (m3 m-2 ground s-1), is determined by the 196 

balance between stomatal-mediated transpiration from atmospheric demand and the supply of 197 

water transported from soil to leaf driven by water potential differences (McDowell and Allen, 198 

2015): 199 

 𝐸 = 𝑎 ∙ 𝑙 ∙ 𝐿 ∙ 𝑔% ∙ 𝐷 = 10(* ∙ 𝑙 ∙ 𝑘+(𝛹+) ∙ (𝛹% −𝛹+)	 (3) 

where a (=1.6) is the ratio of water vapor and CO2 diffusivities, l (m3 mol-1) converts H2O from 200 

mol (gas) to m3 (liquid), L (m2 leaf m-2 ground) is leaf area index, gs (mol m-2 leaf s-1) is stomatal 201 

(and aerodynamic) conductance, Ψx (MPa) is plant water potential, and kx (Ψx) (mmol m-2 202 

ground s-1 MPa-1) is the whole-plant effective xylem hydraulic conductance (Eq. 4). Due to lack 203 

of data, we assume leaf area index remains constant over the whole observation period and infer 204 

its value. Because we focus our analysis on the peak of the growing season between May 30, 205 

2015, and September 16, 2015, we expect all species were equally affected by this assumption of 206 

constant leaf area index. All the fitting parameters are listed in Table 2 and model parameters 207 

with prescribed values in Table 3. 208 



The function kx (Ψx) represents reducing whole-plant hydraulic conductance with decreasing Ψx 209 

due to xylem embolism. Following Martin‐StPaul et al., (2017), xylem conductance is modeled 210 

by 211 

 𝑘+(𝛹+) = 𝑘+,!+ ∙ B1 −
1

1 + 𝑒
-!.-"/#$%

-&
∙(2'(3$%)

C	 (4) 

where kxmax (mmol m-2 ground s-1 MPa-1) is the maximum, whole-plant xylem hydraulic 212 

conductance, P50 (MPa) is the Ψx at 50% loss of kx, and ka, kb, and kc are all fitting parameters 213 

from Martin‐StPaul et al., (2017) with values of 16, 1092, and 25, respectively. 214 

In order to represent stomatal regulation on transpiration we use the following empirical model 215 

of stomatal conductance: 216 

 𝑔% = 41 +
𝑔)
√𝐷

5 ∙
𝐴(𝑔%, 𝑇, 𝐼)

𝑐!
∙ 𝑒5(#∙6#()(2')7 ≈

𝑔)
√𝐷

∙
𝐴(𝑔%, 𝑇, 𝐼)

𝑐!
∙ 𝑒5(#∙6#()(2')7	 (5) 

where the percentage of loss in xylem conductivity, fPLC (unitless), is defined as 217 

 𝑓389(𝛹+) = 1 −
𝑘+(𝛹+)
𝑘+,!+

;	 (6) 

g1 (unitless) is inversely related to plant marginal water use-efficiency (Medlyn et al., 2011), the 218 

function A (μmol m-2 leaf s-1) is the carbon assimilation rate as determined by the Farquhar-von 219 

Caemmerer-Berry photosynthesis model (Farquhar et al., 1980), ca (ppm) is the ambient CO2 220 

concentration, and c (unitless) represents stomatal sensitivity to decreasing water potential (i.e., 221 

stomatal drought sensitivity). We use species-specific values (i.e., the mean values in the TRY 222 

database, Kattge et al., (2020)) of photosynthetic carboxylation capacity (Vcmax) and 223 

photosynthetic electron transport capacity per leaf area (Jmax) at 25°C. The parameters Vcmax 224 

(micro mol m-2 s-1) and Jmax (micro mol m-2 s-1) are set to be: 31 and 48 for red maple; 56 and 225 



144 for paper birch, 61 and 122 for bigtooth aspen, and 63 and 142 for white pine. The first two 226 

terms in Eq. 5 follow Medlyn et al., (2011) who has also shown that the term 𝑔)/√𝐷 tends to 227 

dominate the term M1 + 𝑔)/√𝐷N. The last exponential term captures the generally observed 228 

Weibull stomatal closure to plant water potential (Klein, 2014). The choice to independently 229 

downregulate stomatal conductance with plant water potential follows Jarvis (1976) as well as 230 

similar formulations derived from optimal stomatal response under water stress (Manzoni et al., 231 

2011; Zhou et al., 2013; Wolf et al., 2016). Although questions exist around a priori defining a 232 

gs	– Ψx	relationship (Anderegg and Venturas, 2020), this formulation remains common in PHM 233 

implementation for terrestrial biosphere models (De Kauwe et al. 2015; Xu et al., 2016; 234 

Christofferson et al., 2016; Kennedy et al., 2019). 235 

Lastly, under the assumptions that sap flow measurements are taken on the main stem and there 236 

is no storage in the tree, we model E to be proportional to sap flow, vn (g H2O m-2 xylem s-1) as 237 

follows: 238 

 
𝑣: ∙ 𝛼
⍴ = 𝐸	 (7) 

where α (m2 sapwood m-2 ground) is the sapwood area per ground area; ρ (=997,000 g m-3) is the 239 

water density. 240 

In the sap flow model consisting of Eqs. 3-7, we defined six unknown parameters: L, kxmax, P50, 241 

g1, c, and α (Table 2). By simply rearranging the above equations, we can show that kxmax, L and 242 

α cannot be inferred independently. Instead, they can only be inferred in an aggregated form - 243 

here as kxmax/L and α/L. To demonstrate this, we combine Eqs. 3-5 and solve for gs to obtain 244 



 𝑔% =
𝑘+,!+
𝐿 ∙

10(*	M1 − 𝑓389(𝛹+)N ∙ (𝛹% −𝛹+)
𝑎 ∙ 𝐷 .	 (8) 

Then, by expanding Eq. 7 using Eqs. 3-6, we obtain 245 

 𝑣: = 10(* ∙ ⍴ ∙ 𝑙 ∙
𝑘+,!+
𝐿
𝛼
𝐿

∙ M1 − 𝑓389(𝛹+)N ∙ (𝛹% −𝛹+).	 (9) 

Now Eqs. 6, 8 & 9 define the complete sap flow model by Eqs. 3-7. We can solve them for the 246 

three unknown state variables (i.e., gs, Ψx, and vn). Notice that L, kxmax, and α now only appear in 247 

an aggregated form as kxmax/L and α/L. Consequently, we can infer five unknown parameters 248 

independently (i.e., Ψx50, g1, c, kxmax/L and α/L). 249 

Table 2. Description of symbols, along with definitions, units of measurement of the unknown 250 

model parameters 251 

Symbol Definition Unit 

c Stomatal sensitivity to decreasing xylem water potential – 

g1 Fitting parameter from Medlyn et al., (2011) – 

kxmax Maximum whole-plant xylem conductance mmol m-2 ground s-1 MPa-1 

L Leaf area index m2 leaf m-2 ground 

α Sapwood area per ground area m2 sapwood m-2 ground 

P50 Xylem water potential at 50% loss of conductivity MPa 

 252 

Table 3. Description of symbols, along with definitions, units of measurement, and default 253 

parameter values. For a model variable, its definition equation is given in the ‘Value’ column. 254 

For an input variable, its value is given as ‘– ‘. 255 



Symbol Definition Unit Value 

A Ratio of the diffusivities of water vapor and air – 1.6 

ca Ambient CO2 concentration ppm 400 

gs Stomatal conductance to CO2 mol m-2 leaf s-1 Eqs. 3 & 6 

kx Xylem hydraulic conductance mmol m-2 ground s-1 MPa-1 Eq. 4 

L Converting H2O from mol (gas) to m3 (liquid) m3 mol-1 1.8×10-5 

vn Daily-averaged sap flow g H2O m-2 xylem s-1 – 

A Photosynthesis rate μmol m-2 leaf s-1  

D Leaf-to-air vapor mole fraction difference – – 

E Transpiration rate m3 m-2 ground s-1 Eq. 3 

I Solar irradiance μmol m-2 s-1 – 

fPLC Percentage loss of hydraulic conductivity – Eq. 6 

T Temperature 0C – 

⍴ Water density g m-3 997000 

Ψs Soil water potential MPa – 

Ψx Xylem water potential MPa Eqs. 3 & 6 

 256 

2.3 MCMC implementation 257 



We estimated the fitting parameters for each individual tree using MCMC. The MCMC updates 258 

the prior distribution of each fitting parameter based on the available data, including T, I, D, Ψs, 259 

and vn. The assumed prior distribution of each unknown parameter is given in Table 4. The prior 260 

distributions were selected to 1) reflect reasonable and physically realistic ranges of each 261 

parameter (Kattge et al., 2020 for P50; Li et al., 2018 for c; Lin et al., 2015 for g1; Matheny et 262 

al., 2014 for α/L; Mirfenderesgi et al., 2019 for kxmax/L) and 2) result in peaked P50 posterior 263 

distribution within the support of its prior distribution. The prior distributions given in Table 4 264 

were applied to all individuals with exception of the three paper birch individuals. For these 265 

individuals, we had to use a modified prior distribution of c with a smaller support (Uniform: [5, 266 

10]) for the posterior distribution of P50 to be peaked within the support of its prior distribution. 267 

MCMC was implemented in Python using the PyMC package (Patil et al., 2010). 268 

Table 4. Prior distribution of the unknown parameters. The prior distributions were selected to 269 

reflect reasonable and physically realistic ranges of each parameter. 270 

Symbol Prior distribution 

c Uniform: [5, 30] 

g1 Uniform: [0.01, 1] 

kxmax/L Log uniform: [0, 3] 

α/L Log uniform: [-5, 0] 

P50 Uniform: [-5, -0.1] 

 271 

2.4 Synthetic experiments 272 



We use three synthetic experiments to examine the impacts of 1) measurement error and 2) prior 273 

knowledge on the accuracy of the estimated parameter – two of the three sources of estimation 274 

uncertainty investigated in this study. Two synthetic experiments will address two types of 275 

measurement errors: 1) the noise in sap flow data and 2) the bias in soil water potential. The 276 

reason we choose to focus on the bias rather than the noise in soil water potential as a 277 

measurement error is that it is more likely that the sitewide soil water potential used in this study 278 

is consistently higher or lower than the actual soil water potential for every individual tree. The 279 

third synthetic experiment will examine the effect of limited prior knowledge on the posterior 280 

distribution. 281 

In the first synthetic experiment, we simulate noisy sap flow measurements by generating 282 

synthetic sap flow data over a series of noise levels . We generate the baseline synthetic sap flow 283 

data with zero noise by running the sap flow model forwards with prescribed parameter values (c 284 

= 13, g1 = 20, kxmax/L = 1000, α/L = 0.01, P50 = -2.5) and the measured environmental inputs 285 

from the UMBS dataset. We then generate five sets of noisy sap flow data by adding Gaussian 286 

noise with zero mean to the synthetic baseline sap flow data, each with a different level of 287 

correlation to the synthetic baseline sap flow data itself. The correlation coefficients between the 288 

baseline synthetic sap flow data and the five sets of noisy sap flow data are 0.95, 0.9, 0.85, 0.8, 289 

and 0.75. We then infer the hydraulic parameters using the MCMC process, after replacing 290 

observed UMBS sap flux with the six synthetic datasets (which consist of noise-free baseline or 291 

noisy synthetic sap flow data and the environmental input data of T, I, D, and Ψs from the UMBS 292 

dataset) and compare the estimated hydraulic parameters with the true (i.e. prescribed) parameter 293 

values. 294 



In the second experiment, we create the baseline synthetic soil water potential data by first 295 

lowering the soil water potential data from the UMBS dataset by an artificial bias of 1 MPa. This 296 

reduction avoids the risk of generating positive soil water potential values in the synthetic soil 297 

water potential data that are to be created subsequently. We generate the synthetic sap flow data 298 

by running the sap flow model forwards with this baseline synthetic soil water potential data, the 299 

prescribed parameter values (the same as in the first experiment, c = 13, g1 = 20, kxmax/L = 1000, 300 

α/L = 0.01, P50 = -2.5), and the original data for the other environmental inputs (i.e., T, I, and D) 301 

from the UMBS dataset. Then, to simulate the biased soil water potential measurement, we 302 

generate two biased sets of synthetic soil water potential data by setting their values to be 303 

consistently lower and higher than the baseline synthetic soil water potential data by 1 MPa over 304 

the whole period, respectively, while using the same data from the baseline dataset for all the 305 

other inputs, including T, I, D, and modeled sap flow. Finally, to evaluate the effect of bias in 306 

soil water potential measurement on parameter estimation, we infer the hydraulic parameters 307 

estimated from MCMC using these three synthetic datasets and compare them to the synthetic 308 

truth. 309 

In the third experiment, to examine the effect of prior knowledge on parameter estimation, we 310 

also use the baseline synthetic dataset from the first synthetic experiment. Two prior 311 

distributions, the uniform, and a truncated normal distribution, are proposed to represent low and 312 

high amounts of prior information concerning parameters, respectively. By comparing the results 313 

of posterior distributions, we can evaluate the effect of prior information on parameter inference. 314 

2.5 Sensitivity analysis 315 



To explore the effect of parameter sensitivity – our final source of uncertainty – on parameter 316 

inference, we carry out a Sobol global sensitivity analysis (Sobol, 2001) to identify the 317 

importance of each parameter in determining the model output (i.e., sap flow). We expect a 318 

parameter with a higher sensitivity to have a lower variance in its posterior distribution. The 319 

first-order indices from a Sobol sensitivity analysis measure the contribution to the output 320 

variance of the main effect of each parameter (i.e., the effect of varying each parameter alone) 321 

while the total-order indices measure the output variance of each parameter, including all 322 

variance caused by its interaction with any other parameters. For each parameter, we define its 323 

parameter range for the sensitivity analysis based on the supports of its posterior distributions of 324 

all the tree individuals from the UMBS dataset, which we consider as the realistic parameter 325 

range. 326 

Because the soil water potential data is not as widely available as the other environmental 327 

conditions (e.g., T, I, and D), we examine the effects of soil water potential data availability on 328 

the resulting model sensitivities by running the sensitivity analysis with Ψs as either a known 329 

input or as an unknown constant. Based on the sensitivity of soil water potential and its influence 330 

in the sensitivities of other unknown parameters, we evaluate the importance of the availability 331 

of soil water potential data. We define the range for soil water potential (when treating it as an 332 

unknown parameter) based on the maximum and minimum values in the UMBS dataset. In the 333 

first scenario, Ψs data is considered to be available – we use the complete set of environmental 334 

inputs, including T, I, D, and Ψs, from the UMBS dataset as the known environmental inputs for 335 

the sensitivity analysis. In the second scenario, we run the sensitivity analysis with the soil water 336 

potential as an unknown constant. We repeat this analysis independently on every single day 337 

with varying environmental conditions over the whole observation period in both scenarios. 338 



2.6 Prediction of sapflow and whole-tree water use behaviors 339 

To verify that the inferred hydraulic traits can indeed be used to predict whole-plant water use 340 

behaviors, we compared our predicted sap flow against existing measurements. Furthermore, we 341 

contextualized the plant water-use strategy under water stress using the isohydricity framework 342 

proposed by Martinez-Vilalta et al. (2014). We use the median predicted plant water potential 343 

(𝜓+) and the input soil water potential (𝜓%) to fit a simple linear relationship, 𝜓+ = 𝜎𝜓% + Λ, 344 

where the intercept (Λ) represents the plant water potential under well-watered conditions (𝜓% ≈345 

0) and the slope (𝜎) indicates stomatal response to soil water stress, i.e., isohydricity. An 346 

isohydric plant will have 𝜎 ≈ 0 as it will close stomata to maintain a near-constant 𝜓+ value 347 

regardless of 𝜓%, representing a more risk-averse strategy to hydraulic damage. Alternately, as 𝜎 348 

increases, the plant moves towards anisohydric behavior, where it allows 𝜓+ to decline (by 349 

regulating stomata less) with 𝜓% in order to prolong transpiration at the risk of hydraulic damage. 350 

Although there are confounding factors to the isohydricity concept (Novick et al., 2019; Feng et 351 

al., 2019), 𝜎 nevertheless provides useful insight into the inter- and intraspecific variability of 352 

plant water use strategies (Kannenberg et al., 2021). We fit the isohydricity index, 𝜎, to each site 353 

and performed a species-level comparison using a single factor ANOVA and pairwise t-tests 354 

using Tukey’s HSD test to determine if 𝜎 values for each species differed and by how much. 355 

Tukey’s HSD allows pairwise t-tests while accounting for p-value inflation while performing 356 

multiple hypothesis tests (Efron and Hastie, 2016). We performed ordinary least squares fitting 357 

and hypothesis testing using the statsmodel package in Python (Seabold and Pektold, 2010). 358 

3 Results 359 



We first present the results of MCMC inversion of our sap flow model, including the posterior 360 

distributions, the ensemble prediction of sap flow, as well as the estimated isohydricity based on 361 

predictions of plant water potential. Then, we analyze the uncertainties associated with parameter 362 

estimation, due to 1) low parameter sensitivity, 2) measurement error, including the noise in sap 363 

flow data and the bias in soil water potential, and 3) the lack of prior information on the fitting 364 

parameters. The sensitivities of model parameters are represented by Sobol first-order and total-365 

order sensitivity indices. We demonstrate the effects of measurement error and prior information 366 

based on three synthetic experiments, then, based on these results, make recommendations to 367 

potentially reduce estimation errors. 368 

3.1 MCMC inference of plant hydraulic parameters 369 

The whole-plant effective value of xylem water potential at 50% loss of hydraulic conductivity, 370 

P50, is an important trait that characterizes plant drought tolerance (Brodribb and Cochard, 371 

2009). In Fig. 1a, we show the posterior distributions of P50 for each individual. All the P50 372 

estimates have low uncertainty, with a maximum coefficient of variation below 0.08 and 373 

standard deviation below 0.2 MPa. These posterior distributions show an order of magnitude 374 

reduction in uncertainty compared to the prior distribution of P50, which is uniformly distributed 375 

between -5 MPa and -0.1 MPa. This low uncertainty allows us to easily detect both the inter- and 376 

intraspecific difference in P50. Generally, red maple and white pine have similar inferred P50 377 

values at around -1.5 MPa (Fig. 1a). Paper birch and bigtooth aspen have slightly more negative 378 

P50 at around -2.0 MPa. Fig. 1b shows measured P50 values compiled from the TRY dataset and 379 

other literature sources (Deacon et al., 2019; Kattge et al., 2020, Fig. 1b) for each of these 380 

species. For red maple, the inferred P50 values are at the higher bound of the P50 data from the 381 

TRY database. This difference relative to previous measurements may be due to intra-specific 382 



variability, or may be related to the fact that, unlike the field measurements of P50, which are 383 

commonly made at leaf or branch scales, our inferred P50 values represent the effective whole-384 

plant value of this trait. Specifically, based on a modeling analysis (see Supporting Information, 385 

Fig. S1), we show that the effective whole-plant P50 is more likely to be lower than the segment 386 

P50 in the roots, and higher in the segments that are further away from the soil (i.e., closer to 387 

leaves). The P50 data for the other species are scarce (three data points for paper birch (Kattge et 388 

al., 2020); one for bigtooth aspen (Deacon et al., 2019), and none for white pine), although our 389 

estimates of P50 for paper birch and bigtooth aspen are still consistent with measurements. 390 

 391 

Figure 1. a) Posterior distributions of P50. Each bar represents an individual tree. Color 392 

indicates species: blue for red maple, yellow for paper birch, green for bigtooth aspen, and red 393 

for white pine. b) Measurements from the literature (data for red maple and paper birch are from 394 

the TRY database (Kattge et al., 2020); data for bigtooth aspen are from Deacon et al., (2019); 395 

no data have been found for white pine). 396 

We quantified the intraspecific variation in P50 using the coefficient of variation of the mean of 397 

the posterior distributions of all the individuals from the same species. Red maple shows the 398 



greatest intra-specific variability in Fig. 1a and has a higher standard deviation in the mean (0.36 399 

MPa) across individuals than the rest (0.23 for paper birch; 0.09 for bigtooth aspen; 0.13 for 400 

white pine). Compared with the species-level mean P50, none of the species shows a coefficient 401 

of variation higher than 0.3 (0.29 for red maple; 0.11 for paper birch; 0.04 for bigtooth aspen; 402 

0.09 for white pine), indicating a low intraspecific variation in P50. 403 

 404 

Figure 2. Posterior distributions of c (stomatal sensitivity to decreasing xylem water potential) 405 

with prior distribution as Uniform [2, 30]. Each bar represents an individual tree. Color indicates 406 

species: blue for red maple, yellow for paper birch, green for bigtooth aspen, and red for white 407 

pine. 408 

The parameter that captures stomatal sensitivity to drought, c, describes how quickly plants close 409 

stomata in response to decreasing plant water potential. A higher value of c indicates an earlier 410 

stomatal closure with decreasing plant water potential (Eq. 5). Fig. 2 shows that most of the 411 

posterior distributions of c have strong positive skew with a peak near 2, the lower bound of the 412 



support of its prior distribution. Compared with P50, almost all c estimates have a much larger 413 

variance, with the mean coefficient of variation around 0.38 (0.06 for P50). Also, for most 414 

individuals, the supports of their posterior distributions of c are not smaller than those of their 415 

prior distributions, a uniform distribution between 2 and 30. This difference in the inference 416 

uncertainty between P50 and c is mainly caused by our model having significantly less 417 

sensitivity to c than to P50. 418 

 419 

Figure 3. MCMC results of a red maple tree with the original parameters. Diagonal: posterior 420 

distributions of the fitting parameters. Off-diagonal: covariation of each pair of parameters. The 421 

Pearson correlation coefficient is denoted by ρ. 422 



The MCMC results indicate that the values of kxmax/L, α/L, and g1 are not well constrained with 423 

our model inversion approach, due to the strong correlation among them (with correlation 424 

coefficients near 1 for almost all individuals). A typical example of this strong correlation is 425 

shown in Fig. 3 for a red maple tree. The correlation coefficients among these three parameters 426 

are near 1 in the MCMC outputs of almost all individuals. The correlation between kxmax/L and 427 

α/L is understandable, as it is due to the fact that their ratio that determines how transpiration rate 428 

scales with the observed sap flow (defined in Eq. 9). However, the linear correlation between 429 

kxmax/L and g1 can only be expected when stomatal conductance gs is high. To illustrate this, we 430 

note that our model (see Eq. 5) contains specifies a nonlinear relationship between kxmax/L and g1, 431 

which is introduced by due to the nonlinearity in the Farquhar-von Caemmerer-Berry 432 

photosynthesis model (Farquhar et al., 1980) with respect to gs (see Eq. 5). Only when gs takes 433 

high values does A become practically independent of gs (i.e., photosynthesis is CO2-saturated) 434 

and becomes concentrated around its maximum value, Amax, which eliminates the nonlinearity 435 

within the Farquhar model. Specifically, under this assumption, Eq. 5 can be simplified as 436 
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which suggests the observed linearity between kxmax/L and g1 on the left-hand side. 438 

The physiological meaning of the aggregated parameter kxmax/L/g1 can be framed in terms of 439 

differential sap flow sensitivities to soil water stress compared to atmospheric water stress. The 440 

left-hand side of Eq. 11 decreases with increasing D while its right-hand side decreases with 441 



decreasing Ψx (these trends occur under value of c larger than 2, and fPLC lower than 50%, which 442 

is typically applicable for our dataset). Because, kxmax/L/g1 controls the relative impacts of the 443 

left- vs. right-hand side of Eq. 11 on stomatal conductance gs, kxmax/L/g1 can be thought of as an 444 

indicator of the relative sensitivity to plant water potential vs. vapor pressure deficit – with any 445 

given D, a higher value of kxmax/L/g1 results in a less negative Ψx at a constant stomatal 446 

conductance. 447 

 448 

Figure 4. Posterior distributions of kxmax/L/g1 (lower) and kxmax/α (upper) where kxmax is the 449 

maximum whole-plant xylem conductance, L is the leaf area index, g1 is inversely related to 450 

plant marginal water-use efficiency and α is the sapwood area per ground area. Color indicates 451 

species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine). 452 



Unlike its two strongly correlated component parameters, kxmax/L and g1 (Fig. 3), we display our 453 

results in terms of this aggregated parameter kxmax/L/g1 (left hand side of Eq. 11), which is well 454 

constrained with our model inversion approach and has very low uncertainty for every individual 455 

(Fig. 4, lower panel). Similarly, the other aggregated parameter, kxmax/α, which represents the 456 

maximum xylem conductance per xylem sapwood area, is also well constrained and inferred 457 

with low uncertainty (Fig. 4, upper panel). These results suggest that, in addition to a range of 458 

drought tolerance (based on results for P50; Fig. 1), these individuals also exhibit variations in 459 

their relative sensitivities to atmospheric drought (through vapor pressure deficit) or water status 460 

(through plant water potentials). 461 

 462 



Figure 5. Estimates of sap flow. The 5th, 50th, and 95th percentiles of 1000 MCMC estimates of 463 

the sap flow time series are in close agreement with the input data (black). Color indicates 464 

species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine). 465 

3.2 MCMC predictions of sap flow, plant water potential, and isohydricity 466 

We confirm that our inferred parameters can be used to adequately capture the seasonal variation 467 

in the observed sap flow. Fig. 5 shows that the ensemble prediction matches reasonably with the 468 

observed daily average sap flow in the input sapflow data and has very low uncertainty (where 469 

the uncertainty is defined as the interval between the 5th and 95th percentiles of the ensemble 470 

prediction of sap flow; note that both the 5th and 95th percentiles of the ensemble prediction are 471 

too close to the median to be visually identified in Fig. 5). The correlation between the observed 472 

sap flow and the median of the ensemble model prediction is generally strong. The mean 473 

correlation coefficient across all individuals is 0.69. However, Fig. 5 also shows that our 474 

approach seems to be only able to capture the overall seasonal trend in the observed dynamics of 475 

sap flow, but not the oscillation on finer (e.g., daily) time scales.The inferred parameters can also 476 

be used to capture inter- and intraspecies isohydricity variability through σ (Figure 6a), defined 477 

by the decline in plant water potential with soil water potential (Figure 6b). The paper birch and 478 

bigtooth aspen allow Ψx to decline faster with Ψs compared to the red maple and eastern white 479 

pine, corresponding to more anisohydric behavior consistent with previous knowledge shown in 480 

Table 1. The fits for the remaining trees (Figure S6) show much scatter near soil saturation, 481 

which is due to variability in D.We also tested the statistical significance of the interspecies 482 

differences in σ (Figure S8). A single factor ANOVA confirmed that the species-specific σ 483 

values are statistically different (p = 0.014); however, the pairwise t-tests using Tukey’s HSD 484 

struggled to find significant differences between the species σ values due to the large intra-485 



species variability for aspen and pine (Fig. 6a). Tukey’s HSD only yields a statistically 486 

significant difference between pine and birch (p = 0.022), while the difference in birch and 487 

maple (p = 0.06) and aspen and pine (p = 0.1) were above the 5% significance level (note that 488 

Tukey’s HSD tends to be extremely conservative, which may lower the power of the test (Efron 489 

and Hastie, 2016)). Nevertheless, these results illustrate the importance in accounting for the 490 

intraspecies variability, as it can potentially overtake the range in interspecific variability.491 

 492 

Figure 6. a) Isohydricity indices (σ) extracted from 𝜓+ and 𝜓% values at each site. Values closer 493 

to 0 indicate isohydric and values closer to 1 indicate anisohydric behavior. b) Actual water 494 

potential data (dots) and fit lines used to extract σ for one site of each species. Specifically, we 495 

are showing the trees that contained the median σ for each species. The individual fits for each 496 

site are shown in Fig. S6. 497 

3.3 Uncertainty analysis 498 

Fit Obs.Site ID

n =  8 n =  5 n =  5 n =  5a) b)



In this subsection, we report the effects of three main contributors to the uncertainty associated 499 

with parameter estimation: 1) low parameter sensitivity, 2) measurement error, and 3) the lack of 500 

prior information on the fitting parameters. First, we examine the effects of parameter sensitivity 501 

and focus on the comparison between two parameters, plant vulnerability to embolism, P50, and 502 

c. In this study, they show contrasting degrees of inference uncertainty – the posterior 503 

distributions of P50 have a much smaller variance than those for c (Figs. 1 & 2). Our sensitivity 504 

analysis shows that this difference can be explained by the different degrees to which the model 505 

output (i.e., sap flow) is sensitive to each parameter. As shown in Fig. 7 (left panel), P50 has a 506 

much larger Sobol’s total-order sensitivity index than c (the mean total-order index is 0.64 for 507 

P50 and 0.20 for c). Also, the first-order index of c is close to zero (about 0.015), indicating that 508 

this parameter has a very limited effect on the modeled sap flow on its own. These results 509 

confirm that our sap flow model is much more sensitive to the change in P50 than to c. 510 

Necessarily, this leads to a larger uncertainty in estimates of c relative to P50. These relative 511 

degrees of parameter sensitivity hold whether soil water potential is known or unknown: in the 512 

absence of soil water potential data, the model remains much more sensitive to P50 rather than c 513 

(Fig. 7, right panel). 514 



 515 

Figure 7. Sobol’s first-order and total order sensitivity indices. We consider two scenarios: the 516 

soil water potential as a model input (left panel) and a fitting parameter (right panel). 517 

We also evaluate the consequence of absent soil water potential measurements during parameter 518 

inference by inferring it as an unknown parameter. In Fig. 7 (right panel), we show that soil 519 

water potential as a model parameter is very sensitive as both its first- and total-order indices are 520 

high (its mean first- and total-order indices are 0.21 and 0.35, respectively). 521 

We analyze the next two sources of uncertainty – measurement error and low prior knowledge – 522 

based on synthetic experiments (Section 2.4). Here, we use P50 as an example and demonstrate 523 

the effects of measurement error on its posterior distribution. Noise in sap flow data creates 524 

irregular uncertainty in P50 (Fig. S4), with no consistent trend in bias and uncertainty of the P50 525 

estimate as the noise level increases. In contrast to noise in the sap flow data, bias in the soil 526 

water potential measurements does have large impacts on the estimated value of P50. While all 527 

the above model inversion results (Figs. 1-5) are based on the assumption of our soil water 528 

potential measurement (Section 2.1) being accurate, Fig. 8 shows that when soil water potential 529 

measurements are systematically more negative than their true values, MCMC tends to 530 



underestimate the true synthetic value of P50, resulting in more negative P50, and vice versa.531 

 532 

Figure 8. Posterior distributions of P50 inferred using soil water potential data at different bias 533 

levels. The horizontal line labels the prescribed synthetic truth. 534 

Finally, the uncertainty in parameter estimation may also be attributed to the lack of detailed 535 

prior knowledge of the fitting parameter. Our analysis shows that the effect of prior knowledge 536 

on the accuracy of different parameters’ estimates varies strongly with model sensitivity to that 537 

parameter. For both P50 and c, we evaluate the impact of prior knowledge qualitatively by 538 

comparing the posterior distribution of each parameter based on an MCMC inversion with a 539 

noninformative uniform prior with the posterior distribution using an informative truncated 540 

normal prior distribution (see Fig. 9a). In Fig. 9, we show that with more prior information 541 

(using the truncated normal distribution), the uncertainty of the c estimate decreases 542 

significantly. This improvement in the estimate for c does not come from making use of 543 

information contained in the data, because the posterior distribution (Fig. 9, right panel, blue) 544 

largely overlaps with the prior distribution (Fig. 9, left panel, blue). This presumably reflects the 545 

low sensitivity of c (c.f. Fig. 7). By contrast, more prior knowledge barely improves the estimate 546 

of P50: the two posterior distributions resulting from the uniform and truncated normal prior 547 



distributions are similar (Fig. 9, middle panel). There is higher certainty in the P50 posterior 548 

distributions, regardless of prior knowledge, relative to c, because the sap flow constrains the 549 

highly sensitive P50 parameter very well (see Fig. 7). Under these circumstances, an informative 550 

prior cannot provide much additional information to reduce the uncertainty in the P50 estimate, 551 

relative to a flat prior. 552 

 553 

Figure 9. Prior distributions (left) and the corresponding posterior distributions of P50 (middle) 554 

and c (right). Color indicates the type of prior distribution: red for uniform distribution and blue 555 

for truncated normal distribution. The vertical black lines in the middle and right panels indicate 556 

the true values of P50 and c, respectively. 557 

4 Discussion 558 

4.1 MCMC model inversion reliably predicts seasonal sap flow variations 559 

With the use of a simple model in combination with sap flow, soil water potential, and 560 

atmospheric data, we have demonstrated that an MCMC model inversion approach is able to 561 

predict seasonal sap flow variations across a range of environmental conditions (e.g., solar 562 

irradiance, vapor pressure deficit, temperature, and soil water potential; Figure 5). This ability to 563 



capture seasonal sap flow variations is an indication that the simple model used is realistic 564 

enough to represent complex plant behaviors. It also supports the assumption of strong 565 

coordination between stomatal conductance and plant water potential (Anderegg et al., 2017) 566 

embedded within Eq. 5, which results in stomatal closure occurring substantially earlier than any 567 

significant hydraulic impairment (Fig. S5), as commonly observed (e.g., Bartlett et al., 2016; 568 

Martin-StPaul et al., 2017). 569 

4.2 Whole-plant hydraulic parameters inferred through model inversion 570 

The accuracy with which the MCMC approach predicted sap flow variations (Figure 5) suggest 571 

that hydraulic parameters (Figures 1-4) can be reliably estimated. Our MCMC model inversion 572 

approach provides a means to infer whole-plant parameters values without scaling leaf or 573 

branch-level trait measurements. Typically, a plant is segmented into roots, xylem, and leaf for 574 

measurement (Sperry et al., 1998), requiring time consuming measurements in each segment 575 

(e.g., bench dehydration of a branch to find P50) and questions as to how well these local 576 

measurements can be representative of the whole-plant response. Instead, by using a model that 577 

captures whole-plant level sap flow as a starting point, the inferred parameters are directly 578 

applicable for whole-plant predictions (subject to the assumption that sap flow measurements are 579 

taken on the main stem, and with negligible effects of xylem capacitance, which is assumed by 580 

state-of-the-art terrestrial biosphere models (Kennedy et al., 2019; Eller et al., 2020; Sabot et al., 581 

2020)).These whole-plant parameter values are particularly useful to parameterize PHMs that do 582 

not separate branches from other plant components. For the same reason, values derived from 583 

this approach may be difficult to compare to current measurements. For example, our analysis 584 

(Supporting Information) shows that the effective whole-plant P50 is likely to be lower than P50 585 

in the roots and higher than P50 in the stems closer to the canopy. This is consistent with our 586 



results (Fig. 1) that show higher values of whole-plant inferred P50 than measured leaf or branch 587 

P50 for red maple and, to a lesser extent, paper birch. It is also consistent with the P50 values 588 

inferred from eddy covariance by MCMC in Liu et al (2020), for which in situ measurements of 589 

branch P50 were generally higher than the inferred whole-plant values. 590 

4.3 Intra- and inter- specific variations in plant water use strategies 591 

The low uncertainty around most inferred parameters (except for c) allows for the quantification 592 

of inter- and intraspecific variability in hydraulic traits. Trait variability has been observed in 593 

P50 and other hydraulic traits measured at the stem and branch levels (Anderegg et al., 2018; 594 

Bartlett et al., 2014; Trugman et al., 2019). Our analysis provides a preliminary look at whole-595 

plant trait variability among and within four tree species (Figs. 1, 2, & 4) that can be used to 596 

improve predictions of ecosystem scale fluxes. The low intraspecific variability in P50 for all 597 

species (Fig. 1) may be explained by the fact that all individuals grow on the same site and by 598 

our assumption that all trees experience the same environment. Further work must be done to 599 

ensure that sap flux measurements of individuals are representative of the species in the 600 

ecosystem and evaluate the extent to which these parameter values may vary across sites. 601 

The prediction of plant water potential based on inferred traits allowed us to characterize the 602 

water use strategies of each individual using an isohydricity index (Figure 6), which confirmed 603 

prior knowledge of aspen and maple at the site (Table 1), while providing new insights on birch 604 

and pine. More importantly, our analysis highlighted the intraspecies variability of plant water-605 

use strategy that emerges from hydraulic trait variability. In particular, aspen and pine contained 606 

one very isohydric outlier each (site Pgr-27 and site Pst-14 shown in Figure S7) relative to the 607 

other four trees in each species group. Although the MCMC inversion for these two individuals 608 

yielded relatively insensitive stomata (low c), their low xylem conductance per sapwood area 609 



(kxmax/α) caused enhanced stomatal closure and relatively stable plant water potential under soil 610 

water stress (see Figure S7). To the best of our knowledge, there were no extenuating 611 

circumstances (e.g., mortality, differing soil water conditions) or noticeable measurement errors 612 

that could explain these outliers. Therefore, barring significant deficiencies in our MCMC 613 

inversion, this result reinforces the importance of understanding intra-species variability of 614 

hydraulic traits, especially to understand plant response to water stress. 615 

4.4 Reducing uncertainties via additional soil and plant water potential data 616 

The MCMC results also help inform the collection of new soil or plant hydraulic data and extract 617 

additional information from existing datasets. For example, the results show that measured soil 618 

water potential at sites where sap flow measurements are taken is essential for reliable parameter 619 

inference (Fig. 7) and its accuracy has a great impact on the bias in parameter inference (Fig. 8). 620 

Therefore, study sites should be set up with at least a single profile of soil water potential to help 621 

interpret and extend the utility of sap flow measurements. Systematic biases in soil water 622 

potential measurement can be almost certainly expected from the use of a site-wide soil water 623 

potential measurement. This bias has been shown to strongly increase the uncertainty in 624 

hydraulic model prediction (e.g., soil water budget and transpiration) (Baroni et al., 2017; Zhu et 625 

al., 2018). In Chirico et al., (2010), the soil water potential bias is introduced specifically by the 626 

parameter uncertainty in pedotransfer functions (which converts soil moisture into soil water 627 

potential). The lack of continuously measured soil water potential data at many monitoring sites 628 

remains a challenge for leveraging flux data to advance our understanding of land-atmosphere 629 

interactions (Novick et al., 2019). 630 

Alternatively, measurements of soil moisture, which are much more widely available, can be 631 

converted to soil water potentials using measured soil water retention curves, as in this study. 632 



However, this conversion can be challenging in complex and heterogeneous soil substrates and 633 

must be accurate enough to ensure the quality of hydraulic model predictions (Chirico et al., 634 

2010). 635 

4.5 Implications of limitations in model structure 636 

While P50, kxmax/L/g1, kxmax/α are well-constrained at this site and for these species, estimates of 637 

the stomatal sensitivity to drought (i.e., c) are much more uncertain for almost all individuals in 638 

the UMBS dataset. This uncertainty is mainly driven by the lack of sensitivity to c of the sap 639 

flow model (Fig. 7). This means that estimation of c cannot be further improved by inversion of 640 

the sap flux model. Alternative model structures could be considered, but the adoption of 641 

alternative models is constrained by the data available to serve as model inputs and outputs. 642 

Some datasets could potentially better constrain some model parameters than others (Luo et al., 643 

2009), because these datasets might be more compatible with models that are sensitive to 644 

specific parameters. Thus, while we have shown the value of sap flux data for inferring P50, its 645 

utility for inferring stomatal closure parameters may be more limited unless coupled to additional 646 

measurements that are not available in this study (e.g., plant water potential). 647 

5 Conclusions 648 

Here, we have demonstrated that PHM hydraulic parameters can be inferred at the individual 649 

level using a MCMC inversion approach using measured sap flow. Reliable and simultaneous 650 

inference of multiple hydraulic model parameters has great potential to assist model 651 

parametrization, which remains a major impediment to the adoption of PHMs (Feng, 2020; 652 

Paschalis et al., 2020; Sloan et al. 2021). The inferred hydraulic traits – including the whole-653 

plant effective embolism vulnerability and maximum xylem conductance – are subject to a 654 



number of uncertainties related to model structure and input data availability but capture well the 655 

inter and intra-specific variability in plant water use and hydraulic vulnerability.Inferring plant 656 

hydraulic traits using sap flow data based on MCMC relies on accurate measurement of soil 657 

water potential with minimum bias, suggesting that measurements of soil water potential could 658 

be usefully incorporated into ecohydrological and ecophysiological observation campaigns for 659 

this purpose. While soil moisture data is commonly used as a substitute in practice, the 660 

conversion of soil moisture into soil water potential can be particularly challenging in any site 661 

with complex belowground structure. Furthermore, the accuracy of the model predictions can be 662 

further enhanced by comparison to plant water potential data. We conclude that although the 663 

MCMC inversion approach does not estimate all hydraulic parameters equally well, it is possible 664 

to infer some plant hydraulic traits using readily available indirect measurements (e.g., sap flow 665 

and meteorological data) with low uncertainty, and thus to augment time- and labor-intensive 666 

direct measurements. 667 
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Supporting information 1137 

Multi-segment xylem model 1138 

Let us compare a whole-plant model with a single segment from a multi-segment model. 1139 

Assuming they have the same flux, we get 1140 

𝑘;<=>/(𝛹;<=>/ , 𝛹?@;<=>/)𝛥𝛹;<=>/ = 𝑘%/A,/:BM𝛹%/A,/:B , 𝛹?@%/A,/:BN𝛥𝛹%/A,/:B	1141 

where k, Ψ, and ΔΨ denote the plant hydraulic conductance, plant water potential, and the water 1142 

potential gradient, respectively; and the subscripts, whole and segment, represent the two 1143 

corresponding models. 1144 

As it is fair to consider 1145 

𝛥𝛹;<=>/ > 𝛥𝛹%/A,/:B ,	1146 

it follows 1147 

𝑘;<=>/(𝛹;<=>/ , 𝛹?@;<=>/) < 𝑘%/A,/:BM𝛹%/A,/:B , 𝛹?@%/A,/:BN.	1148 

The above inequality suggests that the whole plant model has a more vulnerable xylem (i.e., 1149 

𝛹?@;<=>/ > 𝛹?@%/A,/:B) and/or a more negative water potential (i.e., 𝛹;<=>/ < 𝛹%/A,/:B). 1150 

Alternatively, the above inequality can also be satisfied with the whole plant model having a 1151 

stronger xylem (i.e., 𝛹?@;<=>/ < 𝛹?@%/A,/:B), which is more likely when 𝛹;<=>/ is much lower 1152 

than 𝛹%/A,/:B. This later scenario is more realistic when comparing the whole plant model with 1153 

the segment that is close to the root (as the water potential there is close to the soil water 1154 

potential) in a multi-segment model. 1155 



We explored the above ideas with a simple simulation experiment. In this experiment, we 1156 

assume that 1) the two models share the soil water potential and 2) the water potential drop in the 1157 

whole-plant model is larger than that in the multi-segment model. 1158 

As shown in Fig. S1, given the P50 for the whole plant model (red) and water potential drops for 1159 

the two models, we found that the inferred P50 for each segment in the multi-segment model 1160 

becomes more negative for the segments that are further away from the soil where the red 1161 

horizontal dashed line indicates the given value for the P50 for the whole plant model and the 1162 

first segment is the segment that contains the fine roots. 1163 

 1164 

Figure S1. P50 at each segment in a plant with n (=10) segments. The horizontal red dashed line 1165 

indicates the corresponding whole-plant P50 value. 1166 



 1167 

Figure S2. Posterior distributions of c with prior distribution as Uniform [2, 30]. Each bar 1168 

represents an individual tree. Color indicates species: blue for red maple, yellow for paper birch, 1169 

green for bigtooth aspen, and red for white pine. 1170 



 1171 

Figure S3. Estimates of plant water potential over time. The 5th, 50th, and 95th percentiles of 1172 

1000 MCMC estimates of plant water potential are shown. Color indicates species (blue: red 1173 

maple; brown: paper birch; green: bigtooth aspen; red: white pine). Similar ranges in xylem 1174 

water potentials (0 to -0.6MPa) are observed for red maple species in a different year (Thomsen 1175 

2013) for a number of our red maple individuals. 1176 



 1177 

Figure S4. Posterior distributions of P50 inferred using sap flow data at different noise levels. 1178 

The horizontal line labels the synthetic truth. 1179 



 1180 

Figure S5. Estimates of PLC given stomatal closure. The 5th, 50th, and 95th percentiles of 1000 1181 

MCMC estimates of PLC are shown. Color indicates species (blue: red maple; brown: paper 1182 

birch; green: bigtooth aspen; red: white pine). The vertical line indicates 90% stomatal closure. 1183 



 1184 

Figure S6. Linear relation between inferred plant water potential to observed soil water potential 1185 

used to identify the isohydricity index σ (slope) for each site (see Sect. 2.6 for details). Color 1186 

indicates species (blue: red maple; brown: paper birch; green: bigtooth aspen; red: white pine). 1187 

The site ID, slope (σ), intercept (Λ), and coefficient of determination (R2) are shown for each 1188 

site. The σ values are used to create Figure 6a in the main text. 1189 

 1190 



Figure S7. Output for pairwise t-tests performed in Tukey’s HSD test by the Python package 1191 

statsmodel. 1192 


