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Summary

� Every existing optimal stomatal model uses photosynthetic carbon assimilation as a proxy

for plant evolutionary fitness. However, assimilation and growth are often decoupled, making

assimilation less ideal for representing fitness when optimizing stomatal conductance to water

vapor and carbon dioxide. Instead, growth should be considered a closer proxy for fitness.
� We hypothesize stomata have evolved to maximize turgor-driven growth, instead of assim-

ilation, over entire plants’ lifetimes, improving their abilities to compete and reproduce. We

develop a stomata model that dynamically maximizes whole-stem growth following principles

from turgor-driven growth models. Stomata open to assimilate carbohydrates that supply

growth and osmotically generate turgor, while stomata close to prevent losses of turgor and

growth due to negative water potentials.
� In steady state, the growth optimization model captures realistic stomatal, growth, and car-

bohydrate responses to environmental cues, reconciles conflicting interpretations within exist-

ing stomatal optimization theories, and explains patterns of carbohydrate storage and xylem

conductance observed during and after drought.
� Our growth optimization hypothesis introduces a new paradigm for stomatal optimization

models, elevates the role of whole-plant carbon use and carbon storage in stomatal function-

ing, and has the potential to simultaneously predict gross productivity, net productivity, and

plant mortality through a single, consistent modeling framework.

Introduction

Stomata regulate the terrestrial water and carbon cycles through
transpiration and photosynthesis (Hetherington & Woodward,
2003), influencing climate through feedback with soil-moisture
storage and runoff (Leipprand & Gerten, 2006; Betts et al.,
2007), rainfall cycling (Van der Ent & Savenije, 2011; Zemp
et al., 2017), atmospheric boundary layer development (Siqueira
et al., 2009), atmospheric CO2 concentrations (ca), and air tem-
peratures (Ta) (Betts et al., 2000; Cox et al., 2000) among others.
Predictions of future climate traditionally employ empirical rela-
tionships between stomatal conductance (gw), photosynthetic car-
bon assimilation (An), vapor-pressure deficit (VPD; DL), and ca
(e.g. Ball et al., 1987; Leuning, 1995), lacking rigorous plant
physiological mechanisms and requiring parameters with little
physical meaning. While process-based models of stomatal guard
cell dynamics exist (e.g. Buckley et al., 2003, 2012), they remain
an open research frontier. Instead, optimization models are
replacing empirical formulations for gw at large scales (Medlyn
et al., 2011; De Kauwe et al., 2015; Eller et al., 2020; Sabot
et al., 2020). These optimization models are based on the theory

that plants have evolved through natural selection to maximize
their evolutionary fitness within the limits of genotypic variation
and physiological constraints (Mäkelä et al., 2002; Franklin et al.,
2020).

Theoretically, optimization models should maximize a plant’s
reproductive success as the true measure of evolutionary fitness
(Mäkelä et al., 2002; Table 1). In practice, however, optimization
models for gw traditionally hypothesize stomata maximize An as a
proxy for fitness (e.g. Cowan, 1977; Cowan & Farquhar, 1977),
which we call assimilation optimization hypotheses (AOHs; see
Table 2 for terminology). Maximizing An instantaneously would
unrealistically predict stomata always maximally open (unless
including nonstomatal limitations to photosynthesis). Thus,
AOHs introduce additional costs to penalize opening and to pre-
dict realistic gw (Wolf et al., 2016; Wang et al., 2020). These
costs and constraints have been associated with water-saving
strategies to avoid future water stress (solved either over short
durations: Cowan, 1977; Cowan & Farquhar, 1977; Hari et al.,
1986; Katul et al., 2010; Medlyn et al., 2011; or dynamically:
Cowan, 1982; Mäkelä et al., 1996; Manzoni et al., 2013;
Lu et al., 2016; Mrad et al., 2019), xylem embolism (e.g.
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Wolf et al., 2016; Sperry et al., 2017), and nonstomatal limita-
tions to photosynthesis (decreased mesophyll conductance and/or
photosynthetic capacities; e.g. Givnish, 1986; Dewar et al.,
2018). Besides nonstomatal limitations (Salmon et al., 2020),
these costs cannot be measured directly. It is possible to infer
them from gas-exchange experiments. However, these experi-
ments are difficult and rarely performed (Hall & Schulze, 1980;
Fites & Teskey, 1988; Thomas et al., 1999). Overall, AOHs
emphasize carbon acquisition, but few AOHs consider how
plants actually use carbon once assimilated (Nikinmaa et al.,
2013; Hölttä et al., 2017; Dewar et al., 2022). Plant survival,
competition, and reproduction should be better reflected by car-
bon use than by assimilation.

Few AOHs explicitly discuss growth (Givnish & Vermeij,
1976; Cowan, 1982), an important aspect of carbon use. These
studies, however, incorrectly assume assimilation and growth are
coupled. Assimilation and growth are certainly correlated over
annual or longer timescales (Von Allmen et al., 2012; Smith &
Sperry, 2014) but decoupled over shorter timescales (Cabon
et al., 2022). Over diurnal timescales, photosynthesis occurs dur-
ing the day, while most radial growth typically occurs at night or
early morning (Peters et al., 2021; Zweifel et al., 2021). The bal-
ance among photosynthesis, growth, and respiration governs the
storage of carbon as nonstructural carbohydrates (NSCs), which
accumulate during the day (when assimilation exceeds demand)

and deplete at night (when demand exceeds assimilation; Smith
& Stitt, 2007). Similar NSC patterns occur over seasonal time-
scales. Trees’ NSCs often peak before or at the onset of the grow-
ing season (Martı́nez-Vilalta et al., 2016), storing them
throughout the winter and sourcing the sprouting of new stems
in the following year (Epron et al., 2012). In fact, trees store a
seeming abundance of NSCs, enough to potentially rebuild their
canopies more than four times (Hoch et al., 2003). Nonetheless,
a consensus on the degree to which growth is limited by NSCs is
yet to be reached (Sala et al., 2012; Wiley & Helliker, 2012). Are
stomatal responses coordinated with growth and NSCs? Could
such a potential coordination optimize plants’ fitness? AOHs lack
a framework to investigate these questions.

We hypothesize stomata have evolved strategies that maximize
stem growth over trees’ entire lifetimes, which we refer to as the
growth optimization hypothesis (GOH). Integrated over time,
maximizing growth further maximizes size (height, rooting depth),
which directly reflects their abilities to compete for resources (light,
water, nutrients; King, 1990; Franklin, 2007). In fact, maximizing
height growth is an evolutionarily stable strategy for trees compet-
ing for light (Mäkelä, 1985; King, 1990). Size also impacts repro-
ductive success, since most plants reproduce only after achieving a
minimum size (Obeso, 2002). Any optimization requires a trade-
off. According to the GOH, stomata open to assimilate carbon to
supply growth (i.e. the benefit); however, opening reduces water

Table 1 Proxies for evolutionary fitness in stomatal optimization.

Rank
(from
best
to
worst)

Plant
processes/
proxy for
evolutionary
fitness

Could this process be
satisfactorily modeled at the
genesis of stomatal optimization
(i.e. Cowan, 1977; Cowan &
Farquhar, 1977)?

Can this
process be
satisfactorily
modeled
now?

Selected studies of how to model
these processes

Selected studies that apply this proxy
for fitness to model stomatal
conductance

1 Reproduction × × – –
2 Growth (G) ×1 ✓ Steppe et al. (2006); De Schepper

& Steppe (2010); Hölttä
et al. (2010); Schiestl-Aalto
et al. (2015); Hayat et al. (2017);
Cabon et al. (2020); Jones
et al. (2020); Peters et al. (2021);
Potkay et al. (2021a)

Present study

3 Photosynthetic
net carbon
assimilation
(An)

✓ ✓ Farquhar et al. (1980); Farquhar &
Wong (1984); Collatz
et al. (1991); Evans &
Farquhar (1991); De Pury &
Farquhar (1997)

Cowan & Farquhar (1977);
Cowan (1982); Givnish (1986);
Hari et al. (1986); Mäkelä
et al. (1996); Katul et al. (2010);
Medlyn et al. (2011); Manzoni
et al. (2013); Prentice et al. (2014);
Lu et al. (2016, 2020); Wolf
et al. (2016); Hölttä et al. (2017);
Sperry et al. (2017); Anderegg
et al. (2018); Dewar et al. (2018,
2022); Eller et al. (2018); Bartlett
et al. (2019); Deans et al. (2020);
Wang et al. (2020)

A historic inability to satisfactorily mathematically model better proxies of evolutionary fitness, such as plant reproduction and growth, leads to an emphasis
on plant processes that could be modeled at the genesis of stomatal optimization, specifically photosynthetic net carbon assimilation. Recent improvements
in plant growth modeling may now advance stomatal optimization.
1Early work did not consider the role of nonstructural carbohydrate (NSC) storage and thus assumed that an increase in photosynthetic carbon assimilation
will always increase growth, which is not necessarily true. Hence, the choice of photosynthetic carbon assimilation as the proxy for fitness was intended to
reflect growth optimization.
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potentials (ψ) throughout the plant, turgor pressure (P) in the cam-
bium and inner bark, and thus growth (i.e. the cost; Figs 1, 2;
Sperry et al., 1998; Hölttä et al., 2010). Turgor is an established
physiological control on plant growth, including cell expansion
(Lockhart, 1965) and division (Kirkham et al., 1972). Turgor also
drives the transport of the building blocks of structural biomass
(carbohydrates) from where they are produced (leaves) or stored
through the phloem to growth sites (Münch, 1930). Additionally,
permanent turgor loss leads to mortality of individual cells (i.e. pro-
toplast detachment from the cell wall) and whole plants (through
tissue water content loss; Sapes et al., 2019; Preisler et al., 2021;
Sapes & Sala, 2021). In fact, an inability to grow often precedes
death (Das et al., 2016; Cailleret et al., 2017; DeSoto et al., 2020),
potentially due to turgor loss. By maximizing growth and turgor
and meristem water content, the GOH reflects a strategy that mini-
mizes desiccation-induced mortality (Supporting Information
Notes S1; Section S2).

In this paper, we develop a growth-optimizing stomata model
(GOSM) following our GOH that dynamically maximizes the
whole-stem growth of an individual tree. We model growth fol-
lowing turgor-driven stem growth models (e.g. Steppe et al.,
2006; De Schepper & Steppe, 2010) and source-sink models that
consider NSC limitations (e.g. Schiestl-Aalto et al., 2015; Hayat
et al., 2017). We compare our GOSM to AOH models as a first-
order test. We show the GOH agrees with our current under-
standing of stomatal regulation to environmental forcing. Finally,

we explore our GOH’s potential to improve our understanding
and ability to predict responses of stomata, growth, and NSC
storage, particularly during and after drought.

Materials and Methods

Growth-optimizing stomata model

This section summarizes the core assumptions, structure, and key
variables of our GOSM (Fig. 1; Table S1). We do not use GOH
and GOSM interchangeably. Growth optimization hypothesis
refers to a general modeling framework, while GOSM refers to the
specific solution to the GOH presented here. Our GOH assumes
only that stomata maximize growth, while our GOSM makes
many other assumptions to reach a tractable solution. Growth-
optimizing stomata model details and assumptions are fully
explained in the Supporting Information (Notes S1; Fig. S1),
including its limitations (Section S10). The GOH’s overarching
principle is stomata maximize an individual tree’s whole-stem
growth over its lifetime. Mathematically, this principle is stated as:

max
g c

Z
G C ,Eð Þ dt Eqn 1

where gc is the total conductance to CO2, t is time, and G is the
whole-tree growth rate expressed in carbon equivalents per unit

Table 2 Glossary of terminology.

Term Meaning

Assimilation optimization
hypothesis (AOH)

A hypothesis that states that stomata optimize a trade-off between photosynthetic net carbon assimilation (An) and
some additional cost that penalizes excessive stomatal opening

Growth optimization hypothesis
(GOH)

The hypothesis that stomata optimize turgor-driven growth

Growth-optimizing stomata
model (GOSM)

A model that predicts the stomatal conductance (gc) that optimizes cambial growth

Nonstructural carbohydrates
(NSCs)

Large organic macromolecules that provide both the material and energy required for biological chemical reactions,
the synthesis of other organic compounds, and the growth of new biomass. Internal plant storage of NSCs buffers
the asynchrony of supply and demand over diurnal, seasonal, and decadal timescales and across plant organs

NSC-use efficiency (NSCUE) Cost of depleting NSCs that is associated with the gain of growing new biomass
Water-use efficiency (WUE) Cost of evaporative water loss that is associated with photosynthetic carbon gain
Instantaneous optimal solution Solutions of gc, marginal WUE (λ), and growth rate (G) that optimize growth given prescribed values of the current

NSC storage (C) and marginal NSCUE (η)
Steady-state optimal solution Solutions of gc, λ, G, and C that optimize growth once both C and η cease changing (dC/dt = 0 and dη/dt = 0) under

constant environmental conditions. Steady-state solutions represent the final product of the feedback between C and
η once they have ceased changing under constant environmental conditions

Transient optimal solution Dynamic solutions of gc, λ, G, and C that optimize growth over a specified duration, which we refer to as the timescale

of optimization. Transient solutions allow C and η to dynamically feedback and evolve in coordination with
environmental conditions throughout the timescale of optimization. Environmental conditions may be constant or
vary during the timescale of optimization in transient solutions

Long-term acclimation of leaf
traits to eCO2

Any solutions under elevated atmospheric CO2 concentrations (eCO2) that reflect leaf-level adaptations to eCO2 that
arise slowly over seasonal to annual timescales, including increased leaf areas and reduced photosynthetic capacities.
Relevant to Supporting Information Figs S13 and S14

Acclimation to permanent soil
water stress

Steady-state optimal solution to permanent soil water stress that reflects a plant’s long-term ability to survive and
function in different environments of differing soil water availability. Relevant to Figs 4 and 5

Recovery after transient drought
stress

Steady-state optimal solution with plentiful soil water and with reduced xylem conductance due to a past transient
period of intense soil water stress. This past drought is assumed to have been long enough to reduce xylem
conductance while short enough for the simulated plant to still survive. These simulations represent drought legacy
effects to varying drought intensities. Relevant to Figs 4 and 5
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time. G depends on other state variables and environmental con-
ditions. The state variables are the leaf area-specific transpiration
rate (E) and the NSC storage (C), while environmental condi-
tions are soil water potential (ψ soil), air temperature (Ta), the air’s
relative humidity (RH), and insolation (Is).

We first examine the steady-state GOSM solution to show
there exists a gc that maximizes G (Fig. 2) for the environmental
conditions used in Table 3 and later mathematically define the
steady-state solution (Eqns 10, 11). Opening stomata releases
water vapor as transpiration (E), reducing leaf temperature (TL)
and leaf-to-air VPD (DL). Opening stomata enables photosyn-
thetic assimilation of CO2 (An), which depends on TL by the
kinetics of enzymes involved in photosynthesis. Hence, opening
stomata supplies carbon for growth. Meanwhile, opening ‘pulls’
xylem sap upward, reducing plant water potentials (ψL, ψS, and
ψRc in Fig. 2), turgor (P), and the carbon demand for growth (G0

in Fig. 2). As stomata close, supply diminishes, while demand
raises, shrinking carbon storage in the form of NSCs (C). Con-
versely as stomata open, supply increases, and demand decreases,
raising NSCs. In steady state, the actual growth (G) balances car-
bon supply with demand, and G peaks at an intermediate stomatal

aperture (Gmax in Fig. 2). These G0, G, C, An, E, TL, DL, ψL, ψS,
and ψRc curves shift as environmental conditions vary, reposi-
tioning the optimal gc (Fig. S2). For example, under soil drought,
water potential curves decline, reducing G0 and G curves, elevat-
ing the C curve, and shifting Gmax to a smaller conductance
(Fig. S2), thereby changing gc through changes in demand curves.
Similarly, elevated atmospheric CO2 concentration shifts Gmax to
a smaller conductance, however, through changes in supply curves
by elevating An, C, and G curves (Fig. S2). Reducing RH shifts
Gmax to a smaller conductance through changes in the demand
(G0) curve, particularly by increasing its sensitivity to gc (larger
¦∂G0/∂gc¦ due to higher VPD). Increasing air temperatures has a
small effect on the supply (An) curve; however, changes in demand
are dominant, closing stomata by increasing the sensitivity of G0

to gc (i.e. a VPD response) and increasing the maximum value of
G0 when stomata are fully closed (a direct growth stimulation by
warmer temperatures; Figs S2, S3).

We apply the calculus of variations (Witelski & Bowen, 2015)
to solve Eqn 1 for the optimal gc. Several AOH studies have ap-
plied the calculus of variations to investigate soil water-saving
strategies (Cowan, 1982; Mäkelä et al., 1996; Manzoni et al., 2013;

Fig. 1 Conceptual diagram for our growth-optimizing stomata model (GOSM; see Table S1 for symbols used). Stomata optimize growth by balancing a
trade-off between accumulation of nonstructural carbohydrates (NSCs, C; red box) and preventing excessively negative water potentials that hamper cell
expansion and division. Stomata open to accumulate NSCs through total photosynthetic carbon assimilation (aL�An, where aL is the total leaf area, and An is
the leaf area-specific carbon assimilation). These NSCs are required to osmotically generate turgor and supply growth (G; NSC-limited growth), mainte-
nance respiration (RM), and construction respiration (RG, where RG / G). NSCs accumulate when carbon inputs (aL�An) exceed carbon outputs (RM + RG +
G) and deplete when outputs exceed inputs. In steady state, carbon inputs and outputs are equal, and NSC reserves are stable. Meanwhile, stomata close
to prevent cambial water potentials from reaching a threshold, past which growth ceases, by limiting total transpiration (aL�E, where E is the leaf area-
specific transpiration; water potential-limited growth). The total transpiration is conducted through soil, roots, stems, and then leaves, which are given by
their conductances (kR, kS, and aL�kL, respectively, where kR is the conductance of the soil and roots in series, and kL is the leaf conductance per unit leaf
area), and soil, root collar xylem, stem apex xylem, and leaf xylem potentials (ψ soil, ψRc, ψS, and ψL, respectively). These conductances decline as a result of
xylem embolism and loss of soil conductance due to the unsaturation of soil void space (blue subplots on right). Additionally, growth may be limited by cold
or hot temperatures (temperature-limited growth). Through the diagram, processes are distinguished by color. Red reflects carbon use, blue reflects water
use, and green reflects growth, which accounts for both carbon and water use. Thick arrows represent physical fluxes of carbon and water, while thin black
arrows represent mathematical relationships between model variables.
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Mrad et al., 2019). Here, we define whole-plant NSC storage
(C) as the limiting dynamic resource that trees must conserve
to support future growth and respiration. To apply the calculus
of variations, we must define the dynamics of C:

_C ¼ dC

dt
¼ aLAn�RM�RG�G Eqn 2

where aL is the total leaf area, An is the leaf area-specific average
carbon assimilation rate, RM is the maintenance respiration of
stems and roots, and RG is the whole-tree growth respiration
(Eqns S1.1, S1.2). An is modeled following a big-leaf version of
the Farquhar et al. (1980) model, based on electron transport
and carboxylation capacities and their dependence on leaf tem-
perature, the calculation of which considers evaporative leaf

cooling (Notes S1; Sections S3, S4). Future GOSM iterations
should consider nonstomatal limitations to photosynthesis based
on their compatibility with traditional AOH theories (Zhou
et al., 2013; Novick et al., 2016).

RG is proportional to G such that their sum equals G/(1 − fc),
where fc is a constant less than one, equaling RG/(aL�An − RM)
when _C = 0 (Eqn S1.6). Both G and RM are potentially limited
by NSCs (Thornley, 1970, 1971; Eqns S1.3, S1.7; RG may also
be NSC-limited, since RG / G):

G ¼ σg Cð ÞG 0 Eqn 3

RM ¼ σr Cð ÞRM,0 Eqn 4

where G0 and RM,0 are maximum potential values of G and RM if
NSCs were nonlimiting, and σg and σr are fractions that span
between zero (when C is small) and unity (when C is large). We
model σg and σr similarly to Jones et al. (2020) (Eqns S1.4, S1.8):

σg Cð Þ ¼ C

C þ γgC struct
Eqn 5

σr Cð Þ ¼ C

C þ γrC struct
Eqn 6

where Cstruct is the total dry biomass in carbon equivalents, and
γg and γr are unitless parameters. We include Cstruct in Eqns 5
and 6 to signify tree size should influence potential NSC limita-
tions and so σg and σr can be related to NSC concentrations
rather than whole-tree NSC reserves and are thus presumably less
sensitive to tree size. For simplicity, we here model a large,
mature tree, enabling us to treat Cstruct as effectively constant
throughout simulations. However, Cstruct would change dynami-
cally due to G in a full dynamic growth model, especially for
young, small trees. This simplification is reasonable if simulations
are short or if relative growth rates are small, the latter of which
holds for trees that are mature in stature (Valentine & Mäkelä,
2012; Forrester, 2021). Thus, in this study, γg�Cstruct and
γr�Cstruct are more important quantities than γg and γr, respec-
tively, both of which we indirectly estimated for model perfor-
mance given our value of Cstruct (see ‘Parameterization’ in the
Materials and Methods section; Notes S1; Section S8).

RM,0 is temperature-dependent and modeled by Q10-type
equations (Eqn S1.5). G0 is modeled following Potkay
et al. (2021a), including growth limitations imposed by turgor
(Lockhart, 1965; Steppe et al., 2006) and temperature (Parent
et al., 2010; Cabon et al., 2020). Their formulation is equivalent
to the Lockhart (1965) equation for turgor-driven cell expansion
integrated axially along the whole stem within an allometric con-
figuration:

G 0 ¼ eϕCW

uS

Z 1

0

max P 0 ezð Þ�Γ, 0ð Þdez Eqn 7

where eϕ is an ‘effective’ whole-tree extensibility that is propor-
tional to the true cell wall extensibility (Potkay et al., 2021a), CW

Fig. 2 Stomatal response model based on the steady-state optimization of
turgor-limited growth, showing predictions for photosynthetic C assimila-
tion (An, teal line), transpiration (E, pink line), leaf temperature (TL, blue
line), leaf-to-air vapor-pressure deficit (VPD; DL, magenta line), leaf, stem,
and root collar water potentials (−ψL, −ψS, and −ψRc, and, dark purple,
red, and dark orange lines, respectively), potential growth rate (G0, light
purple line), actualized growth rate (G, light orange line), and nonstruc-
tural carbohydrate (NSC) storage (C, yellow line) for potential values of
total conductance, gc. Here, we present results from the steady-state ver-
sion of our model for which both NSC storage and the NSC-use efficiency
(NSCUE, η) are constant ( _C = 0 and _η = 0) for the environmental condi-
tions and physiological parameters listed in Table 3. The optimal gc occurs
where G is maximum (Gmax, vertical dot-dashed gray line) and coincides
with optimal values of An, E, TL, DL, ψL, ψS, ψRc, G0, and C (circles). The
upper limit of the x-axis (gc = 0.3 mol m−2 s−1) approximately coincides
with the maximum potential E, above which ψL rapidly approaches nega-
tive infinity; thus, the x-axis represents the hydraulically viable range of
potential gc, which are not prone to runaway embolism.
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tä

e
t
a
l.
(2
0
1
7
)
fo
r
Sc
o
ts
p
in
e

ε
0
.9
7

–
Le

af
em

is
si
vi
ty

Sp
er
ry

e
t
a
l.
(2
0
1
7
)

θ c
0
.9
8

–
C
o
ef
fi
ci
en

t
in

h
yp

er
b
o
lic

m
in
im

u
m

o
f

th
e
ca
rb
o
xy
la
ti
o
n
-l
im

it
ed

as
si
m
ila
ti
o
n

ra
te
,
A
c,
an

d
th
e
el
ec
tr
o
n
tr
an

sp
o
rt
-

lim
it
ed

as
si
m
ila
ti
o
n
ra
te
,
A
j;

θ c
A
2 n
–
A
c
þ
A
j

�
� A

n
þ
A
c
A
j
¼

0

Sp
er
ry

e
t
a
l.
(2
0
1
7
)

θ J
0
.9
0

–
C
o
ef
fi
ci
en

t
in

h
yp

er
b
o
lic

m
in
im

u
m

o
f

m
ax

im
u
m

el
ec
tr
o
n
tr
an

sp
o
rt
ra
te
,

J m
a
x
,
an

d
th
e
lig
h
t-
lim

it
ed

ra
te

o
f

el
ec
tr
o
n
tr
an

sp
o
rt
,J

I;
θ J
J2

−
(J
m
a
x
+

J I
)
J
+

J m
a
x
J I
=
0

Sp
er
ry

e
t
a
l.
(2
0
1
7
)

κ
6
.9
0
×
1
0
−
7

m
o
l
J−

1
P
ro
p
o
rt
io
n
al
it
y
co
n
st
an

t
b
et
w
ee

n
th
e

lig
h
t-
lim

it
ed

ra
te

o
f
el
ec
tr
o
n

tr
an

sp
o
rt
,
J I
,
an

d
ab

so
rb
ed

ra
d
ia
ti
o
n
,

I;
J I
=
κ�I

C
al
cu
la
te
d
fo
r
a
q
u
an

tu
m

yi
el
d
o
f
0
.3

(m
o
lp

h
o
to
n
)�(
m
o
l
e−

)−
1
an

d
an

av
er
ag

e
P
A
R
w
av
el
en

g
th

o
f

5
5
0
n
m

κ L
0
.5

m
2
m

−
2

C
an

o
p
y
lig
h
t
ex

ti
n
ct
io
n
co
ef
fi
ci
en

t
M
u
rt
y
e
t
a
l.
(1
9
9
6
);
B
u
ck
le
y
&
R
o
b
er
ts
(2
0
0
6
a)

fo
r
lo
d
g
ep

o
le
p
in
e

W
h
o
le
-t
re
e
ca
rb
o
n
u
se

f c
0
.2
8

–
Fi
xe

d
fr
ac
ti
o
n
o
f
G
P
P
d
iv
er
te
d
to

g
ro
w
th

re
sp
ir
at
io
n
,
R
G

C
h
u
n
g
&
B
ar
n
es

(1
9
7
7
)
fo
r
lo
b
lo
lly

p
in
e

R
M
,0
,2
5
°C

5
.0

×
1
0
−
5

m
o
l
C
s−

1
M
ax

im
u
m

st
em

an
d
ro
o
t
m
ai
n
te
n
an

ce
re
sp
ir
at
io
n
ra
te

at
2
5
°C

Fo
r
va

ri
o
u
s
co
m
b
in
at
io
n
s
o
f
γ g

an
d
γ r
,
w
e
ca
lc
u
la
te
d
R
M
,0
,2
5
°C

(F
ig
.
S4

),
e ϕ 25°

C
(F
ig
.
S5

),
an

d
th
e

st
ea

d
y-
st
at
e
N
SC

re
se
rv
e
(C
;
Fi
g
.
S6

)
th
at

w
o
u
ld

sa
ti
sf
y
tw

o
co
n
st
ra
in
ts
:

�
th
e
st
em

an
d
ro
o
t
m
ai
n
te
n
an

ce
re
sp
ir
at
io
n
ra
te
,
R
M
,
eq

u
al
s
a
ta
rg
et

va
lu
e
o
f
1
.5

×
1
0
−
5

m
o
l
C

s−
1
at

th
e
d
ef
au

lt
en

vi
ro
n
m
en

ta
lc
o
n
d
it
io
n
s
(i
.e
.
va

lu
es

o
f
c a
,
I s
,
o
a
,
P
a
tm
,
R
H
,
T
a
,
Φ
,
an

d
ψ
so
il

fr
o
m

th
is
ta
b
le
)

�
th
e
n
et
-t
o
-g
ro
ss

p
ri
m
ar
y
p
ro
d
u
ct
iv
it
y
(N

P
P
:
G
P
P
)
ra
ti
o
eq

u
al
s
0
.4
5
(W

ar
in
g
e
t
a
l.
,
1
9
9
8
;
C
o
lla
lt
i

e
t
a
l.
,
2
0
2
0
)
(N

P
P
:G

P
P
=
G
/(
R
M

+
G
/(
1
−

f c
))
)
in

st
ea

d
y
st
at
e
at

th
e
d
ef
au

lt
en

vi
ro
n
m
en

ta
lc
o
n
d
i-

ti
o
n
s

T
h
e
ta
rg
et

va
lu
e
fo
r
R
M
w
as

d
et
er
m
in
ed

g
iv
en

:
�

a
ca
rb
o
n
p
o
o
l-
sp
ec
ifi
c
ro
o
t
m
ai
n
te
n
an

ce
re
sp
ir
at
io
n
ra
te

at
1
5
°C

,
r M

,R
,1
5
°C
,
eq

u
al
to

3
.1

×
1
0
−
8
s−

1
b
as
ed

o
n
Sc
h
ie
st
l-
A
al
to

e
t
a
l.
(2
0
1
5
)
fo
r
Sc
o
ts
p
in
e

�
a
te
m
p
er
at
u
re

d
ep

en
d
en

ce
fo
r
ro
o
t
m
ai
n
te
n
an

ce
re
sp
ir
at
io
n
fo
llo
w
in
g
Q

1
0
re
la
ti
o
n
sh
ip

w
it
h

Q
1
0
=

1
.9
8
b
as
ed

o
n
M
ar
sh
al
l&

W
ar
in
g
(1
9
8
5
)
fo
r
Sc
o
ts
p
in
e

�
a
ca
rb
o
n
p
o
o
l-
sp
ec
ifi
c
st
em

m
ai
n
te
n
an

ce
re
sp
ir
at
io
n
ra
te

at
1
5
°C

,
r M

,W
,1
5
°C
,
eq

u
al
to

6
.6

×
1
0
−
1
1
s−

1
b
as
ed

o
n
Sc
h
ie
st
l-
A
al
to

e
t
a
l.
(2
0
1
5
)
fo
r
Sc
o
ts
p
in
e

�
a
te
m
p
er
at
u
re

d
ep

en
d
en

ce
fo
r
st
em

m
ai
n
te
n
an

ce
re
sp
ir
at
io
n
fo
llo
w
in
g
Q

1
0
re
la
ti
o
n
sh
ip

w
it
h

Q
1
0
=

1
.8

b
as
ed

o
n
Z
h
a
e
t
a
l.
(2
0
0
4
)
fo
r
Sc
o
ts
p
in
e

�
al
lo
m
et
ri
c
re
la
ti
o
n
sh
ip
s
fo
r
Sc
o
ts
p
in
e’
s
ca
rb
o
n
p
o
o
ls
g
iv
en

b
y
P
o
tk
ay

e
t
a
l.
(2
0
2
1
b
)

G
iv
en

th
e
ca
lc
u
la
te
d
C
at

am
b
ie
n
t
an

d
el
ev

at
ed

at
m
o
sp
h
er
ic
C
O

2
co
n
ce
n
tr
at
io
n
s
fo
r
va

ri
o
u
s

co
m
b
in
at
io
n
s
o
f
γ g

an
d
γ r
(F
ig
s
S6

,
S7

),
w
e
ch
o
se

va
lu
es

o
f
γ g
,
γ r
,
an

d
th
ei
r
co
rr
es
p
o
n
d
in
g

R
M
,0
,2
5
°C
,
e ϕ 25°

C
va

lu
es

th
at

w
o
u
ld

sa
ti
sf
y
tw

o
cr
it
er
ia
:

�
C
≈

1
7
5
m
o
lu

n
d
er

am
b
ie
n
t
at
m
o
sp
h
er
ic
C
O

2
co
n
ce
n
tr
at
io
n
s,
b
as
ed

o
n
Sc
h
ie
st
l-
A
al
to

e
t
a
l.
(2
0
1
9
)

�
th
e
p
er
ce
n
t
in
cr
ea

se
in

C
d
u
e
to

el
ev

at
ed

at
m
o
sp
h
er
ic
C
O

2
co
n
ce
n
tr
at
io
n
s
w
as

>
0
%

b
u
t
d
id

n
o
t

ex
ce
ed

c.
2
0
%

,b
as
ed

o
n
Li
e
t
a
l.
(2
0
1
8
)

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

New Phytologist (2022)
www.newphytologist.com

New
Phytologist Research 7

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18620, W

iley O
nline Library on [15/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



T
ab

le
3
(C
o
n
ti
n
u
ed

)

Sy
m
b
o
l

V
al
u
e

U
n
it
s

M
ea

n
in
g

So
u
rc
e

γ g
0
.2
6

–
Sh

ap
e
p
ar
am

et
er

fo
r
σ g
,
th
e
N
SC

su
b
st
ra
te

lim
it
at
io
n
fu
n
ct
io
n
fo
r

w
h
o
le
-t
re
e
g
ro
w
th
,
G

γ r
0
.3
8

–
Sh

ap
e
p
ar
am

et
er

fo
r
σ r
,
th
e
N
SC

su
b
st
ra
te

lim
it
at
io
n
fu
n
ct
io
n
fo
r
st
em

an
d
ro
o
t
m
ai
n
te
n
an

ce
re
sp
ir
at
io
n
,
R
M

T
u
rg
o
r-
lim

it
ed

g
ro
w
th

c m
,1

0
.4
8

m
o
l
kg

−
1

In
te
rc
ep

t
o
f
th
e
em

p
ir
ic
al
re
la
ti
o
n
sh
ip

b
et
w
ee
n
p
h
lo
em

sa
p
m
o
la
lit
y,

m
p
,

an
d
st
em

w
at
er

p
o
te
n
ti
al
,
ψ
S

(m
p
=
c m

,1
−

c m
,2
�ψ

S
)

P
al
ja
kk
a
e
t
a
l.
(2
0
1
7
)
fo
r
Sc
o
ts
p
in
e

c m
,2

0
.1
3

m
o
l
kg

−
1
M
P
a−

1
Sl
o
p
e
(n
eg

at
iv
e)

o
f
th
e
em

p
ir
ic
al

re
la
ti
o
n
sh
ip

b
et
w
ee
n
p
h
lo
em

sa
p

m
o
la
lit
y,

m
p
,
an

d
st
em

w
at
er

p
o
te
n
ti
al
,
ψ
S
(m

p
=
c m

,1
−
c m

,2
�ψ

S
)

P
al
ja
kk
a
e
t
a
l.
(2
0
1
7
)
fo
r
Sc
o
ts
p
in
e

c Π
,1

0
.9
9
8

–
Li
n
ea

r
co
ef
fi
ci
en

t
b
et
w
ee

n
o
sm

o
ti
c

p
o
te
n
ti
al
,
π
,
an

d
p
h
lo
em

sa
p
m
o
la
lit
y,

m
p

(π
¼

�ω
�ρ

�R
�T

a
�

c Π
,1
�m

p
þ
c Π

,2
�m

2 p

�
),
w
h
er
e
ω
=
1
0
−
6
M
P
a
P
a−

1
)

M
ic
h
el
(1
9
7
2
);

T
h
o
m
p
so
n
&

H
o
lb
ro
o
k
(2
0
0
3
a)

fo
r

su
cr
o
se

c Π
,2

0
.0
8
9

kg
m
o
l−
1

Q
u
ad

ra
ti
c
co
ef
fi
ci
en

t
b
et
w
ee
n
o
sm

o
ti
c

p
o
te
n
ti
al
,
π
,
an

d
p
h
lo
em

sa
p
m
o
la
lit
y,

m
p

(π
¼

�ω
�ρ

�R
�T

a
�

c Π
,1
�m

p
þ
c Π

,2
�m

2 p

�
),
w
h
er
e
ω
=
1
0
−
6
M
P
a
P
a−

1
)

M
ic
h
el
(1
9
7
2
);

T
h
o
m
p
so
n
&

H
o
lb
ro
o
k
(2
0
0
3
a)

fo
r

su
cr
o
se

u
S

0
.2
5

–
Fr
ac
ti
o
n
o
f
n
ew

g
ro
w
th

al
lo
ca
te
d
to

st
em

s
X
ia
e
t
a
l.
(2
0
1
9
);
P
o
tk
ay

e
t
a
l.
(2
0
2
1
b
)
fo
r
m
at
u
re

tr
ee

Γ
0
.7
5

M
P
a

T
h
re
sh
o
ld

th
at

tu
rg
o
r,
P
,
m
u
st
ex

ce
ed

fo
r
st
em

ex
p
an

si
o
n

P
o
tk
ay

e
t
a
l.
(2
0
2
1
a)

e ϕ 25°
C

4
.6

×
1
0
−
8

M
P
a−

1
s−

1
Ef
fe
ct
iv
e
w
h
o
le
-t
re
e
ex

te
n
si
b
ili
ty

at
2
5
°C

Se
e
th
e
So

u
rc
e
se
ct
io
n
in

th
is
ta
b
le
fo
r
R
M
,0
,2
5
°C
,
γ g
,
an

d
γ r
p
ar
am

et
er
s.
T
h
e
te
m
p
er
at
u
re

d
ep

en
d
en

ce
o
f
th
e
ef
fe
ct
iv
e
w
h
o
le
-t
re
e
ex
te
n
si
b
ili
ty
,
e ϕ,is

m
o
d
el
ed

fo
llo
w
in
g
an

eq
u
at
io
n
si
m
ila
r

to
Jo
h
n
so
n
e
t
a
l.
(1
9
4
2
)
an

d
P
ar
en

t
e
t
a
l.
(2
0
1
0
)
u
si
n
g
th
e
p
ar
am

et
er
s
re
p
o
rt
ed

b
y
C
ab

o
n

e
t
a
l.
(2
0
2
0
)
an

d
P
et
er
s
e
t
a
l.
(2
0
2
1
).
U
n
lik
e
Jo
h
n
so
n
e
t
a
l.
(1
9
4
2
)
an

d
P
ar
en

t
e
t
a
l.
(2
0
1
0
),
e ϕhe

re
co
n
ti
n
u
o
u
sl
y
ap

p
ro
ac
h
es

ze
ro

as
te
m
p
er
at
u
re
s
ap

p
ro
ac
h
5
°C

,
th
e
g
ro
w
th

th
re
sh
o
ld

su
g
g
es
te
d
b
y

K
ö
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is the stem biomass in carbon equivalents, ez is the axial distance
along the stem from the stem apex normalized by the tree height,
P0 is axially variable potential turgor if NSCs were not limiting,
which may exceed the true turgor limited by NSCs, P, and Γ is
the threshold turgor must exceed before growth occurs
(Eqn S6.1). Hence, G0 depends on the average of
max P0 zð Þ�Γ, 0ð Þ over the tree height between the stem apex
(ez = 0) and the root collar (ez = 1). We model the temperature
dependence of eϕ following Parent et al. (2010) using parameters
provided by Cabon et al. (2020) and Peters et al. (2021)
(Fig. S3). Our approach to estimate P0 (Notes S1; Section S6)
and its limitations and future improvements (Notes S1; Sec-
tions S10.1, S10.2) are discussed in the Supporting Information.

Upon applying the calculus of variations (Witelski & Bowen,
2015) to solve Eqn 1 for the gc that maximizes growth (Notes S1;
Section S2), the solution is defined in terms of the marginal car-
bon cost of water, χw. When stomata behave optimally, χw equals
the marginal carbon profit of water, dAn/dE, which we denote by
λ as shorthand based on similar usage in Gain-Risk AOHs (Wolf
et al., 2016; Wang et al., 2020; Figs 3a,b, S1), for which an alter-
nate expression can be independently formulated from photosyn-
thesis and gas exchange following Buckley et al. (2002, 2017)
(Eqn S4.11). Simply, when water is more costly (larger χw),
stomata close (smaller gc). The same principle may be expressed
in terms of hydraulic cost, Θ = ∫χw dE, through which Gain-Risk
AOHs are often framed (Wang et al., 2020; Fig. 3c,d; Eqn S2.5).
That is, stomata close as Θ increases. The GOH solution for χw
is:

χw ≡
1

1�f c

� 1

η

� �
1

aL

∂G

∂E
¼ 1

η
� 1

1�f c

� �
1

aL

∂G

∂E

����
���� Eqn 8(a)

χw≡
1

1�f c

�1

η

� �
σg
aL

∂G 0

∂E
¼ 1

η
� 1

1�f c

� �
σg
aL

∂G 0

∂E

����
���� Eqn 8(b)

χw ¼ λ Eqn 8(c)

We list the identity of χw twice to distinguish between a gen-
eral identity (Eqn 8a) and an identity specific to how we
model G here (Eqn 8b). Importantly, Eqn 8(a) holds for any
growth-optimizing framework regardless of how growth is
modeled (as long as G can be formulated as a function of E),
while Eqn 8(b) is particular to our current GOSM. ∂G0/∂E
in Eqn 8(b) is solved by differentiating Eqn 7 with respect to
E (Eqns S6.7, S6.11; ∂G0/∂E ≤ 0). We informally refer to
the solution of the Lagrange multiplier, η, as the marginal
NSC-use efficiency (NSCUE; Notes S1; Section S2)
(0 ≤ η < 1 − fc), which is analogous to the inverse of the
marginal carbon cost of carbon use (Buckley & Roberts,
2006b) and represents the cost of spending NSCs on growth
and respiration. Large η describes a strategy in which NSCs
are highly valued, in which stomata open (small χw; large gc;
Fig. 3a) to increase An, decrease G, and maintain or even ele-
vate NSCs. When η is small, NSCs are ‘cheap’, prompting
plants to spend their NSCs by closing stomata (large χw and
Θ; small gc; Fig. 3a,c) to increase G. Fig. 3(a) shows potentialT
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χw and λ calculated across potential gc for a range of η using
the environmental conditions and physiological parameters
listed in Table 3. The χw and λ curves intersect at the opti-
mal gc (circles in Fig. 3a). Indeed, the optimal gc increases as
η increases. In the range of gc values that χw and λ typically
intersect, χw is near constant due to near-constant ∂G0/∂E. At
larger gc, χw declines to zero as E increases, ψ becomes more
negative, turgor declines, and G0, ∂G0/∂E, and χw all
approach zero. Hence, multiple intersection points may exist
in the instantaneous optimization. In this case, we select the
lesser gc, which coincides with the higher G, since greater gc
reduces G (Notes S1; Section S2).

The calculus of variations suggests η is not constant and
changes dynamically in response to environmental conditions,
carbon use, and NSC storage (Eqn S2.6):

_η ¼ d η

dt
¼ η

∂RM

∂C
þ η

1�f c

�1

� �
∂G

∂C

¼ η
∂σr
∂C

RM,0 þ η

1�f c

�1

� �
∂σg
∂C

G 0

Eqn 9

According to Eqn 9, ∂RM/∂C > 0. This is because we do not expect
excess NSCs to penalize growth (i.e. ∂G/∂C ≥ 0), and
0 ≤ η < 1 − fc, which means that η would eventually become neg-
ative (i.e. _η < 0 for all times) if maintenance respiration either were
independent of NSCs (∂RM/∂C = 0) or declined under elevated
NSC storage (∂RM/∂C < 0). However, η must be non-negative.
Thus, the existence of an optimal solution requires ∂RM/∂C > 0,
which indeed has empirical support (Sevanto et al., 2014; Collins
et al., 2021) and thus justifies the functional forms of Eqns 4 and 6.

Fig. 3 Marginal carbon profit and cost (λ and χw) (a, b) as well as hydraulic cost (Θ, where dΘ/dE = χw; Wolf et al., 2016) (c, d) predicted by the growth
optimization hypothesis (GOH) and several assimilation optimization hypotheses (AOHs) for potential values of total conductance values, gc, for the
environmental conditions and physiological parameters listed in Table 3. (a) Instantaneous marginal costs, χw, calculated for different NSCUEs (η) according
to the GOH, with η ranging from 20% to 90% of its maximum value (1 − fc) in 10% increments (darkest to lightest). Instantaneous χw was calculated for
an NSC storage based on measurements of Scots pine of similar size as our simulated tree by Schiestl-Aalto et al. (2019) (C = 175 mol). In (a), note that
χw = 0 for gc > c. 0.3 mol m−2 s−1 (coinciding with where there is no growth), regardless of η. (b) Steady-state marginal cost, χw, calculated when both
NSC storage and NSCUE have reached constant state ( _C = 0 and _η = 0) according to the GOH. Intersection of λ and χw or χw curves (circles in a and b) coin-
cides with the optimal gc. When multiple intersections occur for instantaneous optimizations in (a), we select the lesser gc, which coincides with higher
growth rates; the greater gc typically coincides with insignificant growth. (c) Hydraulic cost from instantaneous GOH corresponding to (a). (d) Hydraulic
cost from steady-state GOH corresponding to (b).
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To test our GOH under varied environmental conditions, we
consider solutions in steady state when carbon assimilation and
use are in balance ( _C = 0) and the marginal NSCUE has ceased
changing ( _η = 0). Steady state is only an approximation of how
plants behave in reality; nonetheless, it provides insights into the
optimal stomatal behavior to environmental cues. Unlike instan-
taneous solutions, it reflects stomata responses after they have
equilibrated to environmental variations if those conditions were
sustained constantly over an extended period of time (Feng et al.,
2015). We denote steady-state values by symbols with a vinculum
(e.g. η, C ). Setting Eqn 9 to zero and rearranging gives the
steady-state marginal NSCUE (Eqn S2.7):

η ¼ 1�f c

� � ∂G
∂C

∂G
∂C

þ 1�f c

� �
∂RM

∂C

¼ 1�f c

� � ∂σg
∂C

G 0

∂σg
∂C

G 0 þ 1�f c

� �
∂σr
∂C

RM,0

Eqn 10

Setting Eqns 8 and 10 equal and rearranging defines the steady-
state marginal cost of water (Eqn S2.8).

χw ¼ � 1

aL

∂G

∂E

∂RM

∂C

∂G
∂C

¼ � σg
aL

∂G 0

∂E

RM,0

G 0

∂σr
∂C
∂σg
∂C

¼ σg
aL

∂G 0

∂E

����
����RM,0

G 0

∂σr
∂C
∂σg
∂C

Eqn 11

Contrary to the instantaneous solution, the steady-state solution
given by Eqn 11 has mathematically unique solution with a sin-
gle gc at which λ ¼ χw (Fig. 3b). This uniqueness results from
χw being a positive, increasing function of gc and from χw < λ
at gc = 0 (Wang et al., 2020). In fact, χw must equal zero at
gc = 0 due to the σg term in Eqn 11, which equals zero when
gc = 0 resulting from insignificant NSC storage and carbon sup-
ply limitations (Fig. 2). χw is an increasing function of gc,
because of the G 0 term in the denominator of Eqn 11, which
approaches zero faster than the decline in the other terms in the
numerator.

Parameterization

We parameterized our GOSM with values reported or esti-
mated from the existing literature to represent an evergreen
conifer, many of which were synthesized by Potkay
et al. (2021b) (Table 3). The majority of the parameters orig-
inate from studies of Scots pine (Pinus sylvestris); however,
several parameters represent loblolly pine (Pinus taeda). No
parameters were finely tuned to match observations, and we
focus on the model’s ability to capture fundamental stomatal
responses by using parameters that are as physically based as
possible. Four parameters were estimated indirectly (RM,0, eϕ,
γg, and γr) to satisfy a net-to-gross primary productivity ratio
of 0.45 (Waring et al., 1998; Collalti et al., 2020) and realis-
tic NSC reserves under ambient and elevated ca (Figs S4–S7;
Notes S1; Section S8).

Responses to the environment

To test our GOSM to environmental cues, we consider both
instantaneous and steady-state solutions. We determine instanta-
neous solutions for known η and C (Fig. 4; Eqn 10), assuming an
NSC storage based on measurements of Scots pine of similar size
as our simulated tree by Schiestl-Aalto et al. (2019)
(C = 175 mol). Steady-state solutions require no assumptions
about η or C . Their values emerge from the optimization (Eqns
10, 11). We test GOSM predictions to VPD (by varying atmo-
spheric relative humidity, RH; 0.1–0.8), soil water potential
(ψ soil; −0.8 to 0 MPa), atmospheric CO2 concentration (ca;
250–650 ppm), and the loss of hydraulic conductance due to
past drought. We quantify past drought severity by the minimum
experienced soil water potential causing conductance loss (ψmin

soil ;
−2.4 to −0.02 MPa) and present results from two approaches
for conductance hysteresis (Notes S1; Section S9). One hysteresis
approach considers the true loss of conductance (e.g. Mackay
et al., 2015), and the alternative approach postulates plants main-
tain the optimal ψL as if embolism were impermanent (Venturas
et al., 2018). We hold the other environmental conditions con-
stant at the default values listed in Table 3. We consider how the
environmental cues influence total conductance (gc), the marginal
WUE (λ), growth (G), and NSC storage (C).

Furthermore, we consider the possibility of long-term acclima-
tion of leaf traits (leaf area, aL, and photosynthetic capacities) to
elevated ca (eCO2) when testing our GOSM to increased ca. In
acclimated simulations, we increased aL by a factor of 1.25 based
on Lauriks et al. (2021), reduced the maximum carboxylation
capacity (Vc,max) by a factor of 0.90, and reduced the maximum
electron transport capacity (Jmax) by a factor of 0.95 based on
Ainsworth & Rogers (2007).

Crucially, instantaneous optimization solutions may be neither
realistic nor meaningful. There exists a temporal mismatch
between key model variables required to solve the instantaneous
optimization (η, C) and environmental conditions, since instan-
taneous optimizations do not consider their key feedback
(Eqn 11). Instantaneous results are appropriate when stomatal
responses due solely to environmental conditions (i.e. at constant
η and C) are far faster than those due to dynamics in η and C that
arise from environmental changes. These scenarios apply when
testing environmental factors that vary significantly over hourly
or shorter timescales in real environments (e.g. DL) but are inap-
propriate for more slowly changing factors (e.g. ψ soil, ψmin

soil , and
ca). Our steady-state results, nevertheless, capture the key feed-
back that ensures realistic responses of η, C, and gc for slowly
changing conditions, because steady-state predictions represent
responses that have equilibrated to environmental conditions.

Additionally, we compare steady-state solutions to predictions
by several extensively tested AOH models (Table S2), including
those by Cowan & Farquhar (1977), Prentice et al. (2014), Wolf
et al. (2016), Anderegg et al. (2018), Sperry et al. (2017), Eller
et al. (2018), Dewar et al. (2018), and Wang et al. (2020). This
comparison provides a first-order, quantitative test for the
GOSM’s predicted gc, while previous tests checked for realistic
qualitative trends. The comparison also assesses whether GOH
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and AOH predictions are consistent despite differences in their
proxies for evolutionary fitness. Mathematical details of the
AOHs are presented in the Supporting Information (Notes S1;
Section S7), and their parameters are listed in Table 3.

Results

Both instantaneous and steady-state optimizations predict stom-
ata close as VPD increases (Fig. 4a). Predicted sensitivities of gw
to VPD (m = −dgw/dloge(DL)) from instantaneous and steady-
state optimizations agree with reported ranges (m ≈ 0.5–0.6;
Oren et al., 1999; Fig. S8). In instantaneous optimizations with
large η, VPD sensitivities are smaller (m ≈ 0.47) but still realistic
(Katul et al., 2009). The instantaneous marginal WUE (λ) is
nearly independent of VPD, except at large η, when λ increases

slightly with VPD (Fig. 4e). In steady-state optimizations,
increasing VPD resulted in larger λ, slightly more NSCs, and
slower growth (Fig. 4e,i,m). Steady-state predictions of gc, λ, and
their VPD trends agree well with AOH models (Figs 4a,e, S9a,e),
which are all instantaneous in nature. The Prentice et al. (2014)
model is the only model that predicts λ declines slightly with
VPD (Fig. S9e).

Both instantaneous and steady-state optimizations predict
stomatal closure under eCO2 (Fig. 4b), agreeing with AOH
models, except the model by Wolf et al. (2016) and Anderegg
et al. (2018), which is the only model to predict a negative rela-
tionship between λ and ca (Figs 4f, S9f; Wang et al., 2020). In
instantaneous and steady-state optimizations, λ is nearly indepen-
dent of ca (Fig. 4f), while some AOH models predict λ increases
(Figs 4f, S9f). The GOSM can also predict greater increases in λ

Fig. 4 Instantaneous and steady-state responses, according to the growth optimization hypothesis (GOH), to varied vapor-pressure deficit (VPD; DL) (a, e,
i, m), atmospheric CO2 pressure (ca) (b, f, j, n), soil water potential (−ψ soil) (c, g, k, o), and losses in hydraulic conductance (d, h, l, p). Predictions include
the optimal total conductance (gc) (a–d), the optimal marginal water-use efficiency (λ) (e–h), the coinciding growth rate (G) (i–l), and the coinciding non-
structural carbohydrate (NSC) storage (C) (m–p). Instantaneous optimizations were calculated for different NSCUEs (η) according to the GOH, with η rang-
ing from 30% to 80% of its maximum value (1 − fc) in 10% increments (darkest to lightest), and were calculated for an NSC storage based on
measurements of Scots pine of similar size as our simulated tree by Schiestl-Aalto et al. (2019) (C = 175 mol). In (d, h, l, p), conductance was lost as if
exposed to a previous drought with magnitude denoted by the minimum experienced soil water potential (ψmin

soil ), assuming that this conductance loss is
irrecoverable. Despite the loss of conductance due to past drought (i.e. negative ψmin

soil ), results in (d, h, l, p) represent a tree that is currently well-watered
(i.e. ψ soil = 0), and thus these results represent postdrought recovery. Sharp increases in the instantaneous gc under current or past soil water stress in (c, d)
(i.e. at more negative ψ soil and ψmin

soil ) result from coinciding instantaneous λ = 0 in (g, h) and thus also instantaneous G = 0 in (k, l). Predictions made by
three selected AOHs are shown for comparison.
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under eCO2 for particular combinations of γr and γg (Fig. S10).
These combinations of γr and γg, however, do not necessarily
coincide with NSC reserves under ambient and elevated ca
(Figs S6, S7). Regardless of γr and γg, eCO2 always promotes
growth (Fig. S11) and stomatal closure (Fig. S12). Predictions
with additional acclimation of aL, Vc,max, and Jmax to eCO2

always show an increase in λ under eCO2 regardless of γr and γg
(Fig. S13). Strictly speaking, acclimation of aL, Vc,max, and Jmax is
an optimal strategy only if it further enhances growth, which is
indeed the case (Fig. S14).

Instantaneous solutions for gc and λ are generally independent
of ψ soil, though they respectively increase and decrease with η
(Fig. 4c). Beyond a threshold in ψ soil, instantaneous gc dramati-
cally increases and λ approaches zero as turgor becomes too small
for growth (Fig. 4g,k). Conversely, steady-state optimization pre-
dicts gc and G decrease and λ increases as soils dry (Fig. 4g). Non-
structural carbohydrates are maximal under moderate soil water
stress, because reductions in An are smaller than the reduction in
G, thus elevating NSCs (Fig. 4o). Under extreme stress, NSCs
deplete due to strong stomatal limitations to An (Fig. 4o).
Steady-state predictions of gc and λ to soil water stress agree with
AOH models (Figs 4c,g, S9c,g), except the Cowan & Far-
quhar (1977) and Prentice et al. (2014) models, both of which
require additional parameterizations to describe drought
responses (Manzoni et al., 2011; Lavergne et al., 2020a). Steady-
state gc is more sensitive to declines in ψ soil than instantaneous
AOH models (Figs 4c, S9c), representing a more conservative
water-use strategy in response to soil water stress.

Drought-induced xylem conductance loss induced stomatal
closure and increased λ during postdrought recovery in both
instantaneous and steady-state optimizations (Fig. 4d,h). Near-
identical steady-state results are found when conductance hystere-
sis is modeled by Venturas et al.’s (2018) approach, which

considers plant hydraulics but not NSCs (Fig. S15). Predictions
agree with AOH models regardless of how we modeled conduc-
tance hysteresis (Figs 4d,h, S15). The Cowan & Farquhar (1977)
and Prentice et al. (2014) models, however, consider leaf-level
processes only and thus cannot respond to extrafoliar hydraulics
(Figs 4d,h, S9d,h). When applying Venturas et al.’s (2018)
approach to conductance hysteresis, all models behave similarly,
even the Cowan & Farquhar (1977) and Prentice et al. (2014)
models (Fig. S16).

Postdrought growth and whole-tree conductance progressively
decline after worsening past droughts (Figs 4l, 5). After moderate
droughts (ψmin

soil > c. −1.2 MPa; PLC < c. 78%), NSCs can
recover to predrought levels (Figs 4p, 5). After severe droughts
(ψmin

soil < c. −1.44 MPa; PLC > c. 85%), NSCs deplete, approach-
ing starvation for ψmin

soil < −2.4 MPa (Figs 4p, 5). Near-identical
postdrought results for growth, conductance, and NSCs are found
by Venturas et al.’s (2018) approach for conductance hysteresis
(Figs S15, S17). These postdrought responses differ remarkably
from predictions under permanent water stress (Fig. 5). Under per-
manent water stress, acclimated NSCs accumulate with PLC
between 0% and c. 38%, past which NSCs rapidly deplete,
approaching NSC depletion when PLC ≈ 47% and soil water
stress is only moderate (ψ soil = −0.8 MPa; Figs 4o, 5).

Discussion

Comparing GOH and AOHs

Here, we hypothesized stomata follow strategies that maximize
stem growth over a plant’s entire lifetime, which we call the
GOH. Integrated over time, maximizing growth further maxi-
mizes size, enhancing their ability to compete for resources (King,
1990; Franklin, 2007) and reproduce (Greene & Johnson, 1994;

Fig. 5 Phase diagram of nonstructural
carbohydrates (NSCs) and percent loss of
whole-plant conductance (PLC) for our
simulated Scots pine in equilibrium with
varied ψ soil (during drought) and ψmin

soil

(postdrought recovery; rewatered without
refilling of embolisms at ψ soil = 0) and other
environmental forcing listed in Table 3.
Coinciding values of ψ soil and ψmin

soil are
denoted (circles) to signify the magnitude of
soil water stress. Equilibration to ψ soil

represents acclimation to permanent soil
water stress, while equilibration to ψmin

soil

represents postdrought recovery, particularly
after a transient period of intense soil water
stress that leads to irrecoverable embolism.
Hydraulic failure is typically associated with a
PLC of at least 50% for gymnosperms
(Brodribb & Cochard, 2009) and 88% for
angiosperms (Resco et al., 2009; Urli
et al., 2013).
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Obeso, 2002; Minor & Kobe, 2019). We have shown the GOH
agrees with our current understanding of stomatal regulation in
relation to environmental forcings (Figs 4, S9). We compared
these results to the historically prevailing assumption that stomata
optimize photosynthetic carbon assimilation in relation to exter-
nal water availability or internal water stress (e.g. Cowan & Far-
quhar, 1977; Wolf et al., 2016), which we call AOHs.

All optimization theories assume plants have developed stom-
atal strategies that maximize evolutionary fitness. This assump-
tion is reasonable, since it springs from natural selection, a core
principle of biology (Mäkelä et al., 2002; Franklin et al., 2020).
For biologically realistic solutions, AOHs must make a secondary
assumption about additional costs or constraints that penalize
stomatal opening; otherwise, AOHs would always predict maxi-
mal conductance, since An is a positive monotonic function of gc
(in the absence of nonstomatal limitations to photosynthesis).
These costs and constraints have been associated with water-
saving strategies (solved either over short durations; Cowan,
1977; Cowan & Farquhar, 1977; Hari et al., 1986; or dynami-
cally; e.g. Mäkelä et al., 1996; Manzoni et al., 2013), xylem
embolism (e.g. Wolf et al., 2016; Sperry et al., 2017), and non-
stomatal limitations (e.g. Dewar et al., 2018). Few experiments
have attempted to determine the true nature of these costs (Hall
& Schulze, 1980; Fites & Teskey, 1988; Thomas et al., 1999;
Manzoni et al., 2011). That is, costs are assumed a priori, and the
validity of those assumptions relies on how well predictions of gc
match observations. The fact that a wide range of assumed costs
all converge toward similar responses to environmental cues
(Figs 4, S9) demonstrates the difficulty in inferring the true cost
from gc responses. The GOH, on the contrary, does not require
assuming additional costs, since the cost of opening stomata is
implicit in how plants grow. While opening stomata assimilate
carbon as NSCs, which build tissue and generate turgor (Sapes
et al., 2021), opening reduces ψ (Sperry et al., 1998) and thus
also cambial turgor pressures (Hölttä et al., 2010), thereby hin-
dering the division and expansion of cells (Lockhart, 1965; Kirk-
ham et al., 1972). Hence, the GOH advances turgor-limited
growth as a simpler proxy for evolutionary fitness.

Many AOHs maximize their assimilation instantaneously for
the immediate environmental conditions without consideration
of future resource availability, potentially leading to overly
aggressive resource use, hampering future fitness (Lu et al., 2020;
Feng et al., 2022). Here, we compared GOH predictions to sev-
eral instantaneous AOHs (Wolf et al., 2016; Wang et al., 2020),
which generally predict biologically correct responses of gc to
environmental stimuli (Wang et al., 2020; Table S2). They com-
pared well to the steady-state predictions of our GOSM, both
qualitatively and quantitatively (Figs 4, S9). However, whether
instantaneously AOHs truly reflect current conditions or whether
they compensate for delayed acclimation to future conditions
through their assumed costs (λ) remains unclear. For example,
some AOHs predict an immediate increase in λ as soon as
exposed to eCO2 (Figs 4f, S9f). However, little is known about
how quickly λ changes under eCO2 in reality and whether these
changes solely reflect stomatal movements. While experiments
suggest λ indeed increases under eCO2 over multiple years (e.g.

Katul et al., 2010), increases in λ may reflect other physiological
acclimations to eCO2 over longer timescales (Buckley & Schy-
manski, 2014), including acclimation of photosynthetic capaci-
ties, leaf area, and NSC reserves (Ainsworth & Rogers, 2007;
Dietze et al., 2014; Lauriks et al., 2021; Fig. S13). Hence, instan-
taneous AOHs are inappropriate for examining responses to
long-term environmental change (Medlyn et al., 2013). If stom-
ata truly maximize growth, then our results would suggest instan-
taneous AOHs (e.g. Wolf et al., 2016) may predict realistic gc by
approximating foliar acclimations that have not yet occurred.

Our steady-state solution represents the coordination among
gc, G, and C upon complete acclimation to constant environmen-
tal conditions, while the instantaneous solution represents a snap-
shot in time as gc, G, and C transition dynamically from one state
to another. The dynamic state represented by the instantaneous
solution depends on η and C (Figs 3, 4), their temporal evolution
(Eqns 2, 9), and the variation in environmental conditions over
small timescales. Analogously, our steady-state solution is compa-
rable to observations from long experiments with small variations
in the environment and other physiological properties (aL, Vc,max,
Jmax, xylem conductance, allometry, etc.). Our instantaneous
solution is comparable to observations from short experiments.
However, properly comparing instantaneous solutions to obser-
vations would require explicitly modeling the dynamics of η and
C. In steady state, the GOH consistently captured stomatal
responses to DL, ca, ψ soil, and ψmin

soil (Fig. 4a–d), while instanta-
neous solutions explained only responses to DL (Fig. 4a), which
changes quickly. However, ca, ψ soil, and ψmin

soil change slowly in
reality and likely at rates that are similar to or slower than changes
in η and/or C, which are assumed constant in our instantaneous
predictions (Fig. 4). Future work should explore how quickly η
evolves. Thus, steady state is better than the instantaneous solu-
tion for predicting stomatal behavior to slowly changing ca, ψ soil,
and ψmin

soil , since steady state approximates the key dynamic feed-
back between η, C, and the environment.

Interestingly, the GOH predicts the instantaneous marginal
WUE (χw) is generally near constant over short timescales with
respect to potential gc (Fig. 3a) and over broad environmental
conditions (Fig. 4e–g), resulting from growth being a near-linear
function of transpiration and gc (∂2G0/∂E2 ≈ 0; Fig. 2). Con-
versely, the GOH predicts the steady-state marginal WUE (χw)
varies strongly with potential gc (Fig. 3b) with environmental
conditions over longer timescales once both η and C have equili-
brated (Fig. 4e–h). Thus, in the short term, the GOH behaves
like the earliest water-saving AOH which specifies a constant χw
(Cowan, 1977; Cowan & Farquhar, 1977; Figs 3a, 4), which
much evidence supports (Medlyn et al., 2011; Buckley et al.,
2017). In the long term, the GOH behaves like recent Gain-Risk
AOHs, which specify χw (or its related hydraulic cost, Θ; dΘ/
dE = χw) depends on environmental conditions and physiologi-
cal variables (e.g. Wolf et al., 2016; Sperry et al., 2017;
Figs 3b–d, 4). The GOH reconciles differences between early
and recent AOHs.

Additionally, the GOSM suggests χw = 0 when growth cannot
occur (G = 0) in instantaneous solutions (Fig. 3a), since
χw / ∂G0/∂E (Eqn 8b) and ∂G0/∂E = 0 when G0 = 0 (Fig. 2).
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That is, our instantaneous GOH is maximizing solely An without
shadow costs (Θ = 0) when plants cannot grow. Nonstomatal
limitations should be incorporated into the GOH for these
instances and improve predictions when plants cannot grow
(Fig. 4g,h) following aspects of AOHs that maximize An subject
to nonstomatal limitations, since these AOHs implicitly assume
χw = 0 (Hölttä et al., 2017; Dewar et al., 2018, 2022).

Xylem embolism and mortality

Stomata have long been theorized to close early under water stress
to prevent xylem embolism and conductance loss, thereby inspir-
ing many models which postulate embolism and conductance
loss as dominant controls on stomata (e.g. Jones & Sutherland,
1991; Sperry & Love, 2015; Sperry et al., 2016, 2017; Wolf
et al., 2016; Eller et al., 2018; Carminati & Javaux, 2020). Under
water stress, our GOSM predicts similar results as embolism- and
conductance-centric models (Figs 4, S9), though without explic-
itly minimizing embolism or maximizing conductance. This
agreement may not be surprising, considering numerous stomatal
strategies inadvertently prevent embolism (Novick et al., 2016;
Dewar et al., 2022). While plants indeed tend to operate with
minimal embolism and constant xylem conductance (Carminati
& Javaux, 2020), this phenomenon does not necessitate that
stomata strictly close to prevent embolism and conductance loss.
In fact, stomata behave more conservatively than required to pre-
vent significant embolism (Anderegg et al., 2017; Martin-StPaul
et al., 2017; Buckley, 2021), suggesting stomata close to maintain
other biological functions that are more sensitive to water stress,
including turgor maintenance and growth (Hsiao & Acevedo,
1974; Bartlett et al., 2016). Our GOH does not explicitly incor-
porate embolism prevention or conductance maintenance into its
assumptions but nonetheless minimizes embolism and conduc-
tance loss. If xylem lost conductance, downstream tissues would
have to operate under greater tension, thereby reducing turgor
and growth. Hence, stomata close to maximize growth, avoiding
conductance losses which would penalize growth.

The prevalence of the idea that stomata operate to prevent
embolism and maintain xylem conductance likely originates from
widely held notions of how plants die. McDowell et al. (2008,
2011) proposed a popular framework in which embolism ulti-
mately leads to desiccation (the so-called hydraulic failure) and
mortality. Thus, stomata are expected to prevent mortality by
moderating embolism and conductance loss. The notion of hy-
draulic failure has stimulated a large number of studies on the
degree of embolism past which plants die (e.g. Brodribb &
Cochard, 2009; Barigah et al., 2013; Urli et al., 2013; Adams
et al., 2017) and how the corresponding ψ threshold varies
among species and environments (e.g. Choat et al., 2012; Oli-
veira et al., 2019; Rosas et al., 2019). However, several recent
experimental studies have demonstrated plants can recover
despite surpassing these thresholds (Li et al., 2016; Hammond
et al., 2019; Mantova et al., 2021), and modeling studies could
not identify thresholds to accurately predict mortality in forest
stands (De Kauwe et al., 2020; Venturas et al., 2021). These
studies cast doubt on embolism as a useful predictor of mortality

as well as on whether stomata strictly attempt to prevent embo-
lism. Desiccation (loss of water content and turgor of the meris-
tem and inner bark) is indeed mechanistically linked to mortality
(Sapes et al., 2019; Preisler et al., 2021; Sapes & Sala, 2021;
Mantova et al., 2022). However, embolism alone cannot describe
the critical sequence of events leading up to desiccation and mor-
tality. How quickly the meristem and inner bark desiccates
depends not only on the degree of water stress (expressed by ψ or
corresponding conductance), but also on the radial conductance
between xylem and inner bark (Sevanto et al., 2011; Baert et al.,
2015; Preisler et al., 2021), other extra-xylem resistances (e.g.
Scoffoni et al., 2017), tissues’ water storage capacities (Meinzer
et al., 2009; Salomón et al., 2017; Preisler et al., 2022), phloem
transport (Chan et al., 2016; Epron et al., 2021), and NSC stor-
age (O’Brien et al., 2014; Sapes et al., 2021). Hence, strategies
for avoiding desiccation and mortality depend on complex water
and carbon transport processes throughout the plant rather than
simply embolism (McDowell et al., 2022). Through the GOH,
we offer a general framework to incorporate all of these processes
to predict mortality directly from tissue water content as outlined
in the Supporting Information (Notes S1; Section S10.2).

Our GOH shifts focus on the predictor of drought-induced
mortality from xylem conductance and embolism to turgor (or
water content; Notes S1; Sections S2, S10.1, S10.2). Even though
it does not include many of the water and carbon transport pro-
cesses required to predict the time and stress required to desiccate
the meristem and kill a plant, our GOSM does represent NSC
storage, a key control of survival (O’Brien et al., 2014; Sapes et al.,
2021). Thus, our GOSM can predict how percent loss of conduc-
tance (PLC) and NSC storage are related for hypothetical drought
scenarios (Fig. 5). Though conceptually interdependent (McDow-
ell et al., 2011, 2022), PLC and NSCs are considered two distinct
axes for mortality in practice (e.g. Anderegg et al., 2012; Adams
et al., 2017). Notably, the GOH provides a link between PLC and
NSCs, though the exact relationship differs between during-
drought and postdrought conditions (Fig. 5). Conversely, AOHs
do not consider NSCs and thus cannot predict such coordination.
Though recent studies suggest PLC is not the best predictor of
mortality (De Kauwe et al., 2020; Venturas et al., 2021), we never-
theless demonstrate the GOSM’s ability to capture fundamental
processes and trends between PLC and NSCs (Fig. 5), since a large
body of empirical studies of PLC exists to test model predictions.
However, we do not focus on the exact values of this PLC–NSC
coordination (Fig. 5), which are species- and climate-specific, since
we have parameterized the GOSM for a mature Scots pine at a sin-
gle site (Table 3).

In all cases, plants increasingly embolize as drought worsens, but
NSC trends depend on the severity of past and current water stress
(Fig. 5). During persistent drought (i.e. long enough for plants to
equilibrate; dC/dt = 0; dη/dt = 0), NSCs accumulate under mod-
erate water stress (ψ soil > −0.42 MPa) and deplete under severe
water stress (ψ soil < −0.42 MPa; Fig. 5), explaining conflicting
NSC patterns from drought studies (e.g. Galiano et al., 2011; Gal-
vez et al., 2011; Piper, 2011) and observations of NSCs first elevat-
ing before later depleting during progressively worsening droughts
(e.g. Adams et al., 2013; Mitchell et al., 2014). Our simulated tree
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would certainly be incapable of inhabiting environments where
ψ soil never exceeded −0.8 MPa due to the inability to maintain
minimum NSCs (the so-called carbon starvation; Fig. 5). The exact
minimum ψ soil trees that could indefinitely tolerate should corre-
spond to their minimum-tolerable tissue water content or turgor,
which integrate both PLC and NSCs (Martı́nez-Vilalta et al.,
2019; Sapes et al., 2019). Our GOSM predicts potential turgor if
NSCs were nonlimiting, P0, rather than explicitly modeling the
true turgor, P (Notes S1; Sections S6, S10.1), and thus we cannot
define the exact minimum ψ soil that could be tolerated indefinitely,
though it would certainly be more negative than −0.42 MPa
(Fig. 5). Improvements to the GOSM would enable explicit predic-
tion of P, water content, and thus mortality (Notes S1; Sec-
tion S10.2). These predictions under long-term water stress may be
interpreted as death by carbon starvation without hydraulic failure,
considering hydraulic failure would require far more embolism
(PLC > 50% for conifers; Brodribb & Cochard, 2009). However,
plants rarely die by carbon starvation alone (Adams et al., 2017),
suggesting steady-state predictions (i.e. dC/dt = 0; dη/dt = 0) of
during-drought responses are not appropriate for interpreting mor-
tality.

We also considered how plants operate postdrought with replen-
ished soil water, having lost significant conductance (Anderegg
et al., 2012), since mortality often does not occur during the
drought itself but lags by several years (Trugman et al., 2018).
Hence, postdrought simulations of plants with significant conduc-
tance loss (Fig. 5) represent legacy effects remaining after drought
(Kannenberg et al., 2020). Again, we cannot predict the exact
‘point of no return’. Nevertheless, assuming our simulated tree sur-
vived the initial drought, the tree can completely recover its NSC
reserves even after severe drought (ψmin

soil > −1.2 MPa), despite suf-
fering PLCs as large as c. 80% (Fig. 5). If mortality eventually
occurred in this scenario, the death mechanism would be hydraulic
failure without carbon starvation, consistent with some studies (e.g.
Anderegg et al., 2012; Garcia-Forner et al., 2017; Kannenberg &
Phillips, 2020). After droughts in which ψmin

soil < −1.44 MPa, sim-
ulated trees were incapable of fully recovering their NSC reserves
with whole-tree PLCs in excess of 85% regardless of embolism-
hysteresis approaches (Figs 4p, 5). Interestingly, this simulated
threshold (ψmin

soil = −1.44) nearly equals the permanent wilting
point (classically, ψ soil = −1.5 MPa in soil sciences; da Silva et al.,
1994). However, this degree of soil water stress may not always
challenge plants, since the actual soil wilting point is soil-, plant-,
and climate-specific (Torres et al., 2021). For trees eventually dying
in this second scenario, the death mechanisms are hydraulic failure
and carbon starvation. Here, PLC and NSCs are negatively corre-
lated, which evidence supports (Adams et al., 2017; Tomasella
et al., 2020), signifying the mechanisms’ interdependence. These
postdrought predictions may explain why hydraulic failure is widely
observed at death, while dead plants may or may not suffer carbon
starvation (Adams et al., 2017).
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Fichot R, Brignolas F, Cochard H. 2013.Water stress-induced xylem

hydraulic failure is a causal factor of tree mortality in beech and poplar. Annals
of Botany 112: 1431–1437.

Bartlett MK, Detto M, Pacala SW. 2019. Predicting shifts in the functional

composition of tropical forests under increased drought and CO2 from trade-

offs among plant hydraulic traits. Ecology Letters 22: 67–77.

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

New Phytologist (2022)
www.newphytologist.com

New
Phytologist Research 17

 14698137, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18620, W

iley O
nline Library on [15/01/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://orcid.org/0000-0003-1381-3118
https://orcid.org/0000-0003-1381-3118
https://orcid.org/0000-0003-1381-3118
https://orcid.org/0000-0003-3101-2701
https://orcid.org/0000-0003-3101-2701
https://orcid.org/0000-0003-3101-2701


Bartlett MK, Klein T, Jansen S, Choat B, Sack L. 2016. The correlations and

sequence of plant stomatal, hydraulic, and wilting responses to drought.

Proceedings of the National Academy of Sciences, USA 113: 13098–13103.
Betts RA, Boucher O, Collins M, Cox PM, Falloon PD, Gedney N, Hemming

DL, Huntingford C, Jones CD, Sexton DMH et al. 2007. Projected increase
in continental runoff due to plant responses to increasing carbon dioxide.

Nature 448: 1037–1041.
Betts RA, Cox PM, Woodward FI. 2000. Simulated responses of potential

vegetation to doubled-CO2 climate change and feedbacks on near-surface

temperature. Global Ecology and Biogeography 9: 171–180.
Brodribb TJ, Cochard H. 2009.Hydraulic failure defines the recovery and point

of death in water-stressed conifers. Plant Physiology 149: 575–584.
Buckley TN. 2021. The role of hydraulic constraints in optimal stomatal behavior
[Conference presentation]. European Geosciences Union [Webinar]. [WWW

document] URL https://video.ucdavis.edu/media/EGU+talk+%28TN+

Buckley+April+2021%29/1_9atv3crc/25823442 [accessed 1 September 2021].

Buckley TN, Miller JM, Farquhar GD. 2002. The mathematics of linked

optimisation for water and nitrogen use in a canopy. Silva Fennica 36: 639–
669.

Buckley TN, Mott KA, Farquhar GD. 2003. A hydromechanical and

biochemical model of stomatal conductance. Plant, Cell & Environment 26:
1767–1785.

Buckley TN, Roberts DW. 2006a.DESPOT, a process-based tree growth model

that allocates carbon to maximize carbon gain. Tree Physiology 26: 129–144.
Buckley TN, Roberts DW. 2006b.How should leaf area, sapwood area and

stomatal conductance vary with tree height to maximize growth? Tree Physiology
26: 145–157.

Buckley TN, Sack L, Farquhar GD. 2017.Optimal plant water economy. Plant,
Cell & Environment 40: 881–896.

Buckley TN, Schymanski SJ. 2014. Stomatal optimisation in relation to

atmospheric CO2. New Phytologist 201: 372–377.
Buckley TN, Turnbull TL, Adams MA. 2012. Simple models for stomatal

conductance derived from a process model: cross-validation against sap flux

data. Plant, Cell & Environment 35: 1647–1662.
Cabon A, Kannenberg SA, Arain A, Babst F, Baldocchi D, Belmecheri S,

Delpierre N, Guerrieri R, Maxwell JT, McKenzie S et al. 2022. Cross-biome

synthesis of source versus sink limits to tree growth. Science 376: 758–761.
Cabon A, Peters RL, Fonti P, Martı́nez-Vilalta J, De Cáceres M. 2020.
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Mäkelä A, Givnish TJ, Berninger F, Buckley TN, Farquhar GD, Hari P. 2002.

Challenges and opportunities of the optimality approach in plant ecology. Silva
Fennica 36: 605–614.

Mantova M, Herbette S, Cochard H, Torres-Ruiz JM. 2022.Hydraulic failure

and tree mortality: from correlation to causation. Trends in Plant Science 27:
335–345.

Mantova M, Menezes-Silva PE, Badel E, Cochard H, Torres-Ruiz JM. 2021.

The interplay of hydraulic failure and cell vitality explains tree capacity to

recover from drought. Physiologia Plantarum 172: 247–257.
Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A.

2011.Optimizing stomatal conductance for maximum carbon gain under

water stress: a meta-analysis across plant functional types and climates.

Functional Ecology 25: 456–467.
Manzoni S, Vico G, Palmroth S, Porporato A, Katul G. 2013.Optimization of

stomatal conductance for maximum carbon gain under dynamic soil moisture.

Advances in Water Resources 62: 90–105.
Marshall JD, Waring RH. 1985. Predicting fine root production and turnover by

monitoring root starch and soil temperature. Canadian Journal of Forest
Research 15: 791–800.

Martı́nez-Vilalta J, Anderegg WR, Sapes G, Sala A. 2019. Greater focus on water

pools may improve our ability to understand and anticipate drought-induced

mortality in plants. New Phytologist 223: 22–32.
Martı́nez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A,

Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R et al. 2009.
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Gradients and dynamics of inner bark and needle osmotic potentials in Scots

pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst). Plant, Cell &
Environment 40: 2160–2173.

Parent B, Turc O, Gibon Y, Stitt M, Tardieu F. 2010.Modelling temperature

compensated physiological rates, based on the co-ordination of responses to

temperature of developmental processes. Journal of Experimental Botany 61:
2057–2069.

Peters RL, Steppe K, Cuny HE, De Pauw DJ, Frank DC, Schaub M, Rathgeber

CBK, Cabon A, Fonti P. 2021. Turgor – a limiting factor for radial growth in

mature conifers along an elevational gradient. New Phytologist 229: 213–229.
Piper FI. 2011. Drought induces opposite changes in the concentration of non-

structural carbohydrates of two evergreen Nothofagus species of differential
drought resistance. Annals of Forest Science 68: 415–424.

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass

allocation to leaves, stems and roots: meta-analyses of interspecific variation and

environmental control. New Phytologist 193: 30–50.
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Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 Flowchart and comparison of model structures from
growth optimization hypothesis and assimilation optimization
hypotheses.

Fig. S2 Steady-state growth optimization hypothesis responses of
key model variables for potential values of stomatal conductance
under varied environmental forcings.

Fig. S3 Temperature dependence of the whole-stem extensibility.

Fig. S4 Predictions of RM,0 that satisfy NPP : GPP = 0.45 under
steady-state growth optimization.

Fig. S5 Predictions of eϕ that satisfy NPP : GPP = 0.45 under
steady-state growth optimization.

Fig. S6 Predictions of NSC reserves (C) that satisfy
NPP : GPP = 0.45 under steady-state growth optimization.

Fig. S7 Percent change in nonstructural carbohydrate storage
between elevated and ambient atmospheric CO2 concentrations
under steady-state growth optimization.

Fig. S8 Sensitivity (m) of growth optimization hypothesis pre-
dicted stomatal conductance to vapor-pressure deficit.

Fig. S9 Comparison of steady-state growth optimization hypoth-
esis predictions to all of the considered assimilation optimization
hypotheses.

Fig. S10 Change in the marginal water-use efficiency between
elevated and ambient atmospheric CO2 concentrations under
steady-state growth optimization.

Fig. S11 Percent change in growth rate between elevated and
ambient atmospheric CO2 concentrations under steady-state
growth optimization.

Fig. S12 Change in stomatal conductance between elevated and
ambient atmospheric CO2 concentrations under steady-state
growth optimization.

Fig. S13 Change in the marginal water-use efficiency between
elevated and ambient atmospheric CO2 concentrations under
steady-state growth optimization if trees adapted to elevated
atmospheric CO2 concentrations have acclimated their leaf traits.

Fig. S14 Difference in growth rate between trees with and with-
out acclimation of leaf traits, both of which grow under elevated
atmospheric CO2 concentrations.

Fig. S15 Comparison of responses of growth optimization model
to losses in hydraulic conductance following the two different
approaches for the calculation of how stomata respond to con-
ductance losses.

Fig. S16 Comparison of predictions by growth optimization
hypothesis and assimilation optimization hypothesis models
under varied hydraulic conductance following the alternative
approach of Venturas et al. (2018) to account for how permanent
conductance losses impact predictions.

Fig. S17 Phase diagram of nonstructural carbohydrate and per-
cent loss of conductance resulting from acclimation to permanent
water stress or from postdrought recovery after transient water
stress following the alternative approach of Venturas et al. (2018)
to account for how permanent conductance losses impact predic-
tions.

Notes S1 Full model, parameter estimation, and simulation
descriptions.
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Notes S2 MATLAB code for model and plotting/analyzing data,
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