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ABSTRACT
A growing interest in non-Gaussian time series, particularly in series comprised of nonnegative integers
(counts), is taking place in today’s statistics literature. Count series naturally arise in fields, such as agri-
culture, economics, epidemiology, finance, geology, meteorology, and sports. Unlike stationary Gaussian
series where autoregressive moving-averages are the primary modeling vehicle, no single class of models
dominates the count landscape.As such, the literaturehas evolved somewhat ad-hocly,withdifferentmodel
classesbeingdeveloped to tackle specific situations. This article is an attempt to summarize the current state
of count time series modeling. The article first reviews models having prescribed marginal distributions,
including some recent developments. This is followed by a discussion of state-space approaches. Multivari-
ate extensions of the methods are then studied and Bayesian approaches to the problem are considered.
The intent is to inform researchers and practitioners about the various types of count time series models
arising in themodern literature.While estimation issues are not pursued in detail, reference to this literature
is made.
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1. Introduction

Classical time series techniques, in both the frequency and
time domains, are typically second-order based. That is, mod-
eling does not go beyond the first (mean) and second (covari-
ance) moments. As a result, Gaussian models, which are com-
pletely characterized by their first two moments, became popu-
lar. Eventually, researchers sought more, realizing that Gaussian
models often poorly described count and other discrete-valued
series. Count time series modeling began in earnest in the late
1970s, with work on the topic rapidly accelerating thereafter.
This article overviews the types of count time series models
used in the historical and modern literature. While our focus is
on modeling techniques and methods, references to estimation
techniques are presented.

Count time series arise in numerous applied scientific areas.
Examples include the daily number of patients admitted in a
hospital, the number of transactions of a given stock observed
every minute, or the monthly number of car accidents in a
region. These data, occasionally observed with some covariates,
often share some common characteristics. Foremost, they
are frequently dependent as they are observed sequentially
in time. As counts, they are integer valued. Count series are
often overdispersed (i.e., their variance is greater than their
mean) and their autocorrelations are often nonnegative. Finally,
there are often more zero counts (zero-inflation) than can be
explained by the classical marginal count distributions (e.g.,
Poisson, binomial, negative binomial); see Alqawba, Diawara,
and Rao Chaganty (2019) and Sellers, Peng, and Arab (2020)
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and the references therein for more on zero-inflated count
models. Good models and analyses should account for these
features and provide the user with estimation, fitting, model
assessment, prediction, and uncertainty quantification.

Originally, count series were often described via generalized
linear models. Generalized linear models can accommodate
continuous or discrete observations and extend linear regres-
sion for Gaussian data to exponential family distributed data.
The unification of discrete and continuous paradigms began
in Nelder and Wedderburn (1972) and was further developed
in McCullagh and Nelder (1989) for independent series. Early
work for correlated count series can be found in Cox (1981);
here, models were classified into two types: observation and
parameter driven. This terminology will be explained in Sec-
tion 4. Subsequent generalized linear modeling contributions
includeWong (1986), Holden (1987), Zeger and Qaqish (1988),
Zeger (1988), Albert et al. (1994), Li (1994), Davis, Wang, and
Dunsmuir (1999), Davis, Dunsmuir, and Wang (2000), Davis,
Dunsmuir, and Streett (2003), and Fokianos and Kedem (2004).
Early textbooks on the topic are Fahrmeir and Tutz (2001) and
Kedem and Fokianos (2002).

As the field developed, various approaches for modeling
correlated count series emerged. Unlike Gaussian series, where
autoregressive moving-average (ARMA) schemes dominated,
many types of models, including integer ARMA, discrete
ARMA, generalized ARMA, etc. were proposed over the
years. All approaches had drawbacks; consequently, the field
developed without a unifying theory.

© 2021 American Statistical Association
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The rest of this article, which is an attempt to review, sum-
marize, and relate these models, proceeds as follows. Section 2
begins with models based on thinning operators, one of the
initial modeling approaches. The theory of thinning operators
is linked to strictly stationary series with a prespecified count
marginal distribution, but models based on thinning operators
can be extended to include covariates. Section 3 tours some
recent developments in this area. Section 4 explores state-space
approaches to the problem, includingMarkov chain and hidden
Markov models. Multivariate extensions are subsequently con-
sidered in Section 5. Section 6, our last technical section, takes a
Bayesian tour of count modeling. A section on future directions
closes the article.

2. Count Time Series Models Based on Thinning
Operators

2.1. Overview

In early count series research, the goal was often to construct
strictly stationary series supported on the nonnegative inte-
gers with a variety of autocorrelation functions (ACF), and
with marginal distributions such as Poisson, negative binomial,
and generalized Poisson. A few references are McKenzie (1986,
1988), Alzaid and Al-Osh (1993), Al-Osh and Aly (1992), and
Joe (1996). Recent reviews include Weiß (2008), Scotto, Weiß,
and Gouveia (2015), and Weiß (2018).

One direction of current research lies with integer autore-
gressive models, denoted by INAR(p), where p is the autore-
gressive order. An INAR(p) or generalized INAR(p) series is
constructed by summing thinning operations applied to the p
past series values with an innovation variate. The distribution
of the innovation is chosen from a given parametric family such
as Poisson or negative binomial. The resulting marginal distri-
bution of the process may not have a simple form. References
include Du and Li (1991), Latour (1998), Gauthier and Latour
(1994), and Joe (2016).

The basic idea is perhaps the best illustrated in the first-order
INAR(1) setting. Here, a difference equation governs {Xt}

Xt = α ∗ Xt−1 + εt , (1)

where {εt} is an IID count-valued random sequence. The opera-
tor ∗ mimics autoregressive multiplication, keeping the process
count-valued. Specifically, ∗ operates via α ∗ W = ∑W

i=1 Bi for
any count variable W, where {Bi}∞i=1 are IID Bernoulli trials,
independent ofW, with success probability α ∈ [0, 1]. A series
with Poisson(λ) marginal distributions, for example, can be
achieved by taking {εt} to be IID Poisson with mean (1 − α)λ.

Underminor irreducibility assumptions, {Xt} in Equation (1)
is a Markov chain with a unique stationary distribution. We are
interested in its stationary version made by either starting the
series in its stationary distribution at time zero, or by viewing
the process as having started infinitely far in the past and having
reached statistical equilibrium.

Empirical marginal distributions and the sample ACF of
{Xt} often suggest particular correlation structures andmarginal
distributions. The sample dispersion is another useful diagnos-
tic: if εt is overdispersed (larger than unity), then under mild
conditions, themarginal distribution ofXt is also overdispersed.

If εt is underdispersed, then the marginal distribution could
be either underdispersed or overdispersed. A Poisson {Xt}, of
course, has unit dispersion.

Non-stationary extensions of these models, with a mean or
other parameter being a function of covariates, exist, as do
other types of thinning operators. Extensions depend on the
chosen thinning operator, some being more unwieldly than
others. See Section 8.4.4 of Joe (1997) for covariate extensions
with thinning operators created so that marginal distributions
lie in a convolution-closed family. Thinning operators have been
extended to (i) operate on all integers (including negative ones),
and to (ii) build multivariate count models (see Section 5).

For models based on thinning operators, estimation is done
via maximum likelihood when possible; otherwise, conditional
least squares, composite likelihood, or other methods merit
consideration. See Graziadei, Lopes, and Marques (2020) for
Bayesian approaches and Pedeli and Karlis (2013a) for compos-
ite likelihood methods.

2.2. General Thinning Operators

This subsection discusses different thinning operators and their
properties, which are an active current research areas. Unless
otherwise noted, the thinning operators act on the set of non-
negative integers, have a parameter α ∈ [0, 1], and map a count
valued random variable X into another count valued random
variableXα such thatE[Xα] = αE[X]whenX has a finite mean.
Some thinning operators satisfy Xα ≤ X in the sense of some
stochastic ordering; examples include binomial, beta-binomial,
and quasi-binomial thinning operators. For thinning operators
with compounding operations, it is possible that Xα > X;
however, it is more likely that Xα ≤ X. As α ↓ 0, the thinning
operator maps the input to zero; as α ↑ 1, the thinning operator
does not change the input.

Let X be a nonnegative random variable with cumulative
distribution function FX such that for all 0 < α < 1, there exists
an innovation random variable ε(α), independent of X, with

X D= α ∗ X + ε(α).

Then X is called discrete self-decomposable (DSD) and the
stationary count model Xt = α ∗ Xt−1 + εt(α) has marginal
distribution FX for all 0 < α < 1. It is known that DSD random
variables are infinitely divisible, and hence compound Poisson,
and that their dispersion is at least unity.

However, if α ∈ (0, 1) and the cumulative distribution of εt ,
say Fε , is fixed, the recursion (dependence on α is suppressed in
some notations below)

Xt = α ∗ Xt−1 + εt , (2)

still defines a legitimate count time seriesmodel. The pair (α, Fε)

determines the stationary distribution FX . If Fε is underdis-
persed, it is possible for FX to be underdispersed.

Binomial thinning is a special case of expectation thinning.
Expectation thinning is based on the compounding of a non-
negative integer random variable K(α) with α ∈ [0, 1]; via,

K(α) � � =
�∑

i=1
Ki(α), (3)
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where {Ki(α)}∞i=1 are IID replicates of K(α). It is assumed that
E[K(α)] = α, K(0) ≡ 0 and K(1) ≡ 1, so that count models
can be constructed similar to Equation (2).

To construct an integer analog of a Gaussian AR(p), thinning
operators based on compounding are similar. A generalized
integer-autoregression of order p, denoted by GINAR(p), obeys

Xt =
p∑

j=1
K(αj) � Xt−j + εt =

p∑
j=1

Xt−j∑
i=1

Kj,i,t(αj) + εt , (4)

where αj ∈ [0, 1] for j = 1, . . . , p and the Kj,i,t(αj) are
independent over i, j, and t, and εt is the innovation at time t.
This can be viewed as a branching process with immigration,
where a particle at time t has independent branching at times
t + 1, . . . , t + p. Numerical maximum likelihood estimation for
GINAR(p) series with covariates is considered in Joe (2019).

The most common INAR(p) form in the literature uses
binomial thinning (Du and Li 1991). Because the survival/
continuation interpretation for binomial thinning does not
extend to the second and higher lag orders, it is better to
consider Equation (4) with more general thinning operators.
Families of expectation thinning operators with the closure
property K(α1) � K(α2) = K(α1α2), for α1,α2 ∈ [0, 1], have
desirable properties; see Zhu and Joe (2010).

In the stationary case, the ACF often takes the classical
Gaussian AR(p) form, but does not have full range. Specifi-
cally, negative serial correlations cannot be produced with these
models. GINAR(1) models have a geometric ACF with posi-
tive correlations. If Markov models of order p with negative
serial correlations are desired, then approaches based on copulas
applied to p + 1 consecutive observations are available (Joe
2016); one can also use the methods in Section 3.

3. NewDevelopments

This section narrates some recent developments in stationary
count time series modeling. The goal here is again to build
stationary count series having the cumulative marginal distri-
bution FX . Here, difference equation tactics are eschewed in
attempts to produce very general count structures; in particular,
the series below can have longmemory and/or negative correla-
tions. Longmemory heremeans that

∑∞
h=0 |γX(h)| = ∞, where

γX(h) = cov(Xt ,Xt+h).

3.1. Construction fromBinary Series

It is known that any discrete distribution can be generated
from independent coin flips (even fair coin flips). Mimicking
this idea, Blight (1989) and Cui and Lund (2009) attempt to
construct series with the prescribed marginal distribution by
combining correlated binary (Bernoulli) processes. Jia, Lund,
and Livsey (2020b) is the most recent reference on the tech-
nique.

Let {Bt}∞t=1 be a binary random series taking values in {0, 1}
with lag h covariance γB(h) = cov(Bt ,Bt+h). The count series
{Xt} constructed will inherit properties of γB(·). Before con-
structing {Xt}, we present twomethods of generating stationary
correlated Bernoulli sequences.

First, a renewal-based {Bt} is based on a “lifetime” L ∈
{1, 2, . . .} and “initial delay” L0 ∈ {0, 1, . . .}. Here, a random
walk {Sn}∞n=0 is defined via

Sn = L0 + L1 + · · · + Ln, n ≥ 0,

and the binary sequence is defined by Bt = 1 if Sn = t for
some n ≥ 0. This is the usual renewal point process. In this
setup, L1, L2, . . . are IID, each having the same distribution as L.
If L0 = 0, the process is called nondelayed; if the distribution of
L0 differs from that of L, the setup is said to have delay L0.

To make {Bt} stationary, L0 must have the distribution
P[L0 = k] = P(L > k)/E[L] for k ∈ {0, 1, . . .}. In this case,
{Bt} is stationary with γB(h) = E[L]−1(uh − E[L]−1), where
uh denotes the probability of obtaining a renewal (point) at
time h in the nondelayed process. Typical regularity conditions
assume a finite E[L] and a support set for L that is aperiodic.
Under this, uh → 1/E[L] as h → ∞ and γB(h) → 0 as
h → ∞. Lund, Holan, and Livsey (2016) showed that {Bt} has
longmemory (absolutely nonsummable covariances) if and only
if E[L2] = ∞. Specifically, when E[L2] = ∞, but E[L] < ∞,
{Bt} will have long memory. Observe that γB(h) < 0 whenever
uh < 1/E[L]. As negative and long-memory series can be
produced, covariance structures are more flexible than those
for the thinned series of the last section.

Second, a Gaussian clipped {Bt} is built from a latent Gaus-
sian process {Zt} with zero mean, unit variance, and auto-
covariance/ACF ρZ(h) = Corr(Zt ,Zt+h). Tong (1990b) is a
good reference for general Gaussian sequences. The Bernoulli
sequence is constructed by placing (clipping) {Zt} into zero-one
categories:Bt = 1(Zt>0). ThenE[Bt] = 1/2 and classic quadrant
integration results show that γB(h) = sin−1(ρZ(h))/(2π).
This process will have long memory whenever {Zt} has long
memory and will have a negative covariance at lag h whenever
γZ(h) < 0. The clipping threshold need not be set to zero and
the paradigm easily extends to multivariate settings. Again, the
obtained covariance structures are very flexible. For references,
Kedem (1980) discusses general properties of clipped Gaussian
processes and Livsey et al. (2018) constructs clipped count
models.

Returning to constructing the count series {Xt}, we need IID
copies of {Bt} — call these {B1,t}, {B2,t}, . . .. These binary pro-
cesses are combined in a way to produce the desired marginal
distribution. For example, if one wants binomial marginal dis-
tributions withM trials and success probability p, set

Xt =
Mt∑
j=1

Bj,t ; (5)

here, Mt ≡ M and L is chosen to have mean 1/p for renewal
{Bt} (or Zt is clipped at a threshold rendering P(Bt = 1) = p).

If a Poisson(λ) marginal distribution is desired, take {Mt} to
be IID Poisson with mean λ/p (a Poisson sum of independent
zero-one draws is again Poisson distributed). Note that Mt is
IID here; specifically, the construction is not circular. Should
a negative binomial marginal distribution with positive integer
trials parameter r and success probability p is desired, one can
look at the first index at which r successes are obtained in the
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time t Bernoulli trials:

Xt = inf

{
k ≥ r :

k∑
i=1

Bi,t = r

}
− r

(r is subtracted to make Xt lie in {0, 1, . . .}).
While how to best combine the Bi,t ’s to produce a desired

marginal distribution with the widest range of autocorrelations
is an open question, in general, models with flexible ACF are
easily achieved. Blight (1989), Cui and Lund (2009), Fralix,
Livsey, and Lund (2012), Lund and Livsey (2016), Lund, Holan,
and Livsey (2016), and Livsey et al. (2018) explore issues further.
Estimation is done throughGaussian quasi-likelihoodwith pro-
cess means and autocovariances. The key property is that when
{Mt} is IID, the lag-h autocovariance of {Xt} in Equation (5) is
proportional to uh−1/E[L] in the renewal case, or sin−1(ρZ(h))
in theGaussian case that is clipped at zero. This permits negative
covariances and/or longmemory features to be achieved. See Jia,
Lund, and Livsey (2020b) for the latest.

3.2. Latent Gaussian Transformations

Stationary count series with the marginal distribution FX can
also be constructed through the probability integral transform
and a stationary Gaussian series. This model is tantamount to
using a Gaussian copula for all finite-dimensional distributions.

The Gaussian copula/transformation produces very flexible
count series as one can have any count marginal distribution.
The construct uses a latent zero mean, unit variance, stationary
Gaussian sequence {Zt} with ρZ(h) = Corr(Zt ,Zt+h) and
transforms this via

Xt = F−1
X (	(Zt)), (6)

where 	(·) is the cumulative standard normal distribution and

F−1
X (u) = inf{t : FX(t) ≥ u}, u ∈ (0, 1), (7)

is the generalized inverse (quantile function) of FX . See Smith
and Khaled (2012), Masarotto and Varin (2012), and Han and
De Oliveira (2016) for copula techniques in spatial statistics
and other settings. This model is called the normal to anything
(NORTA) approach in operations research (Cario and Nelson
1997; Chen 2001) and a translational model in mechanical
engineering (Grigoriu 2007). When {Zt} is an autoregression,
Biller (2009) calls this approach the autoregressive-to-anything
model.

Biller (2009) mentions other non-Gaussian copulas that can
generate stationary count series; when {Zt} is AR(1), many
copula forms have been explored. For counts, parametric cop-
ula families for Markov transition probabilities are used in
(Joe 1997, chap. 7) and (Joe 2014, sec. 7.5). Escarela, Mena,
and Castillo-Morales (2006) developed a copula-based Markov
chain model for binary longitudinal data.

The probability integral transformation theorem shows that
	(Zt) has a uniform(0,1) distribution for each t; a second
application of the result shows that Xt has marginal distribution
FX for each t. Temporal dependence in {Zt} induces temporal
dependence in {Xt}. To quantify this, let γX(h) = cov(Xt ,Xt+h).

The autocovariances of {Xt} and {Zt} can be related using Her-
mite expansions (see Pipiras and Taqqu 2017, chap. 5). Specif-
ically, let G(x) = F−1

X (	(x)) and expand G(·) in the Hermite
polynomial basis {Hk(·)}∞k=0 defined by

Hk(z) = (−1)kez
2/2 dk

dzk
(
e−z2/2

)

(H0(z) ≡ 1, H1(z) = z, and H2(z) = z2 − 1; higher order
polynomials can be obtained from the recursion Hk(z) =
zHk−1(z) − H′

k−1(z)). The expansion has form G(x) =∑∞
k=0 gkHk(x) and the Hermite coefficients are

gk = 1
k!

∫ ∞

−∞
G(z)Hk(z)

e−z2/2dz√
2π

= 1
k!E[G(Z0)Hk(Z0)],

which Jia et al. (2020a) showed can be expressed as

gk = 1
k!√2π

∞∑
n=0

e−	−1(Qn)2/2Hk−1(	
−1(Qn))

whenever FX has a finite (1 + δ)th moment for some δ > 0.
Here, Qn = FX(n).

The autocovariances of {Xt}, perhaps the primary quantity of
interest, can be related to the autocorrelations of {Zt} via

γX(h) =
∞∑
k=1

k!g2kγZ(h)k =: C(ρZ(h)),

where the power series has form C(u) = ∑∞
k=1 k!g2kuk. Auto-

correlations have the form

ρX(h) =: corr(Xt ,Xt+h) =
∞∑
k=1

k!g2k
γX(0)

γZ(h)k =: L(ρZ(h)),

where L(u) = ∑∞
k=1 �kuk, with �k = k!g2k/γX(0). L(·) is

called a link function andmaps [−1, 1] into (but not necessarily
onto) [−1, 1]. Observe that L(1) = ∑∞

k=1 �k = 1; however,
L(−1) is not necessarily −1 in general. As such, L(·) “starts” at
(−1, L(−1)), passes through (0, 0), and connects to (1, 1). Jia
et al. (2020a) argued that |ρX(h)| ≤ |ρZ(h)|, that a positive
ρZ(h) leads to a positive ρX(h), and that a negative ρZ(h) leads
to a negative ρX(h). This follows by establishing that L(u) is
monotone increasing in u and crosses zero at u = 0.

The autocovariance memory properties of {Xt} follow from
those of {Zt}. In particular, if {Zt} is short memory, then so
is {Xt}. If {Zt} is long memory, then so is {Xt} provided the
Hermite rank of G(·), which is defined as r = min{k ≥ 1 :
gk 
= 0}, is no more than unity. If {Zt} is q-dependent, then {Xt}
is also q-dependent.

Copula models have very flexible autocorrelations. Indeed,
these methods produce the most flexible bivariate correlation,
Corr(Xt1 ,Xt2), possible when Xt1 and Xt2 have the same
marginal distribution FX (Whitt 1976). Since a general count
marginal distribution can also be achieved, the model class
appears quite general. Estimation for this model class, including
how to deal with covariates, is studied in Jia et al. (2020a).
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4. Generalized State-SpaceModels

Generalized state-space modeling is one of the most common
and flexible frameworks for time series analysis. For exam-
ple, ARMA and ARIMA models can be cast in a linear state-
space model for which Kalman filtering, smoothing, and pre-
diction algorithms can be implemented for calculating Gaus-
sian likelihoods, one-step predictors, mean-squared prediction
errors, and smoothed values of the states. Moreover, straightfor-
ward modifications of these models can handle missing values,
structural breaks, interventions, and seasonality. For count time
series, the linear state-space model is not directly applicable
since the response variable assumes discrete values; a more
general form of the standard generalized statemodel is required.

For our purposes, only an informal definition of a gener-
alized state-state space model is given; this will inject some
flavor without burying the reader in notation. A state-space
model consists of two specifications: one for the observed time
series Xt at time t given a state process αt , and a second that
describes the evolution of {αt} in t. While Bayesian methods
will be considered more fully in Section 6, one often uses a
known probability mass function (PMF) for the observation
specification. For example, a Poisson model assumes

Xt|αt ∼ Poisson(eαt ), (8)

where Poisson(λ) denotes a Poisson PMF with mean λ. This
is a natural extension of the Poisson regression model that
has been classically used to analyze counts. While the Poisson
specification is the most common for counts, it does not always
provide a good fit. Other marginal PMFs include the negative
binomial and generalized Poisson among others; more gener-
ally, one could assume that the conditional PMF comes from the
one-parameter exponential family

P(Xt = xt|αt) = exp{ϕ(xt)+αtxt −A(αt)}, xt = 0, 1, 2, . . . ,
(9)

where ϕ(·) is a function, and A(α) is a normalizing con-
stant that ensures the PMF in (9) sums to unity: A(α) =
log(

∑∞
j=0 exp{ϕ(j) + αj}). Usually, ϕ(x) is a known function of

x ∈ {0, 1, . . . , }, such as −log(x!) in the Poisson case. However,
in Zhang (2018), ϕ(·) is viewed as a parameter to be estimated.
From Equation (9), we have

B(αt) =: A′(αt) = E[Xt|αt], B′(αt) = Var(Xt|αt).

For the state-process {αt}, there are typically two approaches
for modeling, commonly referred to as parameter- and
observation-driven. In the parameter-driven case, it is assumed
that {αt} follows its own stochastic mechanism, which is often
Markov. For the Poissonmodel in Equation (8), a popularmodel
takes {αt} as a Gaussian AR(1) process satisfying

αt = φ0 + φ1αt−1 + εt , {εt} ∼ IID N(0, σ 2).

The parameters obey φ0,φ1 ∈ (0, 1), and σ 2 > 0. These models
can be estimated via frequentist or Bayesian approaches (see
Section 6 for details).

In the more general case of the one-parameter exponential
family in Equation (9), one typically uses a link function and
specifies a Gaussian time series model for {αt} that is related to
the conditional mean via

λt =: E[Xt|αt] = B(αt) or αt = B−1(λt) .

Since B(α) is strictly increasing in α (B′(α) > 0), there is a
one-to-one connection between αt and λt . This fairly general
approach extends the GLM family.

One can incorporate p-dimensional covariates ct at time t by
setting

αt = cTt β + Zt , (10)

whereβ is a p-dimensional regression parameter vector and {Zt}
is say a stationaryGaussian process— this is a generalized linear
mixed model. If Zt ≡ 0, the model reduces to the standard
GLM. In the Poisson case, the unconditional mean is E[Xt] =
E[exp{cTt β + Zt}] = exp{cTt β}E[eZt ] = exp{ctTβ + κ}, where
κ = var(Zt)/2. In other words, the covariates are interpretable
through the unconditional mean in exactly the same fashion as
a traditional GLM and {Zt} accounts for overdispersion. The
straightforward inclusion of interpretable covariates is but one
advantage of a parameter-drivenmodel. In fact, one can directly
use GLM estimates of β , which turn out to be consistent and
asymptotically normal. However, the limiting covariancematrix
has to account for {Zt}. Details can be found inDavis,Dunsmuir,
and Wang (2000) and Davis and Wu (2009). See also Zeger
(1988) for one of the first parameter-driven count series models.
The parameter-driven model can be viewed as a hierarchical
Bayesian model (see Section 6), where the observation equation
is the “data model” and the stochastic mechanism for the state
process is the “process model.” However, in a fully Bayes’ formu-
lation, prior distributions would be placed on both the data and
process model parameters.

Model likelihood computation based on data X1, . . . ,Xn for
parameter-driven models is problematic since it requires an n-
fold integral over the AR(1) Gaussian probability density func-
tion for (α1, . . . ,αn)T . Simulation-based MCMC and impor-
tance sampling methods, as well as approximations to the likeli-
hood and pairwise composite likelihoods, exist for carrying out
inference; however, these procedures can be challenging and are
not uniformly reliable.

In contrast, observation-driven models offer an attractive
alternative to parameter-driven models, especially on estima-
tion fronts. For the observation-driven models considered here
(Brockwell and Davis 2016, sec. 9.6 gives a more formal treat-
ment), αt is assumed to be an explicit (or implicit) function
of the past observations Xs, s < t. A popular choice for the
one-parameter exponential family (8) is one that mimics the
dynamics of a GARCH process for the conditional mean λt =
E[Xt|αt] = B(αt). This is defined through the recursion

λt = d + a1λt−1 + b1Xt−1, (11)

where d, a1, and b1 are all nonnegative. While this recursion
involves λt−1 and Xt−1, one can recurse backwards t − 1 iter-
ations to see that λt is indeed a function of Xs, s = 0, . . . , t − 1,
and λ0:

λt = d
t−1∑
i=0

ai1 + at1λ0 + b1
t−1∑
i=0

ai1Xt−1−i. (12)

Recursing to the infinite past yields

λt = d
1 − a1

+ b1
∞∑
i=0

ai1Xt−1−i , (13)
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provided |a1| < 1 and the series is well defined. The process {λt}
in Equation (11) isMarkov; if there is a stationary solution, then
usingE[Xt] = E[λt] in (11) givesE[λt] = d/(1−a1−b1)when
a1 + b1 < 1. In fact, a1 + b1 < 1 is a necessary and sufficient
conditions for the existence of a strictly stationary solution to
Equation (11) with a finite mean. One of the inherit difficulties
with observation-driven models lies with establishing stability
properties (such as stationarity andmixing) of the state process.
While {λt} in (13) describes a simple relation between λt and
its predecessor λt−1, it is not straightforward to establish the
existence of a stationary distribution. Standard Markov theory
results, such as φ-irreducibility, do not apply in this situation.
This is due in large part to the state-space of the conditional
distribution of λt|λt−1 depending on λt−1. Many strategies exist
for overcoming these limitations; some successful efforts lie in
Fokianos, Rahbek, and Tjøstheim (2009) and Neumann (2011)
for the Poisson case, and in Davis and Liu (2016) for the general
one-parameter exponential family case. In the latter, the theory
of iterated random functions is used as developed in Diaconis
and Freedman (1999) and Wu and Shao (2004). For the special
case of Equation (11), if a1 + b1 < 1, then there exists a unique
strictly stationary solution to the recursion and the resulting
process {Xt} is β-mixing at a geometric rate. This result is
important for inference purposes, fromwhich one can show that
the maximum likelihood estimators are asymptotically normal.

4.1. Observation-DrivenModels

This section expands on observation-driven models. Compu-
tations can be carried out by a number of existing software
packages, including the recently released R package tscount
(Liboschik, Fokianos, and Fried 2017) that can fit the linear
and log-linear models below. These models can accommodate
both positive and negative correlations with suitable model
parametrizations. These issues were addressed in Zeger and
Qaqish (1988) and Davis, Wang, and Dunsmuir (1999).

For count series, simple generalizations of autoregressive
models are the linear and log-linear autoregressive models. The
linear autoregressive Poisson model of order p obeys

Xt|Ft−1 ∼ Poisson(λt), λt = d +
p∑

j=1
bjXt−j, (14)

where Ft = σ(Xt ,Xt−1, . . .) is the process history, and d and
{bj}pj=1 are nonnegative (this guarantees a nonnegative Poisson
mean). This, and all subsequent models in this section, do not
imply that themarginal distribution ofXt is Poisson; indeed, the
marginal distribution of Xt can be far from Poisson. However,
the Poisson conditional assumptions permit easy derivation of
a conditional likelihood. Quasi-likelihood methods can also
be used for inference (Fokianos, Rahbek, and Tjøstheim 2009;
Christou and Fokianos 2014; Ahmad and Franq 2016); in fact,
Equation (14) is a generalized linearmodel. Elaborating, follow-
ing the standard terminology in McCullagh and Nelder (1989),
the random component is the Poisson distribution, the system-
atic component is d + ∑p

j=1 bjXt−j, and the link function is the
identitymap. It can be shown thatE[Xt] = d/(1 − ∑p

j=1 bj) and
that the autocovariance function of {Xt} has an identical form to
that of a classical AR(p) model (Fokianos 2012).

An analogous log-linear model for count series is defined as

νt = d +
p∑

j=1
bjlog(Xt−j + 1), (15)

where νt = log(λt) (Zeger andQaqish 1988). Here, the parame-
ters d and {bj}pj=1 can be positive or negative, but must obey the
stationarity conditions in Sim (2016). Note that the lagged past
observations of the response drive the autoregressive equation
for νt via log(Xt−j + 1). This is a one-to-one transformation
of Xt−j. In this setup, λt and Xt are put on the same scale.
Covariates can be easily accommodated in Equation (15) via an
additional additive term.

The models in Equations (14) and (15) have short memory
autocovariances akin to ordinary AR(p) or ARCH(p) (autore-
gressive conditional heteroscedastic) models; see Engle (1982).
Numerous recent studies extend the paradigm to settings where
memory decays more slowly. Toward this, several authors spec-
ify a generalized ARCH (GARCH)model, where Equation (14),
in the spirit of Bollerslev (1986), is replaced by

Xt|Ft−1 ∼ Poisson(λt), λt = d +
p∑

i=1
aiλt−i +

q∑
j=1

bjXt−j,

(16)
where ai > 0 for i = 1, 2, . . . , p and bj > 0 for j = 1, 2, . . . , q;
see Rydberg and Shephard (2000), Streett (2000),Heinen (2003),
Ferland, Latour, and Oraichi (2006), and Fokianos, Rahbek, and
Tjøstheim (2009) among others. The model in (16) is parsimo-
nious, but has autocovariances that decay geometrically rapidly
to zero with increasing lag.When a count series’ autocorrelation
decays more slowly to zero, the model in Equation (14) can
approximate this structure with a large p. Further remarks about
Equation (16) now follow.

For the Poisson distribution, E[Xt|Ft−1] = Var(Xt|Ft−1) =
λt . Because of this, Equation (16) is often called an integer
GARCH (INGARCH) model, since its structure mimics that of
the customary GARCHmodel.

Similarly, one can generalize the log-linear model in Equa-
tion (15) to

νt = d +
p∑

i=1
aiνt−i +

q∑
j=1

bjlog(Xt−j + 1), (17)

and its properties are analogous to Equation (16) (Fokianos
and Tjøstheim 2011). No positivity constraints are required for
model coefficients and covariates can be easily included. Other
nonlinear models for count time series analysis have been stud-
ied in Fokianos and Tjøstheim (2012), Christou and Fokianos
(2014), and Wang et al. (2014). Series properties are estab-
lished in Neumann (2011), Doukhan, Fokianos, and Tjøstheim
(2012), and Douc, Doukhan, and Moulines (2013). Maximum
and quasi-maximum likelihood estimation for the models in
Equations (16) and (17) are discussed in Fokianos, Rahbek, and
Tjøstheim (2009), Christou and Fokianos (2014), Ahmad and
Franq (2016), and Fokianos (2015) (among others). Extensions
to general one-parameter exponential families and to nonlinear
dynamics for {λt} are studied in Davis and Liu (2016).
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Threshold models allow governing parameters to change
with previous observations; see Tong (1990a) for a general ref-
erence. These nonlinear models have been used for a variety
of applications in biology, meteorology, and macro-economics.
Assuming a Poisson PMF for Xt given λt , the basic threshold
INGARCHmodel, often called the self-excited INGARCH(1,1)
(SETINGARCH) model, posits that

λt =
{
d1 + a1λt−1 + b1Xt−1, if Xt−1 ≤ r
d2 + a2λt−1 + b2Xt−1, if Xt−1 > r , (18)

where d1, d2 > 0, a1, a2, b1, b2 ≥ 0, and r is the threshold
parameter. The process obeys two different recursions, the one
in use depending on whether or not Xt−1 exceeds r. Unlike the
INGARCH family, these models permit negative correlations at
lag one. The theoretical development of this model, including
maximum likelihood estimation, is developed in Wang et al.
(2014). Like the corresponding Gaussian threshold AR(1)
model, it is possible to have a stationary solution if a1 and b1 lie
outside the “stationary regime” where a1 + b1 < 1. However,
onemust have a2+b2 < 1whenXt−1 is large to probabilistically
prevent the process from diverging to infinity.

The generalized linear ARMA (GLARMA) family is one
of the most flexible and easily fit count models that balances
parameter and observation-driven models. Assuming a one-
parameter exponential family for the observation process,
a zero-mean unit-variance martingale difference sequence
(MGD) can be constructed from the conditional expectation
λt = E[Xt|αt] = B(αt), that is,

et = Xt − B(αt)√
B′(αt)

. (19)

Since amartingale difference sequence is uncorrelated, it follows
that {et} is white noise with zero mean and a unit variance.
The GLARMA(p, q) model for the data is then based on an
ARMA(p, q) recursion driven by {et}. Specifically, let {Wt} be
the causal-invertible ARMA process obeying

Wt =
p∑

i=1
φiαt−i + et +

q∑
j=1

θjet−j.

Then αt is defined as the best linear predictor of Wt given
the infinite past {Ws, s < t} (or equivalently the infinite past
{Xs, s < t}), which can be shown to satisfy the ARMA-like
recursions (Davis, Wang, and Dunsmuir 1999; Dunsmuir 2016)

αt = φ1(αt−1 + et−1) + · · · + φp(αt−p + et−p)

+θ1et−1 + · · · + θqet−q (20)

=
p∑

i=1
φiαt−i +

q̃∑
i=1

θ̃iet−i ,

where q̃ = max(p, q) and θ̃i = φi + θi. Here, the conventions
φi = 0 for i > p and θi = 0 for i > q are made. This is a
parameter-driven model since αt depends on previous observa-
tions. In practice, Equation (20) is initialized with et = αt = 0
or t ≤ 0. Model fitting can be carried out using the R package
glarma (Dunsmuir et al. 2015). An advantage of this model
is that covariates can be incorporated in a meaningful way. For
example, one can replace αt by α̃t = cTt β + αt , where ct is a

covariate vector at time t andβ is an unknown regression vector.
In this setting, et = (Xt − B(α̃t))/

√
B′(α̃t). Since the mean and

variance of et do not depend on the covariates, E[α̃t] = cTt β as
desired.

Unfortunately, establishing strict stationarity and mixing for
{αt} has only been done in special cases (Davis, Dunsmuir, and
Streett 2003, 2005). A general theory has not yet been developed,
although simulation results show that standard limit theory for
likelihood estimates appears to hold.

There is a close connection between GLARMA and score-
driven models (sometimes referred to as generalized AR score
(GAS) and dynamic conditional score (DCS) models) that are
well described in Harvey (2013) and Creal, Koopman, and
Lucas (2013) (see also http://www.gasmodel.com for further ref-
erences). The score function for the one-parameter exponential
family in Equation (9) is

∂ log(P(Xt|αt))

∂αt
= Xt − B(αt) = Xt − E[Xt|αt].

Since the score has mean zero, it is a MGD sequence coinciding
with the numerator in Equation (19). One can normalize this
MGD by any function of αt without altering theMGD property.
The GASmodel is then defined as the AR process driven by this
rescaled MGD sequence. The dynamics of {αt} obey

αt = d + aαt−1 + b
(
Xt−1 − B(αt−1)

S(αt−1)

)
, (21)

where |a| < 1 and S(·) is a specifically chosen scale function.
While choosing S(α) = √

B′(α) ensures that theMGDsequence
has a unit variance, other choices can be advantageous (Creal,
Koopman, and Lucas 2013). Aside from an intercept term, this
expression for αt coincides with the GLARMA model in Equa-
tion (20), with p = q = 1 and et = b(Xt − B(αt))/S(αt).

4.2. Markov and HiddenMarkovModels

Markov and hiddenMarkovmodels (HMMs) and their analysis
techniques often arise in the study of count series. Modeling a
count series {Xt} taking S distinct values as a general Markov
chain is often unfruitful because the one-step-ahead transition
matrix contains S(S− 1) free parameters, which is not parsimo-
nious when S is large. This concern lessens when S is small; in
fact, only two parameters are needed to model a binary-valued
Markov series.

Many of the previous count series examined, which are gen-
erally parsimonious models, are in fact Markov chains, perhaps
after a suitable enlargement of the state space. This is the case, for
example, with INAR series and their convolution-closed exten-
sions, and GLAR series. Here, Markov techniques have been
used to establish stationarity, stability, and other series proper-
ties. See Fokianos et al. (2019) for examples.When a count series
is known to be Markov, likelihood inference becomes tractable
and other inference procedures can be conducted (Joe 1997,
2016; Zucchini and MacDonald 2016).

Some count series are also HMMs. By this, we mean that
there is a background latent stationaryMarkov chain {Zt} evolv-
ing in time and that the count draw Xt at time t depends on Zt ,
but not on past values of the latent chain. This is the casewith the

http://www.gasmodel.com
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latent Gaussian models in Section 3.2 when the Gaussian series
{Zt} is AR(p) (and is thus pth-order Markov). The HMM struc-
ture results from Xt being determined (albeit deterministically
in this model) from Zt . Connections toHMMs can be exploited,
for example, for inference tasks. Indeed, estimation for HMMs
can be carried out via a well-studied framework involving par-
ticle filtering, smoothing, and other methods (Douc, Moulines,
and Stoffer 2014). For HMM techniques with a latent Gaussian
{Zt}, see Jia et al. (2020a).

Other authors use the (H)MM framework to drive their
discourse. For example, (Joe 1997, sec. 8.1.2), develops a binary
Markovmodel taking values in {0, 1} that hasMarkov transition
probabilities driven by two natural parameters. Another pop-
ular HM count model assumes that the marginal distribution
depends on parameter(s), with the parameter(s) evolving in a
Markov fashion. For example, the marginal distribution of the
series could be a mixture of two Poisson distributions, with the
transitions between the two Poisson parameters governed by a
Markov chain. The temporal dependence in this construction is
parameter-driven, akin to the GLARMA construction in Equa-
tion (17) with q = 0. For more details, including estimation
and numerous data examples, see, for example, Zucchini and
MacDonald (2009).

5. Multivariate Models

Interest in multivariate count series is driven by a range of
applied problems, including medicine (Paul, Held, and Toschke
2008), finance (Pedeli and Karlis 2013b), marketing (Ravis-
hanker, Venkatesan, andHu 2016), and the environment (Livsey
et al. 2018). The review article Karlis (2016) provided further
detail. In this section, several modeling approaches in the liter-
ature are discussed.

5.1. Multivariate INARmodels

The initial multivariate approaches involved INARmodels as in
Franke and Rao (1995) and Latour (1997), which were recently
discussed in Pedeli and Karlis (2013a,2013b), and Scotto et al.
(2014). We now elaborate on the simplest case, which involves
binomial thinning; however, as in Section 2.2, other thinning
operators are possible. For a d×dmatrixA = (αi,j) of binomial
thinning parameters and a d-dimensional random vector X =
(X1, . . . ,Xd)

T , define

A ∗ X =

⎛
⎜⎜⎝

∑d
j=1 α1,j ◦ Xj

...∑d
j=1 αd,j ◦ Xj

⎞
⎟⎟⎠ ,

where each thinning is performed independently of all others.
The multivariate INAR(1) process Xt = (X1,t , . . . ,Xd,t)

T is
defined as the unique (in mean square) stationary solution to

Xt = A ∗ Xt−1 + Et , (22)

where {Et} is a sequence of IID count-valued d-variate ran-
dom vectors. Generalizations to multivariate INAR(p) mod-
els for orders p > 1 simply add additional “thinned Xt−�

lagged variables” for � > 1 in Equation (22). Estimation for

multivariate INAR models can be conducted via least squares,
maximum likelihood, and composite likelihood approaches.
However, even for univariate cases, likelihood theory is quite
cumbersome, especially for higher order models. While mul-
tivariate INAR models adequately describe some simple count
structures, the models cannot, for example, produce negative
correlations in its component series. Moreover, estimation and
prediction challenges remain.

5.2. Copula-BasedModels

For bivariate and multivariate count series Xt = (X1,t , . . . ,
Xd,t)

T , copulas have been used in several ways. For the bivariate
case, Karlis and Pedeli (2013) assume INAR(1) dynamics for
the univariate components and use a bivariate copula to induce
dependence between Poisson-distributed E1,t and E2,t . Likeli-
hood inference can be conducted and the approach is extended
to negative binomial series and a copula family having flexible
dependencies. Alternatively, one could develop univariate count
models for each component series and then use a d-variate
copula function to produce themultivariate counts at each time.
Heinen and Rengifo (2007) took this approach, employing a
Gaussian copula for contemporaneous dependence and speci-
fying univariate models for each marginal series. In this work,
likelihood inference is based on adding Uniform(−1, 0) noise
to the counts to convert to a continuous setting. Unfortunately,
this leads to biased estimators, especially when the counts are
small. If likelihood inference is computationally expensive or
intractable, then a composite likelihood approach that employs
the particularmarginal distributionsmay be feasible. Themeth-
ods of Heinen and Rengifo (2007) were investigated in a simu-
lation study by Nikoloulopoulos (2013).

The work in Section 3.2 can be extended to the multivari-
ate setting. For example, if the marginal distribution of each
component series is specified—say Fi,X for the ith component—
then a d-dimensional zero-mean unit-variance latent Gaussian
process {Zt} with autocorrelation matrix ρ(h) at lag h can be
used to define the count process Xi,t = F−1

i,X (	(Zi,t)). Should
one prefer to specify the joint count distributional structure
of all d components simultaneously, then multivariate Hermite
expansions could be used (Withers 2000). The literature has yet
to explore any of these directions.

5.3. Parameter-DrivenModels

Recall that parameter-driven models, including those in Sec-
tion 4, according to the broad categorization in Cox (1981),
are models driven by an unobserved process (as opposed to
past process values). Formultivariate counts, state-spacemodels
were studied in Jørgensen et al. (1999) and Jung, Liesenfeld, and
Richard (2011); see Ravishanker, Serhiyenko, andWillig (2014)
and Ravishanker, Venkatesan, andHu (2016), among others, for
more recent contributions.

We now elaborate on Jørgensen et al. (1999). Consider the
case where the conditional distribution of Xi,t , given an unob-
served λt , is Poisson with mean ai,tλt , where ai,t can possibly be
further modeled. Jørgensen et al. (1999) assumed that λ0 = 1
and that λt given λt−1 is Gamma distributed with mean btλt−1



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

and a squared coefficient of variation of form σ 2/λt−1, where σ 2

denotes a dispersion parameter and bt depends on the so-called
long-term covariates ct through bt = exp(∇cTt β), where ∇ct =
ct − ct−1, with c0 = 0. The authors show that log(E[λt]) =
cTt β , var(λt) = φtE[λt]σ 2, and cov(λt , λt+k) = φtE[λt+k]σ 2,
where φt = bt + btbt−1 + · · · + btbt−1 . . . b1. The moment
structure of the observed process can be computed. With at =
(a1,t , . . . , ak,t)T and �t = Diag(a1,t , . . . , ak,t), it can be shown
that E[Xt] = atE[λt] and var(Xt) = �tE[λt]+ ataTt φtE[λt]σ 2.
Hence, the variance matrix of Xt consists of two components:
(1) a “Poisson variance”, and (2) an overdispersion component.
The authors discussed Kalman prediction and filtering of such
processes.

5.4. Observation-DrivenModels

Observation driven models are also possible; see Heinen and
Rengifo (2007), Liu (2012), Andreassen (2013), Ahmad (2016),
and Lee, Lee, and Tjøstheim (2018), which consider linear
count models. In a recent contribution, Fokianos et al. (2019)
suggested multivariate analogies to Equations (16) and (17)
when p = q = 1.With a d-dimensional {Xt} and corresponding
d-dimensional intensity process {λt}, the linear and log-linear
models considered are direct extensions of their univariate
counterparts.

The linear model is defined by assuming that for each com-
ponent i,

Xi,t|Ft−1 ∼ Poisson(λi,t), λt = r + Aλt−1 + BXt−1, (23)

where r is a d-dimensional with positive entries and A and B
are d × d unknown matrices with positive entries (positivity is
needed to ensure that λi,t > 0 for all i and t). The log-linear
model is analogously defined by

Xi,t|Ft−1 ∼ Poisson(λi,t),
νt = r + Aνt−1 + Blog(Xt−1 + 1d), (24)

where νt = log(λt) is taken componentwise and 1d is a d-
dimensional vector with all unit entries. For (24), there is no
need to impose positivity constraints on r, A, and B. This is
an important argument favoring the log-linear model, which
accommodates general covariates. The authors introduced a
copula function on a vector of associated continuous random
variables to describe the data-generating process. This construc-
tion avoids joint distribution difficulties (see pages 507 and
508 in Genest and Nešlehová (2007)), but keeps the marginal
properties of a Poisson process.

6. Bayesian Dynamic Generalized Linear Models

Bayesian count series modeling approaches have also been
actively studied. See Gamerman et al. (2016), Davis et al.
(2016), and the therein, for recent Bayesian dynamic generalized
linear modeling reviews. Here, count series are developed from
a dynamic generalized linear and nonlinear mixed models
perspective, with a Bayesian hierarchical modeling (BHM) slant
(Holan andWikle 2016). In this setting, dependence is typically
induced via a latent Gaussian process (Cressie and Wikle
2011). Although one can incorporate dependence through
non-Gaussian latent processes, non-Gaussian processes are

less commonly employed in the literature. We also discuss
the modeling approach in Bradley, Holan, and Wikle (2018),
which is based on a multivariate log gamma latent process that
is computationally attractive.

We now describe a hierarchical paradigm that provides an
extremely rich framework for modeling complex dependencies
in count series. Themain BHM idea is to consider a joint proba-
bility model for the data, process, and parameters, which is typi-
cally specified through conditionally linkedmodel components;
that is, the data conditioned on the process and parameters, and
the process conditioned on the parameters. The BHM specifi-
cation allows complicated marginal dependence structures to
be developed via a more scientific specification of conditional
means of random process at stages in a model hierarchy. One
difference between themodels here and in Section 4 lies with the
flexibility that can be achieved in the hierarchical structures of
this section.While the assumption of conditional independence
is often reasonable in many applications, it should be validated
whenever possible. See Berliner (1996) and Cressie and Wikle
(2011) for broad discussions of this paradigm.

Suppose that Z = {Zt} is a latent Gaussian process and
that X = {Xt} denotes data based on {Zt}; for example, Xt
may be a function of Zt only as in Section 3.2 or a function of
Zt and some random error or past process values akin to the
models in Section 4. Let θX denote all parameters arising in
X (these are typically means and covariances) and θZ denote
parameters governing the temporal evolution of {Zt} (at time
t, this structure is assumed to only depend on past, not future
process values). For general notation, let [X|Z] and [Z] denote
the conditional distribution of X given Z and the marginal
distribution of Z, respectively. Assuming conditional indepen-
dence of parameters in X and Z, the law of total probability
shows that the joint probability distribution of the data and
process given the parameters factors into

[X,Z|θX, θZ] = [X|Z, θX][Z|θZ], (25)

where [X|Z, θX] is the data distribution or “data model” (con-
ditional likelihood) and [Z|θZ] denotes the latent Gaussian
process or “process model.”

Our discussion will focus on the process-driven case, where
models are developed for Z. This approach has several advan-
tages. First, in many applications, one is interested in predict-
ing values of Z. Models for Z can directly incorporate sci-
entific insight and simultaneously account for measurement
(and/or sampling) and process uncertainties. Second, given the
complexity and high-dimensionality of many real-world series,
it is often difficult to specify a realistic dependence structure
for X (e.g., due to non-Gaussianity, non-linearity and/or non-
stationarity); as a consequence, likelihood-based inference for
observation-driven models is often challenging.

Interest typically resides in estimating the posterior distri-
bution of the latent Gaussian process and parameters given the
data. Using the Bayes theorem, the BHM obeys

[Z, θZ, θX|X] ∝ [X|Z, θX][Z|θZ][θX, θZ], (26)

where the normalizing constant integrates over Z, θX, and θZ.
An important feature of Equation (26) is that the right hand
side can be further decomposed into submodels. For example,
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assuming conditional independence given the latent Gaussian
process, multiple datasets with different temporal aspects could
be accommodated through a data model with specification

[X(1),X(2)|Z, θ (1)
X , θ (2)

X ] = [X(1)|Z, θ (1)
X ][X(2)|Z, θ (2)

X ], (27)

where, for j = 1, 2, X(j) and θ
(j)
X correspond to the observations

and parameters from the jth dataset, respectively (see, e.g.,Wang
et al. 2012). In this context,X(1) andX(2) need not have the same
data distribution. For many applications, it is natural to decom-
pose the process model into subcomponents. For instance, a
first-order Markov structure yields the decomposition

[(Z0,Z1, . . . ,ZT)] = [Z0]
T∏
t=1

[Zt|Zt−1].

Alternatively, the process model could be further decomposed
to accommodate multivariate structure. In this case, letting
[Z] = [Z(1),Z(2)], the process model can be expressed as
[Z] = [Z(2)|Z(1)][Z(1)], where the order of conditioning is
usually suggested by the specific application or chosen by the
practitioner (Royle and Berliner 1999).

BHM modeling and inference proceeds by specifying a data
model [X|Z, θX] and a prior distribution [θX, θZ]. In the next
subsections, these are described for univariate and vector-
valued counts, respectively.

6.1. Univariate Count SeriesModeling

For univariate count series, the data model [X|Z, θX] is typically
drawn from an exponential family distribution (Poisson, Nega-
tive Binomial, Conway-Maxwell Poisson (CMP)); that is,

[Xt|αt] = exp{ϕt(Xt) + αtXt − At(αt)},
where αt denotes the univariate natural parameter of the expo-
nential family, ϕt(·) is a known function, and At(·) is a normal-
izing constant—compare to Equation (9). We assume the usual
regularity conditions for exponential families in McCulloch,
Searle, and Nehaus (2008),

Our notation usesμt = E[Xt|αt]. For link functions g(·) and
covariates, one often uses the form

g(μt) = cTt β + Zt , (28)

where ct is a vector of known covariates at time t,β are unknown
regression coefficients that could be further modeled, and {Zt}
is IID zero mean Gaussian error (compare to Equation (10)).

For Poisson series, {μt} is the intensity function associated
with Equation (28) and g(·) is the log link. While the Poisson
model implies marginal equidispersion, overdispersion can be
achieved by placing a random effect in a latent Gaussian process
model for {log(μt)}, or, for example, by using a negative bino-
mial (NegBin) data model—say Xt|μt , ν ∼ IID NegBin(Zt , ν),
where log(μt) can be specified similarly to Equation (28), and
ν (or log(ν)) can be given an appropriate hyperprior. A less
common distribution used to model over- or under-dispersed
counts is the Conway-Maxwell Poisson (CMP) (Wu, Holan, and
Wikle 2013): Xt|μt , ν ∼ IID CMP(Zt , ν), where log(μt) can
be specified similarly to Equation (28), and ν = 1, ν < 1,

and ν > 1 correspond, respectively, to equi-, over-, and under-
dispersed distributions.

For certain combinations of intensity and dispersion param-
eters, calculation of the normalizing constant can be computa-
tionally intensive. This may be facilitated using the asymptotic
approximations inMinka et al. (2003), or by taking advantage of
parallel computing through Open Multiprocessing (OpenMP)
and Compute Unified Device Architecture (CUDA); that is„
graphics processing units (Wu, Holan, and Wikle 2013). Distri-
butional specifications are easily generalizable to zero-inflated
Poissons (ZIP), or mixture Poissons.

For example, Ravishanker, Venkatesan, andHu (2016) devel-
oped a BHM for amarketing scenariowith a ZIP distribution for
the prescription counts of a drug, where Xi,t is the prescription
count in week t by physician i. Let λi,t = E[Xi,t] and �i,t be the
corresponding probability of a zero count. The ZIP distribution
of Xi,t can be decomposed as the mixture Xi,t = Vi,t(1 − Bi,t),
where Bi,t ∼ Bernoulli(�i,t), Vi,t ∼ Poisson(μi,t), and Bi,t
and Vi,t are independent. Exogenous predictors such as the
log of the number of sales calls made to physician i during
week t (denoted Di,t), and the recency-frequency-monetary
value (RFM) variable (denoted Ri,t) are used to model the log
and logit, respectively, of the latent physician specific dynamic
variables μi,t and �i,t .

Let β
μ
i,t = (β

μ
0,i,t ,β

μ
1,i,t ,β

μ
2,i,t)

T and β�
i,t = (β�

0,i,t ,β
�
1,i,t ,β

�
2,i,t)

T

denote the physician and time specific coefficient vectors,
respectively. Including an intercept, a coefficient for log(Di,t)
and a coefficient for Ri,t , each β i,t is a three-dimensional vector
for each t and i. Then β i,t = ((β

μ
i,t)

T , (β�
i,t)

T)T denotes a
p = 6-dimensional vector. A hierarchical or structural equation
models β i,t as a function of a p-dimensional dynamic state
vector γ t . Physician level variables (such as demographics or
specialty, Zi, if available) and their surveyed attitudes to the
prescribed drugs, Ci,t , may be included in this equation with
static coefficients 	 and 
:

β i,t = γ t + Ci,t	 + Zi
 + vi,t . (29)

The errors vi,t are assumed to be Np(0,Vi) vectors. The state
equation describing the dynamic evolution of {γ t} is

γ t = Gγ t−1 + wt , (30)

where G is the identity matrix if a random walk evolution is
assumed, and wt ∼ Np(0,W). Conjugate prior distributions,
such as multivariate normal and inverse Wishart, are assumed
for the model parameters. Gibbs sampling was used to estimate
the posterior distribution of the model parameters. While static
coefficients are routinely drawn from known distributions, the
forward-filtering-backward-sampling algorithm (Frühwirth-
Schnatter 1994) enables sampling γ t , and the Metropolis-
Hastings algorithm to generate samples of the other parameters.
Modeling details, results, and comparisons between several
dynamic models are given in Hu (2012), while details and
results for the static ZIP models are discussed in Ravishanker,
Venkatesan, and Hu (2016).

6.2. MultivariateModeling

Three approaches will be presented for vector counts. First, Sec-
tion 6.2.1 describes level correlated models. Next, Section 6.2.2
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assumes a particular multivariate data distribution, such as
multivariate Poisson, multivariate zero-inflated Poisson (ZIP),
or finite mixtures of these distributions. Finally, Section 6.2.3
presents the Poisson multivariate log gamma model.

6.2.1. Level CorrelatedModels (LCM)
Level correlated models incorporate dependence between
components of a count vector Xi,t = (X1,i,t , . . . ,Xd,i,t)

T

through an underlying correlated latent process (Aitchison and
Ho 1989; Chib and Winklemann 2001; Ma, Kockelman, and
Damien 2008). Serhiyenko, Ravishanker, andVenkatesan (2017)
describe a marketing application. The observation equation of
their LCM is

Xj,i,t|θ j,i,t ∼ UDCj(θ j,i,t), (31)

where UDC stands for “univariate distribution of counts” and
θ j,i,t denotes a set of parameters associated with the UDC.
Different valid marginal data distributions may be incorporated
for the d component series, such as Poisson, negative binomial,
ZIP, and Conway-Maxwell.

The mean μj,i,t = E[Xj,i,t] is modeled as a function of
predictors via the log link

log(μj,i,t) = βj,i,0 + γj,t + cTj,i,tβ j,i + αj,i,t . (32)

In Equation (32), the link function for the mean can change
with the distribution in Equation (31). For j = 1, . . . , d, the
model contains a random subject/location specific intercept
βj,i,0, a time effect for the jth response component, γj,t which
is a latent state vector and a random effect αj,i,t which is a
response type, time, and subject/location specific level corre-
lated error component. Here, cj,i,t denotes a pj-dimensional
vector of covariates, and β j,i is a corresponding pj-dimensional
vector of coefficients, which can be time-varying. Dependence
between different components of the count vector can be pos-
tulated through αi,t ∼ N(0,�i), where �i is a subject/location
specific variance-covariance matrix.

Serhiyenko, Ravishanker, and Venkatesan (2017) used a ran-
dom walk evolution for γ t = (γ1,t , . . . , γd,t)T :

γj,t = γj,t−1 + wj,t , (33)

wherewj,t ∼ Normal(0, 1/W); that is, state errors for the differ-
ent response types are assumed to follow the same normal dis-
tribution. Alternately, the state error can follow a response type
specific normal distribution; that is, wj,t ∼ Normal(0, 1/Wj).
integrated nested Laplace approximations (INLA)Rue,Martino,
and Chopin (2009) are used for fast approximate Bayesianmod-
eling using the R-INLA package (r-inla.org).

6.2.2. Hierarchical Multivariate DynamicModels (HMDM)
We describe a hierarchical model for Poisson counts only; other
count distributions can be developed. One definition of a d-
variate Poisson random vector X takes X = AZ, where Z =
(Z1, . . . ,Zq)T is a q-dimensional (q ≥ d) vector of unobserved
independent Poisson variates, Zr having meanμr , and the com-
ponents of the d×qmatrixA take values in {0, 1} (Mahamunulu
1967). This construction leaves Xi and Xj as correlated Poisson
variates should ai,� = aj,� = 1 for some � ∈ {1, . . . , q}.
While one cannot build negatively correlated components of X

with such a definition (compare to Section 3.2), the marginal
distribution of each component is Poisson. Formally, X =
(X1, . . . ,Xd)

T = AZ is said to follow a multivariate Poisson
distribution with parameters μ = (μ1, . . . ,μq)T , and PMF

MPd(x|μ) =: P(X = x|μ)

=
∑

z∈g−1(x)

P(Z = z|μ)

=
∑

z∈g−1(x)

q∏
r=1

P(Zr = zr|μr). (34)

where g−1(·) denotes the inverse image of the linear function
g(z) = Az and P(Zr = zr|μr) = e−μrμ

zr
r /zr! is the univariate

Poisson PMF. The first two moments of X are E[X|μ] = Aμ

and var(X|μ) = ADiag(μ1, . . . ,μq)AT .
The two-way covariance structured multivariate Poisson

model proposed in Karlis and Meligkotsidou (2005) used
A = [A1 A2], where A1 = Id captures main effects and A2
captures two-way covariance effects. Here, A2 is a d × (d

2
)

binary matrix (q − d = (d
2
)
) such that each column of A2 has

exactly two ones and (d − 2) zeros, and no duplicate columns
exist. The parameter μ is correspondingly partitioned into two
parts: μ(1) = (μ1, . . . ,μd)

T contains the main effects and
μ(2) = (μd+1, . . . ,μq)T contains the

(d
2
)
pairwise covariances

δr,s := cov(Zr ,Zs) for 1 ≤ r < s ≤ d.
The probability mass function of a finite mixture of Lmulti-

variate Poisson distributions has the representation (Karlis and
Meligkotsidou 2007)

P(x|μ,π) =
L∑

�=1
π�MPd(x|μ�),

where π = (π1, . . . ,πL)T book keeps mixture proportions.
Moments are E[X|μ,π ] = ∑L

�=1 π�Aμ� and

var(X|μ,π) = A

⎡
⎣ L∑

�=1
π�(Diag(μ1,�, . . . ,μq,�) + μ�μ

T
� )

−
( L∑

�=1
π�μ�

)( L∑
�=1

π�μ�

)T⎤
⎦AT .

This structure permits negative correlations in X should π

and/or μ have negatively correlated components (Karlis and
Meligkotsidou 2007).

Let Xi,t = (X1,i,t , . . . ,Xd,i,t)
T be observed d-variate count

vectors for locations (or subjects) i = 1, . . . , n at time t. A
hierarchical multivariate dynamic model (HMDM) with a d-
variate Poisson mixture distribution with two-way covariance
structure is now described (Karlis and Meligkotsidou 2007;
Ravishanker, Venkatesan, and Hu 2016).

The observation equation is

P(xi,t|μi,t,�) =
L∑

�=1
π�MPd(xi,t|μi,t,�),

log(μr,i,t,�) = BT
r,i,tδr,i,t,� + STr,i,tηr,�, r = 1, . . . , q, (35)
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where Br,i,t is an ar-dimensional vector of exogenous predictors
with location-time varying (dynamic) coefficients δr,i,t,�, and
Sr,i,t is a br-dimensional vector of exogenous predictors with
static coefficients ηr,�. The model is assumed to either include
δr,i,t,h,1, which represents a location-time varying intercept, or
ηr,�,1, which represents a static intercept with either Dr,i,t,1 = 1
or Sr,i,t,1 = 1. Let pd = ∑q

r=1 ar and ps = ∑q
r=1 br . Let

β i,t be a pd-dimensional vector constructed by stacking the ar
coefficients δr,i,t for r = 1, . . . , q into a vector. The structural
equation relates the location-time varying parameter β i,t to an
aggregate (pooled) state parameter γ t via

β i,t = γ t + Ai,t	 + Zi
 + vi,t , (36)

where the errors vi,t are assumed IIDNpd(0,V i), andAi,t , Zi, 	,
and 
 were defined above (29).

The state equation is

γ t = Gγ t−1 + wt , (37)

where G is a pd-dimensional state transition matrix and the
state errors wt are assumed IID Npd(0,W). When L = 1 and
d = 1, (35)-(37) are a hierarchical DGLM (HDGLM) with the
univariate Poisson PMF.

Bayesian inference proceeds under standard prior specifica-
tions and uses Gibbs sampling to generate samples from the
posterior distribution of the parameters. Details were given
in Ravishanker, Venkatesan, and Hu (2016). With small-to-
moderate sample sizes, this approach offers a computationally
feasible procedure for modeling vector time series of counts.
With big data, the approximate LCM approach described in
Section 6.2.1 may be preferred.

6.2.3. Multivariate Poissonwith Latent Multivariate Log
Gamma

This subsection discusses a multivariate conditional Poisson
count model based on a multivariate log-gamma latent process
(Bradley, Holan, andWikle 2018). Themodel was developed for
a generalmultivariate spatio-temporal process; a time series ver-
sion isolates on the special case of one location. The key advan-
tages to this framework are that themultivariate log gamma dis-
tribution is conjugate to the Poisson distribution, which permits
model flexibility and fast computational performance.

Let them-dimensional vector w = (w1, . . . ,wm)T consist of
m mutually independent log gamma random variables, where,
for i = 1, . . . ,m, we write wi ∼ LG(αi, κi), where αi and κi are
positive parameters. Now define q = b + Vw, where V is an
m × m matrix and b is an m-dimensional vector. We call q a
multivariate log-gamma (MLG) random vector. The PMF of q
was explicitly derived in Bradley, Holan, and Wikle (2018).

Building on Equation (28) and assuming that the data model
is Poisson, the Poisson MLG model can be written as

g(μt) = cTt β + φT
t ηt + ξ t , (38)

where ηt has a vector autoregressive structure and follows an
MLG distribution, {φt} is say a deterministic collection of tem-
poral basis functions, β follows an MLG distribution, and {ξ t}
is independent noise that follows an MLG distribution.

Convenient prior distributions can be placed on the hyper-
parameters of this model, leading to a fully conjugate model.

In this case, performance will improve in situations where the
marginal distribution of the latent process is decisively non-
Gaussian. Comprehensive details of the theoretical properties
and sampling algorithms can be found in Bradley, Holan, and
Wikle (2018) and Bradley, Holan, and Wikle (2020).

7. Future Directions

A significant body of current research on thinning methods
involves multivariate count series. These methods often com-
bine thinning operators with some of the techniques in this
article. Other work looks to extend thinning operators to the set
of all integers; Scotto, Weiß, and Gouveia (2015) summarized
some operators and approaches for count time series mod-
els. Finally, likelihood and composite likelihood estimation are
actively being studied

Using binary series to construct different count series shows
promise. Since each distributional family requires a different
aggregation of the binary series involved, additional research
might be needed to achieve the particular marginal distribu-
tion sought. For example, Jia, Lund, and Livsey (2020b) eas-
ily constructed stationary multinomial distributed series with
very flexible autocovariances. However, how to construct sta-
tionary generalized Poisson (one of the most flexible count
marginal distributions) series with a wide range of autocovari-
ance structures remains unclear. The latent Gaussian transfor-
mation techniques in Section 3.2 show vast potential since the
resulting series can have anymarginal distribution and themost
general autocovariances possible. Moreover, they can handle
covariates and be fitted via likelihoodmethods. Here, additional
research is needed on two fronts. First, multivariate versions
of the methods are needed, including techniques to handle
high dimensional settings. Second, while particle filtering-based
algorithms can be used to approximate the likelihood (Jia et al.
2020a), these algorithms are only in their developmental infancy
and more implementation research is needed to make them
efficient.

Analysis of multivariate, and more generally, high-
dimensional count series is an area that requires development
of more sophisticated statistical methods. Most of the existing
theory is based on direct generalizations of univariate models;
however, thismight not accommodate data observed in different
frequencies, series that contain both underdispersed and
overdispersed components, or counts with inflated zeroes.
Models that take into account such irregularities are hard to
develop; in fact, suitable multivariate discrete distributions have
yet to be developed. However, copula based approaches, such as
those described in Sections 3.2 and 5 provide ways to attack this
problem.

Bayesian methods for multivariate count series are compu-
tationally demanding in high-dimensional settings. Here, fur-
ther research is needed on dimension reduction and efficient
estimation algorithms. Another direction for future research lies
with approximations for Bayesian computation (e.g., variational
Bayes and approximate Bayesian computation).

The methods presented in this review article are almost
entirely parametric; in general, nonparametricmodeling for dis-
crete data is scarce. Recently, there has been an attempt to con-
sider semi-parametric modeling for count series (Zhang 2018).
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This allows, for example, in a generalized state-space modeling
framework, ways of relaxing a specific parametric PMF (say
Poisson or negative binomial) for the observation PMF. The
specific PMF would be replaced by an unknown PMF satisfying
a log-concave shape constraint. This approach is similar in
spirit to that in Chen and Samworth (2013) for continuous-
valued series, where the noise distribution is assumed to be
log-concave. Background onmodeling discrete PMFs using log-
concave distributions can be found in Balabdaoui et al. (2013).
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