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Abstract— In recent years, there has been an increase in cyber-
attacks in mobile cloud environment. Intrusion Detection Systems
(IDS) have played an important role in protecting mobile cloud
security. Many techniques have been utilized to implement IDS,
among them, machine learning-based techniques have generated
promising results. Especially, complex deep neural networks show
a higher detection rate than traditional machine learning models.
However, the interpretation of the decision made by a neural
network becomes harder to understand as its architectural
complexity increases. This challenge makes it difficult for the
human experts to fine-tune their detection systems, trust the
detection system’s results, and make decisions accordingly when
IDS systems are deployed. To address this issue, we propose an
explainable intrusion detection framework that employs deep
learning mechanisms to identify cyber-attacks and utilizes
knowledge graph as the knowledge foundation to add human
understanding of machine learning and explain the machine
learning results. The use case study demonstrates that the
proposed framework can not only successfully identify network
intrusions but also effectively reveal important information about
its internal working mechanisms of the mysterious deep learning
Blackbox.

Keywords—Explainable Al, Intrusion Detection, security, deep
learning, knowledge graph

1. INTRODUCTION

The enormous growth of the Internet has increased the use
of various internet-dependent devices. The high demand of
network usage has elevated concerns about the security of these
devices. These devices transfer a vast range of personal
information such as web camera footage, health information,
financial information, via Internet that are vulnerable to various
kinds of malicious activities [1]. It is becoming even worse with
the popularity of mobile and cloud computing technologies.
Internet security vulnerabilities makes intrusion detection
systems (IDS) an important and essential technology that
provides a more secure environment. IDS can identify malicious
activities from legitimate ones using different techniques such
as signature based logical operations, statistical analysis,
machine learning and data mining techniques [2].

This work was supported in part by the National Science Foundation (NSF)
writh A A nrimahar: 1797012 and 1001874

978-1-6654-9845-6/22/$31.00 ©2022 IEEE
DOI 10.1109/MobileCloud55333.2022.0001 1

Vikram Pandey Yan Bai
Department of Computer School of Engineering and
Science Technology
North Dakota State University of Washington
University Tacoma
Fargo, USA Tacoma, USA
vikram.pandey@ndsu.edu yanb@uw.edu

Various machine learning techniques such as Decision Trees
[31, [4], [5], Support Vector Machines [6], [7], [8], Random
Forest [9], [10], Ensemble Learning [11], [12] to identify
intrusions in the network. More recently, researchers have
adopted deep learning-based intrusion detection models to
implement IDS. These deep learning-based systems have
proved to be more effective in identifying cyber-attacks by
producing higher detection rate and lower false positive rate [21].
However, the rational and clarity behind the deep learning
models’ decision making are missing. The decision of intrusion
detection system is used by human administrators to take
appropriate actions against abnormal behavior in the network.
Therefore, it is important for administrators to understand a
model including what dataset was used for training, what
machine learning approach was adopted and how the training
was performed.

To address the aforementioned problem, in this paper, we
suggest a knowledge graph-assisted deep neural network
framework to identify network intrusions with clear explanation
of how the detection mechanism works, so that human users can
understand and trust the results generated by the proposed IDS
system. A deep-learning based approach has been applied to
classify network traffic. Knowledge graphs and ontologies. are
employed to provide background knowledge of the explanation
in the framework. The proposed framework explains dataset
features, machine learning models, and, most importantly,
prediction results. The framework based on knowledge graphs
improves understanding of the machine learning models and
prediction results for cybersecurity experts. We have
implemented and tested the proposed model using a public
datasets CICIDS2017 [22]. Our experiments have shown that
the deep neural model generates high precision results in
detecting different cyber-threats with little to negligible false
positive  values. Moreover, the explainable results aid
cybersecurity experts interpret the achieved system outputs.

The rest of the paper is organized as follows. Section II
surveys related research in intrusion detection systems and
explainable Al in various domains. Section III provides details
of the proposed framework. Section IV explains the
experimental results. Section V concludes the paper and points
out our future work.
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II.  RELATED WORK

Over the last decade, many machine learning, especially
deep learning-based intrusion detection systems such as [23],
[24], [25] have been developed to identify cyber-attacks.
Popular shallow learning algorithms used for intrusion detection
include Decision Tree, Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), Artificial Neural Network (ANN),
and Ensemble-based approaches. Moon et al. [26] proposed an
IDS based on the decision tree to classify network attacks. The
decision tree uses nodes’ behavior information to detect
advanced persistent threats attacks that can change after an
intrusion occurs. Similar IDS systems [3], [4], [5] also use
decision trees to classify malicious behavior and prevent attacks.
KNN utilizes feature similarity to classify the class of an
intrusion. In their work, Shapoorifard and Shamsinejad
improved intrusion detection tasks by combining K-means
clustering and KNN classification [27]. Adam et al. proposed an
anomaly-based Network Intrusion Detection System that uses
artificial neural network [28]. The proposed system is able to
successfully recognize learned malicious activities such as the
SYN flood attack, UDP flood attack, nMap scanning attack, and
non-malicious communication in a network environment. A
similar work by Dias et al. also used ANN to classify network
traffics and achieved good performance [29].

Compared with the aforementioned shallow learning
approaches, recent research in applying deep learning
algorithms in intrusion detection achieves better detection
performance. Many deep learning-based intrusion detection
models [13], [14], [15], such as Convolutional Neural Network
(CNN), Recurrent Neural Networks (RNN), variational
autoencoder [20], have been proposed and evaluated. Zhang et
al. proposed an intrusion detection model based on CNN [30].
Before CNN training, they applied Synthetic Minority
Oversampling Technique and Edited Nearest Neighbors
(SMOTE-ENN) algorithm to balance the imbalanced data. Their
evaluation results have demonstrated that SMOTE-ENN-based
CNN IDS model achieves good accuracy and better detection
rates of User to Root (U2R) and Remote to Local (R2L) attacks.
Similarly, IDSs proposed in [16] [17] [18] also used CNN for
classification. Studies presented in [15] and [19] proposed deep
learning approaches for intrusion detection using RNN. They
applied RNN for both binary classification and multiclass
classification and found that RNN IDS can achieve good
accuracy. Narayana et al. found out that detection rate in IDS
can be improved by using variational autoencoder and DNN [31].

These deep learning-based intrusion detection models have
gained noticeable detection rate for abnormal network activities;
however, they lack the capability to explain the machine
learning models and the decisions made by the models. To
overcome this problem, researchers have been working on
proposing systems that can generate information to explain the
machine learning’s prediction results. For example Bach and
Binder introduced the so-called “layer-wise relevance
propagation” to visualize the contribution of single pixels as
heatmaps and help human experts to verify the validity of the
classification decision. The layer-wise relevance propagation
method was used in another research work done by Marino et al.
[32]. However, they provided explanations only for
misclassifications performed by the IDS. They utilized
adversarial approach to generate these explanations.

Amarasinghe et al. [33] proposed a DNN-based anomaly
detection system that also provides explanation of the detected
anomalies. The explanation feedback was generated feedback
based on the feature contribution in the classification process.
“Local Explanation Method wusing Nonlinear Approach”
(LEMNA) was utilized by Li et al. [34] to generate the
explanations for anomaly-based IDS.

To the best of our knowledge, existing research focused on
providing explanation for certain types of machine learning
results. A compressive and complete explanation model is still
missing. This paper tries to address the problems of existing
systems and proposed a compressive detection and explanation
framework to not only detect intrusions but also explain how
results are predicted, and why they are predicted in that way.

III.  METHODOLOGY

We propose an intrusion detection with multi-modal
explanation framework based on network intrusion detection-
related domain ontologies. Besides identifying attacks, this
framework is able to provide explanation and insights from
different perspectives of a detection model.

Fig. 1 illustrates the architecture of the proposed
framework. Input network traffic metadata is passed to the IDS
system, which is a DNN trained by specific dataset. Prediction
in benign or malicious traffic will be made by the DNN. The
entire prediction process will be explained using an explanation
model. The Knowledge Base provides machine-interpretable
representations about the entire prediction process. It consists
of ontologies about machine learning and network intrusion.
The explanation module explains dataset features, machine
learning models and most importantly the prediction results.
The framework improves understanding of machine learning
models and prediction results for cybersecurity experts.
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Fig. 1. System architecture

The remainder of this section contains and explains
details about the framework.
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A. Knowledge Base

The knowledge foundation of our explainable model
includes two ontologies: one defines important concepts and
their relations in network security; another defines important
concepts and relations in machine learning. Together, they
provide background information about the proposed intrusion
detection model. There are attempts to define taxonomy of
network attacks [35]. However, none of them can sufficiently
describe current network attacks and related traffic
characteristics. Hence, we have created a comprehensive
ontology to model the upper-level concepts of network traffic
and security by incorporating taxonomy and concepts presented
in [35][36]. The ontology defines major concepts such as types
of attacks, tools used by attackers, network traffic features and
SO on.
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Fig. 2. Part of the network security ontology’s classes

Fig. 2 shows high-level ontology about network security. As
shown in Fig. 2 general concepts are extended to incorporate
subclasses. For instance, types of attacks are extended to
include botnet attacks, DoS attacks and DDoS attacks. Tools for
attacks are extended to include tools such as Hulk, Golden eye,
etc. These ontology concepts help in identifying the type of an
attack along with determining network vulnerabilities exploited
in the attack.

Similarly, high-level ontology about machine learning
models have also been developed which reorganizes and reuses
some existing machine learning ontologies [38]. Due to space
limit, we can only show a small part of the ontology. A
complete version can be found in our GitHub project site
[37].

B. Intrusion Detection Model Using Deep Neural Network

The detection model aims at constructing an efficient classifier
model to detect various attacks as accurately as possible. For this
purpose, we build a Feed Forward multiclass classifier. The input
layer has 78 neurons whereas each hidden layer contains
1024,768,768,512 neurons, respectively; the output layer has 7
neurons. The presence of such high neurons
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in the hidden layers understanding of data processing becomes
overly complicated. To understand the data processing by the
neural network we need to rely on the explanation model to add
transparency to the decision making of the model. The Feed
Forward neural network is chosen because of its simplistic design
structure although other complex neural network architectures,
such as CNN and RNN, can also be used as the classifier model.

The classifier model is trained using stochastic gradient
descent learning method [39]. This learning method minimizes
the loss value based on a loss function’s mean squared error,
MSE, which is defined in Equation 1.

n
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In Equation 1, Y; is the original class label of the data
sample, and Y' is the predicted class label for the same sample.
The input data is transferred from one hidden layer to another
in forward direction. The model tries to minimize the difference
between the original value and the predicted value as much as
possible by updating the weights of different layers via a back-
propagation method at each iteration.

Our neural network contains dropout layers. Dropout is a
regularization method that helps prevent the neural network
from overfitting. Overfitting can be a problem when a neural
network is very dense, i.e. the neural network contains huge
number of neurons in its hidden layers. Using the dropout
regularization method, the neural network randomly chooses
certain number of neurons in its layers and decides to discard
the output value produced by that neuron and sends the
remaining values to the next layer. Based on multiple
experiments, we finalized 10% of the neurons to be discarded
at each layer. The use of dropout layer also helps the neural
network to generalize its decision while performing
classification of the input. Each hidden layer has a ReLu
activation function [40] for computation purpose. This
activation function has been finalized after neurons experiments
which proves that ReLu produces the best output. Equation 2
shows the ReLu activation function g(x).

g(x) = max{0,x}  (2)

The intrusion detection deep learning model performs a
multiclass classification. Therefore, the last layer contains
SoftMax activation [41] as shown in Equation 3. The input
sample then gets classified as a class label with the highest
probability.
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C. Explanation Model

The explanation model explains the intrusion detection from
three aspects: (1) the machine learning model used to classify
network intrusions, (2) the data used to train and test the machine
learning model, and (3) the results generated by the machine
learning model. When data scientists build a machine learning
model, instances will be generated based on the model using the
ontology defined in Section A. All the metadata about the
machine learning model, such as the machine learning algorithm
and parameters, are stored in the knowledge in the format of
ontology. Query and reasoning can be performed on the
knowledgebase for explanation purposes. To understand the data

2d for training and testing of the machine learning model, data
itures are mapped to the network security ontology.
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The mapping is through a semantic k-nearest neighbor
search process we proposed in a previous work [42].

We explain results generated by the deep neural network
from two perspectives: model-centric and subject-centric
explanation. Model-centric explanations explain the whole
model, while subject-centric explanation explain the model
decisions for individual predictions. Both models’ explanations
are based on the explanatory of features with the greatest
influence on the prediction model. We adopted Shapely
Additive Explanations (SHAP) [43] for the detection model
explanation. SHAP is very suitable for explaining the decision
of complex models such as DNN. SHAP is derived from
Shapley Values in game theory. It interprets and describes the
impact of each feature for a specific data sample. This process
of interpretation is executed for all the data samples, which
results in the global explanation of the feature importance of the
dataset. We adopted the Local Interpretable Model-Agnostic
Explanations (LIME) [44] for subject-centric explanation.
LIME tries to find a simple model that locally approximates the
complex machine learning model f{) in the vicinity of a certain
test instance x.

IV. EVALUATION

We evaluate the proposed explainable IDS from two aspects:
the performance of the DNN detection model and the
explainability of the IDS system.

A. Detection Model Evaluation

1) Dataset and Data Preprocessing

We use the CICIDS2017 dataset [22] for training and testing
of our intrusion detection models. It includes 78 independent
features, and a total of 14 types of attack traffic and normal
traffic. The dataset is highly imbalanced considering the number
of samples in each type of attack.

Therefore, we grouped similar attack types into a single
category. The grouping of class variables reduces the number
of classes into 6 types of malicious traffic activities and 1
normal traffic activity. We used a series of sampling techniques
including Random Under Sampling with replacement [45] and
SMOTE [46] oversampling technique to increase the number of
samples in the minority class(es), and Tomek Links [47] to
remove noise after applying SMOTE. All these techniques help
us gain a well-balanced and organized subset of the
CICIDS2017 dataset that is then used in the training and
evaluation of our framework. We used Quantile Transformer
[48] as the scaling technique to scale the dataset because it can
produce scaled output that follows the same distribution
(Uniform) as the original dataset. Quantile Transformer
scaling method is also very robust towards outliers that helps
scale the data correctly and doesn’t remove the outliers from
the scaled dataset.

2) Evaluation Results

We evaluated our intrusion detection deep learning-based
neural network based on Accuracy, Precision-Recall, AUC
(Area Under the Curve). These metrices are developed for binary
classification systems. Since our model performs a multiclass
classification, we converted our problem to Dbinary
classification using the One-vs-Rest strategy [49].

In Fig. 4 we plot the ROC Curve for test data. This plot helps
us to understand how well our deep learning-based IDS
performs for each class. We compared the performance of our
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Fig. 4: ROC Curve of Intrusion Detection Model

intrusion detection model with other state-of-the-art intrusion
detection models including RKM [23], KNN-SVM-RBF [23],
Decision Jungle [24], MNN [24], MDF [24], MLR[24], and
DNN 5 layers [25] in Table I. Metrices which have been utilized
for comparing are accuracy, precision, recall, and FI.

Table I: Performance Comparison of our Intrusion Detection Model with
state-of-the-art IDS Models

Model Accuracy Precision Recall Fi-
RKM 98.04 99.86 93.29 95.99
KNN-SVM-RBF 98.97 99.90 94.42 97.08
Decision Jungle 96.56 93.92 86.19 -
MNN 91.55 90.34 83.98 -
MDF 92.78 91.99 85.80 -
MLR 90.60 91.76 84.90 -
DNN 5 Layers 95.6 96.2 95.6 -
Proposed DNN 99.2 99.2 99.6 99.0

B. Detection Result Explanation

First set of experimental cases explain how individual
sample is predicted. Fig. 6, show the explanation of why a
particular individual sample x is classified as a certain class.
The explanation was produced with the help of LIME. It
identifies the probability of each feature that contributes to the
classification of x by the proposed DNN model. Due to space
limitation, we presented the interpretation of 1 class (i.e.,
classification of benign or malicious only. We have used LIME
to produce the local interpretation of all different features for
all the 7 classes. Fig. 7 shows that x was eventually classified as
a DDoS attack.
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Fig 6: Contribution of each feature in detecting if x is benign or malicious
traffic
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Fig 7: Final prediction of sample x

The second experimental cases explain how the DNN model
make the classification. Fig. 8 shows the global explanation
using the 20 features. It can be noticed in Fig. 6 that the global
20 features are the only feature which contributes to the
probability of local interpretation. The result was created by
SHAP. It explains the impact or importance of each feature
towards the classification results.
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Fig. 8: Feature Impact on DNN model decision Global Explanation

C. Detection Model Explanation

The ontology-based knowledgebase can help human experts
to understand how diabetes risk prediction is made. The
proposed system supports the model explanation through
answering human’s natural language’s query and visualizing a
dataset’s features. Fig. 11 shows a visualization of the
CICIDS2017 dataset that was used to train and test the
prediction model. It visualizes features using a radial tree. The
tree corresponds data features in the dataset with concepts in the
knowledge graph. The hierarchical structure helps users to gain
a general-to-specific understanding of each feature. For
example, from Fig. 9, a user can understand that the feature
“BwdURGFlags” belongs to “Flag Features”, which, in turn, is
atraffic feature. When the user clicks on a particular feature, for
example, the “BwdURGFlags” feature, its detailed explanation
retrieved from the ontological knowledgebase will be provided
as shown in the yellow text box in Fig. 9.

The system also provides a query interface for human
experts to ask questions regarding the prediction model. User’s
questions will be converted to SPARQL queries to retrieve
results from the ontology knowledgebase [50].

The following query use cases demonstrate how this
function explains the prediction model.

e User’s question: “What kind of algorithm was
employed on the particular dataset for classification?”

SELECT ?algorithm WHERE {?algorithm a mi:Algorithms .?algorithm
ml:isAppliedOnData ?data .?data ml:isDatasetType ?datasetType. FILTER
(?datasetType =ml: IDSDataset) }
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Fig. 9: Visualization-based explanation of data feature

V.  CONCLUSIONS

This paper presents an explainable machine learning model
that can not only detect network intrusions, but also explain the
prediction process and results. It helps human experts to
understand why machine learning detection model makes a
particular prediction, and how the decision is made. The
proposed model has been implemented and evaluated. The
experimental results show the effectiveness of the proposed
system. The explainable results also enable cybersecurity
experts to interpret the detection result of the system. This will
increase human expert’s trust towards IDS.
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