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Abstract
This article studies estimation of a stationary autocovariance structure in the pres-
ence of an unknown number of mean shifts. Here, a Yule–Walker moment estimator 
for the autoregressive parameters in a dependent time series contaminated by mean 
shift changepoints is proposed and studied. The estimator is based on first order dif-
ferences of the series and is proven consistent and asymptotically normal when the 
number of changepoints m and the series length N satisfy m∕N → 0 as N → ∞.

Keywords  Autoregression · Differencing · Robustness · Rolling Windows · 
Segmentation · Yule-Walker Estimates

1  Introduction

Time series dynamics often change due to external events or internal systematic 
fluctuations. One common structural change is the mean shift, and changepoint 
analyses allow the researcher to identify whether and when abrupt changes in 
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the mean of the series take place. Evolving from the original treatise for a single 
location parameter shift in Page (1954), the majority (but not all) of changepoint 
analyses check for shifts in the mean of the series. Since Page (1954), consid-
erable changepoint work has been conducted, including recursive segmentation 
algorithms such as binary segmentation and wild binary segmentation Fryzlewicz 
(2014), dynamic programming based approaches such as Jackson et  al. (2005) 
and Killick et  al. (2012), moving sum (MOSUM) procedures (Eichinger and 
Kirch 2018; Chen et al. 2021), and simultaneous multi-scale changepoint estima-
tors (SMUCE) Frick et al. (2014). Additional changepoint work includes applica-
tions in climatatology (Hewaarachchi et al. 2017), economics (Norwood and Kil-
lick 2018), and disease modelling (Hall et al. 2000).

Many changepoint techniques assume independent and identically distrib-
uted (IID) model errors; however, time series data are typically correlated (e.g., 
daily temperatures, stock prices, and DNA sequences Chakravarthy et al. (2004)). 
Changepoint techniques tend to overestimate the number of changepoints should 
positive autocorrelation be ignored (Shi et al. 2022). In addition, some multiple 
changepoint models for time series allow all model parameters, including those 
governing the correlation structure of the series, to change at each changepoint 
time. These scenarios are easier to handle computationally as dynamic program-
ming techniques can quickly optimize penalized likelihood objective functions; 
see Killick et  al. (2012) and Maidstone et  al. (2017). In these cases, the objec-
tive function optimized is additive in its segments (regimes). A more parsimoni-
ous model allows series means to shift with each changepoint time, but keeps 
error autocovariances constant across all regimes. These models do not lead to 
objective function additivity and fast dynamic programming techniques cannot be 
directly applied (See Shi et al. 2022).

Remedies typically seek to incorporate the autocorrelation structure in the 
changepoint analysis or to pre-whiten the series prior to any changepoint analysis. In 
either case, one needs to quantify the autocovariance structure and/or long-run vari-
ance of the series. With a good estimate of the series’ autocovariance structure, one-
step-ahead prediction residuals can be computed—and these residuals are always 
uncorrelated (independent up to estimation error for Gaussian series). Indeed, a 
principle of (Shi et al. 2022; Robbins et al. 2011) is that good multiple changepoint 
detection routines can be devised by applying IID methods to the series’ one-step-
ahead prediction residuals (also called pre-whitening). Perhaps owing to this, con-
siderable recent research has sought to find changepoints in dependent time series. 
Among these, Dette et al. (2020) estimate the long-run variance of the error process 
via a difference-type variance estimator calculated from local means from differ-
ent blocks; this estimate is then used to modify SMUCE for dependent data. The 
authors Chen et al. (2021) propose a robust covariance estimation procedure from 
M−estimation to modify a moving sum procedure. Other proposed long-run vari-
ance (or time-average variance) estimators for mean shift problems based on robust 
methods include (Chan 2022; Romano et al. 2021; Chakar et al. 2017).

This paper studies autocovariance and long-run variance estimation in the pres-
ence of mean shifts in more detail. We devise a method based on first order dif-
ferencing that outperforms robust and rolling window methods. The scenario is 



1023

1 3

Journal of the Korean Statistical Society (2022) 51:1021–1040	

asymptotically quantified when the model errors obey a causal autoregressive (AR) 
process.

The rest of this paper proceeds as follows. The next section narrates our setup 
and discusses approaches to the problem. Section  3 then develops an estimation 
technique based on lag one differences of the series. Section 4 proves consistency 
and asymptotic normality of these estimators and Sect. 5 assesses their performance 
in simulations. Section  6 applies the results to an annual precipitation series and 
Sect. 7 concludes with brief comments.

2 � Model and estimation approaches

Suppose that {Xt}
N
t=1

 is a time series having an unknown number of mean 
shift changepoints, denoted by m, occurring at the unknown ordered times 
1 < 𝜏1 < 𝜏2 < ⋯ < 𝜏m ≤ N . These m changepoints partition the series into m + 1 
distinct segments, each segment having its own mean. The model is written as

Here, s(t) denotes the series’ regime number at time t, which takes values in 
{0, 1,… ,m} . Then �s(t) = �i is constant for all times in the ith regime:

We assume that {�t} is a stationary causal AR(p) time series that applies to all 
regimes. The AR order p is assumed known for the moment; BIC penalties will be 
examined later to select the order of the autoregression should it be unknown. While 
more general ARMA(p,  q) {�t} could be considered, we work with AR(p) errors 
because this model class is dense in all stationary short-memory series (Brockwell 
and Davis 1991), and estimation, prediction, and forecasting are easily conducted. 
Adding a moving-average component q ≥ 1 induces considerably more work and is 
less commonly found in changepoint applications. The AR(p) {�t} obeys

where {Zt} is IID white noise with a zero mean, variance �2 , and a finite fourth 
moment (this enables consistent estimation of the autoregressive parameters 
�1,… ,�p).

The next section develops a difference based moment estimation procedure for 
the mean shift setting. Under this scenario, first-order differences of the series will 
have a non-zero mean only at the changepoint times. At this point, it might seem 
prudent to apply ARMA estimation methods that are robust to outliers to the differ-
enced series. Indeed, many previous authors have considered outlier-robust estima-
tors for ARMA models. For examples, the M-estimators of Muler et al. (2009) are 

(1)Xt = �s(t) + �t.

�s(t) =

⎧⎪⎨⎪⎩

�0, 1 ≤ t ≤ �1,

�1, �1 + 1 ≤ t ≤ �2,

⋮

�m, �m + 1 ≤ t ≤ N

.

(2)�t = �1�t−1 +⋯ + �p�t−p + Zt, t ∈ ℤ,
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shown to be consistent and tractable and the bounded influence propagation (BIP) �
-estimators in Muma and Zoubir (2017) merit mention. However, these estimators 
require the ARMA series to be causal and invertible. In our application, the dif-
ferenced series has a unit root in its MA component and is hence not invertible. 
Perhaps worse, future simulations demonstrate that BIP �-estimators do not perform 
well in our setting.

3 � Moment estimates based on differencing

This section derives a system of linear equations that relate the autocorrelations 
of the differenced series to the AR(p) coefficients. First-order differencing a series 
eliminates any piecewise constant mean except at times where shifts occur. Authors 
have previously used differencing to estimate global parameters in the changepoint 
literature. For example, Tecuapetla-Gómez and Munk (2017) discuss a class of dif-
ference– based estimators for autocovariances in nonparametric changepoint seg-
ment regression when the errors are from a stationary m- dependent process. The 
paper Fryzlewicz (2014) uses differencing to get an estimate of Var(Xt) , although 
IID errors are assumed in this work. The estimator in (16) below comes from Cha-
kar et al. (2017) and is also based on differencing. This said, there seems to be no 
previous literature using differencing to estimate AR(p) parameters in a setting cor-
rupted by mean shifts. As an aside, differencing also detrends a time series; the esti-
mators below perform well if a time series has both changepoints and a linear trend.

Let {Xt} be a stationary series satisfying the causal AR(p) difference equation

with {Zt} a zero mean IID sequence with a finite fourth moment. Since Xt may 
be causally expressed in terms of Z

t
, Z

t−1
,… , the autoregressive coefficients are 

uniquely determined by the pth order recursion

and its boundary conditions Brockwell and Davis (1991). Here, �X(h) = Cov(Xt,Xt−h) 
and we use the analogous notation �X(h) = Corr(Xt,Xt−h) . Consider the sequence of 
first differences defined by dt = Xt − Xt−1 . Then {dt} is stationary with

and

One can also show that {dt} satisfies an ARMA(p, 1) difference equation with a first-
order moving average parameter of −1 . We now show that �1,… ,�p can be recov-
ered from the autocorrelation function of the differences.

(3)Xt = � +

p∑
j=1

�j(Xt−j − �) + Zt,

(4)�X(h) = �1�X(h − 1) +⋯ + �p�X(h − p), h = 1, 2,…

(5)�d(h) ∶= Cov(dt, dt+h) = 2�X(h) − �X(h − 1) − �X(h + 1),

(6)�d(h) ∶= Corr(dt, dt+h) =
2�X(h) − �X(h − 1) − �X(h + 1)

2[1 − �X(1)]
.
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Let P(A‖B) denote the best linear predictor (BLP) of a random variable A from 
linear combinations of elements in the set B. We assume that B includes a con-
stant term to allow for cases with a nonzero mean. It is well known that for a sta-
tionary causal ARMA process, the linear representation of the best linear predic-
tion of future series values from past series values is unique Brockwell and Davis 
(1991). Equations determining the autoregressive coefficients can be derived by 
equating two different expressions for the BLP.

Executing on the above, (3) gives

where � = 1 −
∑p

j=1
�j ( � ≠ 0 by causality). Substituting Xp−j = Xp −

∑p−2

j=0
dp−j for 

j = 1,… , p − 1 into the last line above yields

To express the BLP in terms of � = (dp,… , d1)
T only, use the prediction equations 

to obtain

where �d is the p × p covariance matrix of � , which is known to be invertible for a 
causal stationary ARMA {dt} (see Proposition 5.1 in Brockwell and Davis (1991)). 
Combining the above gives

with (v1, v2,… , vp) = Cov(Xp, �)�
−1
d

.
The coefficients �T = (v1,… , vp) can be written in terms of the correlation 

function of the differences in (6):

where �d is the p × p autocorrelation matrix of � and

can be extracted from (5) and the relation

P(dp+1‖1;Xj, 1 ≤ j ≤ p) =P(Xp+1‖1;Xj, 1 ≤ j ≤ p) − Xp

=�� + (�1 − 1)Xp +

p�
j=2

�jXp+1−j,

P(dp+1‖1;Xj, 1 ≤ j ≤ p) = �(� − Xp) −

p−2�
j=0

dp−j

p�
i=2+j

�i.

P(Xp‖1;�) = � + Cov(Xp, �)�
−1
d
�,

(7)P(dp+1‖1;�) = −�vpd1 +

p−1�
j=1

�
dp+1−j − �vj −

p�
i=j+1

�i

�
,

�
T
=�d(0)

−1Cov(Xp, �)(�d∕�d(0))
−1

=c�
−1
d
,

(8)�
T
= �d(0)

−1Cov(Xp, �) =

(
1∕2, 1∕2 + �d(1),… , 1∕2 +

p−1∑
k=1

�d(k)

)
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A second representation of the BLP is given by the prediction equations:

where the predicting coefficients are (u1, u2,… , up) = Corr(dp+1, �)�
−1
d

 . Here, up is 
the lag p partial autocorrelation of {dt} . Equating the coefficient of d1 in (7) and (9) 
yields −�vp = up . If vp ≠ 0 , which we tacitly assume to avoid trifling work, we can 
set � = −up∕vp . Equating the coefficients on the right hand sides of (7) and (9), and 
solving for � produces an expression of the autoregressive coefficients in terms of 
the autocorrelations of {dt}:

where v0 = 1 and u0 = −1 . If {Xt} satisfies (3), then �1,… ,�p satisfy (10). Now let 
{dt} be a stationary sequence with vp ≠ 0 and suppose that �T

= (�1,… ,�p) satis-
fies (10):

with

Since up is the partial correlation of {dt} at lag p,

with �T

d
=

(
�
d
(1),… , �

d
(h)

)
 . Substituting this into the above linear equation for � 

and simplifying gives

where

with �∗ =
�
−1∕2, 1∕2 + �d(1),… , 1∕2 +

∑p−1

k=1
�d(k)

�T

 . Note that each element in 
M is a function of �d(1),… , �d(p).

�X(h) − �X(h + 1) =
�d(0)

2
+

h−1∑
k=1

�d(k).

(9)P(dp+1‖1;�) =
p�
j=1

ujdp+1−j,

(10)�k = (uk − uk−1) −
up

vp
(vk − vk−1), k = 1,… , p,

� = A�
−1
d

(
Corr(dp+1, �) −

up

vp
c

)
+

(
1 +

up

vp
, 0,… , 0

)T

,

� =

⎡
⎢⎢⎢⎢⎣

1 0 0 ⋯ 0 0

−1 1 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 1 0

0 0 0 ⋯ − 1 1

⎤
⎥⎥⎥⎥⎦
.

up = (0, 0,… , 1)�−1
d
�d,

(11)� = M�d + (1, 0,… , 0)T ,

� = ��
−1
d

(
� − �

∗

(0, 0,… , 1)�−1
d

)
,
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The p = 1 case will shed light on the above calculations. Here, (10) and (6) give

which exceeds unity whenever 𝜌X(2) < 2𝜌X(1) − 1 , which can happen for some 
AR(p) models. However, if {Xt} follows

and |𝜙| < 1,

In general, if � is from a causal AR(p) model satisfying (4), then (11) provides a 
one-to-one transformation between �d(1),… , �d(p) and � . However, if {Xt} does not 
follow a causal AR(p) recursion, there is no guarantee that � satisfying (10) corre-
sponds to a causal AR(p) model. In practice, this presents no issue since it is easy to 
check to see if a fitted AR(p) model is causal. If our fitted model is not causal, this is 
an indication that {Xt} is inadequately described by an AR(p) series. In this case, we 
simply change p and refit until causality is achieved.

Given observations X1,… ,XN , we estimate the lag h sample autocorrelation of 
the differences from

Here, d̄ = (N − 1)−1
∑N−1

t=1
dt is the sample mean. The AR(p) model will be fit using 

(10) with �d(h) replaced by the sample version 𝛾̂d(h):

where �̂ is obtained from (8) by replacing all elements with their estimates.
To ensure that the estimated vp is not zero, one simply checks this in practice. It is 

also recommended to check to see if the fitted AR(p) model is causal.
Summarizing, our proposed algorithm for fitting an AR(p) model using differ-

ences is 

1.	 Compute �̂ and �̂ . If v̂p = 0 , reduce the AR order to p − 1 and refit.
2.	 Use (10) with � = �̂ and � = �̂ to find �̂ , and check to see that the estimates cor-

respond to a causal model. If the solution is non-causal, change p and refit.

The above algorithm produces a �̂ for a causal AR(p) process satisfying (11):

�1 = 1 + 2�d(1) =
�X(1) − �X(2)

1 − �X(1)
,

Xt = �Xt−1 + Zt, t = 0,±1,±2,… ,

�X(1) − �X(2)

1 − �X(1)
=

� − �2

1 − �
= �.

𝜌̂d(h) =
𝛾̂d(h)

𝛾̂d(0)
=

∑N−h

t=1
(dt − d̄)(dt+h − d̄)
∑N

t=1
(dt − d̄)2

, h ≥ 0.

(12)�̂ = �̂
−1
d
�̂d and �̂ = �̂

−1
d
�̂,

(13)�̂ = �̂�̂d + (1, 0,… , 0)T ,



1028	 Journal of the Korean Statistical Society (2022) 51:1021–1040

1 3

where each element in �̂ corresponds to an element of � with �d(h) replaced by 
𝜌̂d(h) for each h. For any stationary sequence of first differences {dt} , each element 
of �̂ converges almost surely to its theoretical value. In particular, as N → ∞ , 
�̂ → � in the almost sure sense.

We end this section by estimating �2 . There are several moment equations 
that can be used to estimate �2 . For example, multiplying both sides of the 
ARMA(p, 1) difference equation,

by dt , taking expectations, and solving for �2 yields,

A moment based estimator of the variance is hence

In the next section, we show that 𝜎̂2 is a 
√
N-consistent estimator of �2.

4 � Asymptotic normality

This section shows that if m = m(N) grows slowly enough in N, the estimators 
in the last section will be consistent and asymptotically normal. If the num-
ber of changepoints m is small relative to N, then the mean shifts should have 
a negligible impact on the estimated autocovariance of the differences, since 
Xt − Xt−1 = dt − dt−1 except at the changepoint times �1,… , �m . In particular, to 
obtain asymptotic normality, we assume that as N → ∞ , for some finite B, 

A.1	max0≤k≤m(N) ∣ �k+1 − �k ∣≤ B.
A.2	m(N) = o(

√
N).

Condition A.1 imposes existence of some bound on the mean shift sizes and Con-
dition A.2 regulates the number of changepoints that can occur.

We begin with asymptotic normality of the autocorrelations for first-order dif-
ferences in the general ARMA(p, q) case, which may be of distinct interest. The 
asymptotic normality of the AR(p) estimators is a corollary to Theorem 1.

Theorem 1  If {Xt}
N
t=1

 obeys (1) with {�t} satisfying (2) where {Zt} is IID white noise 
having a finite fourth moment, then for each fixed positive integer k, as N → ∞,

dt = �1dt−1 +⋯ + �pdt−p + zt − zt−1,

�2
= �d(0)

�
1 −

∑p

k=1
�k�d(k)

2 − �1

�
.

(14)𝜎̂2
= 𝛾̂d(0)

�
1 −

∑p

k=1
𝜙̂k𝜌̂d(k)

2 − 𝜙̂1

�
.
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Here, the elements in the (k + 1) × (k + 1) dimensional � are from Bartlett’s for-
mula for the asymptotic covariance matrix of (𝜌̂𝜖(1),… , 𝜌̂𝜖(k + 1))T , (see Chapter 8 
of Brockwell and Davis 1991) and � is k × (k + 1) dimensional with form

Proof  We first show that the changepoints have negligible impact on estimated auto-
correlations in the limit. To do this, write dt = Xt − Xt−1 = (�t − �t−1) + �t , with 
�t = (�k − �k−1)I[t=�k+1] , and IA the indicator of the set A. Letting

then

where T = {�1,… , �m} denote all changepoint times. The term on the right hand 
side converges to zero if N−1∕2m → 0 as N → ∞ (this is Condition A.2) and the sum 
is bounded in probability (this is guaranteed by Conditions A.1, A.2, and the proper-
ties of {�t} ). We see that the asymptotic distribution of 𝛾̂d(h) is the same as that of 
𝛾̃d(h).

It is easy to see that

where oP(1) denotes a term that converges to zero in probability as N → ∞ . Using 
the above and 𝛾̂d(0)∕𝛾𝜖(0) → 2(1 − 𝜌𝜖(1)) in the almost sure sense, we have

for each h = 1,… , k . Hence,

	�  ◻

√
N

⎛
⎜⎜⎝

𝜌̂d(1) − 𝜌d(1)

⋮

𝜌̂d(k) − 𝜌d(k)

⎞
⎟⎟⎠

�

�������→ �k(�,���
T
).

� =

1

2(1 − �X(1))

⎡
⎢⎢⎢⎢⎣

2 − 1 0 0 ⋯ 0 0 0

−1 2 − 1 0 ⋯ 0 0 0

0 − 1 2 − 1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 0 ⋯ − 1 2 − 1

⎤
⎥⎥⎥⎥⎦
.

𝛾̃d(h) =

∑N−h

t=2
(𝜖t − 𝜖t−1)(𝜖t+h − 𝜖t+h−1)

N
,

√
N ∣ 𝛾̂d(h) − 𝛾̃d(h) ∣≤

m√
N

�
m−1

�
t∈T

𝛿t(𝜖t+h − 𝜖t+h−1 + 𝜖t−h − 𝜖t−h−1 + 𝛿t)

�
,

(15)
√
N
�
𝛾̃d(h) − (2𝛾̂𝜖(h) − 𝛾̂𝜖(h − 1) − 𝛾̂𝜖(h + 1))

�
= oP(1),

√
N
�
𝜌̂d(h) − 𝜌d(h)

�
=

√
N

2(1 − 𝜌𝜖(1))
(−1, 2,−1)T

⎡⎢⎢⎣

𝛾̂𝜖(h − 1) − 𝛾𝜖(h − 1)

𝛾̂𝜖(h) − 𝛾𝜖(h)

𝛾̂𝜖(h + 1) − 𝛾𝜖(h + 1)

⎤⎥⎥⎦
+ op(1)

√
N(�̂d − �d) = �

√
N(�̂𝜖 − �𝜖) + op(1).
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Theorem 1 now follows from classic results for asymptotic normality for sample 
autocorrelations of ARMA processes (see Chapter 8 of Brockwell and Davis 1991).

Corollary 2  Suppose that {Xt} follows (1) with {�t} satisfying (2) with {Z
t
} IID white 

noise having a finite fourth moment. For the estimator in (11), as N → ∞,

Here, � = ���(��)T.

Proof of Corollary 2  Since {dt} is stationary and ergodic, the elements of M̂ converge 
to those in M in the almost sure sense; specifically, (15) gives

The conclusion of Corollary 2 now follows. 	� ◻

Theorem 1 and Corollary 2 imply that �̂d and �̂ are both consistent estimators, so 
that 𝜎̂2 given by (14) is a consistent estimator of the white noise variance.

5 � A simulation study

A simulation study with AR(p) errors is now conducted. Our Yule-Walker moment 
estimator based on first-order differencing is now compared to several estimators, 
including the robust AR(1) estimator of Chakar et al. (2017), the BIP �-estimators 
of Muma and Zoubir (2017), and the rolling window methods employed in Beaulieu 
and Killick (2018).

The paper Chakar et al. (2017) studies the AR(1) case and proposes an estimator 
that is robust to mean shifts:

It is not clear how to extend this work to cases where p > 1.
The rolling window methods of Beaulieu and Killick (2018) estimate autocorre-

lations via window-based methods as follows. For a window length w, with w ≤ N , 
a moving window scheme generates N − w + 1 subsegments, the ith subsegment 
containing the data at times i,… , i + w − 1 . Each subsegment is treated as a station-
ary series (even though some may contain mean shifts and are thus truly nonstation-
ary) and the time series parameters are estimated in subsegment i from the data in 
this subsegment only. The final estimates are taken as medians of the estimates over 
all subsegments. The hope is that most windows will be “changepoint free”, and 
medians over all subsegments will not be heavily influenced by the few windows 

√
N

⎛
⎜⎜⎝

𝜙̂1 − 𝜙1

⋮

𝜙̂p − 𝜙p

⎞
⎟⎟⎠

�

�������→ �p(�,�),

√
N
�
�̂ − �

�
= �

√
N
�
�̂d − �d

�
+ oP(1).

(16)𝜙̂ ∶=

(
median1≤t≤N−2 ∣ Xt+2 − Xt ∣

)2
(
median1≤t≤N−1 ∣ Xt+1 − Xt ∣

)2 − 1.
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containing changepoints. Of course, such a scheme may not use all data efficiently 
in estimation. Moreover, Beaulieu and Killick (2018) demonstrates that the suc-
cess of this procedure depends heavily on the choice of w. As we show below, these 
robust autocovariance estimation methods do not perform particularly well for this 
problem.

In each simulation, the series length is N = 1, 000 and m is randomly generated 
from the discrete uniform distribution Uniform{0, 1,… , 10} , which roughly corre-
sponds to the changepoint frequency in our data example in the next section. All 
changepoint times are generated randomly within {2, 3,… ,N} with equal prob-
ability — we do not impose any minimal spacing between successive changepoint 
times. The segment means �i are randomly generated from a Uniform(−1.5, 1.5) dis-
tribution. Ten thousand independent runs are conducted for all cases.

We first consider AR(1) errors, simulating � randomly from the 
Uniform(−0.95, 0.95) distribution and {Zt} as Gaussian white noise with a unit vari-
ance. Our Yule-Walker difference estimator in (12) is denoted by Diff in future fig-
ures. This estimator will be compared to a variety of alternative approaches. The 
robust AR(1) estimator in (16) is denoted by AR1seg. Averaged rolling window 
estimators, using different window lengths, are denoted by their lengths: N, N/2, 
N/5, N/10, N/20, and N/50. We also compare to the general ARMA robust esti-
mator of Muma and Zoubir (2017) applied to the differenced data, which is denoted 
by BIP. Here, we fit a general ARMA(1,1) model for the errors, which does not take 
into account that the MA(1) parameter should be -1. This extra flexibility should 
make the BIP method appear better than it truly is. Finally, we include an estima-
tor based on our approach but with the outlying observations in {dt} first removed, 
which we denote by Outlier. Since our method is “corrupted" by non-zero means 
at the changepoint times, removing outliers (which are likely to occur at the change-
point observations) should improve our approach. For outlier detection, we use a 
simple nonparametric Tukey fence and acknowledge that other detection schemes 
could be used.

Our simulation results are summarized in Fig. 1. The obvious winner is the Yule-
Walker estimator based on first-order differencing. Indeed, this estimator is unbi-
ased and has the smallest variance. The AR1seg estimator is unbiased; however, it 
has a larger variability than the Yule-Walker difference estimators. The performance 
of the rolling window estimators depends on the choice of the window length, but 
appears to be inferior to the difference based estimator, even with the optimal win-
dow size selected (which is likely somewhere between N/20 and N/50 in this sim-
ulation). It is hard to decide the optimal window length in practice and smaller win-
dow lengths considerably increase computation time. While the general BIP robust 
estimator appears unbiased, it has a much larger variance than all other estimators. 
Indeed, this estimator seems to be the worst of all. Our outlier removal approach has 
a slightly positive bias and slightly larger variance, likely induced by the tendency to 
remove true observations as outliers.

We now move to AR(2) errors. In each AR(2) simulation, the AR coefficients 
were uniformly generated from the triangular region guaranteeing model causality: 
𝜙1 + 𝜙2 < 1 , 𝜙2 − 𝜙1 < 1 , and |𝜙2| < 1 . In these simulations, the changepoint total 
is fixed at m = 9 and all segments have equal lengths. All mean shifts alternate in 
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sign with an absolute magnitude of 2.0, the first shift moving the series upwards. 
The series length varies with N ∈ {1000, 2000, 5000, 10000, 20000} . Since p > 1 , 
the AR1seg estimator is not applicable. The rolling-window estimator and general 
BIP robust estimator were dropped from consideration due to their poor AR(1) per-
formance and computational time requirements. The simulation results show that 
estimator bias and variance decreases as the length of the series increases, reinforc-
ing the consistency results in the last section Fig. 2.

−1

0

1

2

AR1seg Diff N N/2 N/5 N/10 N/20 N/50 BIP Outlier
Estimators

φ̂
−
φ

Fig. 1   Box plots of estimates of the AR(1) parameter � . Our differenced based method appears to be 
unbiased and has the smallest variability; the BIP robust method has the largest variability of all methods

−0.1

0.0

0.1

0.2

1000 2000 5000 10000 20000

Length of AR(2) Series

φ̂
−
φ

AR(2) Coefficients
φ1

φ2

Fig. 2   Box plots of AR(2) coefficient estimates. Variability and bias decrease as the series length 
increases
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Moving to AR(4) simulations, to meet model causality requirements, the AR(4) 
characteristic polynomial is factored into its four roots, denoted by 1∕r1, 1∕r2, 1∕r3 , and 
1∕r4 . That is,

Causality implies that all ri should lie inside the complex unit circle. To meet this, r1 
and r2 will be randomly generated from the Uniform(−0.9, 0.9) distribution, and r3 is 
a randomly generated complex number with modulus |r3| < 0.9 . The root r4 is taken 
as the complex conjugate of r3 . This mixes real and complex roots in the AR(4) 
characteristic polynomial. All other simulation settings are identical to those in the 
AR(2) case. Figure 3 shows our results, which exhibit the same pattern as the AR(2) 
case, with decreasing bias and variance as N increases.

Our next simulation returns to the AR(1) setting and conducts a sensitivity analysis 
to mean shift sizes. Here, estimator accuracy is more greatly influenced by the magni-
tude of the mean shifts than changepoint locations. We take all mean shifts to have the 
same size Δ and introduce the signal-to-noise ratio (SNR), defined as the absolute mean 
shift magnitude over the marginal series standard deviation of Xt:

For simplicity, �2 is set to unity. The number of changepoints is fixed at m = 9 and 
their locations are randomly generated over {2,… ,N} with N = 1, 000 . In each run, 
the true � is simulated from the Uniform(−0.95, 0.95) distribution. The nine mean 

�(z) = (1 − r1z)(1 − r2z)(1 − r3z)(1 − r4z).

(17)SNR =

∣ Δ ∣√
�2

1−�2

.
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Fig. 3   Box plots of AR(4) coefficient estimates. Again, estimator variabilities and biases decrease with 
increasing sample size
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shifts alternate signs, with |Δ| varied in [0,5]. Boxplots of the difference between the 
estimated 𝜙̂ and the true � are presented in Fig. 4.

The horizontal line in Fig.  4 marks zero bias in 𝜙̂ ; the solid curve depicts the 
average differences between 𝜙̂ and � . Obviously, the larger the mean shift magni-
tude, the more our estimator degrades. This said, in practice, larger mean shift sizes 
can usually be identified as outliers in the differenced series (Chen and Liu 1993; 
McQuarrie and Tsai 2003) or can easily be identified in the original series, despite 
the AR contamination. As such, the essential challenge lies with estimating the 
AR(p) parameters in the presence of smaller mean shifts.

Two more simulations are included. Our first simulation shows how AR(p) pro-
cesses can approximate MA(q) errors in changepoint problems. The specifications 
of the series and changepoints are the same as the first AR(1) case of this section, 
but the model errors obey the MA(1) model

with � = 0.5 . The plot in Fig.  5 shows the autocorrelation function of our fitted 
AR(10) process from one simulation run only. Notice that the fitted AR(10) auto-
covariance is essentially zero at most lags that exceed unity, indicating the overall 
quality of the AR(10) approximation (an MA(1) model is characterized by an auto-
covariance that is non-zero only at lag 1).

Our final simulation considers order selection of p for AR errors by adding the 
Bayesian Information Criterion (BIC) penalty (p + 1) ln(N) to minus two times 
the log likelihood of the model. The mean shifts in {Xt} “contaminate” the like-
lihood for {Xt} away from a likelihood for an AR series with a fixed (constant) 

�t = Zt + �Zt−1,

−0.2

−0.1

0.0

0.1

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
Mean Shift Sizes

φ̂
−
φ

Fig. 4   An AR(1) mean shift size sensitivity plot. The larger the mean shifts are, the more the estimates of 
� degrade
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mean. Our remedy here is to demean {Xt} before estimating p. While other meth-
ods of order estimation are possible, this procedure worked the best amongst sev-
eral that were experimented with. More specifically, the AR(p) coefficients are 
first estimated via {dt} for each candidate AR order p ∈ {1, 2,… , p

max
} , where 

p
max

 is some preset maximum AR order to consider. Then, one-step-ahead predic-
tion residuals were computed and the changepoint configuration was estimated 
by some changepoint technique. The pruned exact liner time (PELT) algorithm 
of Killick et al. (2012) was used here. The estimated changepoint configuration is 
then used to demean {Xt} . The likelihood and BIC scores are then calculated from 
the demeaned series for each order p and the order with the smallest penalized 
likelihood BIC score is selected.

In our simulation, N = 1, 000 , nine equally-spaced mean shifts of size 2.5 corrupt 
the series, and the errors are generated from a causal AR(4) process with coeffi-
cients � = (0.3,−0.3,−0.2,−0.1) . The estimated AR order for 1, 000 simulations is 
plotted in the Fig. 6 histogram. While BIC selects p = 4 the majority of the time, it 
is also prone to overestimation, selecting the order 5 in more than 20% of the runs. 
AR order overestimation by BIC is classically appreciated in even changepoint-free 
settings (Brockwell and Davis 1991).

(18)BIC(p) = −2 log(𝜎̂2
) + (p + 1) log(N)
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Fig. 5   Autocorrelations of the AR(10) process used to approximate our MA(1) errors. The dashed lines 
demarcate 95% pointwise confidence thresholds for white noise
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Fig. 6   Estimated AR orders via a Bayesian information criterion penalty. The mode of the histogram is 
correct at four, but some overestimation of p is also present
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6 � Applications

6.1 � Changepoints in AR(p) Series

As previously discussed, most changepoint techniques mistakenly flag changepoints 
when underlying positive dependence is ignored. For example, (Lund and Shi 2020) 
argues that shifts identified in the London house price series of Fryzlewicz (2020) 
may be more attributable to the positive correlations in the series than to actual 
mean shifts. CUSUM based techniques are known to degrade with positive correla-
tion (Shi et al. 2022). To remedy this, authors recommend detecting changepoints 
from estimated versions of the one-step-ahead prediction residuals of the series (Bai 
1993; Robbins et al. 2011). This requires estimation of the autocovariance structure 
of the series in the presence of the unknown changepoints. As such, a major appli-
cation of our methods serves to decorrelate (pre-whiten) series without any prior 
knowledge of the changepoint configuration of the series. IID-based changepoint 
techniques, applied to the estimated one-step-ahead prediction residuals, can then be 
used to estimate any mean shifts in the series. The Yule–Walker difference estima-
tor proposed here is extensively used in Shi et al. (2022) to do just this. In addition, 
our difference estimator supplies a long-run variance estimate needed in the change-
point methods in Eichinger and Kirch (2018), Romano et al. (2021), and Dette et al. 
(2020).

Table 1 demonstrates the improved performance of two popular multiple change-
point methods, wild binary segmentation (WBS) Fryzlewicz (2014) and PELT Kil-
lick et al. (2012). In each run, an AR(1) series of length N = 500 is simulated with 
� fixed within {0.25, 0.50, 0.75} , and �2

= 1 . The series has either no changepoints 
or three equally spaced changepoints; all mean shift sizes are the same, are denoted 
by Δ , and are chosen to induce the constant signal-to-noise requirement of SNR = 2 
in (17). All simulations are aggregated from 1, 000 independent runs. In Table 1, m̂ 
and SEm̂ denote the average and standard error of the estimated number of change-
points when WBS and PELT are directly applied to the series. The quantities m̂d and 
SEm̂d denote the average and standard error of the estimated number of changepoints 
from the one-step-ahead prediction residuals after fitting an AR(1) series to the dif-
ferences by our methods.

It is apparent that IID based WBS and PELT methods overestimate the number 
of changepoints in a dependent series when positive correlation is ignored; PELT 
appears to be more resistant to dependence issues than WBS. In contrast, with the 
help of the proposed Yule-Walker difference estimator and decorrelation techniques, 
both WBS and PELT become much more accurate.

6.2 � New Bedford precipitation

Annual precipitations from New Bedford and Boston, Massachusetts are studies 
in Li and Lund (2012). The data are available from https://​w2.​weath​er.​gov/​clima​
te/​xmacis.​php?​wfo=​box. The ratio of these series (New Bedford to Boston) is 

https://w2.weather.gov/climate/xmacis.php?wfo=box
https://w2.weather.gov/climate/xmacis.php?wfo=box
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displayed in Figure 7, along with a fitted mean of a model that allows for both mul-
tiple changepoints and AR errors. Three documented changepoints, occurring at the 
years 1886, 1917, and 1967 are indicated. After adjusting for four regime means, 
Fig. 8 shows the sample ACF plot of the precipitation ratio series, suggesting that 
the series is correlated. The Bayesian Information Criterion estimates p = 1 as the 
AR order. Although this order does not seem to adequately describe all non-zero 
autocorrelations, we use it anyway to illustrate our points.

Table 1   Results for AR(1) series with three and no changepoints

The thresholding constant used in WBS is C = 1.3 . Estimation of the changepoint number drastically 
improves when autocorrelation is taken into account

� = 0.25

# of Changepoints WBS PELT

m̂/(SE
m̂
) m̂d/(SE

m̂d) m̂/(SE
m̂
) m̂d/(SE

m̂d)

Zero 3.85/(2.43) 0.17/(0.54) 0.02/(0.17) 0.00/(0.02)
Three 5.46/(2.01) 3.03/(0.18) 3.07/(0.34) 3.00/(0.03)

� = 0.5

# of Changepoints WBS PELT

m̂/(SE
m̂
) m̂d/(SE

m̂d) m̂/(SE
m̂
) m̂d/(SE

m̂d)

Zero 16.03/(3.92) 0.24/(0.70) 1.36/(1.62) 0.00/(0.04)
Three 16.90/(3.81) 3.09/(0.40) 4.28/(1.43) 2.95/(0.37)

� = 0.75

# of Changepoints WBS PELT

m̂/(SE
m̂
) m̂d/(SE

m̂d) m̂/(SE
m̂
) m̂d/(SE

m̂d)

Zero 30.77/(3.98) 0.40/(0.96) 12.65/(3.31) 0.01/(0.13)
Three 31.45/(3.86) 2.48/(1.38) 14.33/(3.25) 1.59/(1.44)
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Fig. 7   New Bedford to Boston annual precipitation ratios with three identified changepoints
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The AR(1) parameter estimates fluctuate wildly over distinct methods. Specifi-
cally, our difference Yule-Walker estimator and BIP �-estimators produce antipodal 
estimates as can be seen in Table 2. Our estimate agrees closely with an estimate 
computed by assuming the three changepoint times are known, but the level of auto-
correlation is significantly less than that estimated in a Yule–Walker scheme that 
ignores all three changepoint times. The results show that one needs to be careful in 
changepoint problems with correlated data—mean shifts and correlation can inject 
similar features into time series.

7 � Conclusions

Differencing methods can effectively be used to estimate the autocovariance struc-
ture of an AR(p) series corrupted by mean shift changepoints. Our Yule–Walker 
estimator for autoregressive models is easy to implement, computationally fast, 
consistent, and asymptotically normal. While the proposed estimator is adversely 
impacted by large mean shifts, large shifts appear as large outliers in the differenced 
series and can be removed. When changepoints are present, the difference meth-
ods developed here significantly improve changepoint techniques developed for IID 
errors. The techniques are also applicable if the series has a linear trend (constant 
across all regimes) with intercept shifts.
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Fig. 8   Sample autocorrelations of the demeaned precipitation ratio series with 95% pointwise confidence 
bands for zero correlation

Table 2   AR(1) � estimates for 
the precipitation ratio series. 
The individual estimates highly 
depend on the method

Methods Estimate 𝜙̂

Yule–Walker estimator (ignoring changepoints) 0.547
BIP �-estimator 0.990
Yule–Walker estimator (known changepoint times) 0.273
AR1seg −0.268

Difference Yule–Walker estimator 0.255
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