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Abstract—This paper studies resilient decentralized optimiza-
tion over multi-agent networks. In particular, we consider the
scenario where all networked agents are supposed to parallelly
minimize the same objective function with a unique minimizer,
but some agents are under data injection attack that perturb
their minimizers away from the true minimizer. The goal is
to ensure that all agents resiliently recover the true minimizer.
We propose a consensus+innovations type of algorithm with
signed innovations, to track the coordinate-wise median of all
local (possibly perturbed) minimizers. We assume that all local
iterates are sublinearly convergent, and the inter-agent undirected
communication network is connected on average. We show that,
as long as at least one agent is unattacked, and the median of all
local minimizers is the true minimizer, the proposed decentralized
algorithm asymptotically converges to the true minimizer almost
surely at an sublinear rate. Numerical experiments are provided
to demonstrate the effectiveness of the algorithm.

Index Terms—resilience, multi-agent systems, median consen-
sus, decentralized optimization

I. INTRODUCTION

Decentralized learning and inference over multi-agent net-
works have attracted increasing attention in many applications
like Internet of Things [1] and learning paradigms such as
federated learning [2]. Meanwhile, the distributed nature of
multi-agent networks casts security concerns on data integrity
and agent integrity. As a result, there is a rich literature of
prior art providing an abundance of approaches to robustify
decentralized learning and inference procedures, such as [1],
[3] and references therein.

This paper studies optimization in the decentralized setup
where the adversary only attack the distributed data, but is not
allowed to manipulate the networked agents [4], in contrast
to the Byzantine decentralized optimization setup in [5], [6].
Unlike [4], we assume all networked agents process the same
copy of data or homogeneous data in the streaming data case.
However, some members in the multi-agent networks are under
data injection attack. This scenario arises where, for example,
the adversary injects malicious data into the training datasets
or hijacks the sensors of some agents to mislead local data
processing procedures.

In this paper, a network of agents cooperate to solve
local copies of the same optimization problem with unique
optimizer. The agents solve their local problems iteratively
(e.g., via gradient descent). A fraction of the agents are
subject to data injection attack, which effectively alter the
local optimization problems. Due to these attack, some of the
agents’ local minimizer sequences (i.e., the iterate sequence
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from the local optimization algorithm) may converge to a
different (incorrect) value. We present an approach, based on
median consensus, to ensure that all agents, even those under
attack, effectively solve the optimization problem. On top of
the differences in attack model, to address the adversarial
effects, most existing works design screening operators to
trim away abnormal data [4]–[6], or solve TV-norm penalized
approximation [7], [8], except that [9] integrates a median
solver for resilient state estimation, which we believe can be
improved with the results in this work and [10].

Our contributions are summarized as follows. We study dis-
tributed optimization in undirected inter-agent communication
networks with random topology. Each agent is assigned a
local optimization problem and computes an iterative sequence
that converges to the minimizer of its local problem almost
surely (a.s.). To address the considered data injection attack,
we propose a consensus+innovations type of algorithm with
signed innovations, that provably converges to the coordinate-
wise median of all local minimizers.

The current work can be contrasted with similar works on
median consensus [10]–[12]. In particular, this works uses
signed innovations instead of clipped innovations as in [10],
which enables new analysis to cope with the non-distinct cases
that are not addressed by [10]. In our setup, non-distinctness
is critical since all those sequences on unattacked agents still
converge to the same true minimizer.

The rest of the paper goes as follows. In section II, we
present the problem formulation. In section III, we develop
our algorithm and present the main theorem with proofs given
in section IV. In section V, we show numerical results on a
classification problem.

Notations. Agents exchange messages over a time-varying
network denoted as Gt = (V,Et) at discrete time t. The
set of agents V = [N ] is indexed from 1 to N . The set of
communication links Et is time-varying. For each agent n, Ωtn
denotes the set of neighbors at time t. We denote the Laplacian
of network Gt as Lt = Dt−At where Dt is a diagonal matrix
whose i-th diagonal entry is the number of neighbors of agent i
and At[i, j] = 1 if there exists a link between agent i and agent
j at time t, otherwise At[i, j] = 0. A network is connected if
and only if the second smallest eigenvalue of its Laplacian is
positive [13]. We use 1n to denote column vector of n ones,
and In for identity matrix in Rn×n. We use ‖·‖ for Euclidean
norm on vectors and spectral norm on matrices.

II. PROBLEM STATEMENT

N networked agents attempt to minimize the same objective
function f with a unique minimizer w∗ ∈ Rd. In the absence
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of attack, agents are able to iteratively compute w∗ which
we take as granted. Some of the agents, however, fall under
data injection attack, and, as a result, may compute local
minimizers that are different than w∗. The agents’ collective
goal is to simultaneously 1) each compute local minimizer,
and 2) track the coordinate-wise median of all of the agents’
local minimizers.

Assumption 1. If agent n is under attack, it has a perturbed
minimizer w∗n = w∗+∆n with some unknown ∆n. {w∗n}n∈[N ]

contains w∗ and its coordinate-wise median is w∗.

Remark 1. Assumption 1 holds true if at least one agent is free
of attack and {w∗n}n∈[N ] has coordinate-wise median w∗. A
sufficient condition for Assumption 1 is that strictly less than
half agents are under attack. An example of the considered
data injection attack is as follows: consider a network of
agents that each try to learn a binary classifier based on their
local (labeled) training data sets. Initially, all of the agents
have identical local training data. Then, an attacker flips the
labels on some of the examples for less than half of the agents.

Assumption 2. Each sequence of local iterates {wt
n}t≥0, n ∈

[N ], converges to local optimizer w∗n a.s. and sublinearly, i.e.,
P
(
(t+ 1)δ‖wt

n −w∗n‖ = 0
)

= 1, for positive constant δ.

Remark 2. The almost sure convergence of SGD and other
gradient methods are well studied in the literature [14], [15].

Assumption 3. The Laplacian sequence {Lt}t≥0 associated
with {Gt}t≥0 is an i.i.d sequence whose expectation, denoted
as L̄, exists and satisfies λ2(L̄) > 0.

Remark 3. This assumption models many practical commu-
nication networks. First, static networks (V,E) that are undi-
rected and connected are clearly subsumed. On top of that,
it models phenomena such as random link failures, i.e., the
links in E have failure probabilities in [0, 1), which captures
random failures in practical networks such as wireless sensor
networks [16].

Let (Ω,F) be the probability space where random vari-
ables Lt and wt

n are defined, and let Ft denote the cor-
responding natural filtration, i.e., Ft is the sigma algebra
σ({Lt′}t′≤t, {wt′

n}n∈[N ],t′≤t}). In this paper, unless otherwise
stated, all inequalities involving random variables hold a.s. We
use ω to denote a random variable on the sample path ω ∈ Ω.

III. ALGORITHM AND MAIN RESULT

We propose a consensus+innovations algorithm with signed
innovations to address the median tracking problem. Assume
that all wt

n are given in the same timescale. Each agent n
simultaneously maintains a median estimator that updates as

xt+1
n = xtn − βt

∑
m∈Ωt

n

(xtn − xtm)− αtsign(xtn −wt
n), (1)

where the sign operator is applied on each component of the
argument vector, and

αt =
α0

(t+ 1)τ1
, βt =

β0

(t+ 1)τ2

for some constants α0, β0, and 0 < τ2 < τ1 < 1. Denote

xt = [(xt1)>, . . . , (xtn)>]>, wt = [(wt
1)>, . . . , (wt

n)>]>.

Then, all local updates can be written as

xt+1 = (INd − βtLt ⊗ Id)xt − αtsign(xt −wt). (2)

Theorem 1. Under Assumptions 1-3, local median estimates
{xtn}t≥0 of every agent n ∈ [N ] generated by (1) converges to
w∗ a.s. in that P

(
limt→∞(t+ 1)τ3‖xtn −w∗‖2 = 0

)
= 1 for

every 0 < τ3 < min{δ, τ1− τ2}, and for all n simultaneously.

Remark 4. Theorem 1 addresses general median consensus
problem that satisfy Assumptions 1-3. We obtain sample wise
convergence rate O(1/tτ3). For example, if local iterates
{wt

n} converges at O(1/
√
t), we can take τ1 = 0.9, τ2 = 0.4.

Then, τ3 can be arbitrarily close to 1/2.

IV. PROOF OF THEOREM 1

For the simplicity of presentation, we prove Theorem 1 for
the case d = 1. Indeed, if each component of the xtn − w∗

converges to 0, then for any finite d, ‖xtn−w∗‖ converges to
0 at the same rate. We first show all local median estimates
reach consensus. Define PN = N−11N1>N .

Lemma 1. Under Assumption 3, for every 0 < ε ≤ τ1 − τ2,
the iterates {xt} generated by (2) satisfies that P

(
limt→∞(t+

1)τ1−τ2−ε‖xt − PNxt‖2 = 0
)

= 1.

Proof. For d = 1, (2) reduces to

xt+1 = (IN − βtLt)xt − αtsign(xt −wt).

Denote x̂t = xt −PNxt. Multiplying IN −PN on both sides
of the equation above gives

x̂t+1 = (IN − PN − βtLt)x̂t − αt(IN − PN )sign(xt −wt).

Taking Euclidean norm of x̂t+1 leads to

‖x̂t+1‖ ≤ ‖(IN − PN − βtLt)x̂t‖+ αt
√
N, (3)

where we have used

‖IN − PN‖ = 1,

‖sign(xt −wt)‖ ≤
√
N.

By Lemma 4.4 in [17], there exist a measurable Ft+1 adapted
and R+ valued process {rt} and a constant cr, such that for
sufficiently large t,

‖(IN − PN − βtLt)x̂t‖ ≤ (1− rt)‖x̂t+1‖ (4)

with

E(rt | Ft) ≤
cr

(t+ 1)τ2
, a.s.

By (3)(4) we have

‖x̂t+1‖ ≤ (1− rt)‖x̂t‖+ αt
√
N.

The relation above falls into the pursuit of Lemma 4.2 in [17],
and thus (t + 1)τ1−τ2−ε‖x̂t‖ converges to 0 a.s. for every
0 < ε ≤ τ1 − τ2.
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With Lemma 1 and Assumption 2, we next develop an error
bound to estimate sign(xt −wt). Let xtn and wtn denote the
nth component of xt and wt, respectively. Then, xtn, w

t
n are

the median estimate and the local optimization iterate of agent
n at time t in 1-dimensional case, and the local minimizer w∗n
reduces to scalar w∗n and the true minimizer reduces to w∗.
Let x̄t = N−1

∑N
n=1 x

t
n, and define etn = xtn− x̄t+wtn−w∗n.

Lemma 2. Under Assumption 2 and 3, let

η = τ1 − τ2 − ε1
for arbitrary small 0 < ε1 < τ1−τ2. Then, there exist positive
constants cη, cδ such that

|etn| ≤
cη

(t+ 1)η
+

cδ
(t+ 1)δ

, a.s.

Proof. We consider the sample path ω ∈ Ω such that there
exist cη,ω, cδ,ω , for all n ∈ [N ], we have

|wtn,ω − w∗n| ≤
cη,ω

(t+ 1)η
, (5)

|xtn,ω − x̄tω| ≤
cδ,ω

(t+ 1)δ
. (6)

By triangular inequality,

|etn,ω| ≤
cη,ω

(t+ 1)η
+

cδ,ω
(t+ 1)δ

. (7)

By Assumption 2 and Lemma 1, the set of all such sample
paths ω has probability 1, and thus the lemma follows.

We next show that for sufficiently large t, there exists a local
contraction region for x̄t. The following lemma characterizes
a threshold sequence for the local contraction.

Lemma 3. Define the threshold sequence

γt =
γ0

(t+ 1)τ3
,

for some constant γ0 and choose τ3 such that

0 < τ3 < min{δ, τ1 − τ2}.

Then, for any constants cδ and cη , it holds that for sufficiently
large t,

γt −
αt
N
≤ γt+1, (8)

cη
(t+ 1)η

+
cδ

(t+ 1)δ
+ αt ≤ γt+1. (9)

Proof. By mean value theorem, there exists t′ ∈ (t, t+1) such
that

γt − γt+1 =
γ0τ3

(t′ + 1)1+τ3
<

γ0τ3
(t+ 1)1+τ3

.

Since 1 + τ3 > 1 > τ1, for sufficiently large t we have
γ0τ3

(t+ 1)1+τ3
≤ α0

N(t+ 1)τ1
,

and thus (8) follows. Next, for sufficiently large t, we have

γt+1 =
γ0

(t+ 2)τ3
=

γ0

(t+ 1)τ3
1(

1 + 1
t+1

)τ3 ≥ γt
2
,

which follows from the fact that for sufficiently large t,(
1 +

1

t+ 1

)τ3 ≤ 2.

Thus, to ensure (9), it suffices to ensure that
cη

(t+ 1)η
+

cδ
(t+ 1)δ

+
α0

(t+ 1)τ1
≤ γ0

2(t+ 1)τ3
,

which holds true for suffciently large t due to τ3 < min{τ1−
τ2, δ}. Therefore, the lemma is proved.

We next show the existence of the local contraction region
for sufficiently large t.

Lemma 4. Define γt as in Lemma 3. Then, almost surely, there
exists a finite T0 such that if for some T1 ≥ T0, |x̄T1 −w∗| ≤
γT1 , then |x̄t − w∗| ≤ γt for all t ≥ T1.

Proof. We consider the sample path ω ∈ Ω on which Lemma
2 holds, i.e., (5)(6) are satisfied. Multiplying N−11> on both
sides of (2) leads to

x̄t+1
ω = x̄tω −

αt
N

N∑
n=1

sign(xtn,ω − wtn,ω). (10)

Define

dmin = min
w∗n 6=w∗

|w∗n − w∗|,

i.e., the least perturbation of local minimizers. If dmin > 0,
define t1 as the least t such that γt < dmin. Then take t2 as
the least t ≥ t1 such that

α0

(t+ 1)τ1
<

cη,ω
(t+ 1)η

+
cδ,ω

(t+ 1)δ
<

γ0

(t+ 1)τ3
, (11)

where by τ3 < min{δ, τ1− τ2} and η < τ1− τ2, such t2 must
exist. Without loss of generality, we consider

x̄tω ≥ w∗. (12)

We next consider two excluding cases for x̄t that satisfies the
hypothesis of the lemma.

Case 1. If
cη,ω

(t+ 1)η
+

cδ,ω
(t+ 1)δ

< x̄tω − w∗ ≤ γt. (13)

Then,

xtn,ω − wtn,ω = xtn,ω − x̄tω + x̄tω − w∗n + w∗n − wtn,ω. (14)

For n ∈ [N ] such that w∗n = w∗, by (7), (13)(14) we have

sign(xtn,ω − wtn,ω) = sign(x̄tω − w∗). (15)

For m ∈ [N ] such that w∗m 6= w∗, we have

xtm,ω − wtm,ω
= xtm,ω − x̄tω + x̄tω − w∗ + w∗ − w∗m + w∗m − wtm,ω.

If such m exists, take t3 as the least t ≥ t2 such that
cη,ω

(t+ 1)η
+

cδ,ω
(t+ 1)δ

+ γt < dmin ≤ |w∗ − w∗m|. (16)
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Then, by (13)(16), we have

sign(xtm,ω − wtm,ω) = sign(w∗ − w∗m). (17)

By Assumption 1, w∗ is the unique median of {w∗n}, combined
with (12)(13)(15)(17), we have

1 ≤
N∑
n=1

sign(xtn,ω − wtn,ω) ≤ N.

Putting the display above into (10) gives that

x̄tω − w∗ − αt ≤ x̄t+1
ω − w∗ ≤ x̄tω − w∗ −

αt
N
. (18)

Take t4 as the least t ≥ t3 such that (8)(9) in Lemma 3 hold.
By the first part of (11) and (12)(13), we have x̄t+1

ω −w∗ > 0.
Then, with (8) we have |x̄t+1

ω − w∗| ≤ γt+1.
Case 2. If

0 ≤ x̄t − w∗ ≤ cη,ω
(t+ 1)η

+
cδ,ω

(t+ 1)δ
.

In this case, upper bounds (5)(6) cannot determine the rela-
tionships between sign(xtn,ω − wtn,ω) and sign(x̄tω − w∗) for
n ∈ [N ] with w∗n = w∗ as in (15), but with the same argument,
(17) still holds true. Then, (10) leads to

−αt ≤ x̄t+1
ω − w∗ ≤ cη,ω

(t+ 1)η
+

cδ,ω
(t+ 1)δ

+ αt.

Then, from (9) we obtain |x̄t+1
ω −w∗| ≤ γt+1. Combing those

two cases and taking T0,ω = t4, since the set of all such ω
has probability 1, the existence of T0 has probability 1.

We next show that x̄t eventually falls into the local contrac-
tion region identified in Lemma 4.

Lemma 5. For T0, γt defined in Lemma 4, there must exist a
finite T1 ≥ T0 such that |x̄T1 − w∗| ≤ γT1

.

Proof. We prove this lemma by contradiction. Consider the
sample path ω ∈ Ω such that Lemma 2 holds. Suppose for all
t ≥ T0,ω , we have |x̄tω−w∗| > γt. Without loss of generality,
we assume x̄tω > w∗. By the same analysis that follows from
(13), relation (15) still holds true for all n with w∗n = w∗, and
(17) holds true for all m such that w∗m < w∗. Since w∗ is the
unique median for {w∗n}n∈[N ] and w∗ ∈ {w∗n}n∈[N ], we have

∑
w∗n≤w∗

sign(xtn,ω − wtn,ω) ≥

{
N+1

2 , N is odd,
N
2 + 2, N is even.

It follows that

1 ≤
N∑
n=1

sign(xtn,ω − wtn,ω) ≤ N.

Putting the display above into (10), by (11) and the contradic-
tion hypothesis, we have

|x̄t+1
ω − w∗| ≤ |x̄tω − w∗| −

αt
N
.

Then, summing over t from T0,ω to infinity we have the
contradiction

lim
t→∞

|x̄tω − w∗| ≤ |x̄T0
ω − w∗| −

1

N

∞∑
t=T0,ω

αt = −∞,

where the last equality follows from 0 < τ1 < 1. Therefore,
the hypothesis fails to hold and the lemma follows.

Proof of Theorem 1. By Lemma 4-5, almost surely, there ex-
ists some finite T1 such that ∀t ≥ T1, |x̄t − w∗| ≤ γt. Thus,

P
(

lim
t→∞

(t+ 1)τ3 |x̄t − w∗| = 0
)

= 1. (19)

By triangular inequality, we have

|xtn − w∗| ≤ |xtn − x̄t|+ |x̄t − w∗|. (20)

Combing (19), (20), Lemma 1, and τ3 < τ1− τ2, we have for
all n simultaneously,

P
(

lim
t→∞

(t+ 1)τ3 |xtn − w∗| = 0
)

= 1.

V. NUMERICAL EXPERIMENTS

We consider a binary classification task on Fashion-mnist
dataset [18]. Consider the scenario where a network (see
Fig. 1 for the simulated network) of 15 agents train logistic
regression models to classify two classes “pullover” versus
“coat” where each class initially has the same 6k training and
1k test data points.. The trainning data on 5 red agents in Fig.

Fig. 1. Network of 15 agents, 5 red agents have injected data

1 are corrupted as follows: the labels of ρ-fraction randomly
sampled data points from each class are flipped, i.e. changed
from 0 to 1 or from 1 to 0. Agents may communicate over the
time-varying network depicted in Fig. 1, where, in each time
step, every communication link (graph edge) may fail with
probability 0.2.

Each agent n trains a logistic regression model in parallel on
local dataset and updates its weights wt

n by vanilla SGD with
mini-batch 200 and stepsize 0.1. Since data on red agents are
corrupted, their weights converge to some points that performs
poorly on test data. In each step t, each agent maintains an
estimate xtn for the median of all the local minimizers as
specified in (1). We compare the average test accuracies of
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wt
n and xtn on attacked agents and unattacked agents in Fig.

2, and that on attacked agents with different ρ.

0 200 400 600 800 1000 1200 1400

SGD step count

0.5

0.6

0.7

0.8

0.9

a
c
c
u
r
a
c
y

wi, unattacked

xi, unattacked

xi, attacked

wi, attacked

Fig. 2. Average test accuracy on attacked/unattacked agents with ρ = 0.5.

0 200 400 600 800 1000 1200 1400

SGD step count

0.0

0.2

0.4

0.6

0.8

a
c
c
u
r
a
c
y

wi, ρ = 0.5

wi, ρ = 0.6

wi, ρ = 0.8

xi, ρ = 0.5

xi, ρ = 0.6

xi, ρ = 0.8

Fig. 3. Average test accuracy on attacked agents with different attack.

The performance of local classifiers wt
n on attacked agents

deteriorate with increasing iterations. On the other hand, the
median estimators xtn for all local optimizers w∗n remains
a robust estimator for model minimizer, and achieves the
same test accuracies on unattacked agents. Without the median
estimator xtn, agent can only rely on local optimizer wt

n that
is arbitrarily bad under data injection attack with big portion
ρ, as shown in Fig. 3. The code can be found here1.

VI. CONCLUSION

In this paper, we have studied multi-agent optimization
under data attack over random networks. The agents cooperate
to the same optimization problem, and the agents each have
local “copies” of the problem that are initially identical . The
agents follow an iterative procedure to find the minimizer
to their local problem. A fraction of the agents falls under
attack, and, as a result, in the absence of cooperation, these
agents may fail to find the correct minimizer. We presented
method based on distributed median consensus for all of
the agents, even those under attack, to resiliently identify
the correct minimizer to the original optimization problem.
Finally, we presented a numerical example that demonstrated

1https://colab.research.google.com/drive/1-qV3keKhIGdiyxMC3uSEotTT
XfVSqrH-?usp=sharing

our approach on a classification task where a fraction of
the agents train on compromised data. Our method ensures
that, even when agents train with incorrect labels, through
cooperation with other agents, they are able to learn the
correct classifier. Future directions may include integrating
the median consensus process into decentralized optimization
where agents optimize heterogeneous functions.
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