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ABSTRACT

Early skin lesion diagnosis is crucial to prevent skin cancer,
and deep learning (DL) based methods are well exploited to
support dermatologists’ diagnosis. The data for the diagno-
sis tasks include dermoscopic lesion images and textual in-
formation. It is a challenge to learn features from the multi-
modal data to improve diagnostic quality. Inspired by the vi-
sion and language integration models in Visual Question An-
swer (VQA), we present an end-to-end neural network model
for skin lesion diagnosis using both images and textual infor-
mation simultaneously. Specifically, we fine-grained features
from the two modalities (image and text) of the dataset by the
pre-trained DL models. We propose a novel approach named
Mutual Attention Transformer (MAT), which consists of self-
attention blocks and guided-attention blocks, to enable the
interactions between the features from both modalities con-
currently. We then develop a fusion mechanism to integrate
the represented features before the final classification output
layer. The experimental results on the HAM10000 dataset
demonstrate that the proposed method outperforms the state-
of-art methods for skin lesion diagnosis.

Index Terms— skin lesion classification, attention mech-
anism, transformer, deep learning

1. INTRODUCTION

The incidence of skin cancer has led to a major public health
problem, and both melanoma and non-melanoma skin cancer
(NMSC) bear significant morbidity. Early detection and diag-
nosis of skin cancer are practical ways to increase a survival
rate [1]. And they are possible through inspection and anal-
ysis of pigmented skin lesions with the help of dermoscopy.
Dermoscopy is an imaging technique that eliminates the sur-
face reflection and strength the visualization of deeper skin
[2]. Furthermore, computer-aided analyses have shown im-
pressive performance in supporting dermatologist’s diagno-
sis. They mainly make use of dermoscopic lesion images to
segment or identify skin lesions. Non-imaging data, such as
genetic data and textual data (e.g. sex, age), are usually taken
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as supplemental information to the image data. It explains
the features of images and figure out the relationship among
subjects.

Deep Learning (DL) is an efficient assistant for diagnosis
and has achieved high performance in practice [3]. Convo-
lutional neural networks (CNNs) are a major type of neural
network composed of one or more convolutional layers for
local information extraction. It is used heavily in the field of
Computer Vision (CV) like image classification and segmen-
tation. Modern very deep CNNs lead to an efficient learning
of the input images, such as VGGNet [4], GoogLeNet [5],
ResNet [6], etc. They are taken as rich feature extractors to
deal with image recognition and other advanced tasks. Recur-
rent neural networks (RNNs) are another type of neural net-
work with a “memory” to fed information from the previous
step to the current. The classic architecture LSTM [7] and its
related networks are effectively in Natural Language Process-
ing (NLP) tasks, such as text classification, text generation,
semantic representations, and others. Significant progress in
DL is about the integration of vision and language, which is
applied in the field of Visual Question Answering (VQA). The
challenge of the research is about how CV and NLP models
interact so that the tasks understand the visual and linguis-
tic information comprehensively. Researchers propose vari-
ous methods towards jointly learning representations for im-
proving the efficiency of the vision-language tasks. Attention
mechanisms [8] are powerful to describe the content of in-
puts. Moreover, fusion strategies are also critical to the tasks.
For example, [9] use a simple element-wise product to merge
two vectors in VQA. [10, 11] follow co-attention frameworks
to learn visual and textual features simultaneously, and use
concatenation and/or sum to fuse multimodal features.

Inspired by the above mentioned model interaction and
fusion, this work focuses on classifying skin lesions by using
both the dermoscopic images and the corresponding meta-
data. We propose a novel neural network by introducing
a new transformer, termed Mutual Attention Transformer
(MAT), to make complementary attention between the imag-
ing content and the textual content. Motivated by the state-
of-the-art attention mechanism [8], named the Transformer,
which consists of encoder and decoder stacks, we re-design
the transformer composed of self-attention (SA) blocks
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and guided-attention (GA) blocks. The SA block depicts
self-interactions (i.e., image-to-image or text-to-text) from
fine-grained features, while the GA blocks depict guided-
interactions (i.e., image-to-text or text-to-image). Pre-trained
deep CNN and embedding models are used to represent imag-
ing and textual contents respectively ahead of MAT. Then an
adaptive fusion mechanism is introduced, which composite
attended features comprehensively, thus the output can be
fed into the classifier in the network. The main contributions
are summarized as follows: (1) we introduce MAT and an
efficient fusion mechanism for feature interactions; (2) we
model a novel network that can complementarily learn fea-
tures from both imaging and textural contents that are applied
in the field of dermatoscopic diagnosis; and (3) we conduct
extensive experiments on the open benchmark dataset and
achieve impressive performance over state-of-art methods.

2. FEATURE FUSION WITH MAT

In this section, we introduce the MAT based neural network
for complementary learning of the multimodal data for the
classification task. The overview of the proposed architecture
is illustrated in Fig. 1. The MAT network accepts the imaging
and textual data and represents them by pre-trained models
as fine-grained features respectively, followed by the trans-
former unit with the MAT to obtain the attended multimodal
features simultaneously and then the fusion unit to compos-
ite the features, yielding integrated features projected into the
classifier in the output unit.

Transformer Unit
X

Y
sex
age
dx_type
localization

Input Unit

Faster R-CNN 
+Linear

GloVe+LSTM

SA

SA

GA

GA

Mul

LayerNorm

Softm
ax

FC
FC

Flatten
Flatten

Fusion Unit

dx

Output Unit

z’

Fig. 1. The architecture of the mutual attention transformer
(MAT) based neural network for skin lesions diagnosis. X

and Y denote the image and metadata inputs respectively; z0
denotes the predicted diagnostic category (dx) of the image.

2.1. Multimodal Data Representation

In the input unit, we use two pre-trained deep models to ex-
tract imaging and textual features in parallel. For the input
images, unlike the general processing that segments the lesion
from each dermoscopic image at the beginning, we intend to
keep the information of skin surrounding a lesion. Thus, we
apply a pre-trained model named Faster R-CNN (use ResNet-
101 as its backbone) [12] to extract features from the images.
It is the bottom-up mechanism that proposes a set of regional
features. In detail, we truncate the pre-trained model with the
first 8 layers and keep the top-n (n = 100) regional features

of dimension d, further use a linear layer as a pre-processing,
and result in a feature matrix X 2 Rn⇥d of each image. For
the pairwise metadata with multiple words, we first pad with
a maximum of 10 words to deal with the missing features.
Then, we use the pre-trained GloVe [13] weights to transform
the textual data with embedding dimension d

0, then the word
embeddings are fed into a 1-layer LSTM with d hidden size,
and result in a unified textual feature matrix Y 2 Rn⇥d of the
corresponding image.

2.2. Mutual Attention Transformer

2.2.1. Attention Blocks

Scaled Dot-Product Attention [8] is the core component of the
attention mechanism. It maps a query and a key-value pair to
the attended features of the query. In practice, a set of queries
and key-value pairs are packed into matrices as Q,K, V with
the same dimensions Rn⇥d by padding respectively, where
n is the number of inputs and d is the dimensionality of the
input features. The attended features are computed as:

Att(Q,K, V ) = Softmax(
QK

T

p
d

)V (1)

where 1p
d

is the scaling factor. Note that, we mask out
padding values by setting them to �1 followed behind the
scaling step to overcome the underflow problem [11] and
implement dropout [14] after the softmax step to avoid over-
fitting.

Further, based on the core attention, Multi-Head Attention
(MHA) [8] is introduced to improve the attended features. In
detail, it uses h scaled dot-product attention layers (denote as
‘heads’) running with different linear projections for inputs,
yielding the attended features of each layer, and concatenates
them by weighted function to result in the jointly features.
Functions are listed as follows:

MultiAtt(Q,K, V ) = Concat (H1, ..., Hh)W
o

where Hi = Att

⇣
QW

Q
i ,KW

K
i , V W

V
i

⌘ (2)

where W
Q
i ,W

K
i ,W

V
i 2 Rd⇥do are the weighted matrices

of the i-th head, do = d/h is the dimension of the attended
features of each head, and W

Q
i 2 Rhdo⇥d is the weight matrix

for concatenate h heads.
Inspired by the encoder-decoder strategy of the trans-

former [8], we derive two basic attention blocks as shown in
Fig. 2 to resolve the attended features for skin lesions diagno-
sis, i.e. self-attention (SA) block and guided-attention (GA)
block. Uniformly, both SA and GA are two layers, namely
masked MHA and the feed-forward network (FFN). FFN
contains a linear transformation (FC(4d)) accompany by a
rectified linear unit function (ReLU) and a Dropout, followed
by another FC(d). The output of each layer is processed in
sequence of a Dropout, a shortcut connection [6] and a layer

����

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on January 16,2023 at 07:46:57 UTC from IEEE Xplore.  Restrictions apply. 



normalization [15]. The difference between the two blocks
is that SA takes only one modal of input features while GA
takes multimodal features. Note that, the dimensionality of
the input features (X) of an attention block is equal to the
dimensionality of the output features (X 0).

X’

QVK

Masked Multi-Head
Attention

Dropout & Add 
& LayerNorm

Feed Forward

Dropout & Add 
& LayerNorm

X

X’’

(a) Self-Attention (SA)
XY

X’

K V Q

Masked Multi-Head
Attention

Dropout & Add 
& LayerNorm

Feed Forward

Dropout & Add 
& LayerNorm

X’’

(b) Guided-Attention (GA)

Fig. 2. Two basic attention blocks with masked multi-head
attention. X and Y denote the different modalities of input
features; X 00 denotes the intermediate features outputted from
the MHA; X 0 denotes the attended features.

2.2.2. Structured Transformer

Following the architecture shown in Fig. 1, we first take the
network without the transformer unit as a baseline, i.e. in-
put features are directly passed through the transformer unit
with the identity mapping. Then we structure three types of
transformer units to deal with the multimodal problem.

The proposed transformers, as depicted in Fig. 3, are built
on the composition of the SA and/or GA. Intuitively, the at-
tended imaging and textual features are concurrently obtained
by an attention block separately. Thus, we introduce the SA-
SA transformer as shown in Fig. 3 (a). The extracted imag-
ing features (X 2 Rn⇥d) are fed into a SA block result in
a group of inner-attended features (X 0 2 Rn⇥d), and the
same workflow for the textual features. Compared with the
SA-SA transformer, the SA-SGA in Fig. 3 (b) places a GA
block on top of a SA block. The transformer can learn the
guided attention over the inner-attended features. In detail,
both the principal features outputted from a SA block and
the guided features (X 00 2 Rn⇥d) outputted from the first
layer (MHA) of another SA block are passed through a GA
block to model guided-attended features (X 0). There are two
versions of the transformer, i.e. SA(textual)-SGA(imaging)
and SA(imaging)-SGA(textual). The SGA-SGA transformer
in Fig. 3 (c) is the symmetric module designed for the mutual
attention between the two inputs. The transformer loads a GA
block on top of each SA block. Both of the original features
(X and Y ) are self-attended concurrently through SA blocks

and the outputs are guided with each other across GA blocks
in the meantime. Note that, all the transformers work with-
out feature dimension reduction because they are cascaded
stacked with attention blocks.

X’Y’

SASA

XY
(a) SA-SA

X’Y’

GA

XY

SA SA

(b) SA-SGA

SA SA

X’Y’

GAGA

Y X
(c) SGA-SGA

Fig. 3. Three transformer units for feature representation.

2.3. Multimodal Fusion and Output

Followed by the transformer unit, we propose a multimodal
fusion algorithm to incorporate relations between the two at-
tended features (X 0

, Y
0 2 Rn⇥d). At first, they are linearly

and parallelly projected into a Fully Connected layer (FC(d))
accompanied by a ReLU and a Dropout to get their trans-
formed representation. Next to FC a sum function used to flat
the dimensionality of both modalities (X̃, Ỹ 2 Rd). We opt
for an element-wise multiplication of both modalities as the
last step of the feature integration, result in the fused feature
z 2 Rd. The output unit is a chain of operations following
a layer normalization, a Dropout, a FC and a Softmax layer.
The fused features are transformed into a probability vector
z
0 2 RC , where C is the number of the classes.

3. EXPERIMENTS

3.1. Dataset and Setup

We evaluate our method on the benchmark dataset HAM10000
[16], which consists of 10015 dermatoscopic images of pig-
mented lesions. There are 7 diagnostic classes (0:bcc, 1:df,
2:mel, 3:bkl, 4:nv, 5:akiec, 6:vasc) and 4 attributes (sex, age,
diagnostic type and localization). We do a stratified split on
the non-duplicated lesions of HAM1000 and split the dataset
in an 80%-10%-10% fashion of training/validation/test datasets.
Since the datasets are very uneven (0.67 of nv vs. 0.01 of df),
we augment data by rotation, shifting, flipping, and resizing
to make the datasets balanced.

3.2. Implementation Details

Following the flowchart of the MAT network in Fig. 1, the
hyper-parameters are listed as follows. Over the MAT net-
work, the number of heads h is 8 in each attention block, the
hidden size d is 512, and the dropout rate is 0.1. For training,
the batch size is 64, the base learning rate is 10�4 with de-
cay ratio equals to 0.2, and the optimizer is Adam algorithm
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[17] with � = (0.9, 0.98) and ✏ = 10�9. Also, early stop-
ping is employed to avoid the overfitting while training the
network. It records the validation loss with the maximum of
100 epochs, and the patience is set to 20. Losses are measured
by the Cross Entropy function because of the single-label cat-
egorical problem. Predicted results are scored using the nor-
malized accuracy classification score (ACC), the label rank-
ing average precision (LRAP) and the macro area under the
receiver operating characteristic curve (AUC) metrics. Our
framework was implemented in Python3 with Pytorch1.7.1
and Keras2.24 library.

3.3. Experimental Results

MAT Network For the network in Fig. 1, we obtain our best
results for the diagnostic task. The training process returned
the early stopping checkpoint on epoch 11. which is shown
in Fig. 4 with 91.64% validation accuracy and 1.25 valida-
tion mean loss. Results on the test dataset are 92.55% ACC,
95.63% LRAP, and 98.28% AUC. Fig. 5 shows the macro-
average ROC curve and AUC values for each class. Each
curve represents the performance in distinguishing classes of
lesions. It indicates that the model has a balanced and com-
petitive capacity for the multi-class classification.

Fig. 4. Model loss.

bcc
df
mel
bkl
nv
akiec
vasc

macro-average (auc = 0.98)
(auc = 0.99)

(auc = 0.98)
(auc = 0.98)
(auc = 0.99)
(auc = 0.95)
(auc = 1.00)

(auc = 1.00)

Fig. 5. Receiver Operating Characteristic (ROC) curve.

Transformer Units We compare the transformer unit
within the MAT network with other proposed transformers.

Table 1. Ablation study for the proposed MAT network with
different transformer units. CKPT: early stopping check-
point; metrics ACC, LRAP and AUC are evaluated on the test
dataset.

Model CKPT ACC LRAP AUC

Base 13 0.9154 0.9514 0.9823
SA-SA 31 0.9194 0.9520 0.9808
SA-SGA 32 0.9104 0.9434 0.9673
SGA-SGA 11 0.9255 0.9563 0.9828

Table 1 outlines the ablation experiments validating the at-
tentional mechanism and the choice of the transformers. The
base model indicates the network trained without the trans-
former unit and yields 91.54% ACC. From the table, we can
see that introducing SGA-SGA outperforms the base model
on all metrics. It shows the effectiveness of the mutual at-
tention transformer. The MAT network also outperforms the
other models that replace the transformer unit with SA-SA
or SA-SGA. All the models have a high chance (> 95%) to
distinguish positive and negative classes based on AUCs. It is
interesting to note that SA-SGA downgrades the performance
of the model compared with the base one, so the transformer
technique should be carefully applied to a multimodal prob-
lem. Also, the network on skin image only yields a lower
ACC (92.47%) compared with the two modalities task.

Sate-of-the-art Comparison In table 2, we compare the
MAT network against the state-of-the-art methods on the
HAM10000 dataset. Our solutions comprehensively outper-
form the others in terms of the list metrics. We do not list all
methods because of space limitations.

Table 2. Comparisons on HAM10000.
Methods Year ACC AUC

Multi-model[18] 2019 89.80% 0.98
MobileNet[19] 2019 92.70% 0.96
DenseNet[20] 2020 85.80% 0.88
Semi-supervised[21] 2020 92.54% 0.94
Ours 2021 92.55% 0.98

4. CONCLUSIONS

In this paper, we proposed a novel MAT neural network to
comprehensively learn features from the multimodal data for
skin lesions diagnosis. Specifically, we design a transformer
unit composed of SA blocks and GA blocks, which depicts
self-attended features and guided-attended features concur-
rently. With the fusion unit and the output unit, multimodal
features are integrated and result in a predicted vector. Results
validate the improved performance for the diagnosis.
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