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ABSTRACT

The music-conditioned dance generation, i.e., dancing to music,
is a usage scenario of multi-modality human motion synthesis.
Typically, it is a challenge to choreograph continuous motions
coinciding with the melody and rhythm of the music. This pa-
per proposes a position-wise encoding-decoding framework for
spatio-temporal learning of motions and long-term skeleton-based
dance generation oriented on music. Given the positional embed-
ding of the frames in 1-minute video clips, firstly, we modularize a
regional attention-based feed-forward mechanism to encode the
music features. Secondly, based on the skeleton of each frame and
the joint trajectories across motion frames, we formalize a graph
topology to represent each dance sequence’s spatial and temporal
knowledge. Specifically, we propose a graph convolutional network
(GCN) based blocks to process long-term dependencies of motions
and leverage the spatial and temporal features. Both music and
motion paths are learned fully in positional embedding schemes
and constructed by repeating the corresponding blocks. Finally,
as the task of dance generation is inherently the consistency be-
tween music and motions, we proposed a cross-modality feature
fusion for multimodal interaction and music-conditioned dance
generation. Experimental results demonstrate that our method out-
performs state-of-art methods in motion quality and motion-music
correlation metrics.
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1 INTRODUCTION

Dancing to music is a natural cross-modal behavior of humans that
matches movement patterns with musical beats. The choreography
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is the harmonious combination of music and motion data [7, 8]. In
terms of deep learning, the music-conditioned dance generation is
a creative process of multimodal interaction. A dancing pose at a
timestamp can synthesize the next in various modes, resulting in a
long-range dance generation that leads to high kinematic complex-
ity. Besides, the dance generation necessitates the synchronization
of motions with the music in melody and rhythm. Therefore, the
sequence of composing dance faces the challenges of both mo-
tion continuousness and music consistency [17, 22]. This paper
addresses the challenges by proposing a two-path spatio-temporal
learning framework for long-term dance generation synchronized
with music features. To ensure the alignment of the motion and
audio sequences, we apply a positional encoding mask for the series
throughout the framework. In other words, the paired motion-music
data is parallel computed.

The framework mainly consists of three parts, as illustrated
in Fig. 1: audio encoding, motion decoding, and multimodal in-
teraction. We introduce a regional attention-based feed-forward
mechanism to encode the sparsity music features. Attention mech-
anism [31] is one of the robust strategies to represent the con-
tent of inputs in natural language processing. Existing meth-
ods [25, 29, 34, 36] validate the efficiency of attention for long
sequence information extraction. Inspired by the successful use
of the attention mechanism in the sequence data, we introduce a
new attention-based layer to encode the sparse representation of
music features. The layer models sparsity features into high-level
learned features of each timestamp. To improve the robustness
of the attention mechanism for long-term sequence, we mask out
the subsequent information and control the perceptive field in the
attention with a sliding window technique.

Furthermore, we formalize the graph topology of each sequence
for motion feature decoding. The graph data is essential to the
decoding path as it models the spatial information of a pose in a
frame and the temporal adjacency across the sequence. Regarding
the body joints as vertexes, we draw the spatial edges depending on
the natural connections of joints in human bodies; we draw the tem-
poral edges according to the same joints following the timestamps.
Graph neural networks (GNNs) are deep learning algorithms built
explicitly for non-Euclidean graphs [30, 35]. Recent works show
the ability of GNNs to learn the information of the skeleton-based
graph structure for the tasks of action recognition [5, 10, 18, 21] and
motion prediction [1, 23, 33]. Inspired by the previous works, we
propose a GCN-based spatio-temporal block to decode the motion
features and learn the long dependencies of motions. The spatial
convolutional part interprets information from the channels of
the joints at each timestamp. And the temporal convolutional part
refines the dependencies from the time series of each joint.
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Finally, we propose an attention-based cross-modality mech-
anism to fuse the features between music and motions and gen-
erate the music-conditioned dance. The attention mechanism to
consecutive data alleviates error accumulation compared with
RNNs [1, 27, 31]. The multimodal attention mechanism is powerful
for feature interactions to depict guided interactions and interpret
the multimodal features [6, 36]. We exploit the proposed mecha-
nism’s weights to transform the music-motion sequence that led to
the music-to-dance generation.

Our contributions can be summarized as follows. (1) We con-
struct the music conditioned dance generation as a long-term
sequence-to-sequence multimodal task and introduce a novel spatio-
temporal learning framework for skeleton-based dance generation.
(2) We formalize a graph topology to model the skeleton and joint
trajectories and propose a positional GCN-based block to decode
spatial and temporal features of motions. (3) We introduce a regional
attention-based encoding mechanism for self feature learning and
mutual feature fusion. (4) Experimental results show that our frame-
work outperforms state-of-art methods concerning motion quality
and motion-music consistency.

2 RELATED WORK

Studies on the prediction of motion sequences are well exploited
using recurrent neural networks (RNNs) [9, 11, 24, 27] because
capable of learning temporal dependencies. However, RNN based
methods often produce unrealistic predictions [24, 27], i.e. freeze
poses, because using the inference pose as input to the next estima-
tion often result in error accumulation throughout the prediction
sequence. Also, the models [9, 15] can easily fail into discontinuous-
ness between the last inference pose and the first one. Because of
the limitations of RNNs, other studies use non-recurrent models as
an alternative for the motion prediction. For example, Li et al. [19]
improve the long-term dependencies by CNNs to predict the human
motion. Butepage et al. [3] propose a fully convolutional network
with a feed-forward temporal encoder to exploit the pose history.
Besides, GCNs are used to study human motions by encoding the
structure of human pose into graph topologies [5, 18, 26]. Mao
et al. [26] encode the short-term history of motions via discrete
cosine transform (DCT) and train a GCN to learn spatio-temporal
dependencies for motion prediction.

The audio to human motion generation is typical cross-modal
learning task that generate music conditioned motions. Based on
the motion prediction methods, studies on the task focus on the
multimodal composition and synchronization. Zhuang et al. [37]
model a conditional distribution with an autoregressive generative
model to generate music conditioned dance. Li et al. [20] utilize
transformer based model on motion and audio respectively, and
then compose features to generate diverse dance. Similarly, Huang
et al. [14] propose a sequence-to-sequence model with a concate-
nation operation to fuse fine-grained features of motion and audio.

3 METHODOLOGY

This section elaborates on the two-path framework for music con-
ditioned skeleton-based dance generation. Following the overview
illustrated in Fig. 1, spatio-temporal learning of the task is summed
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up in two parts shown in Fig. 2: graph-based decoding and attention-
based encoding. Formally, the input dataset D = {(X;, Yi)}zil con-
sists of N paired motion-music sequences. An audio sequence sam-
ple is denoted as X = {xi}iTzl, where x; € R% is a vector of audio
features at timestamp i and the length of the sequence is T. A motion
sequence sample is denoted as Y = {yi}z;l, where y; = {v,-j}i.\]:1 is
a pose representation of N joints in a frame at timestamp i, and
vjj € RC is a j-th joint of a pose being a vector of a joint’s chan-
nels at timestamp i. Intuitively, x; and y; are synchronized at each
timestamp. The problem is to build a generation modelg : X — Y
that estimates a sequence of new dance Y that oriented on music
style.

3.1 Attention-based Encoding

Inspired by the appealing performance on attention mecha-
nism [31] on sequence data for self-interactions [13, 25] and mutual-
interactions [1, 36], we introduce a regional attention-based encod-
ing layer as shown in Fig. 2 (a), and stack Ly identical encoding
layers to refine the input sequence. Specifically, we extract audio
features of a piece of music as an input sequence for audio feature
learning in the audio path and concatenate learned features from
the two-path processing as an input sequence for audio-to-motion
feature composition.

We first project an input sequence X into a source input em-
bedding via a single linear layer (R% — R%"). Unlike RNNs for
CNN, attention has no concept of order. So, we also embed the
sequence X into a position encode embedding with a sinusoidal
position encoding table (R% — R%). Thus, for a sequence of
input X = {x,v}iT:1 € RTXdx the embedding output is the posi-
tional add of the above mentioned two embeddings and results in
X = (%}, e RT>dx,

Then, the embeddings are learned by the regional multi-head
attention. Recall the scaled dot-product attention, proposed by [31],
be operated in the quadratic term O(T?) in both space and time
complexities and costs in huge memory for long sequences with
length T. We mask out the subsequent information and control the
attention field for query and key-value representations by a sliding
window with size n (n <= T) and reduces the space complexity
into O(Tn). The window size can be small if we address on the local
pattern of a sequence, such as a clip of music representation. The
attention operation is formulated as:

0=Xw2K=XxwKv=xw"
QKT
Vi

where d}. is the kernel size, mask M € Rékxdi query, key and value
Q,K,V € RT%dk leverage from weight matrices wo wK wV ¢
R%*dk respectively. Multi-head attention (MHA) [31] employs
h scaled dot-product attentions (referred as ‘heads’) and concate-
nates learned features H; using the weighted function. Finally, the
attention output X " can be formulated as:

1)

Attention(Q, K, V, M) = softmax( + M)V

H; = Attention(Qj, K, Vi, M)

, , @
X = f(Concat(Hy, ..., H)W?)
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Figure 1: Cross-Modal Dance Generation Overview. We perform dance generation in a two-path spatio-temporal learning
mode synchronized with audio features. The audio path consists of blocks of audio encoding, and the motion path consists of
spatial-temporal graph topology formalization and layers of motion decoding. The output is a sequence of music-conditioned

motions generated from multimodal interaction.
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(a) attention-based encoding layer (b) graph-based decoding layer

Figure 2: Details of Layers (a) Attention-based encoding layer
encodes a sequence X = (xi,..,x7) into a hidden matrix
X’ = (x’1,...x'T); (b) Graph-based decoding layer takes an
undirected graph represented feature map G and an adja-
cency matrix A as inputs, and generates learned features G’.

where i-th head of query, key and value Q;,K;, V; € RT*dk  and
dy = di. [h, weight matrix W° € RTxdk output X e RT>dx  and
f () is a position-wise feed forward composed of two feed-forward
networks (FFNs). FFN is a sequence of a 1D convolution, a ReLU, a
dropout, a residual connection and a layer normalization.

3.2 Graph-based Decoding

To decode the spatio-temporal structure of motions in the motion
path, as shown in Fig. 1, is composed of two sections. The first sec-
tion, named spatio-temporal graph topology formalization, depicts
the intra- and inter-skeleton connections in a sequence of motions.
The second section is called motion decoding, which stacks graph-
based decoding layers as illustrated in Fig. 2 (b).

3.2.1 Graph Topology Formalization. Given a sequence of frames
Y = {y,-}lT:1 € R™9y and a set of joints N per frame, we focus
on learning the co-occurrence pattern of intra- and inter-skeleton
features. In this section, we represent a skeleton sequence hierarchi-
cally as an undirected graph to feature joints’ spatial and temporal
connections. The spatial connections are defined by the natural
connections of joints in human bodies shown in Fig. 3 (a). The
temporal connections are trajectories of the same joints following
the timestamps displayed in Fig. 3 (b).

Formally, the undirected graph G = (V, E) is composed from T
frames and N joints per frame. The node matrix V = {o; j}ll_;ll\szl €

RTXNXC jncludes all joints in a skeleton sequence, and v; j € RC

indicates the j-th node at timestamp i has a feature vector in C
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channels. The edge set E = {Eg, ET} is made up of spatial and
temporal connections. Eg = {(v;j,0;j7)} denotes the spatial edges,
including the skeleton connections as described in Fig. 3 (a) and
self connections of each joint (j = j'). And Er = {(vij,0(i41);)}
denotes the temporal edges.

The adjacency matrix A is the key factor for the graph topology
learning. As the temporal edges are well-ordered, we simplify the
problem by focusing on the representation of the spatial edges
in a single frame. We first get the uniform adjacency matrix H =
{hij} € RNXN by the I-hop distance method in a frame, i.e. hijisa
connectable distance from the node v; to v; within [ steps, including
the self connections. Then, we get a normalized uniform matrix H’
by AT12HAY2 [16], where A = {Z?Ll hij}. Finally, we build the
adjacency matrix A based on the matrix H’.

Inspired by the partition strategies discussed in [32], we use
the spatial partition strategy to compose A in multiple scales of
connections based on the uniform matrix H, that is, a node is labeled
by the property of the distance to a central node v. In this work,
the adjacency matrix is defined in three levels of connections A =
{{aoij}, {a1ij}, {azij}} € R¥>N*N and the connections are defined

by:
aoii = hij’ ifhic:hjc,ali': hij’ ifh,'c<hjc)
J 0, otherwise J 0, otherwise
o hij’ if hic > hjc 3)
Y 0, otherwise

where hj. is a distance between node v; to the central node v..

3.2.2  Spatio-temporal Convolution. As shown in Fig. 2 (b), the
motion decoding is formed by stacking L, graph-based decoding
layers together, which depicts the input sequence of motions in a
graph topology. The graph-based decoding layer is the sequential
spatial and temporal convolution processing. The residual connec-
tion accompanied by the decoding layer maps an identity topology
with spatio-temporal convolutional outputs that address the per-
formance degradation in deep neural architectures.

The input of the layer is a set of (G, A) generated from the
graph topology formalization section, where G € REXT*N and
A € REXNXN The spatial convolution is a module for a graph
convolution of each frame, which consists of a 2D convolution, a
matrix multiplication between graph and adjacency matrix. The
temporal convolution is a module for temporal connections with a
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(a) skeleton layout (b) the spatio-temporal graph

Figure 3: Graph Topology of Skeleton (a) skeleton layout of
spatial connections between human joints, the number of
joints per frame is N = 25; (b) the spatio-temporal graph of a
motion sequence, the dash lines are examples of temporal
connections over consecutive timestamps.

sequence of a 2D batch normalization (BN), a ReLU, a 2D convolu-
tion, a 2D BN and a dropout. The output is a decoded graph G’ in
terms of channels. The layer can be formulated as:

Spatial(G,A) =GWF @ A

4
G’ = Temporal(Spatial(G,A)) + G @

where WE € R(dXC)XCxdgXdy i the trainable weight matrix and
dg is the graph kernel size, ® is an element-wise product and sums
out the dimension of channels C, the output G’ € RAUXTXN pyp
ticularly, the decoded graph G’ from the last layer in the motion
decoding is followed by a linear function to get the refined motion
feature Y/ € RT*dv

Finally, As mentioned in section 3.1, we use the regional atten-
tion mechanism for audio-motion feature composition. The audio
features X’ and motion features Y’ are concatenated along the
first dimension T. Followed by the multimodal interaction, the out-
putZ e RT*dy jg generated by comparing with the ground truth
motions Y with minimized L1 loss.

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Dataset. All of the experiments in this study were performed
using the dataset collected by [17]. The dataset contains approx-
imate 71 hours video clips including 3 styles of dance: “Ballet”,
“Hiphop” and “Zumba”. We construct the dataset by the methods
mentioned in [14]. To fit the long-term music-conditioned dance
generation task on the position-wise framework, we prune and
extract the dataset into one-minute clips of audio data and motion
data in 15 frames per second (FPS). Thus, we acquire 136 clips for
“Ballet”, 298 clips for “Hiphop” and 356 clips for “Zumba”. We do a
stratified split on the dataset in a 90% — 10% fashion for training
and test sets.

For audio feature generation, we use Librosa [28] with sampling
rate at 15400 Hz to get MFCC and MFCC delta, and decompose audio
sequences into harmonic and percussive components to generate
tempogram, chromagram and onset strength. We use a dynamic
programming beat tracker [28] to detected the beat information
from onset strength, and represent results into a one-hot vector. We
concatenate extracted features into the final audio feature with dy =
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438. For skeleton-based motion generation, we use OpenPose [4]
to extract 2D body key joints from each clip. As shown in 3 (a),
each frame is made up of 25 key joints and results in a vector with
dy = 50.

Y

4.1.2  Implementation Details. Following the dance generation
framework in Fig. 1, the input contains one-minute sequences with
15 FPS, i.e. T = 900 for both a motion sequence and an audio se-
quence, where the sequences are synchronized on each frame. The
hyper-parameters of the framework are listed as follows: both audio
encoding and multimodal interaction modules consist of Ly = 1
attention-based encoding layer with h = 8 heads, di = 64 and
1024 hidden units. The motion decoding module consists of L, = 4
identical graph-based decoding layers, with 15 temporal kernel size,
3 spatial kernel size, 1024 hidden units and 64 out channels. We
train the model with 16 batch size using Adam optimizer with the
base learning rate le-4 on 2 NVIDIA Tesla V100.

4.2 Evaluation Metrics

We evaluate the motion quality of generated dances by the Average
Spatial Distance and the Frechet Distance. The average spatial dis-
tance is defined through the average Euclidean distance between
a cluster of points in a 2D plane, which is used to measure the
similarity between skeletons [2]. The closer the spatial distance
to the real dance, the better the realism of generated motions is.
Frechet Inception Distance (FID) [12] evaluate the distribution dis-
tance between a generated sequence and a ground-truth sequence.
There is no standard inception networks for motion evaluation.
In this work, we measure the spatio-temporal motion quality by
calculating the Frechet Distance (FD) directly from the synthesized
joint positions Y’ and the ground-truth Y (lower is better).

Furthermore, we evaluate the dance style consistency by the
Beat Alignment Score introduced in [22], i.e. score the correlation
between motion beats and audio beats. The motion beats are calcu-
lated as the relative minima in kinematic velocity. The audio beats
are the 1-dim one-hot beats, which are generated from Librosa [28].
The Beat Alignment Score is defined as the average distance of each
motion beat that are aligned to its nearest audio beat:

score = = 3 exp(minlbxs by |9/ 26%) (5
k=1

where Bx = {bx;} and By = {by;} is the audio beats and motion
beats respectively, o = 3 is a normalize factor.

4.3 Quantitative Evaluation

In this section, we report the experimental results of the encoding-
decoding framework with the two baselines: [17] and [14] on the
test set as mentioned in section 4.1.1. The results are shown in
Table 1. Compared with the two baselines, our generated motion se-
quences overall are much closer to the real dances, as well as three
styles of dances, in the aspect of spatio-temporal evaluation by FD.
While Dance Revolution produces closer FD in Zumba, the aver-
age spatial distance difference between the real dances and Dance
Revolution is worse than between real and our methods. Generated
motions from Dancing2Music perform better than our method re-
garding the spatial distance only but worse in the temporal part
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Table 1: Dance Generation Evaluation

Ballet ‘ Hiphop
Methods Spatial Dist. ~ Frechet Dist.| ~ Beat Align. | Spatial Dist. ~ Frechet Dist.|  Beat Align.
Real Dances 9.406 - 0.382 9.476 - 0.389
Dancing2Music [17] 7.211 64.413 0.371 6.925 49.717 0.389
Dance Revolution [14]  5.622 66.752 0.373 4.568 48.505 0.397
Ours 5.981 54.381 0.381 5.598 44.619 0.398
Zumba | Overall
Methods Spatial Dist. ~ Frechet Dist.|  Beat Align. ‘ Spatial Dist.  Frechet Dist.|  Beat Align.
Real Dances 9.382 - 0.420 9.421 - 0.397
Dancing2Music [17] 9.772 94.308 0.420 7.969 69.479 0.393
Dance Revolution [14]  6.036 54.259 0.419 5.409 56.505 0.397
Ours 7.834 61.658 0.418 6.471 53.553 0.398

evaluation, which indicates the motions lack consistency. Overall,
our generated motion sequences is more realistic in the combination
of spatial and temporal evaluation Besides, we evaluate the dance
style consistency with music by the beat alignment score. Overall,
our method and Dance Revolution result in scores very close to the
real dances. However, we observe that the alignment score is better
correlated with Ballet’s real dances than the two baselines. This
shows that our method for motion-music correlation is better than
the others in general.

5 CONCLUSION

This paper presents a novel position-wise encoding-decoding frame-
work for spatio-temporal learning of long-term skeleton-based
motions and music conditioned motion generation. Specifically,
we introduce a regional attention-based encoding layer to effi-
ciently learn long-term sequences of audio features and fuse multi-
modal sequences of audio-to-motion features. Besides, we propose
a graph topology formalization method to depict the intra- and
inter-skeleton connections in a motion sequence and present a
graph-based decking layer to interpret the spatio-temporal infor-
mation from the graph. The experimental results show a promising
performance of our framework on motion quality and motion-music
correlation metrics.
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