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ABSTRACT 
The music-conditioned dance generation, i.e., dancing to music, 
is a usage scenario of multi-modality human motion synthesis. 
Typically, it is a challenge to choreograph continuous motions 
coinciding with the melody and rhythm of the music. This pa-
per proposes a position-wise encoding-decoding framework for 
spatio-temporal learning of motions and long-term skeleton-based 
dance generation oriented on music. Given the positional embed-
ding of the frames in 1-minute video clips, �rstly, we modularize a 
regional attention-based feed-forward mechanism to encode the 
music features. Secondly, based on the skeleton of each frame and 
the joint trajectories across motion frames, we formalize a graph 
topology to represent each dance sequence’s spatial and temporal 
knowledge. Speci�cally, we propose a graph convolutional network 
(GCN) based blocks to process long-term dependencies of motions 
and leverage the spatial and temporal features. Both music and 
motion paths are learned fully in positional embedding schemes 
and constructed by repeating the corresponding blocks. Finally, 
as the task of dance generation is inherently the consistency be-
tween music and motions, we proposed a cross-modality feature 
fusion for multimodal interaction and music-conditioned dance 
generation. Experimental results demonstrate that our method out-
performs state-of-art methods in motion quality and motion-music 
correlation metrics. 

CCS CONCEPTS 
• Computing methodologies ! Arti�cial intelligence. 

KEYWORDS 
Attention, Graph Topology, Graph Neural Networks 

ACM Reference Format: 
Li Zhou and Yan Luo. 2022. A Spatio-temporal Learning for Music Condi-
tioned Dance Generation. In INTERNATIONAL CONFERENCE ON MULTI-
MODAL INTERACTION (ICMI ’22), November 7–11, 2022, Bengaluru, India. 
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3536221.3556618 

1 INTRODUCTION 
Dancing to music is a natural cross-modal behavior of humans that 
matches movement patterns with musical beats. The choreography 
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is the harmonious combination of music and motion data [7, 8]. In 
terms of deep learning, the music-conditioned dance generation is 
a creative process of multimodal interaction. A dancing pose at a 
timestamp can synthesize the next in various modes, resulting in a 
long-range dance generation that leads to high kinematic complex-
ity. Besides, the dance generation necessitates the synchronization 
of motions with the music in melody and rhythm. Therefore, the 
sequence of composing dance faces the challenges of both mo-
tion continuousness and music consistency [17, 22]. This paper 
addresses the challenges by proposing a two-path spatio-temporal 
learning framework for long-term dance generation synchronized 
with music features. To ensure the alignment of the motion and 
audio sequences, we apply a positional encoding mask for the series 
throughout the framework. In other words, the paired motion-music 
data is parallel computed. 

The framework mainly consists of three parts, as illustrated 
in Fig. 1: audio encoding, motion decoding, and multimodal in-
teraction. We introduce a regional attention-based feed-forward 
mechanism to encode the sparsity music features. Attention mech-
anism [31] is one of the robust strategies to represent the con-
tent of inputs in natural language processing. Existing meth-
ods [25, 29, 34, 36] validate the e�ciency of attention for long 
sequence information extraction. Inspired by the successful use 
of the attention mechanism in the sequence data, we introduce a 
new attention-based layer to encode the sparse representation of 
music features. The layer models sparsity features into high-level 
learned features of each timestamp. To improve the robustness 
of the attention mechanism for long-term sequence, we mask out 
the subsequent information and control the perceptive �eld in the 
attention with a sliding window technique. 

Furthermore, we formalize the graph topology of each sequence 
for motion feature decoding. The graph data is essential to the 
decoding path as it models the spatial information of a pose in a 
frame and the temporal adjacency across the sequence. Regarding 
the body joints as vertexes, we draw the spatial edges depending on 
the natural connections of joints in human bodies; we draw the tem-
poral edges according to the same joints following the timestamps. 
Graph neural networks (GNNs) are deep learning algorithms built 
explicitly for non-Euclidean graphs [30, 35]. Recent works show 
the ability of GNNs to learn the information of the skeleton-based 
graph structure for the tasks of action recognition [5, 10, 18, 21] and 
motion prediction [1, 23, 33]. Inspired by the previous works, we 
propose a GCN-based spatio-temporal block to decode the motion 
features and learn the long dependencies of motions. The spatial 
convolutional part interprets information from the channels of 
the joints at each timestamp. And the temporal convolutional part 
re�nes the dependencies from the time series of each joint. 
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Finally, we propose an attention-based cross-modality mech-
anism to fuse the features between music and motions and gen-
erate the music-conditioned dance. The attention mechanism to 
consecutive data alleviates error accumulation compared with 
RNNs [1, 27, 31]. The multimodal attention mechanism is powerful 
for feature interactions to depict guided interactions and interpret 
the multimodal features [6, 36]. We exploit the proposed mecha-
nism’s weights to transform the music-motion sequence that led to 
the music-to-dance generation. 

Our contributions can be summarized as follows. (1) We con-
struct the music conditioned dance generation as a long-term 
sequence-to-sequence multimodal task and introduce a novel spatio-
temporal learning framework for skeleton-based dance generation. 
(2) We formalize a graph topology to model the skeleton and joint 
trajectories and propose a positional GCN-based block to decode 
spatial and temporal features of motions. (3) We introduce a regional 
attention-based encoding mechanism for self feature learning and 
mutual feature fusion. (4) Experimental results show that our frame-
work outperforms state-of-art methods concerning motion quality 
and motion-music consistency. 

2 RELATED WORK 
Studies on the prediction of motion sequences are well exploited 
using recurrent neural networks (RNNs) [9, 11, 24, 27] because 
capable of learning temporal dependencies. However, RNN based 
methods often produce unrealistic predictions [24, 27], i.e. freeze 
poses, because using the inference pose as input to the next estima-
tion often result in error accumulation throughout the prediction 
sequence. Also, the models [9, 15] can easily fail into discontinuous-
ness between the last inference pose and the �rst one. Because of 
the limitations of RNNs, other studies use non-recurrent models as 
an alternative for the motion prediction. For example, Li et al. [19] 
improve the long-term dependencies by CNNs to predict the human 
motion. Butepage et al. [3] propose a fully convolutional network 
with a feed-forward temporal encoder to exploit the pose history. 
Besides, GCNs are used to study human motions by encoding the 
structure of human pose into graph topologies [5, 18, 26]. Mao 
et al. [26] encode the short-term history of motions via discrete 
cosine transform (DCT) and train a GCN to learn spatio-temporal 
dependencies for motion prediction. 

The audio to human motion generation is typical cross-modal 
learning task that generate music conditioned motions. Based on 
the motion prediction methods, studies on the task focus on the 
multimodal composition and synchronization. Zhuang et al. [37] 
model a conditional distribution with an autoregressive generative 
model to generate music conditioned dance. Li et al. [20] utilize 
transformer based model on motion and audio respectively, and 
then compose features to generate diverse dance. Similarly, Huang 
et al. [14] propose a sequence-to-sequence model with a concate-
nation operation to fuse �ne-grained features of motion and audio. 

3 METHODOLOGY 
This section elaborates on the two-path framework for music con-
ditioned skeleton-based dance generation. Following the overview 
illustrated in Fig. 1, spatio-temporal learning of the task is summed 

up in two parts shown in Fig. 2: graph-based decoding and attention-
based encoding. Formally, the input dataset ⇡ = {(-8 ,.8 )}8 N 

=1 con-
sists of N paired motion-music sequences. An audio sequence sam-
ple is denoted as - = {G8 })8=1, where G8 2 R3G is a vector of audio 
features at timestamp 8 and the length of the sequence is) . A motion 
sequence sample is denoted as . = {~8 })8=1, where ~8 = {E8 9 }# 

=1 is9 
a pose representation of # joints in a frame at timestamp 8 , and 
E8 9 2 R⇠ is a 9-th joint of a pose being a vector of a joint’s chan-
nels at timestamp 8 . Intuitively, G8 and ~8 are synchronized at each 
timestamp. The problem is to build a generation model 6 : - ! . 
that estimates a sequence of new dance . that oriented on music 
style. 

3.1 Attention-based Encoding 
Inspired by the appealing performance on attention mecha-
nism [31] on sequence data for self-interactions [13, 25] and mutual-
interactions [1, 36], we introduce a regional attention-based encod-
ing layer as shown in Fig. 2 (a), and stack !G identical encoding 
layers to re�ne the input sequence. Speci�cally, we extract audio 
features of a piece of music as an input sequence for audio feature 
learning in the audio path and concatenate learned features from 
the two-path processing as an input sequence for audio-to-motion 
feature composition. 

We �rst project an input sequence - into a source input em-
bedding via a single linear layer (R3G ! R3G 0 ). Unlike RNNs for 
CNNs, attention has no concept of order. So, we also embed the 
sequence - into a position encode embedding with a sinusoidal 
position encoding table (R3G ! R3G 0 ). Thus, for a sequence of 
input - = {G8 }) 2 R) ⇥3G , the embedding output is the posi-8=1 
tional add of the above mentioned two embeddings and results in 
-̃ = {G̃8 })8=1 2 R) ⇥3G 0 . 

Then, the embeddings are learned by the regional multi-head 
attention. Recall the scaled dot-product attention, proposed by [31], 
be operated in the quadratic term $ () 2) in both space and time 
complexities and costs in huge memory for long sequences with 
length ) . We mask out the subsequent information and control the 
attention �eld for query and key-value representations by a sliding 
window with size = (= <= ) ) and reduces the space complexity 
into $ ()=). The window size can be small if we address on the local 
pattern of a sequence, such as a clip of music representation. The 
attention operation is formulated as: 

˜ ˜ ˜& = -, & ,   = -,   ,+ = -, + 

& > (1)
�CC4=C8>=(&,  ,+ , ") = B> 5 C<0G ( p + ")+ 

3: 

where 3: is the kernel size, mask " 2 R3: ⇥3: , query, key and value 
&,  ,+ 2 R) ⇥3: leverage from weight matrices , & ,,   ,, + 2 
R3G 0 ⇥3: respectively. Multi-head attention (MHA) [31] employs 
⌘ scaled dot-product attentions (referred as ‘heads’) and concate-
nates learned features �8 using the weighted function. Finally, the 
attention output - 0 can be formulated as: 

�8 = �CC4=C8>=(&8 ,  8 ,+8 , ")
0 (2)

- = f (⇠>=20C (�1, ..., �⌘), > ) 
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Figure 1: Cross-Modal Dance Generation Overview. We perform dance generation in a two-path spatio-temporal learning 
mode synchronized with audio features. The audio path consists of blocks of audio encoding, and the motion path consists of 
spatial-temporal graph topology formalization and layers of motion decoding. The output is a sequence of music-conditioned 
motions generated from multimodal interaction. 

Regional Multi-head Attention

Position-wise Feed Forward

x1 x2 x3 x4 x5 x6 xT
…
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…

× Lx
Spatial Convolution

Temporal Convolution
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(G’, A)
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(a) attention-based encoding layer (b) graph-based decoding layer 

Figure 2: Details of Layers (a) Attention-based encoding layer 
encodes a sequence - = (G1, ..., G) ) into a hidden matrix 
0 0 - = (G 0 1, ..., G ) ); (b) Graph-based decoding layer takes an 

undirected graph represented feature map ⌧ and an adja-
0cency matrix � as inputs, and generates learned features ⌧ . 

2 R) ⇥3: 0where 8-th head of query, key and value &8 ,  8 ,+8 , and 
3: 0 = 3: /⌘, weight matrix , > 2 R) ⇥3: , output - 0 2 R) ⇥3G 0 , and 
f (·) is a position-wise feed forward composed of two feed-forward 
networks (FFNs). FFN is a sequence of a 1⇡ convolution, a ReLU, a 
dropout, a residual connection and a layer normalization. 

3.2 Graph-based Decoding 
To decode the spatio-temporal structure of motions in the motion 
path, as shown in Fig. 1, is composed of two sections. The �rst sec-
tion, named spatio-temporal graph topology formalization, depicts 
the intra- and inter-skeleton connections in a sequence of motions. 
The second section is called motion decoding, which stacks graph-
based decoding layers as illustrated in Fig. 2 (b). 

3.2.1 Graph Topology Formalization. Given a sequence of frames 
. = {~8 })8=1 2 R) ⇥3~ and a set of joints # per frame, we focus 
on learning the co-occurrence pattern of intra- and inter-skeleton 
features. In this section, we represent a skeleton sequence hierarchi-
cally as an undirected graph to feature joints’ spatial and temporal 
connections. The spatial connections are de�ned by the natural 
connections of joints in human bodies shown in Fig. 3 (a). The 
temporal connections are trajectories of the same joints following 
the timestamps displayed in Fig. 3 (b). 

Formally, the undirected graph ⌧ = (+ , ⇢) is composed from ) 
frames and # joints per frame. The node matrix + = {E8 9 }) ,# 

8=1, 9 =1 2 
2 R⇠ R) ⇥# ⇥⇠ includes all joints in a skeleton sequence, and E8 9 

indicates the 9-th node at timestamp 8 has a feature vector in ⇠ 

channels. The edge set ⇢ = {⇢( , ⇢) } is made up of spatial and 
temporal connections. ⇢( = {(E8 9 , E8 9 0 )} denotes the spatial edges, 
including the skeleton connections as described in Fig. 3 (a) and 
self connections of each joint ( 9 = 9 0). And ⇢) = {(E8 9 , E (8+1) 9 )} 
denotes the temporal edges. 

The adjacency matrix A is the key factor for the graph topology 
learning. As the temporal edges are well-ordered, we simplify the 
problem by focusing on the representation of the spatial edges 
in a single frame. We �rst get the uniform adjacency matrix � = 
{⌘8 9 } 2 R# ⇥# by the ;-hop distance method in a frame, i.e. ⌘8 9 is a 
connectable distance from the node E8 to E 9 within ; steps, including 

0the self connections. Then, we get a normalized uniform matrix � 
by ⇤�1/2� ⇤�1/2 [16], where ⇤ = { Õ# 

=1 ⌘8 9 }. Finally, we build the 9 
0adjacency matrix � based on the matrix � . 

Inspired by the partition strategies discussed in [32], we use 
the spatial partition strategy to compose � in multiple scales of 
connections based on the uniform matrix � , that is, a node is labeled 
by the property of the distance to a central node E2 . In this work, 
the adjacency matrix is de�ned in three levels of connections � = 
{{008 9 }, {018 9 }, {028 9 }} 2 R3⇥# ⇥# , and the connections are de�ned 
by: 

⇢ 0 ⇢ 0 
⌘8 9 , if ⌘82 = ⌘ 92 ⌘8 9 , if ⌘82 < ⌘ 92 008 9 = = ,
0, otherwise 

, 018 9 0, otherwise ⇢ 
⌘8 9 
0 
, if ⌘82 > ⌘ 92 028 9 = (3)

0, otherwise 

where ⌘82 is a distance between node E8 to the central node E2 . 

3.2.2 Spatio-temporal Convolution. As shown in Fig. 2 (b), the 
motion decoding is formed by stacking !~ graph-based decoding 
layers together, which depicts the input sequence of motions in a 
graph topology. The graph-based decoding layer is the sequential 
spatial and temporal convolution processing. The residual connec-
tion accompanied by the decoding layer maps an identity topology 
with spatio-temporal convolutional outputs that address the per-
formance degradation in deep neural architectures. 

The input of the layer is a set of (⌧, �) generated from the 
graph topology formalization section, where ⌧ 2 R⇠ ⇥) ⇥# and 
� 2 R⇠ ⇥# ⇥# . The spatial convolution is a module for a graph 
convolution of each frame, which consists of a 2⇡ convolution, a 
matrix multiplication between graph and adjacency matrix. The 
temporal convolution is a module for temporal connections with a 
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(a) skeleton layout (b) the spatio-temporal graph 

Figure 3: Graph Topology of Skeleton (a) skeleton layout of 
spatial connections between human joints, the number of 
joints per frame is # = 25; (b) the spatio-temporal graph of a 
motion sequence, the dash lines are examples of temporal 
connections over consecutive timestamps. 

sequence of a 2⇡ batch normalization (BN), a ReLU, a 2⇡ convolu-
tion, a 2⇡ BN and a dropout. The output is a decoded graph ⌧ 0 in 
terms of channels. The layer can be formulated as: 

(?0C80; (⌧, �) = ⌧, ⇢ ⌦ � 
(4)0 ⌧ = )4<?>A0; ((?0C80; (⌧, �)) + ⌧ 

where , ⇢ 2 R(3: ⇥⇠ )⇥⇠ ⇥36 ⇥36 is the trainable weight matrix and 
36 is the graph kernel size, ⌦ is an element-wise product and sums 

0 2 R3: ⇥) ⇥# out the dimension of channels ⇠ , the output ⌧ . Par-
0ticularly, the decoded graph ⌧ from the last layer in the motion 

decoding is followed by a linear function to get the re�ned motion 
0 2 R) ⇥3~ 0feature . . 

Finally, As mentioned in section 3.1, we use the regional atten-
tion mechanism for audio-motion feature composition. The audio 

0 0features - and motion features . are concatenated along the 
�rst dimension ) . Followed by the multimodal interaction, the out-
put / 2 R) ⇥3~ is generated by comparing with the ground truth 
motions . with minimized !1 loss. 

4 EXPERIMENTS 
4.1 Experimental Setup 
4.1.1 Dataset. All of the experiments in this study were performed 
using the dataset collected by [17]. The dataset contains approx-
imate 71 hours video clips including 3 styles of dance: “Ballet”, 
“Hiphop” and “Zumba”. We construct the dataset by the methods 
mentioned in [14]. To �t the long-term music-conditioned dance 
generation task on the position-wise framework, we prune and 
extract the dataset into one-minute clips of audio data and motion 
data in 15 frames per second (FPS). Thus, we acquire 136 clips for 
“Ballet”, 298 clips for “Hiphop” and 356 clips for “Zumba”. We do a 
strati�ed split on the dataset in a 90% � 10% fashion for training 
and test sets. 

For audio feature generation, we use Librosa [28] with sampling 
rate at 15400 Hz to get MFCC and MFCC delta, and decompose audio 
sequences into harmonic and percussive components to generate 
tempogram, chromagram and onset strength. We use a dynamic 
programming beat tracker [28] to detected the beat information 
from onset strength, and represent results into a one-hot vector. We 
concatenate extracted features into the �nal audio feature with 3G = 

438. For skeleton-based motion generation, we use OpenPose [4] 
to extract 2⇡ body key joints from each clip. As shown in 3 (a), 
each frame is made up of 25 key joints and results in a vector with 

Implementation Details. Following the dance generation 
framework in Fig. 1, the input contains one-minute sequences with 

= 900 for both a motion sequence and an audio se-
quence, where the sequences are synchronized on each frame. The 
hyper-parameters of the framework are listed as follows: both audio 
encoding and multimodal interaction modules consist of !G = 1 
attention-based encoding layer with ⌘ = 8 heads, 3: = 64 and 
1024 hidden units. The motion decoding module consists of !~ = 4 
identical graph-based decoding layers, with 15 temporal kernel size, 
3 spatial kernel size, 1024 hidden units and 64 out channels. We 
train the model with 16 batch size using Adam optimizer with the 
base learning rate 1e-4 on 2 NVIDIA Tesla V100. 

4.2 Evaluation Metrics 
We evaluate the motion quality of generated dances by the Average 
Spatial Distance and the Frechet Distance. The average spatial dis-
tance is de�ned through the average Euclidean distance between 
a cluster of points in a 2⇡ plane, which is used to measure the 
similarity between skeletons [2]. The closer the spatial distance 
to the real dance, the better the realism of generated motions is. 
Frechet Inception Distance (FID) [12] evaluate the distribution dis-
tance between a generated sequence and a ground-truth sequence. 
There is no standard inception networks for motion evaluation. 
In this work, we measure the spatio-temporal motion quality by 
calculating the Frechet Distance (FD) directly from the synthesized 
joint positions . 0 and the ground-truth . (lower is better). 

Furthermore, we evaluate the dance style consistency by the 
Beat Alignment Score introduced in [22], i.e. score the correlation 
between motion beats and audio beats. The motion beats are calcu-
lated as the relative minima in kinematic velocity. The audio beats 
are the 1-dim one-hot beats, which are generated from Librosa [28]. 
The Beat Alignment Score is de�ned as the average distance of each 
motion beat that are aligned to its nearest audio beat: 

’ 1 < 
B2>A4 = 4G? (<8=(k1G8 , 1~ 9 k2)/(2f2)) (5)

= 
:=1 

where ⌫G = {1G8 } and ⌫~ = {1~ 9 } is the audio beats and motion 
beats respectively, f = 3 is a normalize factor. 

4.3 Quantitative Evaluation 
In this section, we report the experimental results of the encoding-
decoding framework with the two baselines: [17] and [14] on the 
test set as mentioned in section 4.1.1. The results are shown in 
Table 1. Compared with the two baselines, our generated motion se-
quences overall are much closer to the real dances, as well as three 
styles of dances, in the aspect of spatio-temporal evaluation by FD. 
While Dance Revolution produces closer FD in Zumba, the aver-
age spatial distance di�erence between the real dances and Dance 
Revolution is worse than between real and our methods. Generated 
motions from Dancing2Music perform better than our method re-
garding the spatial distance only but worse in the temporal part 

60



A Spatio-temporal Learning for Music Conditioned Dance Generation ICMI ’22, November 7–11, 2022, Bengaluru, India 

Table 1: Dance Generation Evaluation 

Methods 

Ballet Hiphop 

Spatial Dist. Frechet Dist.# Beat Align. Spatial Dist. Frechet Dist.# Beat Align. 

Real Dances 9.406 - 0.382 9.476 - 0.389 
Dancing2Music [17] 7.211 64.413 0.371 6.925 49.717 0.389 
Dance Revolution [14] 5.622 66.752 0.373 4.568 48.505 0.397 
Ours 5.981 54.381 0.381 5.598 44.619 0.398 

Methods 

Zumba Overall 

Spatial Dist. Frechet Dist.# Beat Align. Spatial Dist. Frechet Dist.# Beat Align. 

Real Dances 9.382 - 0.420 9.421 - 0.397 
Dancing2Music [17] 9.772 94.308 0.420 7.969 69.479 0.393 
Dance Revolution [14] 6.036 54.259 0.419 5.409 56.505 0.397 
Ours 7.834 61.658 0.418 6.471 53.553 0.398 

evaluation, which indicates the motions lack consistency. Overall, 
our generated motion sequences is more realistic in the combination 
of spatial and temporal evaluation Besides, we evaluate the dance 
style consistency with music by the beat alignment score. Overall, 
our method and Dance Revolution result in scores very close to the 
real dances. However, we observe that the alignment score is better 
correlated with Ballet’s real dances than the two baselines. This 
shows that our method for motion-music correlation is better than 
the others in general. 

5 CONCLUSION 
This paper presents a novel position-wise encoding-decoding frame-
work for spatio-temporal learning of long-term skeleton-based 
motions and music conditioned motion generation. Speci�cally, 
we introduce a regional attention-based encoding layer to e�-
ciently learn long-term sequences of audio features and fuse multi-
modal sequences of audio-to-motion features. Besides, we propose 
a graph topology formalization method to depict the intra- and 
inter-skeleton connections in a motion sequence and present a 
graph-based decking layer to interpret the spatio-temporal infor-
mation from the graph. The experimental results show a promising 
performance of our framework on motion quality and motion-music 
correlation metrics. 
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