
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. X, JUNE 2022 1

R1DIT: Privacy-Preserving Malware Traffic
Classification with Attention-Based Neural

Networks
Onur Barut§, Member, IEEE, Yan Luo, Member, IEEE, Peilong Li, Member, IEEE,

and Tong Zhang, Member, IEEE

Abstract—With the advances in deep learning techniques and
the increase in the volume of network traffic data, deep neural
networks trained directly with the raw traffic data have become
more popular and successful for malware traffic classification
without explicit feature extraction. However, most of the existing
studies raises privacy concerns when using the payload data and
ignore the generalization of the model to the newly emerged
traffic such as DDoS detection on TLS 1.3. To overcome these
limitations, we introduce a malware traffic classification system,
Residual 1-D Image Transformer (R1DIT) model. We first lever-
age network domain knowledge by carefully parsing IP, HTTP,
DNS, and unencrypted TLS record headers as sequences of bytes
for input without interfering with IP addresses, port numbers and
the payload. Then, we apply raw data transform and attention-
based modules in our deep model to classify different malware
types and benign traffic. Our results on NetML dataset show
that the proposed model delivers 0.972 F1 score, nearly 0.3
higher than the feature-based methods and outperforms state-
of-the-art models with 0.9999 F1 score for multi-class malware
classification task using CICIDS2017 dataset. The generalization
of this model has been proven using the TLS 1.3 traffic obtained
from CICDDoS2019 dataset with the detection rate 0.9897 using
meta-learning.

Index Terms—Flow-based network intrusion detection, mal-
ware traffic classification, deep learning, image transformer
model, meta learning.

I. INTRODUCTION

THE importance of emerging information and communi-
cation technology solutions play an important role in

our social and economic life as the number of interconnected
devices increases. In this sense, technological developments
directly affect our lives with an increased exposure to mali-
cious attacks, such as violating user privacy, stealing sensitive
data for ransom, and disabling network services either by
flooding or damaging the hardware or the software [1]. Sim-
ilarly, many companies, governments, and even universities
face various types of cyberattacks to steal valuable information
for ransom or crash their services with Distributed Denial
of Service (DDoS) attacks to damage their reputation. Also,
recent developments like TLS 1.3 bring new security con-
cerns as attackers can quickly adapt their malware using this
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change to disguise their malicious intention. For this reason,
it is extremely important that the network security system
adapts quicker to this change to keep the servers running and
protect valuable information. Hence, an adaptable, scalable,
and cost-effective solution for emerging network attacks is of
paramount importance. For this purpose, cyber security experts
and researchers are focusing on creating a secure Internet in
the age of exponentially growing digitalization.

In the early days, port-based and signature-based payload
analysis including Deep Packet Inspection (DPI) were the
dominating approaches. However, there are two major disad-
vantages: i) DPI violates of the user’s privacy by analyzing
the packet payload; ii) new malware and unseen malware
families can easily escape from the detection due to outdated
databases. Moreover, the increasing adoption of encrypted
protocols (TLS) alongside dynamic ports is eliminating these
approaches, posing new challenges for accurate network traf-
fic classification. For example, malware traffic classification
comes with exacerbated challenges and requirements due to
(i) increasing numbers of malware, and (ii) frequent automatic
updates of malware and traffic infrastructure resulting in insuf-
ficient training samples per malware type and not delivering
the desired performance. Therefore, Machine Learning (ML)
based classifiers are considered the most suitable solution.

Conventional ML models require feature engineering to
train an accurate classifier. However, successful use of standard
ML classifiers relies heavily on obtaining handcrafted features
by a domain expert that correspond to statistics extracted
from the packet sequences in the network flow. Unfortunately,
identifying and extracting these features is time consuming and
rapidly outdated compared to the evolution of malware traffic,
precluding the design of accurate and up-to-date malware
traffic classifiers with traditional ML approaches. Additionally,
ML-based models trained on a dataset generally do not work
well when applied to another dataset with slightly different
distribution and require expert intervention, which is often
tedious and greatly slows down the cycle of DevOps.

Based on the above limitations, the use of raw data and
Deep Learning (DL) methods in network traffic analysis is
highly desired in the most recent works. Deep Learning
is a sub-domain of Machine Learning which leverages the
flexibility and complex design of artificial neural networks.
Unlike traditional ML algorithms, DL models can learn their
own features once fed directly by the raw data. One drawback
of DL models is that they require a large volume of training

0000–0000/00$00.00 © 2021 IEEE

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3211254

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on January 16,2023 at 08:03:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. X, JUNE 2022 2

data to learn these self-extracted representations for an accu-
rate classification. Luckily, thanks to more readily available
network traffic data, deep learning models can get properly
trained and unleash the power on malware classification.

Recently, attention-based deep neural networks have shown
to outperform the state-of-the-art in object detection and text
analysis tasks [2], [3]. Especially for text analysis where a
word in the sentence (e.g., subject) may affect another word’s
form (e.g., verb) in a sentence, attention-based solutions can
exploit this relation to learn the representations for each
input. Hence, attention-based neural networks offer a great
opportunity for accurate malware traffic classification, as the
network packets and sequence of packets in a flow have a very
similar structure to that used in text analysis.

Securing the user’s privacy in the network is one of the
most vital goals when designing malware traffic classification
systems (MTCSs) for sustainable Internet usage. Companies
providing online services must adhere strictly to the GDPR
guidelines to prevent litigation over the possible exposure of
sensitive data. Since users’ data is transferred at the application
layer, it would be desirable for the business to perform a
network traffic analysis without using the application layer
payload to protect users’ private information and reduce the
risk of being held accountable for the exposure of sensitive
data in the event of a breach. Defense mechanisms to classify
the network traffic in MTCSs are generally designed using
packet-based or flow-based methods. Flow-based methods can
be implemented either with machine learning combined with
flow feature engineering or deep learning applied directly
to the raw flow data [4], [5] while packet-based methods
are mostly designed with raw data and deep learning [6].
However, previous works utilize either the payload data or do
not perform anonymization, where in both cases the privacy
of the user is violated. Besides, prior works ignore the domain
specific knowledge and miss a huge potential for a significant
improvement in the accuracy.

One of the major issues in malware detection is the constant
rise of unseen attacks. Most of the detection systems trained
with older dataset cannot perform desirably on the unseen
traffic due to the changes of the traffic behavior. For example,
with the release of TLS 1.3 in late 2018, typical TLS 1.2
handshake with 5 to 7 exchanged packets between client and
server, which places significant overhead on the connection,
has been replaced by server certificate encryption making it
possible to perform a TLS handshake with 0 to 3 packets.
Therefore, the effectiveness of a malware traffic classification
system trained with traffic on TLS 1.2 on detecting the unseen
encrypted malware traffic using TLS 1.3 is yet to be explored.

In this article, we propose an attention-based privacy-
preserving malware traffic classification system which allows
to train directly from raw traffic data by automatically learning
feature representations for high-performance classification in
a dynamic and demanding network traffic environment to
generalize to unseen malware traffic. We implement a novel
Residual 1-D Image Transformer (R1DIT) model with 2-D
positional encoding and multi-head self-attention mechanisms
to classify malware traffic. We utilize IP and TCP/UDP header
data without IP and port addresses for anonymization and

Fig. 1: Flowchart for our malware traffic classification system.

generalization. We also utilize the domain knowledge parsing
TLS, DNS and HTTP traffic and take the advantage of
unencrypted header information without any payload data.
Our model demonstrates superior accuracy by comparing to
different classifiers trained with the extracted flow features.

Our contributions in this article are threefold: (1) we pro-
pose a novel network flow classification technique leveraging
protocol-specific raw header data by preserving users’ privacy
with self-attention based neural network; (2) compare the ac-
curacy and the inference speed of the proposed model to prior
works employing flow features or raw bytes as input utilizing
NetML [7] and CICIDS2017 datasets [8] and outperform the
state-of-the-art; and (3) propose a generalization approach for
our model that uses meta-learning to improve its output class
capacity to identify newly emerging TLS 1.3 malware traffic
without sacrificing the original accuracy with the limited size
of the TLS 1.3 subset of CICDDoS2019 [9] dataset.

The rest of the article is organized as follows. In Section
II, we discuss the similarities and differences of our work to
the related literature. In Section III, we describe the proposed
R1DIT deep neural network and model the malware traffic
classification problem with meta learning. In Section IV, we
provide detailed explanation about the experiment setup. In
Section V, we present and discuss experimental results of the
proposed system, and finally in Section VI we conclude our
work indicating possible future research directions.

II. RELATED WORK

In Table I, we summarize several state-of-the-art malware
traffic classification systems to address their limitations and
relevance to position our study in the literature. The first
group uses flow features as input type which by default
considers privacy of the users as no payload data is utilized.
However, their primary drawbacks are the time and complexity
of the feature engineering step as well as the different feature
preprocessing methods used in each research, which makes
it difficult to provide a unified solution. The second group
uses raw data with deep learning algorithms for more accurate
results to get around this issue; nevertheless, most of them
do not take privacy concerns into account by processing
the payload data. The third group, unlike others, tackles an
important problem of generalization and propose methods to
classify unseen and newly emerged traffic. However, there is
still a gap in the literature that we want to close with this work
by presenting a comprehensive privacy-preserving approach
that uses raw data and deep learning to identify new and
previously undisclosed malware traffic. By utilizing the raw
traffic data and removing user IP addresses and payload data,
we aim to resolve this discrepancy and show how it is simple
to modify for accurate unseen and newly discovered TLS 1.3
malware traffic classification.
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TABLE I: Summary of relevant literature for malware traffic classification. RD: Raw Data. FF: Flow Feature. PA: Proposed
Algorithm. ML: Machine Learning. DL: Deep Learning

Input Privacy Unseen
Ref. Dataset Data Preserving Method Traffic notes
[8] CICIDS2017 FF 3 ML 7 Introduces CICIDS2017 dataset
[9] CICDDoS2019 FF 3 ML 7 Introduces CICDDoS2019
[10] ISCX2012,CICIDS2017 FF 3 DL 7 Deep learning with CNN and LSTM
[11] CICIDS2017 FF 3 DL 7 DNN outperforms RF
[12] ISPDSL,Entry09,Entry10 FF 3 DL 7 Multi-task flow prediction
[13] CICIDS2017 FF 3 ML 7 RF outperforms all including DNN with their proposed feature set

[14] NSL-KDD,UNSW-NB15, FF 3 ML 7 NSGA-II for feature selectionCICIDS2017
[7] NetML,CICIDS2017 FF 3 ML 7 Introduces NetML dataset and new set of flow features
[15] NetML,CICIDS2017 FF 3 ML/DL 7 Compares ML/DL models on TLS traffic with feature selection by Chi-Square
[16] CICIDS2017 FF 3 ML 7 25 features selected by Fischer Score algorithm
[17] CICIDS2017 FF 3 ML 7 Applies PCA on features to classify DDoS

[18] NetML,CICIDS2017, FF 3 DL 7
Multi-task model with hierarchical predictions using

VPN-nonVPN2016 121 flow metadata features

[19] CIDDS-001,CICIDS2017, FF 3 PA 7 Proposes Energy-based Flow Classifier (EFC) using Inverse StatisticsCICDDoS2019
[20] USTC-TFC2016 RD 7 DL 7 First 784 bytes of a packet (28x28) including TCP payload with CNN
[4] CTU-13,VPN-nonVPN2016 RD 7 DL 7 First 1024 (32x32) bytes of each flow with CNN
[5] Private RD 7 ML/DL 7 First 784 bytes of L7 payload
[6] ISCX2012,USTC-TFC2016 RD 7 DL 7 First 54 bytes for packet-level malware detection with LSTM
[21] VPN-nonVPN2016 RD 3 DL 7 Proposes Self-Attention Model with first 40 bytes for packet classification
[22] MTAN,CTU RD 7 DL 7 Specialized for encrypted traffic only

[23] NSL-KDD FF 3 PA 3
Proposes Clustering-Enhanced Hierarchical Transfer Learning (CeHTL)
to detect unseen malware traffic based on transfer learning

[24] NSL-KDD FF 3 DL 3 Zero-shot learning based sparse autoencoder to detect unseen malware

[25] ISCX2012,CICIDS2017 RD 7 DL 3
First 16 packets and 256 bytes per packet with CNN based FC-Net and
applies Few-shot learning to detect unseen malware traffic

[26] Bot-IoT FF 3 DL 3 Hierarchical anomaly detection with autoencoder to detect unseen malware

[27] CICIDS2017,CICIDS2018 RD 7 DL 3
First 30 packets and 128 bytes per packet and
applies Few-shot learning to detect unseen recent malware traffic

Ours NetML,CICIDS2017, RD 3 DL 3
Proposes accurate R1DIT model with raw data that can be

CICDDoS2019 easily generalized to unseen TLS 1.3 malware traffic

A. Traditional Machine Learning Methods
Feature engineering is necessary to reduce the input size

for training without losing important or relevant information.
Although feature extraction implicitly preserves the privacy
as the extracted features are not obtained through payload
processing, a well-engineered feature processing is required
to train an accurate classifier. Hence, many researchers pro-
pose different methods for feature engineering [7], [13]–[17].
However, each method heavily depends on the dataset under
study, and it is a challenge to apply a method in another
dataset to obtain an accurate result. Additionally, the design
and execution of the feature extraction and selection step take
a significant amount of time and are computationally costly.
To circumvent these issues, many studies use the raw data. In
our study, unlike these works, we completely depend on raw
header data and exclude IP and payload data from the packets
to ensure the privacy is preserved in our method it can be
generalizable.

B. Deep Learning Based Methods
The most significant advantage of deep learning based clas-

sifiers is that they can be trained using directly from the raw
data without feature extraction. Although many researchers
prefer to leverage this advantage [4]–[6], [20]–[22], [25], [27]
because of improved results, there are others who prefer to
train deep learning models using pre-extracted features [10]–
[12], [15], [18], [24], [26]. However, this brings additional cost
of complexity to the classification algorithm and the need for
larger amount of training data. Moreover, when the privacy

of the users is of utmost importance, extra cautions must be
taken while utilizing the raw data. Nevertheless, except Xie et
al. [21], all other aforementioned studies utilize the application
layer payload to train their classifiers. In our research, unlike
others, we develop a deep learning-based solution employing
unencrypted header data and packet anonymization for privacy.

C. Detection of Newly Emerged Malware Traffic

Previously proposed approaches only focus on the accuracy
on the classification using individual datasets, which raises
concerns on their performance in the wild where frequently
newly released malicious traffic emerges. To evaluate and
modify the proposed approaches on the unseen malware traffic,
feature-based [23], [24], [26] and raw data-based [25], [27]
techniques are studied. However, NSL-KDD dataset used by
[23], [24] is relatively outdated and does not reflect the
recent advances. On the other hand, [25], [27] uses relatively
recent datasets; however, their method utilizes the application
layer payload and hence fails to satisfy the privacy issue. To
guarantee privacy while adapting to identify emerging TLS 1.3
encrypted threats, our study solely uses the header data and
eliminates IP and port data from the packets.

III. PROPOSED SYSTEM DESIGN

We propose our deep learning-based malware classification
system shown in Figure 1. First, network traffic is captured
beforehand and stored as packet capture file format (PCAP).
Second, raw data processing is applied to parse the packet
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Fig. 2: IP packet parsing in terms of bytes.

data starting from the first bit of IP header and form bi-
flow sessions according to 5-tuple, source and destination IP
addresses, port numbers and the transport layer protocol. Link
layer header, or Ethernet header which contains Media Access
Control (MAC) addresses and link type, is excluded because
this information reflects the connection setup of the machine
to the Internet with its specific MAC addresses that won’t
generalize. Third, extracted bi-flow sessions are anonymized
by removing the IP and port address values to protect the
user’s privacy. This step also ensures that the proposed system
does not overfit, in other words, memorize the static IP and
port addresses due to the traffic capture setup. After that, TLS,
DNS, and HTTP protocol headers are carefully parsed without
interfering with the payload. As options field in IP header is
not often used, we do not take it into account when parsing
the IP header data.

Byte values in the packet sequence affect each other. For
instance, transport layer header size is either eight bytes for
UDP or twenty for TCP if the byte value at position index
9 of IP header is hexadecimal "11" or "06", respectively.
Similarly, the next packet in the flow may contain "SYN-
ACK" information for a TCP flow if the first packet is a
TCP handshake initiation "SYN". Because of these spatial and
temporal relation in the flow byte sequence, 2-dimensional
position encoding is implemented. Finally, extracted raw data
is fed to a deep learning model, namely Residual 1-D Image
Transformer (R1DIT) model making use of 2-D position
encoding and embedding layers. The following subsections
provides detailed explanations about the components of our
proposed malware classification system.

A. Raw Data Processing and Anonymization

The packet switching on the Internet contains private data of
the user such as MAC and IP addresses of the users’ devices.
In our system, we do not use layer two header; hence, avoid
exploiting MAC addresses because layer two header contains
information about only the physical connections between the
devices which cannot be used to design a generalizing system.
Therefore, we start parsing each network packet starting from
IP header. Figure 2 demonstrates how we ensure the anonymity
and parse the IP packet.

Even though migration from IPv4 to IPv6 continues, most
of the network traffic is still handled with IPv4. Under such

assumption, we build our system using IPv4 traffic. IPv4
packet is composed of 20-byte header and the payload. Byte
index 9 in the IP header gives the information about the
encapsulated transport layer protocol. The hexadecimal value
“06” and “11” indicates if the IP packet payload is TCP or
UDP datagram, respectively. We store this information because
UDP and TCP header sizes are not the same as UDP has 8-
byte header while TCP has 20 (or up to 60, depending on
the options field). According to each protocol, the positions
of the following bytes represent different information. Finally,
last two 4-byte data of IPv4 header represents the source and
destination IP addresses, respectively. Therefore, we drop the
byte locations corresponding to IP addresses to comply with
the user’s privacy. This also guarantees that the designed model
does not memorize this information due to the limited number
of machines used to collect the traffic data.

The first byte of the datagram is the first byte of the IP
packet payload. We continue parsing transport layer datagram
after IP header. As in the case of benign traffic, most of the
malicious data are transferred using either UDP or TCP as
transport layer protocol. In both cases, the first two 2-byte data
in the datagram header stand for the source and destination
port addresses. Therefore, we also drop those to establish a
general model that performs well on real-world scenarios.

B. Protocol Specific Packet Processing

We disregard link layer header, which is specific to network
interface cards and do not carry much information about
network flows. We make use of IP header in network layer
because they reflect non-device specific Internet traffic behav-
ior. For similar reasons, we continue utilizing the raw data for
the transport layer protocols such as TCP and UDP. In such
a way, we do a first pass to narrow down the range of bits in
packet headers to feed to our machine learning models.

TLS protocol is implemented on top of TCP for secure
and reliable data transfer. The first byte of TLS header
defines the content type of the TLS record. Hexadecimal “16”
indicates that the TLS record is a handshake record in which
the authentication between the two devices occurs with the
certificate key and cipher suite exchange. In this case, we take
advantage of all the data available in the TLS record since
it is not the encrypted data but the initiation of an encrypted
connection. Hexadecimal “17” specifies that the TLS record
contains the encrypted data; therefore, we exclude the protocol
message in the TLS record but parse the byte data right before
the message starts.

Similarly, HTTP is an application layer protocol for data
communication for web serving build on top of TCP. The
HTTP header of the request or response messages contains
metadata to be used for traffic classification. Therefore, we
parse the HTTP packets up to the byte location where the
message begins by checking the Carriage return and Line Feed
(<CR><LF>) which is the last byte before the message.

Unlike HTTP and TLS protocols, DNS protocol which
translates domain names to IP addresses uses UDP in transport
layer. Every device connected to the Internet has a unique
IP address, similar to physical address. With DNS, the users
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can reach to other users or services by typing the host name
instead of IP in the browser. DNS traffic consists of queries and
responses to obtain the IP address so that the data exchange
can take place. We take advantage of all the query and
response data in DNS for malware traffic classification.

Network traffic other than the specified protocols above are
parsed up to the end byte of the transport layer protocol. All
packets in the flow are parsed as described and eventually we
obtain data with input shape !x# where ! and # represent
used header length in terms of bytes in each packet and
the number of packets, respectively. We build such a parser
state machine which can be extended to work with new or
customized protocols.

C. Feature Embedding and 2-D Positional Encoding
In to generate rich representations of the raw input data with

both spatial and temporal relationships, we use feature embed-
ding with position encoding. Similar to text classification tasks
where the relative position for each token is important, we
firstly implement a feature embedding layer for our raw packet
data. Therefore, we embed the !x#x1 input data to !x#x⇡
using 2-D convolution of size ⇡. The feature embedding layer
is implemented and trained within the proposed model. In
other words, the model does not count on any other pre-trained
embedding layer at this stage.

It is important that we can leverage the temporal and spatial
relation among the header bytes since the byte value of each
position in the packet sequence affect the other as explained
in Section III. The model we opt does not use a recurrent
neural network due to its inefficiency in training. Instead, we
need to introduce some information to the model regarding
the position of the bytes in the raw data sequence. Since
our input data is in 2-D form and each instance consists of
packets sent and received in an order, we secondly expand the
positional encoding introduced by [3] into 2-D and capture
the relative positions of the raw byte sequence for each packet
by implementing a non-trainable two-dimensional sinusoidal
position encoding. !x#x1 input data is sinusoidal encoded to
!x#x⇡, which is the same dimension with feature embedding,
allowing us to sum both for further processing in the model.

Using the justification stated above, Algorithm 1 imple-
ments feature embedding with 2-D positional encoding. We
represent the network flow data formed by the sequence of
packets and bytes as F of size !G#G1. Firstly, the learned
feature embedding FE is obtained to enrich the meaning
of each byte in tensor F with FE = F ¢ ,2 where ¢

denotes the 2-dimensional convolution operation, ,2 is the
learned convolution kernel of size  that is updated during
training, and FE is the !G#G⇡ dimensional embedding tensor.
Secondly, the position encoding encodes the position P of a
byte in a single packet data, which is sequence of packets in
Lx1x1 dimension, into a !G1G⇡ dimensional position tensor
PE via sine and cosine functions with a constant 10000. As
discussed by in [3], learned and fixed position encoding do
not vary in the output. Thus, we select sinusoidal encoding
to reduce the number of learned parameters in our model.
Moreover, it creates a geometric progression which allows our
model to learn relative positions. Finally, we concatenate the

Algorithm 1: 2-D Feature Embedding and Position
Encoding
Result: Y /* Y.shape: [L, N, D] */
Input: K, N, L, D, F
/* 1) Create feature embedding tensor FE */
�⇢  2>=E23 (4<143_38< = ⇡, :4A=4;_B8I4 =
 , BCA834 = 1) (�)

/* 2) Create position encoding tensor PE */
0=6;4_A03B A0=64(!)/100002⇤(A0=64 (⇡)//2)/⇡

i=0 while i<D do
if i%2==0 then

0=6;4_A03B[:, 8]  B8=(0=6;4_A03B[:, 8])
else

0=6;4_A03B[:, 8]  2>B(0=6;4_A03B[:, 8])
end
i+=1

end
/* Initialize position encodings with angles */
%⇢  0=6;4_A03B.A4B⌘0?4(!, 1,⇡)

/* Loop every packets in the flow and expand position
encoding tensor */

j=1 while j<N do
%⇢ .2>=20C4=0C4(%⇢ ⇤ 2>B(1/# 9/# ), 0G8B = 1)
j+=1

end
/* 3) Obtain and return output tensor Y */
. = �⇢ + %⇢

PE along the dimension of the packets, which refers to axis
1, and obtain the final representation tensor Y = FE + PE.

D. Residual 1-D Image Transformer Model

Deep neural networks accomplish many tasks successfully
such as object recognition in computer vision and text anal-
ysis in natural language processing. Recently, attention-based
models such as transformers achieve supreme performance in
both fields [2], [3]. Network traffic and packet formatting can
be compared to the relationship between words in a sentence.
In either case, the value of one object affects the value of the
other object in the array. For example, a word (or byte values
at certain locations in the packet) determines the structure of
another word in a sentence (the byte value of another index
in the packet). This relationship can be used successfully by
attention-based models to classify different malware types.

Inspired from those, since the bytes in each position have
different meaning and their importance differ, we propose our
Residual 1-D Image Transformer (R1DIT) which is shown in
Figure 3 (A) utilizing the transformer’s attention mechanism.
Preprocessed network traffic capture data, also called as raw
data in the model, is fed to both feature embedding and
position encoding as described in previous sections. Extracted
abstract representations are then forwarded to two cascaded
residual transformer blocks. Later, a maximum pooling in two
dimensions are performed to reduce the complexity in the
model which is followed by a flattening operation to obtain
a one-dimensional representation vector for each instance.
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Fig. 3: (A) Residual 1-D Image Transformer (R1DIT) Model.
(B) Structure of a single residual transformer block.

Finally, output class probabilities are obtained using a dense
layer with Soft-Max activation function.

Residual skip connections are important for efficient training
using simple first order algorithms [28] and hence enable
the model to back-propagate the gradients without vanishing.
In addition, it allows to create deeper neural networks with
proper training which empowers the classification perfor-
mance. Therefore, we employ residual skip connections in
our transformer-based model. Figure 3 (B) illustrates that
single residual transformer block consists of multi-head self-
attention, layer normalization and 2-D convolutional layers
with residual connections. Since the input and output shape
of the residual transformer block are the same, multiple
blocks can be cascaded; however, in our malware classification
problem, we find that using two of those residual transformer
blocks provide sufficient depth to grasp the essential represen-
tations for a successful classification.

E. Meta Learning for Malware Traffic Classification
The goal of meta learning is learning to learn so that the

model can easily be adapted to classify new classes with
very limited amount of support samples. On the other hand,
traditional machine learning techniques rely on large volume
of labeled datasets for classification tasks that fail to generalize
on unseen data. In other words, we assume that the data used
to train the model and the test samples are independent and
identically distributed (iid) which may not be always true in
a real-world scenario.

Applications and malicious software are constantly being
updated and frequently new versions or unseen traffic behavior
are observed in this very dynamic networking environment.
As a recent example, packet exchange behaviour of TLS
flows has recently been altered significantly as described in
Section I. However, due to slow adaptation of the network
applications, it is hard to collect a lot of data after TLS 1.3
release to train a deep model. Therefore, it is necessary to use
the prior knowledge from a similar problem. To that extent,
we claim the hypothesis that although previously collected
network traffic data do not have any samples belonging to TLS
1.3 traffic but reflect similar distribution, the model trained
on that traffic would be useful to classify TLS 1.3 malware
traffic. In this study, we evaluate how previously collected data

would generalize to the unseen traffic on TLS 1.3 and propose
transfer learning and few-shot learning methods using R1DIT
model. To show that with real examples, we have selected
CICDDoS2019 dataset as a publicly available and recently col-
lected traffic to extract TLS 1.3 traffic and picked CICIDS2017
trace as the source dataset since its traffic distribution is more
similar to CICDDoS2019.

1) Transfer Learning (TL): Transfer learning aims to use
the information extracted from the source domain with large
volume of labeled data to help build more precise models in
the same or a different target domain using only a few labeled
data. There are two implementations of transfer learning: (1)
Target adaptation and (2) expanded output. Target adaptation
learning uses the source data to train the model parameters and
use this prior information to hot-start the model for the target
domain. In this method, the output layer is redesigned for
the target domain and the source data classification capability
of the model is not preserved. On the other hand, expanded
output learning both preserves the model to perform accurate
classification on the source domain while expanding its output
layer to classify new classes in the target domain.

Figure 4 demonstrates how we implement transfer learning
to detect TLS 1.3 malware traffic. We use CICIDS2017 dataset
as source domain and TLS 1.3 traffic of CICDDoS2019 dataset
as target domain. Firstly, we train the R1DIT model on
CICIDS2017 dataset and chop-off the output layer. Then, we
add a new output layer from the target domain with 5 classes
for target adaptation learning and 8+5 classes for expanded
output learning. For expanded output learning, the first 8
outputs correspond to the source dataset (CICIDS2017) classes
and the rest correspond to 5 different DDoS malware types
with TLS 1.3 obtained from the target dataset (DDoS2019).
We freeze the weights except the new output layer and fit the
model to the T-sample per new class training set to overfit
the output layer where ) = {1, 5, 10, 20}. If the target class
contains fewer samples than ) , then we leave at least 1 sample
for the validation set and use the rest for the training. Finally,
we unfreeze all the weights and fine-tune the whole model
with T-sample per new class and )GA sample per old class,
where r stands for the ratio of older samples to newer in the
training batch and is set to be 3.

2) Few-Shot Learning (FSL): Few-Shot Learning is mainly
proposed for computer vision tasks to recognize new classes
without collecting a lot of samples for those to train the model.
Instead, the proposed method learns how to compare two
embedding representations generated by a pre-trained model to
classify a query, in our case, raw bytes of the network traffic,
based on a specific metric, e.g., cosine similarity. If only one
sample is available for the new class, it is called One-Shot
Learning (OSL). We want to detect TLS 1.3 malware traffic
as the query sample. We know that our pre-trained R1DIT
model using CICIDS2017 dataset does not contain any sample
belonging to these new classes we want to detect in the support
set. The support set contains n-samples for k-new-classes, and
it differs from the training set such that training set contains
lots of samples in the source domain.

The model which can learn to map the given input into
embedding vector is trained using a Siamese network topology
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(a) Target Adaptation Learning (b) Expanded Output Learning

Fig. 4: Transfer Learning for TLS 1.3 Malware Traffic Classification

such that the generated representations are similar for the intra-
class samples and different for the inter-class samples. Figure
5 (a) shows how the Siamese network is trained with triplet
loss. Triplet loss is determined with an anchor sample, positive
sample, and a negative sample. In each training iteration, an
anchor sample is randomly selected from the training set.
Then, a positive sample is randomly selected from the same
class. Similarly, a negative sample is randomly selected from
the training set excluding the anchor class. Finally, the model
is trained such that the cosine similarity function outputs
as close as possible to value 1 for the anchor and positive
sample and �1 for the anchor and negative sample. We use
CICIDS2017 dataset as the source domain to train our R1DIT
model in a Siamese topology.

In the next step, the pre-trained R1DIT model needs to
be appended by an output layer whose weights should be
initialized with the mean class embeddings for a faster and
more accurate convergence [29]. As R1DIT model transforms
the input to a vector representation of size 208, we extract
mean class embeddings for both source and target datasets
in the shape of 8G208 and 5G208, respectively, as shown in
Figure 5 (b). Then, we use the concatenated weight matrix of
size 13G208 to initialize the weights of the output later before
softmax to calculate the class probabilities. The fine-tuning
training stage is similar to transfer learning. Finally, we use
T-sample per new class and )GA sample per old class to fine-
tune the whole model where ) = {1, 5, 10, 20} and A = 3 as
shown in Figure 5 (c). We leave at least 1 sample for the
validation set and use the rest for the training if the target
class contains fewer samples than ) .

IV. EXPERIMENT SETUP

A. Dataset
In our experiments, we focus on a multi-class classification

task for both encrypted and non-encrypted malware traffic
classification. We use two public datasets to evaluate our
model. Both Stratosphere IPS [30] and Canadian Institute
for Cybersecurity (CIC) provide public network capture data
in ‘.pcap’ format for research purpose. We firstly compile a
new set of malware traffic classification dataset utilizing a

subset of a very large repository of Stratosphere IPS selecting
19 different types of malware classes such as Adload, PUA,
TrickBot, Ramnit, and Ransom etc. along with benign traffic
data mostly captured in 2017 and name it NetML dataset
[15]. We also utilize CICIDS2017 [8] dataset to compare our
model with the previous works. In CICIDS2017, raw capture
data contains the whole trace record throughout the day.
However, during the data collection process, malware attacks
are performed only in a specific time slot of the day. Therefore,
we filter those network traffic of our interest according to
the provided time stamp in the dataset web page, then label
the extracted data into 8 classes including “DDoS”, “DoS”,
“portScan”, “benign” etc. We extract the bi-flows according
to the five-tuples and end up with 288, 918 and 452, 705 flow
samples for NetML and CICIDS2017 datasets, respectively.

Flow features extracted from the two datasets for the flow
feature-based baseline experiments are well described in [7].
In this study, we focus on utilizing the raw-packet data and
compare our results with the flow feature-based approach. For
that purpose, we utilize the raw network traffic capture files of
the datasets. Unlike the NetML dataset, which consists only of
network capture files in PCAP format, the CICIDS2017 dataset
is available both in PCAP format as raw data and in CSV
format, which provides 80 statistical features extracted using
CICFlowMeter and PCAP files. [8]. The CSV file is mostly
used by researchers who focus on model optimization. PCAP
files, on the other hand, are more useful for those who want to
extract their own flow features from the raw data. Additionally,
PCAP files are more attractive to deep learning researchers as
they can harness the power of deep neural networks over the
raw data. Therefore, we use PCAP files instead of CSV files
in our experiments with CICIDS2017 dataset.

The network flow data are standardized, in other words,
the mean is extracted and from each sample and divided by
the standard deviation of the dataset. We train the proposed
model with the 90% of the data and obtain results using the
remaining 10% utilizing 10-fold cross validation and provide
the averaged results. Presenting 10-fold cross validation results
supports our claim of an accurate and generalizable model by
avoiding presenting a snapshot of a single fold. Both NetML
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(a) Similarity Learning - Siamese Model Training (b) Mean Embedding Extraction

(c) Fine-Tuning

Fig. 5: One(Few)-Shot Learning for TLS 1.3 Malware Traffic Classification

TABLE II: Number of Bi-flow Samples in Different Categories
in NetML Dataset

# of Flows # of Flows
Label Training Test Label Training Test
Adload 34 5 MagicHound 31,004 3,445
Artemis 9,211 1,023 MinerTrojan 1,620 181
Benign 56,385 6,265 PUA 933 106
BitCoinMiner 909 101 Ramnit 410 45
CCleaner 13,982 1,553 Tinba 10,203 1,134
Cobalt 229 26 TrickBot 23,777 2,641
Downware 937 104 Trickster 45,990 5,110
Dridex 8,984 998 TrojanDownloader 915 101
Emotet 17,604 1,957 Ursnif 9,480 1,054
HTBot 19,565 2,170 WebCompanion 7,639 849

TABLE III: Numbers of Bi-flow Samples in Different Cate-
gories in CICIDS2017 Dataset

# of Flows # of Flows
Label Training Test Label Training Test
DDoS 40,338 4,482 ftp-Patator 3,547 394
DoS 12,847 1,428 portScan 136,697 15,188
Heartbleed 1 0 ssh-patator 2,210 246
Benign 210,030 23,336 webAttack 1,764 197

dataset and CICIDS2017 dataset details in terms of number of
flow samples used in training and test sets are given in Table
II and Table III, respectively.

To evaluate R1DIT model on TLS 1.3 unseen malware
traffic, we use CICDDoS2019 dataset. Table IV shows the
number of TLS 1.3 flows extracted from the dataset for each

TABLE IV: Extracted TLS 1.3 bi-flow Samples from CICD-
DoS2019 Dataset

Label LDAP MSSQL NetBIOS PortMap SYN
Day 1 2 3 10 3 186
Day 2 3 1 1 0 0
Total 5 4 11 3 186

malware type. Using the capture files for both days, we extract
209 TLS 1.3 malware traffic flows for 5 DDoS variations.

B. Environment
We implement the training and inference phases on a

workstation whose specifications are detailed in Table V. The
inference time to evaluate the efficiency of the R1DIT model
for a real-world scenario is measured and the accuracy is
denoted with macro-average F1 score to better understand
the performance of the model in the multi-class classification
task. The models are trained on GPU and their performance
is measured on both GPU and CPU for the inference phase.

C. Evaluation Metrics
Classification Accuracy: To compute the performance of the
proposed malware traffic classification system, macro average
F1 score, detection rate, also known as True Positive Rate
(TPR) or sensitivity and False Alarm Rate (FAR) which is
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TABLE V: Experiment Platform Specification

Item Specifications Item Specifications
Op. Sys. Ubuntu 16.04.6 LTS NVidia Driver 440.64.00
Python 3.8.6 CUDA Driver 10.2
Tensorflow 2.3.1 CuDNN Driver 7.6.5
CPU 2x Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz
GPU 2x GV100GL NVIDIA Tesla V100 16 GB
RAM 64 GB DDR4 @ 2666 MHz

equal to 1�(?428 5 8CH of the validation split is obtained using
the equations given from (1) to (3)
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where TP, TN, FP, and FN stand for true positive, true
negative, false positive, and false negative for a category,
respectively. The macro average F1 score is calculated by
taking the arithmetic mean of each category.

We calculate the cosine angle to determine the similarity
between the embeddings in FSL experiments. Similarity be-
tween anchor (A) to positive (P) and anchor to negative (N)
embeddings are calculated as given in equation (4)
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where � stands for the size of the embeddings and ⌫ = {%, #}
for positive and negative embeddings, respectively.
Performance Effectiveness: To evaluate the real-time appli-
cability, we measure the time taken by the malware traffic
classification algorithm using network flows as input. For flow
feature-based models, we measure the time taken by parsing
each packet and executing the computation for many different
flow features. For our raw data based R1DIT model, we only
measure the time to parse and preprocess the raw packets to
input to the model. For both methods, we also measure the
time taken to classify the test set.

D. Optimization Parameters
We use NetML dataset for model parameter optimization

and use the optimum model to evaluate its performance in
CICIDS2017 dataset to compare the proposed framework
with other’s approaches. Our model’s weights are randomly
initialized. Similarly, hyper-parameters such as batch size,
dropout ratio etc. are initialized with default values and then
tuned for the best model to achieve highest performance.

Table VI shows the hyper-parameters set to obtain the
presented results. Smaller values of kernel size such as 3
are more desirable to make the most of the neighbor bytes
and packets relation while the attention mechanism is utilized.
Therefore, convolutional kernel size for each operation is set
to be 3 with stride value 1. Max-pooling is used to reduce
the dimension for memory efficient operations in the output
layer and performed using 4x4 window with stride size 4.

TABLE VI: Hyperparameters used in the experiments

Loss Function Cat. Cross-Entropy Optimizer Adam
Learning Rate (LR) Exp. decayed Initial LR 0.0005
LR Decay Rate 0.9 LR Decay Steps 10000
Batch Size 64 Epoch 100
Embedding Dimension 16 Number of Heads 4
Conv. Kernel Size 3 Conv. Stride 1
MaxPool Kernel Size 4 Activation Function ReLU
MaxPool Stride 4 Dropout ratio 0.25
(2x50) Trainable Parameters: 40, 052⇤, 37, 544†
⇤: NetML dataset, †: CICIDS2017 dataset

Moreover, the batch size and dropout ratio are set to 64 and
0.25, respectively. Dropout is applied to avoid over-fitting
where the model performs well on training set by memorizing
the training samples and fails to generalize on the test set.

After hyper-parameter optimization, the embedding dimen-
sion parameter and the number of heads in the attention block
are set to 16 and 4, respectively. Number of heads in the
attention splits the embedded input data into different heads
to avoid losing local information in a large matrix. Rectified
Linear Unit (ReLU) is used as the activation function in all
layers except the output layer where Soft-Max function is used
for multi-class classification. The model is trained for 100
epochs to ensure the convergence.

Classification loss whose explicit function is given in equa-
tion (5) below is determined by categorical cross-entropy.

! = � 1
#

#’
8=1

⇠’
2=1

1H8 2⇠2 ;>6(?<>34; [H8 2 ⇠2]) (5)

where ! is the loss for classification model, # is the batch
size, ⇠ is the number of classes, 1 is the indicator function, and
;>6(? [H8] is the log-likelihood of the given input H8 belonging
to class 2 after mapped with model ?.

As the model loss converges, the smaller values of learning
rate allow the model to converge to the minimum. Therefore,
learning rate schedule is applied to reduce the initial value
as given in equation (6). The learning rate is initialized with
0.0005 and decay rate 0.9 with decay step 10000 are applied
for optimum convergence using Adam optimizer ;A (B) = ;A0 ⇤
3
(B/3B)
A

where ;A0, 3A , 3B , and B are the initial learning rate,
decay rate, decay step, and step number, respectively.

For few-shot learning, we train the Siamese model with
triplet loss as defined in equation (6)

)A8?;4C!>BB = # �
#’
8=1

B8<
+ +

#’
8=1

<0G(B8<�, 0) (6)

where # is the batch size, B8<+ and B8<
� are the similarity

between anchor-positive and anchor-negative, respectively.

E. Baseline Models
We compare our R1DIT model with several different ap-

proaches with and without feature engineering. Flow features
used to train these models are metadata features and TLS,
DNS, and HTTP protocol features if utilized within the flow.
If a flow does not contain any of these protocols, i.e., a
proprietary encryption protocol stacked on IP/TCP or any other
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Fig. 6: Multi-model approach to classify the malware traffic.

UDP-based protocol except DNS, only the metadata features
are extracted. The features used in this study are calculated
using up to first 40 packets in each flow. A comprehensive list
of these flow features can be found in [7].

1) Single Random Forest Classifier: A single random forest
classifier works as an ensemble model and consists of many
individual decision tree classifiers. The main reason we include
this classifier as a baseline model is because it is easy and fast
to implement. Single random forest (RF) model for malware
traffic classification utilizes all the metadata, TLS, DNS, and
HTTP features together. To design the random forest classifier,
we select 100 estimators and set the maximum depth to 10.

2) Multi-Model Random Forest Classifier: As Random
Forest classifier takes a 2-D matrix as input, where columns
correspond to features, specifically, Metadata, TLS, DNS, and
HTTP features in the given order, and rows correspond to each
flow sample, we create the data matrix accordingly. Since the
protocol-specific features are exclusive, i.e., a DNS flow will
never contain TLS features and vice-versa, our data matrix
will contain many entries as zero in TLS, DNS, and HTTP
related feature columns. Therefore, multiple random forest
classifiers are individually trained for different types of flows
such as DNS, TLS, HTTP, and others using the corresponding
feature subsets. In other words, all the features are utilized;
however, each classifier only uses the features-of-interest for
the classification. To say, a TLS encrypted flow is classified
by a random classifier which was trained only with metadata
and TLS features while an HTTP flow is classified by another
model trained only with the metadata and HTTP features.
Figure 6 explains the proposed model.

3) Multi-Task Hierarchical Learning (MTHL) Model:
MTHL model introduced by Barut et al. [18] consists of an
input block, a residual block, and an output block utilizing
1-D convolutional operations, batch normalization, and skip
connections for enhanced training performance. The input
block takes the preprocessed features as input and produces
activation maps which are then forwarded to the residual
block for deeper representation learning. Finally, the output
block predicts the high-level and low-level labels of the input
simultaneously and hierarchically such that the high-level
label estimator branch uses the low-level predicted label as
auxiliary information. This is also reversely coupled, i.e., the
loss due to the error in the high-level label prediction both
back propagates to high-level label classification branch and
low-level label classification branch through this auxiliary

Fig. 7: Self-Attention Mechanism (SAM) model for Malware
Traffic Classification.

TABLE VII: R1DIT model input shape optimization on
NetML dataset

Macro F1-score 28 bytes 50 bytes 75 bytes 100 bytes 125 bytes
2 packets 0.918 0.972 0.967 0.963 0.952
5 packets 0.919 0.971 0.966 0.970 0.969
7 packets 0.912 0.965 0.970 0.960 0.975

10 packets 0.914 0.967 0.956 0.955 0.940

connection. This model is trained using only the flow meta-
data features of size 121 using non-vpn2016, CICIDS2017,
and NetML datasets together and shown in [18] that this
model outperforms single-task single-level machine learning
classifiers in 22 out of 24 scenarios with different levels
of classifications in all three datasets. Due to its success in
flow feature-based network traffic classification and malware
detection, we use the results reported in [18] to evaluate our
raw data-based R1DIT model.

4) Self-Attention Based Model: We also adopt the text
classification idea from the NLP domain and implement a
self-attention-based deep learning model inspired by [21]
trained with flow features to evaluate the effectiveness of flow
features. Figure 7 shows the SAM model used for malware
traffic classification with flow features. Since the flows are
grouped as TLS, DNS, HTTP, or combination of TLS and
HTTP which actually refers to the flows that terminates when
TLS v1.0 handshake fails with fatal alert on protocol version
terminating the flow right after HTTP 502 Bad Gateway
message is received, we arrange the feature sequence such
that the metadata features are followed by the protocol-specific
features immediately. The length of the feature sequences !
is set to 244 and ⇡ to 16, which are the sum of the number
of the metadata, TLS, and HTTP features and the embedding
dimension size, respectively. The parameter ! is determined
by the dataset as it includes flows containing TLS and HTTP
traffic together. The remaining positions are zero-padded for
other types of flows as shown in Figure 7.

V. RESULTS AND DISCUSSION

A. Determining L and N
Experimental results of this study are presented and dis-

cussed in this section to demonstrate the effectiveness and
efficiency of the R1DIT model. Network flows may contain
different number of packets depending on the size of the data
to be transferred and the Maximum Transmission Unit (MTU)
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of the network connection, which is 1500 bytes for an Ethernet
connection. Therefore, many packets with different sizes can
be found in a single network flow. To find out the optimum
configuration, we perform a parameter search for the number
of packets and the size of each packet in terms of bytes and
present the macro average F1 scores in Table VII. Each row
gives the accuracy in macro average F1 score with the given
size of bytes used from each packet and each column specifies
the size of each packet. Second column which shows the
results when 28 bytes are used for each packet stands for the
plain analysis. In other words, 28 bytes are the IPv4 header
and TCP/UDP headers without IP and port address values and
any other protocol specific data such as TLS, DNS, HTTP.

We observe that using only 28 bytes, namely, not leveraging
any domain knowledge to process TLS, DNS and HTTP
protocols yields the least accurate results with any number of
packets used in the flow. We also observe that using only the
first two packets can achieve very similar accuracy when the
first 5 packets used with 28 bytes per packet. This observation
is also valid with other size of packets such as 50, 75 and 100.

Table VII also shows that the input configuration with first 7
packets and 125 bytes for each packet achieves the highest F1
score with 0.975. Similarly, using first 2 packets and 50 bytes
per packet achieves 0.972 macro average F1 score. This means
that using only the first two packets is sufficient to achieve an
accurate multi-class malware classification. Although the latter
option is slightly less accurate, in a real-world scenario where
the model is deployed for an online malware detection in a data
center where the volume of network traffic is huge, it needs
only the first 2 packets of a flow to execute the prediction.
Furthermore, in a case where the malware flow traffic is
assumed to have less than 7 packets, the packets would be
stored in the buffer and the malware detection framework
would wait for the remaining to fill the first 7 packets until
a time threshold is passed. This would become unfeasible
and drastically reduce the effectiveness of the malware traffic
classification system. Hence, we denote that using first two
packets with 50 bytes in our framework is the most suitable
configuration for a fast and effective detection system. We
also note that our model does not utilize any payload data and
replace them with zero values to classify the malware in the
network to protect the users’ privacy.

B. Comparing R1DIT to baseline models

Table VIII depicts the accuracy of each method in macro-
average F1 score. We can understand from results that the
malware classification systems tend to achieve much higher
accuracy with the raw data as input rather than using flow
features. This is because the models with the presence of high
volume of training data can learn more abstract but powerful
representations from the raw data for a more accurate classi-
fication. For example, a random forest classifier trained with
extracted flow features can produce 0.636 F1 score. Similarly,
Barut et al. [18] proposes a multi-task hierarchical learning
model which uses only the metadata features and achieve
slightly better accuracy with 0.639 F1 score. When we train
multiple random forest (Multi-RF) classifiers using the flow

features, we can increase the overall classification accuracy
up to 0.677 macro-average F1 score. By implementing a self-
attention-based deep learning model proposed in [21] for the
flow features, we achieve 0.679 F1 score, which is the best
with the flow features. However, it is not much different than
the other simpler feature-based classifiers meaning that the
extracted set of flow features determines an upper limit to the
classification accuracy. When we switch the input to the raw
data instead of flow features, we can achieve 0.783 F1 score
using a random forest classifier. This can be further improved
to 0.972 and 0.975 with our proposed deep learning based
R1DIT model using the first two packets of the flow with
first 50 bytes per packet and seven packets with 125 bytes per
packet as the input configuration, respectively. The complex
weight connections of the proposed neural network help the
model capture the powerful representations from the raw data
which eventually results in a higher accuracy.

To evaluate the efficiency of the R1DIT model for the
end-to-end inference speed, we define the metric flow per
second which shows how many flow samples can be executed
for prediction for each second. Because the buffering time
required to extract the network flow features can vary for each
flow, we consider offline classification scenario in which the
number of required packets are already available in the buffer.
Table VIII also provides the end-to-end inference speed both
for CPU and GPU as deep learning models perform different
on different architectures due to the number of arithmetic logic
units and the clock speed. The time measurements for the
preprocessing and the classification algorithms are done on
the test set which contains 28k flow samples. C?A>24BB and
C2; 5 show the packet processing time to transform the raw
network traffic data for the classifier algorithm and the time
that the classifier run to classify all the flow samples in the
test set, respectively.

We observe that complex deep learning models are more
accurate but much slower than the traditional machine learning
classifiers in the inference phase, especially when run on CPU.
However, the packet processing time for the feature-based
methods take much longer time than raw bytes-based methods.
Moreover, the waiting time to fill the buffer with the first
40 packets before extracting the flow features adds buffering
time to overall pipeline. This disadvantage is significant for
online classification in an environment such as a data center
where the immediate threat detection is imperative. However,
using raw data, we do not need to extract any feature. Instead,
we need to parse the packet and preprocess to drop the IP
and port address bytes as well as payload itself. Since only
first 2 packets are shown to be sufficient for accurate malware
traffic detection, the packet processing time is much shorter
compared to feature-based methods.

The proposed R1DIT model performs the most accurate but
the slowest in terms of flow prediction per second due to its
complex structure. We also observe that using GPU for the
traffic classification, the inference speed can be improved in
the range of 2.2 to 10 times when compared to the inference
speed on CPU. The large number of parameters used in the
neural network requires a use of GPU for a speedup; however,
our proposed model with 2 packets and 50 bytes also performs
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TABLE VIII: End-to-end performance comparison of different approaches on NetML dataset

Macro C?A>24BB (sec) C2; 5 (sec) End-to-end Inference
Method F1-Score for 28k flows for 28k flows Speed (flow/sec)

Input Model CPU CPU GPU CPU GPU
Flow Features (318x1) Single Random Forest 0.636 0.4386 0.1987 N/A 43,935 N/A
Flow Features (metadata 121x1) MTHL [18] 0.639 0.4386 N/A N/A N/A N/A
Flow Features (318) Multi-RF 0.677 0.4386 0.3526 N/A 35,389 N/A
Flow Features (244x1) Self-attention-based model 0.679 0.4386 42.81 4.2949 647 5,915
Raw bytes (100x1) Single Random Forest 0.783 0.0202 0.1241 N/A 194,040 N/A
Raw bytes (2x50) R1DIT (ours) 0.972 0.0202 10.59 4.881 2,639 5,713
Raw bytes (7x125) R1DIT (ours) 0.975 0.0708 40.638 5.556 688 4,976

TABLE IX: Comparison of R1DIT model to the state-of-
the-art on CICIDS2017 dataset. ’TP’ stands for Trainable
Parameters

Method # of TP Macro F1-score
Flow Features - Single ID3 [8] N/A 0.98
Flow Features - MTHL [18] 131,000 0.955
Flow Features - DNN 3 Layers [11] 91,216 0.935
Flow Features - CNN+LSTM [10] 29,139 0.988
Flow Features - Single RF [13] N/A 0.999
Raw bytes - FC-Net [25] (16x256) 1,058,945 0.9999
Raw bytes - R1DIT (2x50) 37,544 0.9999

on the CPU as the half speed of GPU. This raises a future
research direction to optimize our model to achieve a speedup
on CPU to reduce the need for a GPU for inference.

To validate that the proposed R1DIT model generalizes to
other datasets, we also perform malware classification using
public CICIDS2017 dataset. Table IX presents our F1 score
with comparison to other studies. We show that our model not
only outperforms state-of-the-art for this dataset in terms of
F1 score, but also achieves this using only first two packets
of the flow and 50 bytes per packet without payload data
and with considerably smaller number of trainable parameters
while FC-Net needs 256 bytes per each of 16 packets as input.
Although multi-class malware classification with this dataset
is relatively an easy task where most of the other studies
can achieve more than 0.95 F1 score using different types of
flow features, we claim that our R1DIT model relying on raw
data with protocol processing outperforms the state-of-the-art
with only an average of 5 misclassification out of 45270 test
samples and hence it generalizes to other datasets.

C. Detection of TLS 1.3 DDoS traffic with Meta Learning
We also want our model to detect the unseen malware

traffic with a recent release of TLS 1.3. However, it is very
challenging to find or collect a lot of data to train our model
from scratch for this purpose. Therefore, we need to leverage
the prior knowledge about the same problem, which is the mal-
ware traffic classification. To that extent, we consider utilizing
R1DIT model that performs 0.9999 accurate on training and
validation sets of CICIDS2017 dataset. Figure 8 visualize the
raw data (left) and the embeddings obtained in the final layer
of R1DIT model (middle) on 2-D plane using Truncated SVD
(Singular Value Decomposition) for CICIDS2017 dataset. We
observe that R1DIT model can transform the raw data into
a more separable plane as the main reason of its success to
achieve 0.9999 accuracy in the CICIDS2017 dataset.

Our hypothesis is that although CICIDS2017 dataset does
not have any samples belonging to TLS 1.3, the model pre-
trained on CICIDS2017 traffic would perform accurate on

TABLE X: Expanded Output Learning results of both CI-
CIDS2017 and CICDDoS2019 TLS 1.3 traffic using 2x50
R1DIT model pre-trained on CICIDS2017

Binary task Multi-class task
TPR FAR Accuracy

() ) IDS T1.3 IDS IDS T1.3
BL � 0.9999 0.3 0.0001 0.9999 0.06

TL

1 0.9999 0.701 0.0069 0.9963 0.3775
5 0.9999 0.9897 0.0003 0.9997 0.4124

10 0.9999 0.9543 0.0075 0.9960 0.6057
20 0.9999 0.9297 0.0021 0.9988 0.5838

OSL 1 0.9999 0.6471 0.0015 0.9991 0.0098

FSL
5 0.9999 0.9897 0.0030 0.9983 0.0052

10 0.9999 0.9892 0.0002 0.9998 0.0
20 0.9999 0.9029 0.0034 0.9981 0.1529

- T: the number of samples for each class in the target dataset used in training
- The ratio of samples for each class in the source dataset used in training: 3

detecting the CICDDoS2019 TLS 1.3 traffic as malware.
However, our experiment results show that the accuracy on
CICDDoS2019 TLS 1.3 dataset is less than 0.3. We visualize
the raw data and the embeddings obtained in the final layer
of R1DIT model for these two datasets to understand why
the accuracy is lower in the newer dataset. The left-most and
middle plots in Figure 8 also show the raw data and the
embeddings of CICDDoS2019 TLS 1.3 dataset along with
the CICIDS2017 data, respectively. In the raw data subplot,
we see that newer samples are mostly coming from another
distribution where the model does not have seen any previ-
ously. This is expected because TLS 1.3 is a newer version
and there are differences of those when compared to previous
versions. This causes the model to misclassify most of the
new classes. To solve this problem, we propose to implement
transfer learning (TL) or one/few-shot learning (OSL, FSL).
The right-most plot in Figure 8 shows that similarity learning
with Siamese architecture can help the model differentiate and
cluster the new traffic embeddings.

Table X compares the results obtained using different meta-
learning methods for expanded output learning. Comparing
the results to baseline where there is no transfer learning
shows that even with 1 sample per new class with TLS 1.3
improves the detection accuracy of TLS 1.3 malware from
0.3 to 0.7. Since the size of the target dataset is very small
(LDAP:5, MSSQL:4, NetBIOS:11, PortMap:3, SYN:186) and
highly unbalanced, it is very hard to draw a general conclusion
from the experiments. However, within the given scenario of
detecting a new version DDoS malware traffic encrypted using
TLS 1.3, we can show in Table X that both transfer learning
(TL) and one(few)-shot learning (O/FSL) methods provide
higher accuracy than using the baseline model which is trained
using a dataset that does not include any TLS 1.3 traffic.
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Fig. 8: Raw data (left), H-208 embeddings after R1DIT is pre-trained (middle), and H-208 embeddings using Siamese Model
trained with cosine similarity (right)

TABLE XI: Target Adaptation Learning results of CICD-
DoS2019 TLS 1.3 traffic using 2x50 R1DIT model pre-trained
on CICIDS2017

CICDDoS2019-TLS 1.3
T-R Acc. TPR FAR Multi-Class Accuracy

TL
(1)-(3) 0.9978 0.7500 0.0001 0.4216
(5)-(3) 0.9997 0.9794 0.0002 0.5103

(10)-(1) 0.9996 0.9838 0.0003 0.6757
OSL (1)-(3) 0.9975 0.7892 0.0007 0.4657

FSL (5)-(3) 0.9994 0.9381 0.0001 0.4742
(10)-(1) 0.9990 0.9892 0.0009 0.6270

- T: the number of samples for each class in the target dataset used in training
- R: the ratio of samples for benign class obtained from the source dataset for training

Although the results for source CICIDS2017 dataset in
both binary and multi-class classification tasks are satisfying,
target CICDDoS2019 TLS 1.3 accuracy is not as desired, in
both cases. Both TL with one sample per target class and
OSL achieve around 0.7 detection rate in TLS 1.3 encrypted
DDoS malware. When there are 5 or more number of samples
available for the target TLS 1.3 encrypted DDoS samples in
the training set, detection of TLS 1.3 DDoS malware reaches
up to around 0.99. Other major observation is that TL is more
capable in multi-class classification than O/FSL. Even with
only one sample per class, multi-class CICDDoS2019 TLS
1.3 malware classification accuracy is 0.3775 while with OSL,
multi-class classification is 0.0098 for the target dataset.

We also implemented TL and O/FSL for Target Adaptation
Learning scenario. In this scenario, we also introduce the
benign traffic from the source dataset to target adaptation
learning since the target dataset does not include any traffic for
benign class. First, the source dataset CICIDS2017 is used to
pre-train the model to obtain a prior knowledge to classify
the classes in the target CICDDoS2019 dataset. Then, the
model is fine-tuned using the target dataset classes combined
with the benign traffic from source dataset with a ratio A

determining the number of benign samples used to include
in the training as explained in Figure 4 and Figure 5. The
results are given in Table XI. We can observe that the proposed
model behaves comparable for binary malware detection tasks
with either method. However, when only focusing on target
class classification, the multi-class classification accuracy is
slightly higher than the generalized classification scenario.
This is expected because in the latter we do tackle a relatively
less complex problem in which source classes are not included
for classification. To conclude, we show that the proposed raw
data-based Residual 1-D Image Transformer Model (R1DIT)
can expand its classification accuracy to unseen malware
classes using transfer learning of few-shot learning with only

a few numbers of samples per each new class even they are
encrypted with an unseen version of TLS 1.3 which we don’t
find any prior knowledge in the source dataset.

VI. CONCLUSIONS AND RESEARCH DIRECTIONS

Secure and reliable network connection is important for the
continuity of the companies and government services. In this
article, we discuss the current methods for malware traffic
classification systems and show the potential of deep learning-
based models with raw data input by proposing a Residual
1D Image Transformer (R1DIT) model that performs malware
classification using network packets. A comprehensive set of
experiments on NetML and CICIDS2017 datasets show that
our privacy preserved model enhanced with protocol-specific
processing outperforms the state-of-the-art work on classifying
the malware in the network. We also evaluate its performance
on a recently released unseen DDoS malware traffic encrypted
with TLS 1.3 and show that the model can expand its ability to
detect the new type of traffic with only a few samples per new
class using meta-learning methods such as transfer learning
or few-shot learning without compromising the accuracy in
the source dataset. The slow inference speed brought on by
the model complexity, however, is a serious limitation of this
method. Our early analysis demonstrates that the multi-head
attention method severely hinders performance, especially as
the input size increases. Therefore, in the future, we will
further optimize the R1DIT model to improve inference speed,
enabling its application in the next-generation firewalls where
high-speed inference is crucial due to the large traffic volume.
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