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Abstract—Classifying encrypted traffic from emerging applica-
tions is important but challenging as many conventional traffic
classification approaches are ineffective, thus calling for novel
methods for identifying encrypted network flows. Recent ma-
chine learning and deep learning-based approaches are severely
limited by their feature selection and inherent neural network
architecture. More importantly, they overlook the opportunity
to capture latent information in the temporal dimension of
packets. As network data by nature are of non-Euclidean
distance space and carry abundant chronological and temporal
relations, we are inspired to utilize geometric deep learning that
simultaneously takes into account packet raw bytes, metadata
and packet relations for classifying encrypted network traffic.
Our proposed graph neural network (GNN) model outperforms
the two reference methods, convolutional neural networks (CNN)
and recurrent neural networks (RNN) quantitatively as indicated
by three metrics: sensitivity, precision and F1 score.

Index Terms—Encrypted network traffic analysis, network
traffic classification, deep learning, graph neural networks, mul-
timodal deep learning.

I. INTRODUCTION

IDENTIFYING network traffic is a vital task to enable the
functionalities of governing systems in network manage-

ment and network security. Network traffic classification has
been intensively explored in light of current improvements
in computer networking. While ongoing research covers a
wide range of topics, such as malware detection, intrusion
detection, and application prediction, the common goal is to
accurately and effectively differentiate network traffic, which
is evidently difficult due to the dynamics and complexity
of emerging network applications. Additionally, when the
volume of encrypted network data grows, many conventional
techniques, such as deep packet inspection (DPI) [1], become
inefficient, and it is particularly crucial for privacy concerns
to classify encrypted network flows without decrypting the
traffic.

Extensive research has been conducted on network traf-
fic classification, as classifying network traffic is critical
for managing system functionality in network management
and security. In the early days, conventional network traffic
classification methods, such as port-based approaches and
DPI, mainly focused on packet-level analysis. Port-based ap-
proaches use merely the port information to identify packets,
and therefore quickly become obsolete due to networking tech-
nology advancements, such as dynamic ports assignment and
network address translation (NAT) [2]. On the other hand, DPI
inspects the payload information to classify network packets
[1], yet this method violates user privacy to a significant extent.
Meanwhile, with the ever-increasing security level and volume

of Internet services, applying DPI to encrypted network traffic
analysis also becomes ineffective [2].

Subsequently, researchers begin to adopt machine learn-
ing approaches in network traffic analysis. Machine learning
approaches rely heavily on predefined input features and
require domain knowledge for feature engineering, which is
the process of extracting hand-crafted features from raw data.
As a result, much effort has been expended on discovering
critical flow statistical features at the flow-level, rather than
at the packet-level, and evaluating their effectiveness using
various machine learning-based classifiers [3]–[6], such as
support vector machine (SVM) and random forest (RF) on
network traffic classification.

With the rapid development of neural networks, deep
learning-based methods have become state-of-the-art across a
wide range of applications, including network traffic analysis
[7]. For flow-level network traffic classification tasks, convo-
lutional neural networks (CNN) and recurrent neural networks
(RNN) models perform exceptionally well in predicting 1D or
2D Euclidean space datasets. However, the disadvantage is that
when data is mapped into the Euclidean spaces, valuable latent
information derived from packet relations in the flow data is
lost. Hence, we introduce a concept for mapping network
traffic flows into non-Euclidean graph representations with
packet relations that preserves data integrity to the greatest
extent possible, as well as a methodology for classifying
network traffic in the non-Euclidean domains.

We utilize graph format as input to our graph neural
networks (GNN) architecture. Then we design an end-to-
end flow-based GNN model with an encoder and decoder
structure to classify both function types and application types
of encrypted network traffic flows, and train our GNN model
using a dataset with VPN encryption protocols. We leverage
the DeepMind Graph Nets library [8], which is a library for
building graph neural networks in TensorFlow and Sonnet, to
build our GNN model, and the network architecture design
details are presented in Section III-C. In order to show
the viability and applicability of the proposed graph-based
approach, apart from training the GNN model using encrypted
dataset to classify network function types and application types
of encrypted flows, we also train our GNN model with a hybrid
of encrypted and non-encrypted dataset.

Accordingly, the main contributions of our work can be
summarized as follows:

• We leverage a novel geometric learning framework [8]
and propose a multimodal graph-based deep learning
approach for flow-based encrypted network traffic clas-
sification, which can effectively differentiate application
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TABLE I
NOTABLE RELATED WORKS USING DEEP LEARNING IN NETWORK TRAFFIC CLASSIFICATION TASKS

Reference Deep Learning Multimodal Dataset Network Input Raw Flow
Classifier Learning public private Data uni- bi-

This paper GNN 4 4 -
raw bytes (1, 500B)

4 - 4+ 6 flow features/statistics
+ packet relations

Shen et al., 2021 [16] GNN - - 4
packet length (25 packets) - - 4+ client-server interactions

Pang et al., 2021 [17] GNN 4 4 4
raw bytes (1, 500B)

4 - 4+ adjacency relationship

Huoh et al., 2021 [18] GNN 4 4 -
raw bytes (1, 500B)

4 - 4+ 8 flow features/statistics
+ chronological relationship

Aceto et al., 2021 [14] 1D-CNN + BiGRU 4 4 - L4 app. layer (784B)
4 - 4+ 4 flow features (32 packets)

Shapira & Shavitt, 2021 [19] 2D-CNN - 4 - packet size + inter-packet time - 4 -(60-second block)

Zhang et al., 2020 [11] 2D-CNN, LSTM - 4 4
packet-based raw bytes (1, 521B) /

4 - 4flow-based statistics

Aceto et al., 2019 [13] 1D-CNN + BiGRU 4 4 4
L4 app. layer (516B)

4 - 4+ 4 flow features (12 packets)

Yao et al., 2019 [10] Attention + LSTM - 4 - L4 app. layer (10⇥1, 500B) /
4 - 4raw bytes (10⇥1, 500B)

Zeng et al., 2019 [12] 1D-CNN + LSTM - 4 - raw bytes (900B) 4 - 4+ SAE

Chen et al., 2017 [20] 2D-CNN - - 4
packet size + direction - - 4+ inter-packet time (10 packets)

Lopez-Martin et al., 2017 [21] 2D-CNN + LSTM - - 4 6 flow features (20 packets) - - 4

Wang et al., 2017 [9] 1D-CNN - 4 - L4 app. layer (784B) /
4 4 4raw bytes (784B)

and function types in encrypted traffic. Among existing
studies on network traffic prediction tasks, the state-of-
the-art methods train deep learning-based networks with
raw bytes in the Euclidean domains [9]–[14], whereas
our proposed GNN model accepts arbitrary graph inputs
that can embody data in the non-Euclidean domains,
preserving data integrity to the greatest extent possible.

• In terms of network inputs for our GNN model, we
present a notion to map network traffic flows into graph
representations. Apart from taking raw bytes as inputs, a
merit of our work is that we further enhance our GNN by
supplementing the second modality of data, where meta
features are served as graph-level attributes, and packet
relations are served as additional variables that include
temporal information and chronological relationship.

• Furthermore, we experimentally compare the perfor-
mance with different combinations of network inputs to
validate our proposed approach using a public dataset,
ISCXVPN2016 [15], and demonstrate the GNN’s proof-
of-concept for classifying network traffic flows according
to their function and application types, and establish a
foundation for future graph-based studies on network
traffic flow classification problems.

The rest of this article is organized as follows. In Section
II, we survey the evolution of approaches and literature in
network traffic classification, and explain the rationale behind
our research. In Section III, we describe and demonstrate the
proposed approach using graph neural networks for encrypted
network traffic classification. Our experimental results and
main findings are reported in Section IV. In Section V,

we discuss the strengths and limitations, and present future
directions of our work. Last, we summarize our work in
Section VI.

II. RELATED WORK

A. Deep Learning for Network Traffic Classification

Because of the fast growth of neural networks, deep
learning-based approaches have become state-of-the-art across
a broad variety of applications, including network traffic
analysis [7]. Unlike machine learning-based methods, deep
learning-based methods, namely neural networks, which are
capable of discerning important hidden features and repre-
sentations from their input data, can be applied directly to
learn raw data without any extra feature extraction steps.
Related works that use deep learning approaches in network
traffic classification are summarized in Table I. As shown in
Table I, recent works in network traffic classification with
deep learning-based methods have explored different types
of neural network architectures [9]–[14], [19]–[21], such as
convolutional neural networks and long short-term memory
(LSTM). CNNs rely on kernels and perform convolution
operations to exploit local information under the receptive
field, while LSTMs are one of recurrent neural network
members that are capable of learning long-term dependencies
and temporal information. Experiments from existing work
[9]–[11], [20], [21] have demonstrated consistently better
classification results with deep learning-based methods than
with conventional or machine learning-based methods. It is
widely known that CNNs are very productive when solving
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problems in images which are naturally Euclidean and own
the property of translational invariance [22]. In many network
traffic studies, researchers map network traffic data into the
Euclidean domains and then use the Euclidean-based data to
train a CNN model [9], [11], [23]. In terms of the network
inputs for flow-based network traffic classification, the main
drawback of CNN models is that all inputs are limited to
a fixed shape once their architectures are determined. For
instance, when mapping traffic flows into the Euclidean spaces,
the CNN is restricted to take a fixed number of packets for
each flow.

For studying encrypted network traffic classification using
deep learning-based methods, ISCXVPN2016 [15], a well-
known public network traffic dataset that contains numerous
encrypted traces, has been widely used in many research
studies [9]–[12], [14], [19]. For instance, using the same
network traffic dataset, Wang et al. [9] presented a 1D-CNN
model to predict encrypted network traffic, Yao et al. [10]
proposed an LSTM-based model with attention mechanism,
and Zeng et al. [12] proposed an encrypted network traffic
classifier utilizing both CNNs and LSTMs. According to their
quantitative results, the studies reported that employing bi-
directional flows with all raw bytes as network inputs leads
to better performance. Nevertheless, there are studies use
merely flow features or flow-based statistical information as
network inputs [11], [19]–[21]. Subsequently, a multimodal
deep learning approach has been proposed for network traffic
classification tasks. Aceto et al. [13] reported that multimodal
approaches are able to leverage network traffic data according
to various types of network inputs, where the multimodal deep
learning classifier could capitalize the heterogeneity of both
intra- and inter-modality dependencies of network traffic data
[14].

B. Graph Neural Networks

Recently, geometric deep learning has drawn a lot of at-
tention as it aims to generalize neural network models to the
non-Euclidean domains, such as social networks, transporta-
tion networks, and brain networks. While widely-used deep
learning architectures, such as CNNs and RNNs, are capable
of exploiting hidden features of data in the Euclidean domains,
they cannot handle non-Euclidean data that is represented
as graphs. As a result, a few studies have been devoted
to encrypted network traffic classification employing graph
neural networks, and are listed in Table I. The studies have
shown the approach that leverages the information-rich graph
representation of network traffic flows is competitive to other
common deep learning-based methods [16]–[18]. Our previous
work has translated network traffic flows into graph represen-
tations and demonstrated the proof-of-concept of the graph
neural network for encrypted network application classification
[18]. Likewise, in [17], Pang et al. also presented a chained
graph representation to capture the causal relationship for the
raw network traffic data. Different from our previous work
[18], Pang et al. [17] only considered packet raw bytes and
the adjacency relationship between packets within a network
traffic flow, whereas we simultaneously take packet raw bytes,

(a) (b)

data

Euclidean
domain

Non-Euclidean
domain

Fig. 1. (a) 2D-CNN: kernel sizes to determine the red grid’s neighbors. (b)
GNN: edges to define neighbors for the red node.

meta features and chronological relationship between packets
into account. Shen et al. [16] focused on decentralized applica-
tions (DApps) identification using graph neural networks, and
in their work, the client-server interactions in terms of packet
lengths and directions within a network flow are encapsulated
in the traffic interaction graph (TIG).

In terms of network architecture, there are three major dif-
ferences between graph networks and common deep learning
architectures. First, GNNs can be directly applied to graphs,
meaning that the geometric deep learning methods can deal
with data in non-Euclidean space, which can preserve more
original looks and characteristics of data. Secondly, CNN
and RNN models, due to their network structure constraints,
require zero padding or data trimming to keep input data shape
identical during training and validation process. Unlike CNN
or RNN models, GNNs can obviate this limitation and allow
arbitrary input shapes for each subject within a dataset. Last,
for each input graph, additional graph-level attributes can be
assigned as a universal information for each graph, while CNN
and RNN models can only accept elements with the same data
type for an input.

The basic computation unit in the Graph Networks frame-
work is a graph network (GN) block [8], which takes a graph
as an input, performs message passing through update and
aggregation functions, and yields a graph as an output. An
input graph is composed of a set of nodes and edges with
graph-level attributes. The nodes describe the vertices of a
graph, and the directed edges indicate the connections between
nodes. Properties associated with nodes and edges are defined
as node attributes and edge attributes respectively. As shown
in Fig. 1a, when a kernel from a CNN slides over a grid-
structured input to examine matching features, the center of
the kernel can determine all the resulting convolved neighbors.
As a contrast in Fig. 1b, we can use the edges within non-
Euclidean graph structures to determine the neighbors of
each nodes so that GNNs can use the information in the
neighborhood of a node to compute the updated value.

Our previous work on network traffic classification utilize
deep learning-based approach [18], and this work is an exten-
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Fig. 2. Distribution of flow diagrams by function type in two datasets: (a) VPN-dataset, and (b) NonVPN-dataset.

sion of the effort. With the aforementioned salient properties
of graphs and GNNs, in [18], we presented a notion to
translate network traffic flows into graph representations as
network inputs that include raw bytes, meta features, and
chronological relationship between packets. Additionally, we
extended network traffic classification task to a geometric
learning model using graph neural networks, and showed GNN
has the potential to solve problems in differentiating function
types of encrypted network traffic flows.

In accordance with the discourse in Section II, the highlights
of the additional effort compared to our earlier work are
summarized in the following. In this work, a public dataset,
ISCXVPN2016 [15], is employed to validate our GNN model.
Port numbers are removed to prevent biased conclusions
or misleading classification outcomes as stated in [14], and
more experiments are conducted to demonstrate the viability
and applicability of the proposed graph-based approach. In
addition to classifying function types, experiments for clas-
sifying application types of network traffic flows are also
provided. Furthermore, investigations are also conducted in
which the GNN model is trained using both encrypted and
non-encrypted traces. Additionally, we use multimodal deep
learning by supplying raw bytes and flow features into our
GNN model as network inputs. Instead of merely encapsulat-
ing the chronological relationship into edges [18], the temporal
information, which is the inter-arrival time between packets
within a network traffic flow, is collected as an additional
network input to the GNN, as inter-arrival time is considered
as valuable information for network traffic classification [6].
As such, we demonstrate the mapping of a network traffic
flow to a graph-structured representation in which each packet
is assigned to a node, packet relations are encapsulated in
edges with the chronological relationship serving as the edge
direction and temporal information serving as the edge weight,

and meta features of a flow are assigned to global attributes.
The detail of the complete graph inputs will be presented in
Section III-B.

III. METHODS

In this section, we present the detailed implementation of
the end-to-end geometric deep learning model for encrypted
network traffic classification. The contents include introducing
the experiment dataset, presenting how the data is prepro-
cessed and translated into graph representations for GNN,
describing the experimental design and details, explaining our
GNN architecture and the procedures of network training and
validation, and the evaluation metrics being used.

A. Data Description
In this study, we select the UNB ISCX Network Traffic

VPN-nonVPN (ISCXVPN2016) dataset [15] for our exper-
iments. It is a public dataset with virtual private network
(VPN) encryption protocols that has been widely adopted
in the research area of network traffic classification recently
[9]–[11], [14]. A VPN is a secured network that allows for
secure data transmission, and a VPN encryption protocol is a
process used to establish a securely encrypted path between
two endpoints. With VPN service, network users’ data will
pass through an encrypted VPN tunnel to reach the VPN
server that acts as a gateway to the public Internet. The
original ISCXVPN2016 dataset has a total amount of 25 GB
of data stored in the network packet capture (PCAP) format,
which contains a regular session and a session over VPN
that are captured using Wireshark and Tcpdump. Application-
wise, the dataset contains several function types of network
traces such as email, file transfer, and streaming traces; and
encryption-wise, the dataset consists of VPN traces and non-
VPN ones. In this study, we will use the two subsets of
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Fig. 3. (a) The architecture of a network flow. (b) A graph-structured representation of a flow’s overall structure, as well as detailed information on the node,
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Fig. 4. Instances of graph inputs with different flow packet sizes, ranging
from 2 to 5.

the ISCXVPN2016 dataset; the subset of VPN traces will
be referred to as VPN-dataset, and the subset of non-VPN
traces will be referred to as NonVPN-dataset. Within the
VPN-dataset, there are six network traffic types across fourteen
different applications. As for the NonVPN-dataset, there are
six different types of network traffic across sixteen different
applications. A complete list of the included network function
types and application types for VPN-dataset and NonVPN-
dataset can be found in Fig. 2a and Fig. 2b, respectively.

B. Network Input
Since the GNN takes in a graph as an input, it is imperative

to translate network traffic data into graph-structured represen-
tations, which consist of three building blocks: a set of nodes
(Node) and edges (Edge) with graph-level attributes (Global).
In the following, we describe data preprocessing steps which
includes data segmentation and masking out biased fields of
packets, as well as how we translate a network flow into a
graph as network input.

1) Data Preprocessing: One of the prior works [9] shows
that leveraging bi-directional flows, also known as sessions,
help achieve better performance comparing to unidirectional
flows, as a result, we employ bi-directional flows in our work.

To extract flow-based data, data segmentation technique is
performed to obtain flow samples from the original PCAP
files. A bi-directional flow, also known as session, can be
identified by the criteria of 5-tuple where the source and
destination can be transposed. The 5-tuple consists of source
IP address, source port, destination IP address, destination
port, and transport protocol. After the extraction, VPN-dataset
and NonVPN-dataset have 13, 341 and 16, 646 bi-directional
flows in total, respectively. For each bi-directional flow, it
consists of a sequence of packets where every packet contains
a byte stream up to maximum transmission unit (MTU) size
of 1, 500 bytes, and prior research [10] shows that most of the
flows consist of fewer than 5 packets in the ISCXVPN2016
dataset. Fig. 2a shows the distribution of flows for each
function type and application type in VPN-dataset, and Fig.
2b shows the distribution of flows for each function type and
application type in NonVPN-dataset. For both VPN-dataset
and NonVPN-dataset, the extracted flows are split into two
parts that 60% is for the training dataset and the remaining is
for validation.

As the original dataset was captured manually, it is possible
that the collected network traces have common hosts and
servers. Hence, to avoid carrying biased information which
might favor the deep learning model during the training pro-
cess, for every packet, both the Ethernet header that contains
Media Access Control (MAC) addresses and the source and
destination IP addresses that are embedded in the IP datagram
header are removed. Also, port numbers are removed to avoid
biased conclusions or inflated classification outcomes as men-
tioned in [14]. After the above-mentioned data preprocessing
steps, as shown in the Fig. 3a, the structure of a flow consists
of packets, denoted as p1..k, where k is the total number of
packets in a flow, and L is our desired lengths of packet bytes.
Each bytes’ values are normalized such that they fall inside
the interval [0, 1]. Rather than only covering the header fields,
in this work, full raw data are taken as network inputs, where
L is set to 1, 500, as the quantitative results in prior works
[9], [10], [18] have shown that the model’s performance can
be more accurate and reliable when taking full raw data as
network inputs.
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2) Graph Representation Generation: Fig. 3b illustrates a
general graph-structured representation. Each flow is trans-
formed to a graph representation in our work. A graph is
composed of a collection of nodes and edges, and it is also
capable of containing global properties. The details of how a
network traffic flow is mapped to each graph entity is presented
in the following.

a) Node: Within a network traffic flow, each packet is
mapped to a node, denoted as ni, where i = {1..k}, and k is
the total number of packets or nodes. In each node, it stores
the raw bytes as node attributes, where each byte is normalized
to [0, 1]. The dimension of the node attributes is set to 1, 500,
which corresponds to the MTU size.

b) Edge: Edges can be assigned to show the relationship
between nodes. In this work, the edges are used to indicate
the chronological relationship and the temporal information
between packets. As Fig 3b shows, chronological relationship
between packets is viewed as directed edges, denoted as es,r.
Packet’s timestamps are denoted as ti, where i = {1..k},
and k is the total number of packets or nodes. Temporal
information, which is the inter-arrival time between packets
and can be calculated by tr � ts, is stored as the weight of
the edge, denoted as ws,r. In this scenario, s is the sender
node index and r is the receiver node index. For instance, as
Fig. 3b shows, the time difference between packet nk�1 and
packet nk are assigned to edge attributes, denoted as w(k�1),k

while the direction of edge from nk�1 to nk, denoted as
e(k�1),k, are used to express the chronological relationship
between packets. The packet timestamp is used to allocate
edges. Each node is connected to the nodes whose packets
arrive earlier through arriving traversing edges and to the
nodes whose packets arrive later via leaving traversing edges.
Fig. 4 depicts, with different flow packet sizes ranging from
2 to 5, how nodes are connected using edges. In the mes-
sage passing algorithm, each node is updated by aggregating
messages provided from surrounding nodes through arriving
traversing edges. We design our GNN to consider all previous
packets/nodes while processing the current packet/node, and
those former packets/nodes can directly deliver messages to
the current node, boosting message passing speed.

c) Global: Lastly, meta features of a flow are stored in
the field of global attributes, denoted as g, which are shared
across a graph. In [5], the most important flow features of
ISCXVPN2016 dataset are reported, hence, we select and
assign five common meta features of a flow to global attributes
accordingly, which includes payload length mean, standard
deviation of payload length, packet length mean, standard
deviation of packet length, and duration of flow. These meta
features can be obtained through an open source network
analysis tool, Tcpdump. The meta features are normalized to
[0, 1] before assigning to global attributes.

As such, we can incorporate raw bytes, packet relations, and
metadata as graph network inputs by mapping network traffic
flow into a graph-structured representation.

C. End-to-end GNN Architecture
The fundamental of our geometric learning model is a

graph neural network that supports various graph-structured

representations. As shown in Fig. 5a, the end-to-end GNN is
constructed using encode-process-decode scheme [8] and is
comprised of an encoder block (GNenc), a string of N core
blocks (GNcore), where N is set to 5 in this work, and a
decoder block (GNdec). To be specific, the GNenc maps the
input graph, denoted as G, to a latent domain. The GNcore

takes the latent space representation, denoted as Glatent, as
input to generate the output, denoted as G0

latent. The GNdec

then maps the latent space representation, G0
latent, back to

generate the final output, which is denoted as G0.
The GN block’s structure contains three 5-layer multilayer

perceptron (MLP) networks as shown in Fig. 5b, where each
layer contains 128 neurons and is followed by a ReLU activa-
tion function except for the output layer, as update functions
for Edge, Node, and Global. In addition, all the MLP networks
are followed by a batch norm layer except for the decoder
block’s, which stabilizes the network training process. As
shown in Fig. 5c, the relation of the three update functions in
the encoder and the decoder blocks are independent. The three
update functions will construct a latent graph from the input
graph and extract information from a latent graph respectively.
On the other hand, as shown in Fig. 5d, the three update
functions in the core block are linked for message-passing,
which is a process of sending information between nodes via
the edges.

Regularization is a crucial component of the network
training stage, as it prevents networks from overfitting and
favoring certain majority classes as a result of data imbalance.
We deploy two common approaches, penalized weights and
dropouts, in the GNN architecture. For a multi-class classi-
fication task, the network performance is usually vulnerable
to a data imbalance issue. Thus, we incorporate the inverse
category frequency (ICF) weighting scheme in the loss func-
tion. Furthermore, every time a batch of data is gathered, the
numbers of samples of each class may be different in the
batch. Therefore, the frequencies and weights are calculated
and applied within each batch during network training pro-
cess, so that samples of each class can be learned equally
by the network. In addition, we consider our GNN trained
with the batch-level ICF will tend to have better adaptability
when tested on various validation sets with different class
distributions. For neural networks, dropout regularization is
an efficient regularization method [24], in which partial of the
neurons will be switched off randomly during each training
iteration so that it can reduce chance of overfitting and help
networks learn more hidden features.

All the aggregation functions used for this GNN architecture
are summation. The loss function selected for training our
GNN is cross-entropy loss function, which is expressed as:

loss(ŷ, y) = ↵[y]

 
�ŷ[y] + log

 
X

i

exp (ŷ[i])

!!
(1)

where ŷ and y are vector prediction results and class true
labels respectively, and ↵ is the vector of penalized weights
computed from the ICF weighting scheme.
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Fig. 5. (a) The proposed end-to-end GNN architecture for network traffic classification. (b) MLP network architecture. (c) The GNN encoder and decoder
architecture. (d) The GNN Core architecture (the yellow circle represents a node-level edge aggregation function, the blue circle represents a global-level node
aggregation function, and the green represents a global-level edge aggregation function).

D. Experimental Design

In the following, we describe nine experimental studies and
two deep learning-based comparison methods, a CNN [9] and
an LSTM [10] model. Experiments using various datasets,
classification tasks, and graph input element combinations are
aimed to evaluate our proposed approach. The classification of
function types and application types will be represented by the
terms Function-type and Application-type, respectively. The
experimental studies are summarized in Table II. To be spe-
cific, Study 1 to Study 6 are GNN models trained using VPN-
dataset for Function-type classification. The first six studies are
intended to evaluate the effects of network inputs on GNNs,
and hence each study uses an unique combination of graph
input components, including Node, Global, and Edge. Sim-
ilarly, to assess the generality of GNNs across classification
tasks, Study 7 is a GNN model trained on the VPN-dataset but

specifically for Application-type classification. Studies 8 and
9 are intended to study circumstances in which network traces
obtained at a particular endpoint may comprise encrypted or
non-encrypted flows from various sources. Hence, Study 8 and
Study 9 are trained using both VPN-dataset and NonVPN-
dataset, and are trained for Function-type classification and
Application-type classification, respectively. As for the two
reference methods, same as Study 1, both the CNN and the
LSTM models take only raw bytes as network inputs and are
trained for Function-type classification of network traffic flows
using VPN-dataset.

1) Study 1: In Study 1, the GNN takes only Node as a
network input. We train GNN using raw data with a packet
length of 1, 500 bytes. The GNN model is trained for Function-
type classification of network traffic flows using VPN-dataset.
Via Study 1, we would like to observe and make comparison of
the performance of our GNN model and the two deep learning-

TABLE II
EXPERIMENTAL STUDIES AND INPUT DATA.

Study Index Dataset Task Input Types

1 VPN-dataset Function-type Node (raw bytes)
2 VPN-dataset Function-type Global (meta features)
3 VPN-dataset Function-type Edge (packet relations)
4 VPN-dataset Function-type Node (raw bytes) + Global (meta features)
5 VPN-dataset Function-type Node (raw bytes) + Edge (packet relations)
6 VPN-dataset Function-type Node (raw bytes) + Edge (packet relations) + Global (meta features)
7 VPN-dataset Application-type Node (raw bytes) + Edge (packet relations) + Global (meta features)
8 VPN-dataset + NonVPN-dataset Function-type Node (raw bytes) + Edge (packet relations) + Global (meta features)
9 VPN-dataset + NonVPN-dataset Application-type Node (raw bytes) + Edge (packet relations) + Global (meta features)

CNN [9] VPN-dataset Function-type 10⇥ 1, 500B (raw bytes)
LSTM [10] VPN-dataset Function-type 10⇥ 1, 500B (raw bytes)
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based baseline methods, CNN and LSTM, which also take
only raw bytes as network inputs.

2) Study 2: In Study 2, we would like to evaluate the
performance of our GNN model, which takes only Global
as network inputs. The GNN model is trained for Function-
type classification of network traffic flows using VPN-dataset.
Moreover, by making a comparison to Study 4 that takes meta
features and raw bytes as network inputs, we can observe how
meta features supplements the GNN model.

3) Study 3: In Study 3, the GNN takes only Edge as
network inputs, and the GNN model is trained for Function-
type classification of network traffic flows using VPN-dataset.
We would like to evaluate the performance of the GNN model
when it takes only Edge as network inputs, and also make a
comparison to Study 5 to see how Edge element supplements
the GNN model.

4) Study 4: As for Study 4, the input graph to our GNN
model consists of both Node and Global. The GNN model is
trained for Function-type classification of network traffic flows
using VPN-dataset. This study helps to compare with Study 1
and the two deep learning-based baseline methods, which both
take only raw bytes as their network inputs. We would like to
investigate whether GNN can benefit from the additional meta
features that belongs to Global elements.

5) Study 5: In Study 5, the input graph to our GNN model
consists of both Node and Edge, and the GNN model is trained
for Function-type classification of network traffic flows using
VPN-dataset. Similar to Study 4, the underlying reason to
conduct this study is to make comparisons between studies
that are trained with raw bytes only, such as Study 1 and the
two reference methods. Via Study 5, we would like to evaluate
whether GNN can benefit from the Edge element, where the
temporal information and the chronological relationship of the
network traffic data are preserved.

6) Study 6: The GNN in Study 6 takes a graph that includes
Node, Edge, and Global as network inputs. The GNN model is
trained for Function-type classification of network traffic flows
using VPN-dataset. In this case, the GNN will simultaneously
take a combination of network inputs into account, which
include raw bytes, packet relations, and meta features. With
Study 6, we would like to observe if GNN can gain benefit
from a graph input when additional meta features and edge
information are also included and preserved in addition to raw
bytes.

7) Study 7: In Study 7, the GNN takes a graph which
includes Node, Edge, and Global as network inputs, and
is trained using VPN-dataset. However, different from the
aforementioned experimental studies, the GNN model in Study
7 is trained for Application-type classification rather than
Function-type classification of network traffic flows. Six com-
mon categories of applications in VPN-dataset with sufficient
samples are chosen to include in the classification task. The se-
lected applications include Facebook, Hangouts, Skype, Email,
Torrent, and Voipbuster. Via Study 7, we would like to evaluate
whether the proposed GNN model can generalize on different
classification task.

8) Study 8: In Study 8, the GNN also takes a graph which
includes Node, Edge, and Global as network inputs, and is

trained for Function-type classification of network traffic flows
as Study 6. In most cases, the network traces being received
at a certain endpoint may contain encrypted or non-encrypted
flows from different sources. Hence, different from Study 6,
the GNN model in Study 8 is trained using both VPN-dataset
and NonVPN-dataset. The GNN model is assessed by testing
on the validation sets of VPN-dataset and NonVPN-dataset
separately, and also jointly. We would like to examine whether
the GNN model that trained with both encrypted and non-
encrypted traces can have the ability to classify Function-type
of network traffic flows.

9) Study 9: The GNN model in Study 9 has the same
network input types as Study 6, Study 7, and Study 8,
and is trained for Application-type classification as Study 7.
Similar to Study 8, the GNN model is trained using both
VPN-dataset and NonVPN-dataset. Six common categories
of applications across VPN-dataset and NonVPN-dataset with
sufficient samples are chosen to include in the classification
task. Same categories of applications being used from Study
7 are selected, which includes Facebook, Hangouts, Skype,
Email, Torrent, and Voipbuster. The GNN model is assessed
by testing on the validation sets of VPN-dataset and NonVPN-
dataset separately, and also jointly. Via Study 9, we would like
to examine whether the GNN model that trained with both
encrypted and non-encrypted traces can classify Application-
type of network traffic flows effectively. We also like to
show how the proposed approach can generalize on different
classification task through the study.

10) Deep Learning-based Reference Methods: Our baseline
approaches are based on two state-of-the-art deep learning
architectures, an 1D-CNN by Wang et al. [9] and an attention-
based LSTM network by Yao et al. [10]. As in Study 1,
both the CNN and the LSTM models take only raw bytes as
network inputs and are trained for Function-type classification
of network traffic flows using VPN-dataset. In their methods,
while the LSTM model uses the first 1, 500 bytes of the first
10 packets within a bi-directional flow, which is the optimal
heuristic configuration in [10], as the network input, the CNN
model uses only the first 784 bytes of each bi-directional flow
as the network input. In its original, unaltered form, the CNN
model performs poorly in our initial experiments. To make
it more competitive and ensure a fair comparison, we make
two major changes to the CNN model: (1) we utilize the first
1, 500 bytes of the first 10 packets inside a flow; and (2)
we add 8 more convolutional layers to accommodate more
hidden features. For each input sample, the surplus packets
are trimmed when a flow has more than 10 packets, and zero
padding is applied when a flow has fewer than 10 packets.
Also, we employ the same data preprocessing steps as in
our work, and the biased information has been removed to
avoid biased conclusions or inflated classification outcomes
as mentioned in Section III-B1.

E. Model Training and Validation

The graph network is implemented on Tensorflow 2.0 using
the DeepMind Graph Nets library [8] and trained with an
NVIDIA V100 graphics card. The extracted network traffic
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flows of VPN-dataset are split into two portions that 60% is
for the training dataset, and the remaining is for validation.
The graph network accepts an input graph that contains meta
features in the form of global attributes, raw bytes in the
form of node attributes, and packet relations in the form of
edges, and generates and returns a graph with a prediction
of Function-type or Application-type stored in Global. The
parameters of the graph network are updated by minimizing
the network loss using Adam optimizer with the learning rate
0.0003. The ICF cross-entropy loss is computed by comparing
the prediction with the ground truth labels, and the learning
rate is a hyper-parameter that controls the pace of updating
neural networks. The batch size is set to 128, where it is
the sample size from the training dataset that will be used
to calculate a loss for updating the weights once. With these
hyper-parameters, we train our graph network for 300 epochs.

F. Evaluation Metrics

The performance metrics used for evaluating our proposed
GNN model are sensitivity, precision, F1 score, and overall ac-
curacy. While the overall accuracy is the most commonly used
benchmark for evaluating a model, it may not be considered
the only and the most important metric, as real-world datasets
are normally imbalanced, and a high overall accuracy can be
achieved easily when a network is trained to favor the major
categories that have more samples. Therefore, micro metrics
are also provided to show prominence to each category’s
performance, and additionally, the full confusion matrices
across our experimental studies and the two reference methods
are also reported. Through the given confusion matrices, we
can comprehend how much a network predicts correctly for
each label in terms of network robustness.

1) Overall Accuracy: The overall accuracy can be com-
puted as the total number of samples that are correctly
classified by the network model divided by the total number
of samples and is defined as:

Overall accuracy =

P
i TPiP

i (TPi + FNi)
, (2)

where TP is the number of true positive samples, FN is the
number of false negative samples, and i indicates the class
index.

2) Sensitivity: The sensitivity is also known as recall, and
it measures, within samples which have the same label, the
ratio of number of the correctly predicted samples to the total
number of the samples and is defined as:

Sensitivityi =
TPi

TPi + FNi
, (3)

3) Precision: The precision measures, within samples
which are classified as the same label, the proportion of
number of the correctly predicted samples to the total number
of the samples and is defined as:

Precisioni =
TPi

TPi + FPi
, (4)

where FP is the number of false positive samples.

4) F1 Score: The F1 score is a metric that computes the
harmonic mean of the sensitivity and the precision, and is
a widely used evaluation metric for models trained with an
imbalanced dataset and is defined as:

F1i = 2⇥ Sensitivityi ⇥ Precisioni
Sensitivityi + Precisioni

. (5)

IV. RESULTS

A. VPN-dataset Function-type Classification Results:
The performance metrics used for evaluating our proposed

GNN models are tabulated in Table III. Fig. 6 shows a
comparison of the confusion matrices for Studies 1 to 6 and
the two reference methods. In terms of sensitivity, precision,
and F1 score, Study 1 is similar to, and even slightly better
than, the two reference approaches, the CNN [9] and the
LSTM [10] models, when only raw bytes are used. When
the confusion matrix pairs (Study 1, CNN) are compared, it
is clear that Study 1 significantly improves the performance
of File and Streaming, as indicated by the orange boxes, and
when the confusion matrix pair (Study 1, LSTM) is compared,
it shows that Study 1 substantially improves the performance
of Streaming, as indicated by the orange box. One of the
underlying reasons for the GNNs’ ability to take flow data with
an arbitrary number of packets as network inputs is that the
GNNs can give network input shape flexibility, allowing the
form of each sample to be different throughout the training and
validation processes. When mapping traffic flows into graph
representations, all packets in a flow may be kept without
redundancy, which benefits the network. The CNN or the
LSTM model’s inputs are restricted to a fixed number of
packets for each flow once the architectures are determined.
Zero padding is needed when a flow has fewer packets, which
may harm network performance; when a flow has more packets
than the predefined shape, the flow will be truncated resulting
in losing the fidelity of data.

Study 1 is trained with raw bytes, whereas only meta
features are used in Study 2. Comparisons of the confusion
matrix pairs (Study 1, Study 2) show that Study 1 outperforms
Study 2 significantly in every category, and the result is
consistent with the prior research [25] that claims neural
network models are appropriate to be trained with raw data
because the nature of deep learning methods is to seek hidden
features from the given inputs by itself.

The confusion matrix pair (Study 1, Study 4) shows that
Study 4 has better performance almost in every category based
on the number of correct predictions, and the yellow box in
Study 4 indicates that the sensitivity of Email increases by
approximately 5.1% comparing to the green box in Study 1.
In terms of the performance measures presented in Table III,
Study 4 shows an increase in the overall sensitivity, precision,
and F1 score, indicating that Study 4 outperforms Study 1. The
results indicate that the GNN can benefit from the additional
input of meta features, which are difficult to decoded or learn
from raw data since they require domain knowledge.

The GNN model in Study 3 takes only the Edge element as
network inputs, and the confusion matrix of Study 3 is shown
in Fig. 6c. As expected, the number of correct predictions of
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Fig. 6. VPN-dataset Function-type classification. Confusion matrices for eight studies: (a) Study 1: the GNN input is a graph consisting of Node (raw bytes)
only; (b) Study 2: the GNN input is a graph consisting of Global (meta features) only; (c) Study 3: the GNN input is a graph consisting of Edge (time
information) only; (d) Study 4: the GNN input is a graph consisting of Node (raw bytes) and Global (meta features); (e) Study 5: the GNN input is a graph
consisting of Node (raw bytes) and Edge (time information) ; (f) Study 6: the GNN input is a graph consisting of Node (Raw bytes), Edge (time information),
and Global (meta features); (g) The CNN model: the input is raw bytes; (h) The LSTM model: the input is raw bytes.

each categories are significantly lower than other experimental
studies because the network takes merely the information
of packet relations without knowing the raw bytes or meta
features as network input. However, as shown in the confusion
matrix derived from Study 5 (Fig. 6e), where the GNN model
is trained using raw bytes with time information supplemented,
the sensitivities of each categories are higher than or equal
to Study 1 that is trained using raw bytes only. According to
the quantitative results, the provided temporal information and
chronological relationship between packets within a flow has

the efficacy to boost the performance of the GNN model.

Furthermore, according to Table III, Study 6, our proposed
approach, which considers meta features, raw bytes, and
packet relations as GNN inputs at the same time, outperforms
all GNN variants and the two reference methods in terms
of the overall accuracy, has the highest sensitivity values in
every category, and four out of the six categories have the
highest precision and F1 score values. The evaluation result
indicates that the GNN model’s performance is improved
by obtaining additional information from the Global, which
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TABLE III
PERFORMANCE COMPARISON

VPN-dataset Network Overall Metric Chat Email File Streaming P2P VoIP OverallInput Accuracy
Sensitivity 0.955 0.882 0.904 0.909 0.944 0.978 92.92%

Study 1 Raw bytes 96.00% Precision 0.979 0.875 0.804 0.955 0.976 0.975 92.78%
F1 score 0.967 0.878 0.851 0.931 0.960 0.977 92.78%

Sensitivity 0.911 0.722 0.783 0.841 0.838 0.814 81.84%
Study 2 Meta features 84.12% Precision 0.747 0.835 0.836 0.759 0.838 0.924 82.36%

F1 score 0.821 0.774 0.808 0.798 0.838 0.866 81.79%
Sensitivity 0.932 0.378 0.129 0.326 0.379 0.723 47.82%

Study 3 Packet relations 70.76% Precision 0.579 0.529 0.462 0.535 0.607 0.885 59.98%
F1 score 0.714 0.441 0.202 0.405 0.467 0.796 50.45%

Raw bytes Sensitivity 0.971 0.932 0.915 0.935 0.949 0.980 94.75%
Study 4 + Meta features 96.88% Precision 0.968 0.925 0.873 0.923 0.955 0.989 93.92%

F1 score 0.969 0.928 0.894 0.929 0.952 0.984 94.32%

Raw bytes Sensitivity 0.966 0.932 0.904 0.952 0.944 0.984 94.75%
Study 5 + Packet relations 96.92% Precision 0.974 0.902 0.870 0.917 0.960 0.988 93.55%

F1 score 0.970 0.917 0.887 0.934 0.952 0.986 94.13%
Raw bytes Sensitivity 0.972 0.966 0.915 0.974 0.960 0.986 96.27%

Study 6 + Meta features 97.56% Precision 0.981 0.839 0.898 0.949 0.950 0.993 93.55%
+ Packet relations F1 score 0.977 0.898 0.906 0.961 0.955 0.990 94.83%

Sensitivity 0.953 0.882 0.849 0.867 0.933 0.976 91.02%
CNN [9] Raw bytes 95.20% Precision 0.980 0.929 0.812 0.782 0.943 0.972 90.36%

F1 score 0.966 0.905 0.830 0.822 0.938 0.974 90.63%
Sensitivity 0.950 0.882 0.896 0.858 0.927 0.969 91.42%

LSTM [10] Raw bytes 95.05% Precision 0.969 0.937 0.790 0.921 0.988 0.964 92.86%
F1 score 0.960 0.909 0.840 0.888 0.956 0.967 92.03%
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Ground truth

Facebook Hangouts Skype Email Torrent Voipbuster

95.4% 0.6% 2.3% 4.2% 0.6% 0.0%
951 15 16 5 1 0

1.9% 98.6% 1.6% 3.4% 0.0% 0.2%
19 2334 11 4 0 1

2.0% 0.5% 94.8% 0.8% 2.8% 0.0%
20 12 670 1 5 0

0.7% 0.2% 1.0% 91.6% 0.0% 0.0%
7 5 7 109 0 0

0.0% 0.0% 0.3% 0.0% 96.6% 0.0%
0 1 2 0 173 0

0.0% 0.0% 0.1% 0.0% 0.0% 99.8%
0 1 1 0 0 645

Fig. 7. VPN-dataset Application-type classification. A confusion matrix for
Study 7.

can include system-level properties of flow represented by
global attributes, and the Edge, which is used to indicate the
chronological relationship and temporal information.

In addition, we conducted an additional experiment in which
the GNN model is trained without the ICF weighting scheme
for Study 6 The sensitivities for each category are as follows:
Chat: 0.972, Email: 0.907, File: 0.925, Streaming: 0.875, P2P:
0.949, and VoIP: 0.988. By comparing the experiment without
ICF to the one with ICF (Fig. 6f), the sensitivities of the
three categories with minor samples, Email, Streaming, and
P2P, have decreased by 5.9%, 9.9%, and 1.1%, respectively.
One important finding is that the GNN model without ICF is
relatively incompetent to recognize and learn samples from the
minor categories, whereas the GNN model with ICF (Study
6) tends to learn samples from each class equally.

B. VPN-dataset Application-type Classification Results:

In Section IV-A, we demonstrate several experiments with
different combination of graph input elements, and assess
the impacts of network inputs on GNN. We also make
comparisons of the performance of our GNN model and the
two deep learning-based baseline methods, the CNN and the
LSTM, and show our proposed approach that incorporating
raw bytes, metadata, and packet relations into the GNN
model is advantageous. We apply the proposed approach to
a different classification task in this subsection to see whether
the proposed GNN model can generalize to other classification
tasks. Hence, Study 7 is conducted and trained for Application-
type classification rather than Function-type classification of
network traffic flows using VPN-dataset. The performance
metrics used for validating Study 7 are tabulated in Table IV,
and the confusion matrix of Study 7 is showcased in Fig.
7. In terms of overall accuracy, we observe that the GNN
model in Study 7 can maintains its performance by comparing
with the performance of Study 6 (Fig. 6f). Also, by looking
at the confusion matrix in Fig. 7, five out of six categories’
sensitivities are around or above 95%, and the remaining Email
category also has a sensitivity of 91.6%. According to the
quantitative results, the GNN demonstrates its effectiveness
and broad application for various classification tasks.

C. Hybrid Dataset Results:

1) Study 8 — Function-type Classification: The GNN
model in Study 8 was trained using both VPN-dataset and
NonVPN-dataset. Fig. 8 shows the confusion matrices derived
from Study 8, which were created by testing the GNN only
using the validation sets of VPN-dataset, NonVPN-dataset, and
a joint dataset of both, respectively. The performance metrics
of Study 8 is tabulated in Table V. By comparing Study 8
that the GNN model is validated only on VPN-dataset with
Study 6 (Fig. 6f), the red boxes from Study 8 (Fig. 8a) shows
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TABLE IV
PERFORMANCE METRICS OF STUDY 7

VPN-dataset Overall Metric Facebook Hangouts Skype Email Torrent Voipbuster OverallAccuracy
Sensitivity 0.953 0.985 0.947 0.916 0.966 0.998 96.13%

Study 7 97.33% Precision 0.962 0.985 0.946 0.851 0.983 0.996 95.43%
F1 score 0.958 0.985 0.947 0.882 0.974 0.997 95.76%

(a)
Chat Email File Streaming P2P VoIP

Chat

Email

File

Streaming

P2P

VoIP

Chat Email File Streaming P2P VoIP

(b)
Chat Email File Streaming P2P VoIP

(c)

N
et

w
or

k 
pr

ed
ic

tio
n

Ground truth Ground truth Ground truth

97.6% 6.7% 4.5% 1.7% 1.1% 0.7%
1569 8 17 4 2 19

0.9% 92.4% 0.8% 0.0% 0.0% 9.6%
14 110 3 0 0 270

0.8% 0.8% 87.6% 0.4% 0.6% 0.8%
13 1 331 1 1 22

0.1% 0.0% 2.4% 95.7% 0.6% 0.1%
2 0 9 223 1 4

0.1% 0.0% 0.0% 0.0% 97.2% 0.0%
1 0 0 0 174 0

0.6% 0.0% 4.8% 2.1% 0.6% 88.8%
9 0 18 5 1 2496

87.4% 1.1% 1.9% 0.6% 0.0% 2.8%
776 27 11 4 0 51

6.9% 98.2% 3.1% 0.6% 0.0% 3.1%
61 2373 18 4 0 55

1.4% 0.1% 70.8% 1.2% 3.5% 4.7%
12 2 414 8 11 85

0.5% 0.1% 5.0% 91.7% 0.3% 2.2%
4 3 29 600 1 39

0.0% 0.0% 2.7% 0.0% 83.3% 2.1%
0 0 16 0 265 37

3.9% 0.5% 16.6% 5.8% 12.9% 85.1%
35 11 97 38 41 1524

94.0% 1.4% 2.9% 0.9% 0.4% 1.5%
2345 35 28 8 2 70

3.0% 97.9% 2.2% 0.5% 0.0% 7.1%
75 2483 21 4 0 325

1.0% 0.1% 77.4% 1.0% 2.4% 2.3%
25 3 745 9 12 107

0.2% 0.1% 3.9% 92.8% 0.4% 0.9%
6 3 38 823 2 43

0.0% 0.0% 1.7% 0.0% 88.3% 0.8%
1 0 16 0 439 37

1.8% 0.4% 11.9% 4.8% 8.5% 87.4%
44 11 115 43 42 4020

Fig. 8. Hybrid dataset: Function-type classification. Confusion matrices for Study 8 using various validation datasets derived from: (a) VPN-dataset, (b)
NonVPN-dataset, and (c) both VPN-dataset and NonVPN-dataset.

the sensitivities of Email, File, and VoIP have a decrease of
4.2%, 3.9%, and 9.9% respectively. However, the sensitivities
of rest of the categories still remain high. The quantitative
results show the GNN model in Study 8 can classify Function-
type of network traffic flows in VPN-dataset effectively even
when the GNN model is trained using both encrypted and
non-encrypted traces. As for Fig. 8b where the GNN model is
validated only on NonVPN-dataset, although the sensitivities
of all the categories except for Email are relatively lower than
the one validated on VPN-dataset (Fig. 8a), the features of
non-encrypted traces still can be preserved in our trained GNN
model to a certain extent.

2) Study 9 — Application-type Classification: The GNN
model in Study 9 was trained using both VPN-dataset and
NonVPN-dataset, and the performance metrics of Study 9
is tabulated in Table VI. Fig. 9a, Fig. 9b, and Fig. 9c are
the confusion matrices derived from Study 9, which were
created by testing the GNN using the validation sets of
VPN-dataset, NonVPN-dataset, and a joint dataset of both,
respectively. By comparing Study 9 that the GNN model is
validated only on VPN-dataset with Study 7 (Fig. 7), the
pink boxes from Study 9 (Fig. 9a) shows the sensitivities of
Skype, Email, and Voipbuster have a decrease of 7.5%, 3.4%,
and 6.5% respectively, while the sensitivities of Facebook,
Hangouts, and Torrent still remain high. Also, similar to the
trend occurring in Study 8, as shown in Fig. 9b, the GNN
model in Study 9 has lower sensitivities of all the categories
when it is validated only on NonVPN-dataset instead of VPN-
dataset (Fig. 9a). Overall, according to the quantitative results,
the GNN model in Study 9 shows its efficacy in classifying
Application-type even though the model is trained with a mix
of encrypted and non-encrypted traces.

V. DISCUSSION

Study 6 proved that using GNNs for network traffic classifi-
cation outperforms the two reference methods, the CNN-based
and the LSTM-based model, using a VPN-dataset. We ex-
tracted VPN-dataset based on Function-type (i.e., Chat, Email,
File, Streaming, P2P, and VoIP) rather than Application-
type (i.e., Skype, YouTube, and Facebook). This increased
the complexity of the classification problem, which aims to
classify Function-type of network traffic flows across different
applications. Additionally, the GNN model is trained with a
hybrid of encrypted and non-encrypted dataset to demonstrate
its efficacy in classifying both Function-type and Application-
type. A key contribution of this work is to leverage a novel
geometric learning framework [8] for predicting network traf-
fic flows. While ordinary CNNs and LSTMs accept only raw
bytes as network inputs, our GNN allows us to incorporate raw
bytes, packet relations, and meta features that are assigned as
node attributes, edge attributes and global attributes, respec-
tively, to our network inputs. Importantly, our GNN accepts
arbitrary graph inputs that contain any number of packets.
Hence, regardless of memory, the GNN can obviate the needs
of data truncation and zero padding, which are required by
CNN-based and LSTM-based models. If memory consumption
is constrained, it is possible to define a threshold for the
amount of packets that will be fed into the GNN as a graph. In
this scenario, the memory used by the GNN will be equivalent
to or less than that required by the CNN or the LSTM models.
Additionally, because the GNN can accept many relational-
based inputs, investigations into potential factors in terms of
packet relations need further exploration for robustness.

One potential limitation of our research is that the network
traffic flows generated or captured by scripts are more likely
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TABLE V
PERFORMANCE METRICS OF STUDY 8

Dataset Overall Metric Chat Email File Streaming P2P VoIP OverallAccuracy
Sensitivity 0.975 0.924 0.875 0.957 0.972 0.887 93.21%

VPN-dataset 92.02% Precision 0.969 0.277 0.897 0.933 0.994 0.987 84.29%
F1 score 0.972 0.426 0.886 0.944 0.983 0.934 85.80%

Sensitivity 0.873 0.982 0.707 0.917 0.833 0.850 86.09%
NonVPN-dataset 89.48% Precision 0.893 0.945 0.778 0.887 0.833 0.872 86.83%

F1 score 0.883 0.963 0.741 0.902 0.833 0.861 86.42%
Sensitivity 0.939 0.979 0.773 0.927 0.883 0.873 89.62%

Overall 90.61% Precision 0.942 0.853 0.826 0.899 0.890 0.940 89.23%
F1 score 0.941 0.912 0.799 0.913 0.886 0.905 89.31%
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Skype

Email

Torrent

Voipbuster

(b) (c)
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n

Ground truth Ground truth Ground truth

Facebook Hangouts Skype Email Torrent Voipbuster Facebook Hangouts Skype Email Torrent Voipbuster Facebook Hangouts Skype Email Torrent Voipbuster

95.2% 1.2% 9.6% 5.0% 0.6% 0.0%
949 28 68 6 1 0

1.1% 98.0% 2.5% 5.0% 0.6% 1.1%
11 2320 18 6 1 7

3.1% 0.8% 87.3% 1.7% 0.6% 0.3%
31 18 617 2 1 2

0.6% 0.1% 0.3% 88.2% 0.0% 5.1%
6 2 2 105 0 33

0.0% 0.0% 0.3% 0.0% 98.3% 0.2%
0 0 2 0 176 1

0.0% 0.0% 0.0% 0.0% 0.0% 93.3%
0 0 0 0 0 603

76.8% 9.8% 7.9% 0.2% 0.0% 0.6%
358 97 34 4 0 3

9.9% 84.0% 5.3% 1.7% 0.0% 1.9%
46 830 23 40 0 9

5.8% 2.6% 79.0% 0.3% 0.9% 1.5%
27 26 342 8 3 7

5.4% 2.1% 5.1% 86.9% 1.6% 6.8%
25 21 22 2099 5 32

0.0% 0.0% 0.9% 0.0% 73.3% 0.0%
0 0 4 1 233 0

2.1% 1.4% 1.8% 10.9% 24.2% 89.1%
10 14 8 264 77 419

89.3% 3.7% 8.9% 0.4% 0.2% 0.3%
1307 125 102 10 1 3

3.9% 93.9% 3.6% 1.8% 0.2% 1.4%
57 3150 41 46 1 16

4.0% 1.3% 84.1% 0.4% 0.8% 0.8%
58 44 959 10 4 9

2.1% 0.7% 2.1% 86.9% 1.0% 5.8%
31 23 24 2204 5 65

0.0% 0.0% 0.5% 0.0% 82.3% 0.1%
0 0 6 1 409 1

0.7% 0.4% 0.7% 10.4% 15.5% 91.6%
10 14 8 264 77 1022

Fig. 9. Hybrid dataset: Application-type classification. Confusion matrices for Study 9 using various validation datasets derived from: (a) VPN-dataset, (b)
NonVPN-dataset, and (c) both VPN-dataset and NonVPN-dataset.

TABLE VI
PERFORMANCE METRICS OF STUDY 9

Dataset Overall Metric Facebook Hangouts Skype Email Torrent Voipbuster OverallAccuracy
Sensitivity 0.951 0.979 0.872 0.882 0.983 0.933 93.39%

VPN-dataset 95.10% Precision 0.902 0.981 0.919 0.709 0.983 1.000 91.60%
F1 score 0.926 0.980 0.895 0.786 0.983 0.965 92.30%

Sensitivity 0.768 0.840 0.789 0.868 0.732 0.891 81.52%
NonVPN-dataset 84.09% Precision 0.721 0.875 0.828 0.952 0.979 0.529 81.43%

F1 score 0.744 0.857 0.808 0.908 0.838 0.664 80.35%
Sensitivity 0.893 0.938 0.841 0.869 0.822 0.915 88.02%

Overall 89.55% Precision 0.844 0.951 0.884 0.937 0.980 0.732 88.85%
F1 score 0.868 0.945 0.862 0.902 0.895 0.814 88.11%

to display deterministic behavior. Another limitation is that the
trained GNN may not be applied to inputs with traffic flow
characteristics (e.g., encryption protocols) that differ signifi-
cantly from those used for training. This is a drawback shared
by the majority of supervised learning models. Only VPN-
dataset and NonVPN-dataset are used to train and validate the
GNN. When the input flows are based on a different encryption
protocol than the datasets used for training, it is anticipated
that the GNN’s performance may decrease or become biased.
In our future work, we’ll characterize how the GNN performs
under various encryption protocols. One possible approach is
to utilize transfer learning to retrain the GNN with a much
smaller training dataset comprising flow inputs with different
encryption methods. Another more sophisticated strategy is
to use domain adaptation via adversarial training [26], which
aims to train a neural network on a source dataset and achieve

high accuracy on a target dataset that differs significantly from
the source dataset. In this case, the task of the source and target
domains is the same, but the source and target domains, data
representation, or distribution are different.

VI. CONCLUSION

In this work, we proposed and implemented a flow-based
geometric learning model for the classification of encrypted
network traffic. We introduced the concept of mapping net-
work traffic flows to graph representations, where data in-
tegrity can be preserved more effectively than when mapping
from the original data. GNN models demonstrated superiority
in executing multi-class classification on encrypted network
traffic flows by utilizing packet relationships, combining raw
bytes and meta features as input graphs, and overcoming
the constraint of using the same data size. Then, in nine
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independent studies, we compared various combinations of
network inputs and classification tasks for our GNN model.
In terms of overall accuracy and F1 score metrics, the results
show that our GNN, which utilizes raw bytes, meta features,
and packet relations as network inputs, outperforms other
GNN variants and the two reference methods. As part of our
future work, for robustness, we will further validate our GNN
model using a larger dataset that contains flows with various
encryption protocols, investigate more useful and meaningful
packet relation information, and study possible metrics for a
comprehensive assessment of our GNN model in multi-class
classification tasks.
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