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A B S T R A C T   

We present a crystal plasticity constitutive relation for the description of experimentally observed 
non-Schmid crystallographic slip in a class of ternary carbides and nitrides commonly referred to 
as MAX phases. In the constitutive relation, we assume that the evolution of the slip system 
strength in MAX phases has two components – a classical component that depends on the Taylor 
cumulative shear strain and a non-Schmid component that depends on the stress normal to the 
slip plane. The non-Schmid crystal plasticity constitutive relation is then used to carry out finite 
element simulations of micropillar compression of single crystals of two MAX phases, Ti2AlC and 
Ti3AlC2. The finite element simulations not only quantitatively predict the stress – strain response 
of a wide range of crystallographic orientations of the micropillars but also rationalize the non- 
uniform deformation and the deformed shape of the micropillars observed in the experiments 
for the two materials. Parametric studies are also carried out to quantify the role of the non- 
Schmid effect and understand the effects of key experimental parameters on the stress – strain 
response of the micropillars of the two MAX phases.   

1. Introduction 

A family of ternary carbides and nitrides commonly referred to as MAX phases exhibit properties that combine some of the best 
attributes of both metals and ceramics (Barsoum, 2013; Barsoum and El-Raghy, 2001; Barsoum and Radovic, 2011; Radovic and 
Barsoum, 2013). Like ceramics these are lightweight, elastically stiff, thermodynamically stable and refractory, but also like metals 
these are damage tolerant, pseudo-ductile and machinable. The unique set of properties of MAX phases are in general associated with 
their atomically layered hexagonal crystal structure with a combination of strong intralayer and weak interlayer atomic bonds. 
Chemically, MAX phases are represented with by a general formula Mn+1AXn, where ‘M’ is an early transition metal, ‘A’ mostly 
corresponds to elements from groups 13 to 16, ‘X’ is either carbon or nitrogen and ‘n’ varies from 1 to 3. In a Mn+1AXn crystal, ‘M’ 
elements are close-packed with ‘X’ atoms in the octahedral sites to form M6X-octahedra in the Mn+1Xn layers and these layers are 
separated by a single atomic layer of ‘A’ elements, while the value of ‘n’ in Mn+1AXn represents the stacking sequence i.e., when n = 1, 
one Mn+1Xn layer (or two M layers) are separated by the ‘A’ layers and so on. Also, these are one of the most diverse class of materials 
with already over 150 MAX phase compositions discovered and synthesized (Sokol et al., 2019). 

The mechanical response of bulk polycrystalline MAX phases has been extensively characterized using conventional mechanical 
testing techniques which shows that MAX phases unlike their counterpart binary carbides and nitrides (MX), even at room temper
ature, undergo crystallographic slip on basal slip systems (Barsoum and El-Raghy, 1999; Barsoum et al., 1999a, 1999b; Farber, 1999; 
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Farber et al., 1998). Several attempts have also been made to characterize the single-crystal level mechanical response of the MAX 
phases using grain-level nanoindentation tests (Barsoum et al., 2004; Griggs et al., 2017; Kooi et al., 2003; Molina-Aldareguia et al., 
2003; Tromas et al., 2011) and uniaxial compression tests of micropillar specimens milled from individual grains (Brüsewitz et al., 
2013; Higashi et al., 2018; Zhan et al., 2020; Zhan et al., 2021). The micropillar compression tests are particularly significant as they 
directly provide the crystallographic orientation dependent uniaxial stress-strain response of free-standing single crystals. 

The results of the recent micropillar compression tests of Tin+1AlCn MAX phases by Zhan et al. (2020, 2021) have shown that the 
values of the resolved shear stress, τRSS, at the onset of crystallographic slip on basal slip systems (i.e., ‘apparent’ critical resolved shear 
stress, τCRSS) in MAX phases is highly orientation dependent. This is contrary to the classical Schmid law that predicts that the values of 
τRSS at the onset of crystallographic slip is independent of the crystallographic orientation. The non-Schmid orientation dependence of 
‘apparent’ τCRSS for the MAX phase micropillars under compression in Zhan et al. (2020, 2021) was found to vary linearly with the 
compressive stress normal to the basal plane, σN. This relation can be written as, τCRSS = − k

2σN|sign(σN) − 1| + τ0, where k is the 
frictional resistance and τo is the ‘intrinsic’ critical resolved shear stress for the onset of basal slip. Although, the crystallographic slip in 
the MAX phases is postulated to predominantly occur between the weakly bonded M-A layers (Gouriet et al., 2015) i.e., Ti-Al layers in 
Tin+1AlCn MAX phases, the difference in the stacking sequence, even between two Tin+1AlCn MAX phases i.e., Ti3AlC2 and Ti2AlC, 
affects the Ti-Al bonds (Lane et al., 2013; Tan et al., 2014; Xiao et al., 2015). In line with this, a comparison of the non-Schmid 
crystallographic slip in Ti3AlC2 and Ti2AlC micropillars by Zhan et al. (2021) also showed that the experimentally obtained values 
of τ0 and k for the two MAX phases differ significantly. 

The non-Schmid crystallographic slip is not unique to MAX phases and has also been reported and modelled for a host of other 
materials. For instance, non-Schmid crystal plasticity constitutive relations have been developed to describe anomalous crystallo
graphic slip observed in several intermetallics (Ghorbanpour et al., 2020; Ghorbanpour et al., 2017; Gröger, 2021; Qin and Bassani, 
1992), such as Ni3Al, Ni2Ga and Co3Ti, and metallic materials, such as α-iron (Chen et al., 2014; Koester et al., 2012; Lim et al., 2015; 
Mapar et al., 2017; Patra et al., 2014; Srivastava et al., 2015), molybdenum and tungsten (Cereceda et al., 2016; Gröger et al., 2008a; 
Gröger et al., 2008b), chromium (Gröger and Vitek, 2020) and other body centered cubic (BCC) metallic materials (Knezevic et al., 
2014; Weinberger et al., 2012). Borrowing concepts from these earlier works on intermetallics and BCC metallic materials, in this 
work, we present a non-Schmid crystal plasticity constitutive relation to model the crystallographic slip behavior observed in the two 
MAX phases, Ti2AlC and Ti3AlC2 (Zhan et al., 2020; Zhan et al., 2021). We assume that the evolution of slip system resistance or 
strength in MAX phases has two components – a classical component that depends on the Taylor cumulative shear strain and a 
non-Schmid component that depends on the stress normal to the slip plane. However, it is observed that in order to quantitatively 
predict the experimentally obtained stress-strain response of the MAX phases, the non-Schmid slip system resistance in MAX phases 
must saturate once the stress normal to the slip systems reaches a critical value. 

The values of the constitutive (material) parameters for the non-Schmid crystal plasticity constitutive relation formulated herein 
are either taken from the literature or are inferred from the results of the micropillar compression experiments of Zhan et al. (2020, 
2021). The fully calibrated constitutive relation is then used to carry out finite element simulations of micropillar compression of both 
the MAX phases. The finite element simulations not only quantitatively predict the stress – strain response of a wide range of crys
tallographic orientations of the micropillars but also rationalize the non-uniform deformation and the deformed shape of the 
micropillars observed in the experiments for the two materials. Parametric studies are also carried out to quantify the role of the 
non-Schmid effect and understand the effects of two key experimental parameters – friction between the rigid punch and top surface of 
the micropillar, and the vertical taper of the micropillars – on the mechanical response of the micropillars of the two materials. 

Fig. 1. (a) A schematic showing a typical finite element model of the micropillar specimen attached to a base and being compressed along the axis 
using a punch. (b) A schematic showing applied stress, σ, on a cylindrical specimen, resultant normal stress, σn, acting on the slip plane with plane 
normal, mα, and the resolved shear stress, τα, acting on the same slip plane in the slip direction, sα. 
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2. Crystal plasticity finite element modeling 

2.1. Finite element model 

The finite element model considered here mimics the micropillar compression experiments of Zhan et al. (2020, 2021). A typical 
finite element model is shown in Fig. 1(a) that contains a micropillar attached to the base material and is compressed along the axis 
using a punch. As in the experiments, the diameter of the micropillar is taken to be 10 μm and the height to (top) diameter ratio of the 
micropillar is taken to be 2 with a vertical taper of 5◦ (unless stated otherwise). The diameter of the base is taken to be 4 times and the 
height of the base is taken to be 3 times that of the micropillar. This is in line with the experiments where the micropillar specimens 
milled from a large grain is still attached to the base material during the compression tests. The micropillar and base are discretized 
using C3D8 elements with reduced integration of the ABAQUS/Standard, 2020 element library while the punch is modeled as a 
discrete rigid body. A surface-surface contact with a coefficient of friction 0.1 (unless stated otherwise) is invoked between the rigid 
punch and top surface of the micropillar. The punch is constrained in the in-plane directions and is subjected to a uniaxial velocity 
along the axis of the micropillar while the bottom of the base is constrained in both in-plane and out-of-plane directions. 

2.2. Field equations 

We describe the deformation in the usual way i.e., a point originally located at X moves to a new position x = X + u(X) in the 
deformed configuration and the local deformation of an infinitesimal volume element at a position X in the undeformed configuration 
is characterized by the deformation gradient, F = ∂x/∂X. The total deformation gradient is then multiplicatively decomposed into its 
elastic part, Fe, arising from the reversible deformation of the lattice, and the plastic part, Fp, which accounts for crystallographic slip 
in the crystal as, F = FeFp. Following this, the strain rate, ε̇ = sym(∂ẋ /∂X), is decomposed into its elastic and plastic parts as 

ε̇ = ε̇e
+ ε̇p

; ε̇e
= sym

(
ḞeF−1)

; ε̇p
= sym

(
FeḞpFp−1Fe−1)

(1) 

We also introduce the elastic Lagrange strain tensor, Ee = 1/2 (FeTFe −I) to define the reversible deformation of the crystal lattice. 
Next, the Cauchy (true) stress tensor, σ, that satisfies the equilibrium condition, ∂σ/∂x = 0, is related to the elastic strain as 

σ =
1
J
Fe[C : Ee]FeT (2)  

where, J = det(F), and C is the fourth-order anisotropic elastic moduli tensor of the material in the undeformed configuration. In order 
to complete the governing equations, a constitutive equation is required which relates the plastic strain rate, ε̇p, to the stress, σ, and is 
described in the following section. 

2.3. Crystal plasticity constitutive relation 

The room temperature crystallographic slip activity in the MAX phases is limited to the basal, {0001}〈1120〉, slip systems (Bar
soum et al., 1999a; Gouriet et al., 2015; Guitton et al., 2012); and as shown schematically in Fig. 1(b), we define the slip direction and 
slip plane normal for a basal slip system, α, in the undeformed configuration using unit vectors sα and mα, respectively. These can be 
transformed to the current deformed configuration using s∗α = Fesα and m∗α = mαFe−1. The plastic strain rate in Eq. (1) is then defined 
in terms of the shear strain rate on the αth slip system i.e., γ̇α as 

ε̇p
=

∑

α
γ̇αsym(s∗α ⊗ m∗α) (3)  

where, the shear strain-rate, γ̇α, is given by 

γ̇α = γ̇0

(
|τα|

gα

)1
m

sign(τα) (4)  

with γ̇0 and m being the reference shear strain-rate and strain-rate sensitivity, respectively, τα = σ : (s∗α ⊗ m∗α) being the resolved shear 
stress which is the driving force for slip and gα is the current slip system strength or simply the resistance to slip. Recall that the 
experimental results show that the values of the resolved shear stress at the onset of crystallographic slip i.e., the ‘apparent’ critical 
resolved shear stress, τCRSS, which is basically the slip system strength, gα, at the onset of crystallographic slip for MAX phases follows, 
τCRSS = −k

2σN|sign(σN) − 1| + τ0 (Zhan et al., 2020, 2021). In this relation, τ0 is the ‘intrinsic’ critical resolved shear stress of the 
material and can be assumed to evolve with the cumulative shear strain as in classical strain-hardening of crystals, while the first term, 
− k

2σN|sign(σN) − 1|, represents the current non-Schmid slip system resistance. 
Following this, we assume that the slip system resistance, gα, in Eq. (4) is a sum of the classical, gα

γ , and non-Schmid, gα
N, slip system 

strength/resistance i.e., gα = gα
γ + gα

n . The classical slip system strength is assumed to evolve according to (Peirce et al., 1982) 

ġα
γ =

∑

β
hαβ

⃒
⃒γ̇β

⃒
⃒ (5) 
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and the hardening moduli follows 

hαβ = qhαα, hαα = h0sech2
(

h0γ
τs − τ0

)

, γ =
∑

α

∫ t

0
|γ̇α|dt (6)  

with q, h0 and τs being the constitutive parameters. The value of gα
γ = τ0 at time, t = 0, where τ0 is the ‘intrinsic’ critical resolved shear 

stress for the basal slip as identified from the micropillar compression experiments (Zhan et al., 2020, 2021). 
Next, the evolution of the non-Schmid slip system resistance, gα

N, that depends on the component of the stress normal to the basal 
plane, σN, as schematically shown in Fig. 1(b), follows from the experimental observations, however, with a slight modification as 

ġα
N = −

(
k
2

)

σ̇N |sign(σN) − 1|H
(
σc

N − |σN |
)

(7)  

where, σN = σ : (m∗1 ⊗ m∗1) and k is the frictional resistance for the basal slip as identified from the micropillar compression exper
iments (Zhan et al., 2020, 2021). The function H(▪) in Eq. (7) is the Heaviside step function 

H(x)= {
0, x < 0
1, x ≥ 0 (8) 

The use of the Heaviside step function ensures that the non-Schmid slip resistance, gα
N, only evolves when the magnitude of the 

stress normal to the slip system, |σN|, is less than a critical value, σc
N. Also, the value of gα

N = 0 at time, t = 0, since initially the 
micropillars are stress free. The Heaviside function in Eq. (7) was needed to reproduce the experimentally obtained stress-strain 
response of the MAX phases. Note that in Zhan et al. (2020, 2021) the dependence of τCRSS on σN was only analyzed at the onset of 
plastic deformation and the influence of the non-Schmid effect on the evolution of the stress-strain response of the micropillars was not 
considered. Nevertheless, we have also carried out parametric studies highlighting the role of σc

N in Section 3.2. 
The crystal plasticity constitutive relation incorporating the non-Schmid effect on the crystallographic slip of MAX phases described 

above is implemented as user material subroutine (UMAT) in the ABAQUS/Standard, 2020. The UMAT is based on the work of Huang 
(1991) and follows the constitutive formulation detailed in Asaro and Needleman (1985). 

3. Results 

The non-Schmid crystal plasticity constitutive relation formulated in Section 2.3 has several constitutive (material) parameters that 
need to be determined. These include the elastic constants as well as the constitutive parameters in Eqs. (4), (6) and (7). The elastic 
constants for the Ti2AlC and Ti3AlC2 MAX phases are taken from the work of Du et al. (2009) and Wang and Zhou (2004), respectively. 
For both the MAX phases, the value of γ̇0 is taken to be similar to the nominal strain rate imposed in the experiments (Zhan et al., 2020; 
Zhan et al., 2021), m is taken to be 50 to capture the slight rate-dependence in the mechanical response of these materials (Bhatta
charya et al., 2014), and the value of q is taken to be 1. Also, for both the MAX phases, the values of τ0 and k are directly obtained from 
the micropillar compression experiments (Zhan et al., 2020, 2021). 

Finally, the values of the remaining three parameters, h0, τs and σc
N are obtained using an iterative optimization process involving 

full three-dimensional finite element simulations of selected micropillar compression experiments for both the MAX phases. The 
iterative optimization process follows Nelder-Mead (Lagarias et al., 1998) algorithm that minimizes the mean squared error between 
the nominal compressive stress-plastic strain responses obtained from the micropillar compression experiments and the analogous 
finite element simulations. To this end, two crystallographic orientations are selected for each of the MAX phases. The calibrated 
values of all the constitutive parameters for both the MAX phases are given in Table 1. 

3.1. Comparison with the micropillar experiments 

The nominal compressive stress – plastic strain response of four single crystal micropillars of each of the MAX phase i.e., Ti2AlC and 
Ti3AlC2, obtained using the proposed fully calibrated non-Schmid crystal plasticity constitutive relation is compared with the 
experimental results of Zhan et al. (2020, 2021) in Fig. 2. The cases shown in Fig. 2(a,b) were used for calibration of the constitutive 

Table 1 
The values of the constitutive parameters for Ti2AlC and Ti3AlC2 MAX phases.  

Elastic constants:  
C11 [GPa] C12 [GPa] C13 [GPa] C33 [GPa] C44 [GPa]

Ti2AlC 302 59 55 278 113   
Ti3AlC2 361 75 70 299 124    

Constitutive parameters in Eqs. (4), (6) and (7):  
γ̇0 [s−1] m q h0 [MPa] τ0 [MPa] τs [MPa] k σc

N [MPa]

Ti2AlC 0.01 50 1 616 13.8 332 0.28 120.6 
Ti3AlC2 0.01 50 1 1615 19.6 65 0.20 130.2  

U.B. Asim et al.                                                                                                                                                                                                        



International Journal of Plasticity 157 (2022) 103399

5

parameters while those shown in Fig. 2(c,d) are predictions. As can be seen in the figure, the predicted nominal compressive stress – 
plastic strain response is in very good agreement with the experimental results. Note that the micropillars in Fig. 2 cover a wide range 
of crystallographic orientations as shown schematically using the unit cell representations of the crystallographic orientations of the 
hexagonal single crystals in the figure. 

Fig. 3 compares the predicted and experimentally obtained (Zhan et al., 2020, 2021) variation of the ‘apparent’ critical resolved 
shear stress, τCRSS, with the component of the stress normal to the basal plane, σN, for a wide range of crystallographic orientations of 
the single crystal micropillars of both Ti2AlC and Ti3AlC2 MAX phases. Here, τCRSS = σycosϕcosλ and σN = σycos2ϕ, with σy being the 
0.015% offset yield strength (Zhan et al., 2020, 2021), ϕ being the angle between the loading direction and the basal plane normal, and 
λ being the angle between the loading direction and the active slip direction. The crystallographic orientations of all the micropillars 
considered in Fig. 3 are given in Table 2. Recall, that Zhan et al. (2020, 2021) found that for the MAX phases, ‘apparent’ τCRSS varies 
linearly with σN (at least for σN < 0). As can be seen in Fig. 3, consistent with the experimental observations the predicted variation of 
τCRSS with |σN| for both the MAX phases also follow the same linear dependence. 

We also plot the variation of the macroscopic yield strength, σy, of single crystal micropillars of both Ti2AlC and Ti3AlC2 MAX 
phases predicted using the proposed non-Schmid crystal plasticity constitutive relation, σCPFE

y , with the values obtained from the 

micropillar compression experiments (Zhan et al., 2020, 2021), σExp
y , in Fig. 4. The crystallographic orientations of all the micropillars 

Fig. 2. A comparison of the experimental (Zhan et al., 2020, 2021) and predicted nominal compressive (Comp.) stress – plastic strain response of 
two micropillars of (a) Ti2AlC and (b) Ti3AlC2 MAX phases used for calibrating the constitutive parameters, and that of the experimental (Zhan et al., 
2020, 2021) and predicted nominal compressive (Comp.) stress – plastic strain response of two micropillars of (c) Ti2AlC and (d) Ti3AlC2 MAX 
phases that were not used for calibration. The experimental data are shown using open symbols while the predicted curves are shown using solid 
lines. The crystallographic orientations of the micropillars in terms of Euler angles (in degrees using Bunge convention) are: (161, 159, 32), (65, 44, 
56), (68, 155, 35) and (85, 139, 59) for 211-1, 211-2, 211-A and 211-B, respectively, and (84, 161, 30), (157, 129, 6), (97, 162, 43) and (37, 56, 11) 
for 312-1, 312-2, 312-A and 312-B, respectively. 
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Fig. 3. A comparison of the experimental (+/x symbols) and predicted (open circles and squares) variation of the ‘apparent’ critical resolved shear 
stress, τCRSS, with the component of stress normal to the basal plane, σN, for the micropillars of (a) Ti2AlC and (b) Ti3AlC2 MAX phases. The 
experimental data is taken from the work of Zhan et al. (2020, 2021). 

Table 2 
The crystallographic orientations (in terms of Euler angles in degrees using Bunge convention) of all the single crystal micropillars of Ti2AlC and 
Ti3AlC2 MAX phases used in the experimental study of Zhan et al. (2020, 2021).  

Ti2AlC Ti3AlC2 

φ1 ϕ φ2 φ1 ϕ φ2 

75 86 7 119 67 20 
168 80 37 49 119 1 
163 47 60 37 56 11 
65 44 56 116 52 22 
85 139 59 157 129 6 
68 155 35 86 134 3 
161 159 32 96 25 51 
137 161 1 177 160 1    

84 161 30    
97 162 43    
52 166 59  

Fig. 4. A comparison of the experimental (Exp) and predicted (CPFE) yield strength, σy, of the Ti2AlC (open circles) and Ti3AlC2 (open squares) 
MAX phase micropillars with a wide range of crystallographic orientations. The results are shown on a log-log plot. The experimental data is taken 
from the work of Zhan et al. (2020, 2021). 

U.B. Asim et al.                                                                                                                                                                                                        



International Journal of Plasticity 157 (2022) 103399

7

considered in Fig. 4 are given in Table 2. As can be seen in Fig. 4, all the values lie along a straight line with a slope of 45∘, 
demonstrating the good agreement between the predicted and experimentally obtained values of the macroscopic yield strength of 
single crystal micropillars with a wide range of crystallographic orientations. 

Next, in Figs. 5 and 6 we compare the deformed shapes of a few micropillars of Ti2AlC and Ti3AlC2 MAX phases, respectively, from 
the experimental work of Zhan et al. (2020, 2021) with the predicted distribution of Taylor cumulative shear strain, γ =

∑

α

∫ t
0 |γ̇α|dt, in 

the micropillars. Note that the post-deformation observation of the micropillars in Zhan et al. (2020, 2021) was made after a large 
amount of imposed compressive deformation while the contour plots of γ from the crystal plasticity finite element simulations are 
plotted at an imposed nominal compressive strain of 0.02. Also, in Figs. 5 and 6, for the finite element results, the base material and the 
rigid punch are purposefully hidden to highlight the predicted deformation pattern in the micropillars. 

As can be seen in Fig. 5, the two micropillars of Ti2AlC MAX phase in the experiments, Fig. 5(a,c), underwent non-uniform 
deformation on multiple parallel slip planes as evident from the remnant slip markings on the deformed micropillars. Also, since 
the crystallographic orientation of the two micropillars are different (a schematic representation of the crystallographic orientation of 
the hexagonal unit cell are also shown in the figure), the orientation of the remnant slip markings with respect to the loading axis in 
these two micropillars are also different. Similar observations can be made for the two experimentally deformed micropillars of 
Ti3AlC2 MAX phase shown in Fig. 6(a,c). The contour plots of γ obtained from the finite element simulations using the proposed non- 
Schmid crystal plasticity constitutive relation in the two Ti2AlC MAX phase micropillars are shown in Fig. 5(b,d) while the same in the 
two Ti3AlC2 MAX phase are shown in Fig. 6(b,d). Although the contour plots in Figs. 5 and 6 show the distribution of γ, we note that for 
these micropillars, crystallographic slip predominantly occurs on a single slip system in most of the micropillars except for the case 
shown in Fig. 5(a) where two slip systems are simultaneously active throughout the deformation process. Nevertheless, the distribution 
of γ is expected to represent the overall deformation in the micropillars. In line with this, a visual comparison of the shapes of the 
experimentally deformed micropillars with the predicted contour plots of γ in the same micropillars clearly shows that the predicted 
distribution of γ very well captures the non-uniform deformation of the micropillars. The visual comparison also reveals that the 
inclinations of the predicted isocontours of γ are in line with the inclinations of the remnant slip markings seen in the experimentally 
deformed micropillars. More importantly, the predicted deformed shapes in Figs. 5(b) and 6(b) clearly show the propensity to bend for 
these micropillars in line with the bending of the micropillars observed in the experiments, see Figs. 5(a) and 6(a). 

3.2. Role of the non-Schmid effect 

It is instructive to analyze the impact of the non-Schmid effect on the stress-strain response of both the MAX phases, Ti2AlC and 
Ti3AlC2. To this end, we focus on three single crystal micropillars with basal plane (0001) normal inclined at 80◦, 30◦ and 45◦ with 
respect to the loading axis or simply the axis of the micropillars. A schematic representation of the crystallographic orientation of the 
three hexagonal unit cells (labeled A, B and C for Ti2AlC, and I, II and III for Ti3AlC2, respectively) are shown in the Figs. 7 and 8 as 
insets. The maximum Schmid factor, max(s∗α ⊗ m∗α), that dictates the resolved shear stress on the active slip system in these three 
micropillars (labeled A, B and C or I, II and III) are 0.17, 0.43 and 0.5, respectively, while the maximum normal factor, max(m∗α ⊗ m∗α), 
that dictates the non-Schmid effect in the three micropillars are 0.03, 0.75 and 0.5, respectively. 

We now compare the stress-strain response of the three micropillars of both the MAX phases, with and without non-Schmid effect, 
in Fig. 7. As can be seen in the figure, the difference between the stress-strain response of the micropillars with and without non-Schmid 
effect strongly depends on the crystallographic orientation of the micropillars, for both the MAX phases. The micropillars with low 
values of the maximum Schmid factor i.e., A and I, in Fig. 7(a,b), have relatively high compressive yield strength and post-yielding 
these undergo limited plastic deformation. More importantly, since the values of the normal factor for these micropillars are also 
low, the impact of the non-Schmid effect on the stress-strain response of these micropillars is almost negligible. However, for crys
tallographic orientations with sufficiently greater values of the Schmid and normal factors, the non-Schmid effect significantly affects 
the stress-strain response of the micropillars as can be seen for micropillars B, C, II and III. Such that, neglecting non-Schmid effect for 

Fig. 5. SE-SEM images of deformed micropillars and corresponding predicted variation of the Taylor cumulative shear strain for Ti2AlC micropillars 
with crystallographic orientations in terms of Euler angles (in degrees using Bunge convention): (a,b) (137, 161, 1) and (c,d) (85, 139, 59). The SE- 
SEM images of the deformed micropillars are taken from the work of Zhan et al. (2020). 
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these micropillars results in relatively lower values of the initial yield stress as well as lower values of the flow stress throughout the 
deformation. The impact of the non-Schmid effect on the stress-strain response of the micropillars with sufficiently greater values of the 
Schmid and normal factors, depends on the value of the normal factor. For example, the impact of the non-Schmid effect is greater on 
the micropillars with the value of the normal factor being 0.75 (i.e., B and II) compared to the micropillars with the value of the normal 
factor being 0. 5 (i.e., C and III). Furthermore, the impact of the non-Schmid effect on the stress-strain response of the micropillars is 
greater for the Ti2AlC MAX phase compared to the Ti3AlC2 MAX phase. 

Recall that in Eq. (7) it is assumed that the current non-Schmid slip system resistance, gα
N, only evolves while the stress normal to the 

slip systems is less than a critical value, σc
N. This was needed to reproduce the experimentally obtained stress-strain response of the 

MAX phases. Nevertheless, we now analyze the effect of the finite value of σc
N on the stress-strain response of both the MAX phases. To 

this end, we consider the same three single crystal micropillars with basal plane (0001) normal inclined at 80◦, 30◦ and 45◦ with 
respect to the loading axis as in Fig. 7. The stress-strain response of these three micropillars of both the MAX phases, with a finite value 
of σc

N (given in Table 1) and with σc
N → ∞ are compared in Fig. 8. A very large value of σc

N guarantees that the value of the Heaviside 
step function in Eq. (7) is one throughout the deformation for all the micropillars. As can be seen in Fig. 8, the impact of limiting the 
extent of non-Schmid effect by introducing a finite value of σc

N on the stress-strain response of the micropillars strongly depends on the 
crystallographic orientation of the micropillars for both the MAX phases. For crystallographic orientations with low values of the 
normal factor or very high values of the Schmid factor, such as micropillars A and C, and I and III in Fig. 8(a) and (b), respectively, the 
impact of limiting the extent of non-Schmid effect on the stress-strain response is rather negligible. However, for micropillars B and II, 
for which the value of the normal factor is rather high, not limiting the extent of the non-Schmid effect significantly overestimates their 
flow stress. 

Fig. 6. SE-SEM images of deformed micropillars and corresponding predicted variation of the Taylor cumulative shear strain for Ti3AlC2 micro
pillars with crystallographic orientations in terms of Euler angles (in degrees using Bunge convention): (a,b) (96, 25, 51) and (c,d) (157, 129, 6). The 
SE-SEM images of the deformed micropillars are taken from the work of Zhan et al. (2021). 

Fig. 7. A comparison of the predicted nominal compressive (Comp.) stress – strain response of three micropillars of (a) Ti2AlC and (b) Ti3AlC2 MAX 
phases with (solid lines) and without (dashed lines) non-Schmid effect. The crystallographic orientations of the micropillars in terms of Euler angles 
(in degrees using Bunge convention) are: (90, 80, 300), (90, 30, 300) and (90, 45, 300) for micropillars A, B and C (or I, II and III), respectively. 

U.B. Asim et al.                                                                                                                                                                                                        



International Journal of Plasticity 157 (2022) 103399

9

3.3. Influence of key experimental parameters 

In this section, we analyze the effects of two key experimental parameters – friction between the rigid punch and top surface of the 
micropillar, and the vertical taper of the micropillars. The coefficient of friction between the rigid punch and top surface of the 
micropillar is not directly known from the experiments of Zhan et al. (2020, 2021) and thus far in all our simulations the value of the 
coefficient of friction is taken to be 0.1. This small value of 0.1 is assumed based on the considerable sliding between the micropillar 
and punch in the experiments as evident from the deformed shapes of the micropillars in Figs. 5 and 6. Also, the coefficient of friction 
between a rigid probe and MAX phases is found be as low as ~0.1 at room temperature (Smith et al., 2013). Nevertheless, it is 
warranted to analyze the effect of friction between the rigid punch and top surface of the micropillars on their predicted stress-strain 
response. To this end, we consider the same three single crystal micropillars with basal plane (0001) normal inclined at 80◦, 30◦ and 
45◦ with respect to the loading axis as in Section 3.2. 

The stress-strain response of these three micropillars of both the MAX phases, with coefficient of friction between the punch and the 
micropillars being 0.1 and 0.3 are compared in Fig. 9. As can be seen in the figure, the effect of friction between the punch and the 
micropillars on their stress-strain response strongly depends on their crystallographic orientation for both the MAX phases. For 
micropillars A and B, and I and II in Fig. 9(a) and (b), respectively, an increase in the friction overestimates their flow stress, while for 

Fig. 8. A comparison of the predicted nominal compressive (Comp.) stress – strain response of three micropillars of (a) Ti2AlC and (b) Ti3AlC2 MAX 
phases with the values of σc

N given in Table 1 (solid lines) and assuming σc
N → ∞ (dashed lines). The crystallographic orientations of the micropillars 

in terms of Euler angles (in degrees using Bunge convention) are: (90, 80, 300), (90, 30, 300) and (90, 45, 300) for micropillars A, B and C (or I, II 
and III), respectively. 

Fig. 9. A comparison of the predicted nominal compressive (Comp.) stress – strain response of three micropillars of (a) Ti2AlC and (b) Ti3AlC2 MAX 
phases with coefficient of friction between the punch and the micropillars being 0.1 (solid lines) and 0.3 (dashed lines). The crystallographic 
orientations of the micropillars in terms of Euler angles (in degrees using Bunge convention) are: (90, 80, 300), (90, 30, 300) and (90, 45, 300) for 
micropillars A, B and C (or I, II and III), respectively. 
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micropillars C and III, friction has a rather negligible effect on their stress-strain response. The significant effect of friction on the stress- 
strain response of the micropillars A and I is due to the fact that in these micropillars the basal planes are roughly parallel to the loading 
axis, so that, a greater friction between the punch and the micropillar introduces a constraint normal to the basal plane which in turn 
increases the value of σN, even though the value of the normal factor is only 0.03 for these micropillars. On the contrary, the significant 
effect of friction on the stress-strain response of the micropillars B and II (for which the value of the Schmid factor is 0.43 and that of the 
normal factor is 0.75) is because these micropillars tend to bend during compression (see Figs. 5(a) and 6(a) which show the deformed 
shape of the micropillars with similar orientation of the basal planes as in B and II) but a greater friction restricts the sliding between 
the punch and the micropillar which in turn restricts the overall bending of the micropillars. 

Next, we analyze the effect of the vertical taper of the micropillars on their stress-strain response. Here as well, we consider the 
same three single crystal micropillars with basal plane (0001) normal inclined at 80◦, 30◦ and 45◦ with respect to the loading axis as in 
Fig. 9. The stress-strain response of these three micropillars of both the MAX phases, with a vertical taper of 0◦ and 5◦ are compared in 
Fig. 10. As can be seen in the figure, for the dimensions of the micropillars considered in this work, there is only a small effect of the 
vertical taper on the initial yield strength. However, the presence of a small taper in the micropillars slightly increases the flow stress. 

4. Discussion 

We have formulated a non-Schmid crystal plasticity constitutive relation to model crystallographic slip in MAX phases. This was 
motivated by the experimental observations that unlike the materials that follow the classical Schmid law, the values of the resolved 
shear stress at the onset of crystallographic slip on basal slip systems in MAX phases is highly orientation dependent (Zhan et al., 2020, 
2021). Next, we carried out finite element simulations of micropillar compression of Ti2AlC and Ti3AlC2 MAX phases using the pro
posed constitutive relation and compared the predictions with the experimental results. Our results show that the predicted stress – 
strain response of a wide range of crystallographic orientations of the micropillars for both the MAX phases are in very good quan
titative agreement with the experimental results. Furthermore, the predicted distribution of Taylor cumulative shear strain in the 
micropillars are found to not only capture the onset of non-uniform deformation but also to an extent rationalize the deformed shapes 
of the micropillars observed in the experiments for both the MAX phases. 

The non-Schmid effects on the crystallographic slip has been previously incorporated within classical crystal plasticity constitutive 
relations for intermetallics (Ghorbanpour et al., 2020; Ghorbanpour et al., 2017; Gröger, 2021; Qin and Bassani, 1992) and BCC 
metallic material (Cereceda et al., 2016; Chen et al., 2014; Gröger et al., 2008a; Gröger et al., 2008b; Gröger and Vitek, 2020; Knezevic 
et al., 2014; Koester et al., 2012; Lim et al., 2015; Mapar et al., 2017; Patra et al., 2014; Srivastava et al., 2015; Weinberger et al., 2012) 
by accounting for the effects of stresses other than the resolved shear stresses on the slip systems. For example, for intermetallics with 
L12 crystal structure, Qin and Bassani (1992) added the contribution of shear stresses on {100} cross-slip planes in the 〈011〉 directions 
to the resolved shear stresses on the {111}〈011〉 slip systems. Similarly, in BCC metals where it is widely accepted that the non-planar 
spreading of the screw dislocation core in the presence of stresses other than the resolved shear stress leads to non-Schmid effect 
(Duesbery and Vitek, 1998), the effective resolved shear stress on a slip system is taken as a linear combination of various components 
of the stresses with coefficients representing the relative effect of each component (Gröger, 2021; Gröger et al., 2008b; Knezevic et al., 
2014; Koester et al., 2012; Lim et al., 2015). Alternatively, instead of modifying the resolved shear stress (i.e., the driving force for slip), 
Chen et al. (2014), within a fully rate-dependent crystal plasticity formulation simply modified the evolution of the slip system strength 

Fig. 10. A comparison of the predicted nominal compressive (Comp.) stress – strain response of three micropillars of (a) Ti2AlC and (b) Ti3AlC2 
MAX phases with a vertical taper of 5◦ (solid lines) and 0o (dashed lines). The crystallographic orientations of the micropillars in terms of Euler 
angles (in degrees using Bunge convention) are: (90, 80, 300), (90, 30, 300) and (90, 45, 300) for micropillars A, B and C (or I, II and III), 
respectively. 
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(i.e., the resistance to slip) to account for the non-Schmid effects. The non-Schmid effects incorporated in Chen et al. (2014) followed 
from the prior works on non-Schmid crystal plasticity yield criteria and flow rules (Gröger et al., 2008b; Koester et al., 2012). 

Here we assumed that the evolution of the resistance to slip or simply the slip system strength, gα, in MAX phases is the sum of a 
classical component, gα

γ , that depends on the Taylor cumulative shear strain and a non-Schmid component, gα
N, that depends on the 

stress normal to the slip plane, σN. So that the non-Schmid effect in our formulation enters in the denominator of Eq. (4) as in Chen 
et al. (2014) and not in the numerator as in Knezevic et al. (2014). Where to introduce the non-Schmid effect in Eq. (4) is a constitutive 
choice, however, in the rate-independent limit i.e., m → 0, both our choice and that of Knezevic et al. (2014) will reduce to that of Qin 
and Bassani (1992), and others. Also, when γ̇α → γ̇0 (i.e., the material rate of shear approaches the reference rate), both our choice and 
that of Knezevic et al. (2014) are mathematically the same. Nevertheless, note that incorporating the non-Schmid effect in the 
numerator affects the driving force for slip while incorporating it in the denominator affects the resistance to slip. So that if the 
non-Schmid effect is incorporated in the numerator it can give rise to erroneous slip when the non-Schmid component is much greater 
than the resolved shear stress and their difference exceeds the current value of gα

γ , for instance, in the presence of excess compressive 
hydrostatic pressure on the specimen. More importantly, both the stress components, τα and σN, involved in describing the shear strain 
rate in Eq. (4) obey the inversion symmetry in line with the discussion in Gröger (2021). 

Although the atomic origin of non-Schmid effect in MAX phases is not yet known it is safe to say that they differ from the BCC 
metals. Recent atomistic simulation results have indeed shown that in MAX phases where crystallographic slip occurs due to basal 
dislocations, the core structure of these dislocations is not affected by the normal stresses (Plummer et al., 2022). Nevertheless, since 
the dislocation activities are confined to basal planes in MAX phases, it can lead to strong dislocation interactions and alignments along 
specific orientation thus resulting in increased lattice friction (Guitton et al., 2012), which can give rise to non-Schmid effects in line 
with the description of slip system resistance assumed in this work. 

Furthermore, unlike the prior works on non-Schmid crystallographic slip, here we found that in order to quantitatively predict the 
experimentally obtained stress-strain response of the MAX phases, the non-Schmid slip system resistance must saturate once the stress 
normal to the slip planes reaches a critical value. It is also worth noting that as per Eq. (7), the value of ġα

N is only positive when both σN 

and σ̇N are negative, and the non-Schmid resistance to slip, gα
N, continues to increase (until |σN| <σc

N). However, once the loading is 
reversed or the specimen is being unloaded (with a finite rate), σN is negative (until the specimen is completely unloaded) but σ̇N is now 
positive giving a negative value of ġα

N and a decrease in the value of gα
N. This implies that once a specimen is completely unloaded, the 

residual slip system strength, gα, only stores the contributions from the classical slip system strengthening, gα
γ , due to the accumulated 

Taylor cumulative shear strain. Moreover, since the value of ġα
N is non-zero only if σN is negative, our model predicts that the onset of 

crystallographic slip under tension will occur when the resolved shear stress on a slip system equals τ0, which is the ‘intrinsic’ critical 
resolved shear stress of the material, as shown in Fig. 11. In other words, the ‘apparent’ value of the critical resolved shear stress, τCRSS, 
extracted from the crystallographic orientation dependent macroscopic yield strength, σy, of the material will be independent of the 
tensile stress normal to the basal plane, σN. 

The results of our parametric studies aimed at quantifying the role of the non-Schmid slip resistance on the stress-strain response of 
the MAX phases revealed that the effects of the non-Schmid component strongly depend on the crystallographic orientation of the 
micropillars. So that depending on the crystallographic orientation of the micropillars, neglecting the non-Schmid component either 
has a negligible effect on the stress-strain response or it results in significantly lower initial yield stress as well as flow stress. The effect 
of limiting the extent of non-Schmid resistance on the stress-strain response of the MAX phases was also found to strongly depend on 
the crystallographic orientation of the micropillars. That is depending on the crystallographic orientation of the micropillars, not 
limiting the extent of non-Schmid resistance either has a negligible effect on the stress-strain response or it significantly overestimates 
the flow stress. Moreover, our results show that the effect of the non-Schmid resistance on the stress-strain response of the micropillars 
is greater for the Ti2AlC MAX phase compared to the Ti3AlC2 MAX phase. 

We also carried out parametric studies to analyze the effects of two key experimental parameters – friction between the rigid punch 
and top surface of the micropillar, and the vertical taper of the micropillars. Our results show that the effect of the friction between the 
punch and the micropillars strongly depends on the crystallographic orientation of the micropillars i.e., depending on the crystallo
graphic orientation of the micropillars, an increase in the friction either significantly overestimates the flow stress or has a negligible 
effect. On the other hand, the presence of a small taper (< 5∘) in the MAX phase micropillars of large diameter (≈ 10μm) is found to 
only slightly affect the initial yield strength, in line with the results obtained from discrete dislocation dynamics simulations of 
compression of tapered micropillars by Kondori et al. (2017). However, the presence of a small taper in the micropillars increases the 
flow stress. 

Numerous experimental studies on polycrystalline aggregates of MAX phases have highlighted the strong influence of the 
microstructural features such as grain morphology and texture on their mechanical response. In particular, it has been shown that 
textured polycrystalline MAX phases at room temperature can exhibit very ductile response under compression with strain to failure 
exceeding 10% (Barsoum and El-Raghy, 1999). The non-Schmid crystal plasticity constitutive relation formulated in this work can now 
be used to simulate the mechanical response of polycrystalline aggregate of MAX phases and optimize the microstructural parameters 
to further enhance their mechanical performance. 

5. Conclusion 

Motivated by the experimental observations of non-Schmid crystallographic slip in MAX phases, herein, we have formulated a non- 
Schmid crystal plasticity constitutive relation to predict the single crystal level stress – strain response of two MAX phases, Ti2AlC and 
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Ti3AlC2. The proposed constitutive relation assumes that the evolution of slip system strength/resistance in MAX phases has two 
components – a classical component that depends on the Taylor cumulative shear strain and a non-Schmid component that depends on 
the stress normal to the slip plane. The non-Schmid crystal plasticity constitutive relation is then used to carry out finite element 
simulations of micropillar compression of the two materials. The finite element simulations not only quantitatively predict the stress – 
strain response of a wide range of crystallographic orientations of the micropillars but also rationalize the non-uniform deformation 
and the deformed shape of the micropillars observed in the experiments for the two materials. Parametric studies are also carried out to 
quantify the role of the non-Schmid slip system resistance and understand the effects of key experimental parameters on the stress – 
strain response of the micropillars of the two MAX phases. The key conclusions of our work are as follows:  

• The effect of the non-Schmid slip system resistance strongly depends on the crystallographic orientation of the micropillars i.e., 
depending on the crystallographic orientation of the micropillars, neglecting the non-Schmid resistance either has a negligible 
effect or it predicts significantly lower initial yield and flow stress.  

• The contribution of the non-Schmid slip system resistance due to the stress normal to the slip planes in MAX phases saturates once 
the stress normal to the slip planes reaches a critical value.  

• The effect of saturation in non-Schmid resistance to slip strongly depends on the crystallographic orientation of the micropillars i.e., 
depending on the crystallographic orientation of the micropillars, not limiting the extent of non-Schmid resistance either has a 
negligible effect or it significantly overestimates the flow stress.  

• The effect of the non-Schmid resistance on the stress-strain response of the micropillars is shown to be greater for the Ti2AlC MAX 
phase compared to the Ti3AlC2 MAX phase.  

• The effect of the friction between the punch and the micropillars strongly depends on the crystallographic orientation of the 
micropillars i.e., depending on the crystallographic orientation of the micropillars, an increase in the friction either significantly 
overestimates the flow stress or has a negligible effect.  

• The presence of a small taper in the MAX phase micropillars of large diameter is found to only slightly affect the initial yield 
strength. 
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Fig. 11. The variation of the predicted ‘apparent’ critical resolved shear stress, τCRSS, with the component of stress normal to the basal plane, σN , for 
Ti2AlC (open circles) and Ti3AlC2 (open squares) MAX phase specimens subjected to uniaxial tensile loading conditions. The corresponding values of 
the ‘intrinsic’ critical resolved shear stress, τ0, obtained from micropillar compression tests by Zhan et al. (2020, 2021) for the two MAX phases are 
also plotted as dashed lines. 
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