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Abstract: An algorithm for detecting sudden jumps in measured F0, which are likely to be inaccurate measures, is introduced.
The method computes sample-to-sample differences in FO and, based on a user-defined threshold, determines whether a dif-
ference is larger than naturally produced FO velocities, thus, flagging it as an error. Various parameter settings are evaluated
on a corpus of 30 American English speakers producing different intonational patterns, for which F0 tracking errors were
manually checked. The paper concludes in recommending settings for the algorithm and ways in which it can be used to facil-
itate analyses of FO in speech research. © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Though it might be tempting to take accurate FO measurement for granted in speech research, this is by no means a trivial
issue. Speech science and language researchers who deal with FO measurement know that FO estimation is prone to error,
whether due to noise in the signal, junctures between consonants and vowels, or variation in voice quality, all of which
pose problems in the measurement of FO [see, e.g., Kawahara ef al. (2005) and Xu (1999) for discussion of errors in FO
estimation due to irregular voicing and consonant junctures]. In this paper, we introduce a simple but effective metric for
identifying FO measurement errors, and we provide an assessment of its effectiveness under various parameter settings,
using FO trajectories from a large corpus of American English intonation. Two developments in speech and phonetics
research have increased the need for such a tool. First, the size of data sets under consideration has grown in the past sev-
eral decades. For researchers using large data sets and speech corpora, manual inspection of all FO measures in a data set
may be prohibitively time-consuming and resource-intensive. Second, speech researchers across disciplines have developed
a growing interest in the study of dynamic patterns that unfold over time. Though single-point or interval-mean measures
are still informative in the study of FO in speech, time-series analyses have gained in popularity. Yet a single measurement
error in a time-series of FO measures can pose serious problems for analysis.

The idea behind the tool presented here is that errors in FO measurement often involve sudden jumps in FO.
This method accordingly will not address FO measurement errors that do not result in sudden FO changes, a caveat that
should be kept in mind by users, though in our experience most errors in FO measurements involve sudden sample-to-
sample changes. An open access R script for implementing the algorithm can be retrieved from https://github.com/jsteft-
man/f0-jumps.

1.1 Benefits of an estimator-independent error detector

There are many existing approaches to mitigating errors in FO estimation. These approaches generally perform error cor-
rection/elimination in the process of FO estimation, such that the user is not aware of when and where errors have been
identified by the FO estimator. For example, in Praat (Boersma and Weenink, 2020), octave jump errors can be eliminated
by adjusting the FO floor and ceiling and other parameters, such as the octave jump cost (though we do not compare our
method directly to FO estimated with Praat, we do compare it to an octave jump detector in Sec. 3.1, which provides an
assessment of how eliminating octave jumps compares to the algorithm we introduce here). Other estimators, such as
Harvest (Morise, 2017), eliminate errors in FO estimation by checking sample-to-sample differences (as does our method)
and removing samples that exceed a certain percentage threshold of preceding samples.

The tool we describe here is intended to be complementary to these FO estimator-dependent error corrections in
that it (1) can be applied to FO from any estimator that outputs non-zero FO values' and (2) is intended to provide both a
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way of removing errors that persist after attempted corrections from an estimator and a readout of files that contain
errors, how many errors are within a file, and for which specific samples they occur. An additional use of the algorithm,
described in Sec. 4, is to identify files with flagged errors that may contain a property of interest (e.g., non-modal phona-
tion). The present algorithm can thus be used in a more hands-on fashion as compared to estimator-internal error correc-
tion and serves a complementary purpose: the assessment and analysis of errors that persist after FO has been estimated or
simply the exclusion of files that contain persistent errors. Another proposed advantage of the algorithm is that, unlike
previous approaches, it is grounded in physiological thresholds from speech production, which provides an informed met-
ric for identifying errors.

1.2 Rate of FO change in speech production

How quickly is too quickly for FO to change across successive samples? To answer this question, we draw on speech pro-
duction research that quantifies the maximum rate of change in FO during speech production (Ohala and Elwan, 1973;
Sundberg, 1973; Xu and Sun, 2002). The method of eliciting rapid FO changes in these studies is to ask speakers to pro-
duce an oscillating glissando between high and low FO. These productions are imitative in the sense that the speakers are
prompted to produce speech from an auditory model that may be musical (Sundberg, 1973) or based on resynthesized FO
in human speech (Xu and Sun, 2002). From these reproduced FO oscillations, one can calculate the time it takes for the
speaker to go from the minimum FO value to the maximum for a given FO movement. Another metric reported in
Sundberg (1973) is “reaction time,” which analyzes the central portion of an FO movement in which 6/8 of the movement
occurs, starting from the minimum and ending at the maximum value. This region of the FO movement generally contains
a steeper slope (higher velocity) than the beginning and end of the movement, as velocity increases at the start of the FO
movement and then decreases as the FO target is approached. The rate of change in this higher velocity interval is then
calculated. As our purpose is to identify reasonable rate of change maxima to exclude changes that exceed them, we rely
on the reaction time measure, using data from Sundberg (1973) as an input to the algorithm (though, importantly, these
thresholds can be adjusted in the script that implements the algorithm). Sundberg (1973) and Xu and Sun (2002) show
that various factors influence the rate of change of F0. Overall, FO movements are made more quickly for female speakers
than for males and for trained singers than for those without voice training. In addition, falling FO movements occur faster
than FO rises.

1.3 The algorithm

The process for detecting errors described here is implemented as follows. Take an ordered time-series of FO measure-
ments at times 1 through n: F0,; _ FO,,.

(1) FO,, is subtracted from F0,, yielding the sample-to-sample difference d.
(2) dis compared to a threshold T; if d >T, an “error” is flagged. This is coded as 1. If d < T, a 0 is coded, for no error.
* Specific thresholds for sample-to-sample falling FO (F0,,; < FO,) or rising FO (FO,,; > F0,) may be used, capturing the
different rates of change evident in the speech production literature referenced above.
(3) The procedure is repeated for all samples in the time-series, yielding a string of Os and 1s corresponding to all pairs of suc-
cessive samples in the time-series.

From this string, the script produces a time-series record of errors for all samples, as well as a summary for each
unique FO trajectory identifying (1) the number of sample-to-sample differences that exceeded the threshold, (2) whether
any sample-to-sample differences exceeded the threshold (coded as a binary 0 or 1), and (3) the proportion of sample-to-
sample differences in the trajectory that exceeded the threshold.”

The script is designed to print and save this information for each trajectory that had any sample-to-sample dif-
ferences exceeding the threshold. It can also optionally summarize this information by speaker if the data set contains
multiple speakers.

The parameters that need to be set by the user are the spacing between FO measurements in time (defaulting to
10 ms intervals, which is the recommended setting) and the threshold(s) for determining how fast is too fast. Below, we
additionally review and assess other parameter settings that can be modified, and we evaluate the output of the algorithm
on a corpus of intonational melodies. Note that in what follows, a less-strict threshold setting below corresponds to a
larger tolerated sample-to-sample change in FO. The tested parameters are listed here.

(1) Rise/fall thresholds: Should rising FO movements and falling FO movements be subject to different thresholds? If no, the
less-strict falling threshold is used.

(2) Male/female thresholds: Should speaker gender be considered in setting thresholds? If no, the less-strict female threshold
is used.

(3) Tolerate samples: Should a small number of sample-to-sample differences exceeding the threshold in the same FO trajec-
tory be tolerated? Values tested are 0 (none tolerated), 1, or 2.

We compare combinations of each of these settings and how they balance hit and false alarm rates in Sec. 2.
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2. Assessing the automated method

Our strategy in assessing the effectiveness of the algorithm was to run it with the strictest parameter settings we considered
(described in Sec. 2.2). We then performed a manual inspection of all files flagged as containing errors by these settings.
As will be described, the settings proved “too strict” in the sense that some files in the manual audit were re-included by
way of manual checking. In Sec. 3, we present possible adjustments to the algorithm’s parameters that balance hit rate
(the number of correctly identified files) with false alarms (files that should not be flagged, but were by the algorithm).

2.1 Corpus for assessment

The data we use to assess the algorithm come from an imitative speech production study that examined intonation in
American English [see Cole ef al. (2022) for details on this experiment; see also Chodroff and Cole (2019)]. In the experi-
mental paradigm, speakers listen to an auditory model representing a given intonational pattern and reproduce the intona-
tional melody in the model when producing a new sentence.” The auditory model sentences were designed to have eight
different intonational patterns’ instantiated on the final word of the model sentences, which was always a trisyllabic,
stress-initial name. The intonational models (i.e., the stimuli for the imitation) were created by re-synthesizing FO using
the PSOLA method in Praat (Boersma and Weenink, 2020; Moulines and Charpentier, 1990). See Chodroff and Cole
(2019) and Cole et al. (2022) for more details on the intonational melodies in question and the design of the experiment.
Measurements were extracted from the phrase-final trisyllabic stress-initial words. Figure 1(A) shows the mean scaled ERB
(Equivalent Rectangular Bandwidth) of eight tune shapes (with FO-tracking errors removed) to give a sense of the variety
of FO trajectory shapes that were elicited. Thirty self-reported native American English speakers each completed 144 trials
in the experiment (a combination of tune, target sentence, and model sentence). These data are particularly useful as a
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Fig. 1. (A) The eight FO shapes in the corpus. Black dashed lines are the grand mean, and colorful lines are speaker means. (B) Four example
speakers showing trajectories flagged as containing errors (brown lines) and those that were not (gray lines). The average duration for each
panel is 557, 535, 678, and 468 ms, respectively (left to right). (C) FO overlaid on spectrograms for two files that were flagged as containing an
error with the strictest settings but later identified as a fast FO movement. Samples whose differences exceed the threshold are in red. (D) Two
files that were authentic errors.
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corpus to assess FO-tracking errors as they contain speech from 30 speakers and a variety of shapes of FO movements,
with FO measures taken from utterance-final position, where non-modal phonation can make F0 tracking difficult. Trials
with disfluencies and speech errors were excluded. The total number of tokens submitted to the error-detection algorithm
was 4254. FO was computed in VoiceSauce (Shue ef al., 2009), using the STRAIGHT algorithm (Kawahara et al., 2005). FO
was measured at a 10 ms sampling rate.

2.2 Parameters and thresholds

Here, we evaluate the efficiency of several parameter settings in the algorithm. These are listed in Sec. 1.3. Recall that a
less-strict threshold setting corresponds to a larger tolerated change in FO.

Sundberg (1973) examined FO rate of change at different FO interval sizes, (i.e., imitating smaller vs larger
changes in F0). We selected the rate of change that was fastest from these different intervals, which happened to be the
largest interval. From this interval, we took the mean rates of change (from the reaction time measure) for male and
female speakers who were not trained singers.’

The first run of the algorithm employed the strictest settings that we assumed would provide a conservative
threshold for FO rate of change. These were (1) rise- and fall-specific thresholds, (2) speaker gender-specific thresholds,
and (3) a tolerance of zero sample-to-sample errors. Figure 1(B) shows the results of the error flagging procedure with
these settings in the FO trajectories from four example speakers. Brown lines are those that were flagged as containing an
error. As can be seen, the automated method has successfully flagged trajectories with sudden discontinuities that are
unlikely to be a reflection of actual F0. In general, we found the algorithm to be effective along these lines.

We subsequently carried out a manual audit of the 507 files that were flagged as containing an error by these
strictest settings. The goal here was to assess whether an error was correctly identified by the algorithm. Manual assess-
ment of the data was carried out by visual and auditory inspection by three trained auditors. Visualization of the FO mea-
sured in STRAIGHT with the offending samples highlighted in red [as in Figs. 1(C) and 1(D)] was inspected as was the
corresponding sound file. An error was confirmed if the measured FO did not accurately reflect the perceived pitch at that
location in the audio file. An error was disconfirmed when perceived pitch comported with the measured trajectory and
when that trajectory showed a smooth change in FO without sudden discontinuities [Fig. 1(C)]. Of the 507 files audited
manually, 51 were determined not to be actual errors in FO measurement [of the sort in Fig. 1(C)]. Thus, in total, about
10% of the flagged files (51/507) were incorrectly labeled by the algorithm, which, if left unchecked, could lead to 1% of
the total corpus being incorrectly marked as an error (51/4254). In this sense, the strictest threshold is potentially “too
strict™ it flags files as containing errors that are assessed by the trained auditors to involve fast (and accurately measured)
FO changes.

3. Comparison of settings

In this section, we compare the algorithm across various parameter settings, adjusting the three parameters given in Sec.
2.2. For each run of the algorithm under each setting combination, we computed the number of hits [correctly identified
errors, as in Fig. 1(D)] and false alarms [errors that were flagged but were in fact just fast FO movements as in Fig. 1(C)],
taking the manually audited files as the standard of comparison. From these, we then computed a d' score for each indi-
vidual speaker, allowing us to examine the spread of d’ scores across parameter settings.”

The originally used strictest setting, shown as the leftmost red bar in Fig. 2(A), has both the highest number of
hits and the highest number of false alarms (see corresponding plots of raw hits and false alarms in the online supplemen-
tary image at https://osf.io/4hqdn/). Changing a setting that reduces false alarms also reduces hits. The d’ metric shown in
Fig. 2(A) allows us to balance these considerations, and the distribution of values shows some settings are clearly better
than others. In particular, allowing any sample-to-sample differences to exceed the threshold is detrimental, and not
encoding a difference between FO rises and falls in the threshold settings greatly reduces d’ to be at or below chance (0),
as shown in Fig. 2(A). The effect of including speaker gender in the thresholds is comparatively minimal. The mean high-
est d is, in fact, for parameter settings that use only the more lax female speaker thresholds (and otherwise are as strict as
possible).

We complemented the d’ analysis of settings by computing the F-score’ for each parameter setting combination,
shown in Fig. 2(B). The F-score assessment is largely in line with the d’ analysis in suggesting the stricter parameter set-
tings are best, the two highest F-scores being the strictest setting (0.947) or the same parameter settings but without
gender-specific thresholds (0.923).

In summary, it seems that the strictest parameter settings are fairly optimal for our corpus in balancing hits and
false alarms, with the exception of the inclusion of gender-specific thresholds. Adding gender-specific thresholds provides
only marginal improvement in the F-score and no improvement in d’. In this regard, we suggest that gender-specific
thresholds may not be worth including, unless the researcher is specifically interested in this question. In the version of
the script linked above, we accordingly do not include gender-specific threshold settings (though the script can be modi-
fied to include them).
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Fig. 2. (A) d’ scores for each parameter setting with bars showing 95% confidence intervals computed over individual speaker d’ values for
each parameter setting. (B) F-scores by parameter setting. (C) d’ for the best combination of parameter settings, as compared to an octave
jump detector.

3.1 Comparison to an octave jump detector

As noted in Sec. 1.1, one way to minimize errors in FO tracking is to remove octave jumps in FO estimation. In Praat
(Boersma and Weenink, 2020), this can be accomplished by adjusting the parameters in the Advanced Pitch settings. In
this section, we briefly compare performance of our algorithm to one that detects only octave jumps. We computed octave
jumps on the basis of a change in FO that is equivalent to pitch halving or doubling or was larger than this.

Because our goal in this paper is not to compare FO estimation algorithms, we computed octave jumps from the
same FO measurements in the corpus that we used for the assessment of the algorithm above. We then computed d-prime
and F-scores to compare this octave jump detector to the best settings of our algorithm (the strictest settings without
gender-specific thresholds, as described above). An octave jump is, in a sense, a very extreme sample-to-sample change. As
such, we expected that the octave jump detector should agree with the threshold method in terms of the errors that it flags
but that it might miss smaller errors that exceed the threshold but do not rise to the level of an octave jump. The results
confirm this. Though the false alarm rate for the octave jump detector was among the lowest of all parameter combina-
tions (2%), the hit rate was correspondingly low (15%). In other words, 15% of files that were manually assessed as con-
taining errors contained octave jumps, and the remaining 85% contained manually identified errors smaller than an octave
jump. The F-score for the octave jump detector was thus low (0.36), owing to its low count of true positives. The d' com-
parison, shown in Fig. 2(C), agrees with this in indicating that there is a substantial improvement in d’ using the threshold
method. This allows us to conclude that, in our corpus at least, detecting/removing octave jumps will catch the largest FO
jumps, but the physiologically informed thresholds offer an improvement over the octave jump criterion in their ability to
flag subtler errors.

4. Conclusions

In this paper, we presented a simple but effective tool for identifying FO tracking errors in time-series data, and we
assessed how various parameter settings for the algorithm perform. In conclusion, we offer some views of how this tool
can be used in larger-scale FO research. In our own research, the purpose of the algorithm has been to identify files that
will be excluded from our data set, for which our analysis has focused on time-series FO measures. For this purpose, the
algorithm can be paired with a manual audit to re-enter any false alarms into the corpus for analysis. In our experience
across several large corpora of the sort presented here (all examining utterance-final FO patterns), approximately 10% of
the files in the corpus are flagged as containing an error (though this rate may be lower when FO measures are not coming
from the end of a phrase). Further, approximately 10% of the flagged files (1% of the total data) are false alarms. Thus, if
the researcher is willing to potentially lose 1% of usable data in their corpus, manual intervention is not needed. On the
other hand, if the researcher has the time and resources, a manual audit of flagged files allows them to ensure that all files
that can be analyzed are included. This is also much less time-intensive than auditing the entire corpus.

Another use for this tool may be to flag files that contain properties of interest (non-modal voicing, jumps to fal-
setto voice). For example, voice quality features such as creaky voice are often characterized by irregular FO and can lead
to FO measurement errors (Kawahara ef al., 2005; Keating ef al, 2015). The algorithm may thus be useful for identifying
files containing creak for further inspection, especially if the researcher suspects there is creaky voicing in their data. It has
also been noted that changes to falsetto voice engender sudden FO jumps, though they tend to occur when the speaker is
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in a specific modal FO range. Future developments of the algorithm could incorporate this in considering the value from
which a jump occurs, which may be a useful way to identify jumps to falsetto voice (based on empirical data in this vein).

In sum, we believe that the present tool can be fruitfully applied to large-scale FO-based speech research both as
a tool for ensuring accuracy in FO measures and potentially for addressing other research questions.
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