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Abstract

In Autosegmental-Metrical models of intonational
phonology, pitch accents, phrase accents and boundary tones
may combine freely to create a predicted set of phonologically
distinct phrase-final “nuclear” tunes. In this study we ask if an
8-way distinction in nuclear tune shape in American English,
predicted from combinations of 2 (monotonal) pitch accents, 2
phrase accents and 2 boundary tones, is manifest in speech
production and in speech perception. FO trajectories from an
imitative speech production experiment were analyzed using (i)
neural net classification, and (ii) human listeners’ perceptual
discrimination of the model utterances. Pairwise classification
accuracy of the imitative productions is highest for tune pairs
that differ in holistic shape (high-rising vs. rise-fall), and
poorest for tunes with the same shape that differ in (higher vs.
lower) final f0. Perception results show a similar pattern, with
poor pairwise discrimination for tunes that differ primarily, but
by a small degree, in final f0. Together the results suggest a
hierarchy of distinctiveness among nuclear tunes, with a robust
distinction based on holistic tune shape, which only partly
aligns with distinctions in tonal specification, and a
weak/poorly differentiated distinction between tunes with the
same holistic shape but small differences in final f0.

Index Terms: intonation production, intonation perception,
nuclear tunes, neural net classification, deep learning

1. Introduction

In tone sequence models of intonation such as the
Autosegmental-Metrical (AM) model, FO movements are
decomposed into high (H) and low (L) tonal targets, which link
to positions with phrasal prominence or domain edges, and
which combine to form different phrasal fO trajectories or
“tunes”. For example, the widely used AM model for American
English intonation [1,2] the basis for the ToBI intonation
annotation system [3], contains an inventory of 5 pitch accents
used to mark phrasal prominence (monotonal H*, L*, plus 3
bitonal accents), 2 phrase accents marking the edge of an
intermediate phrase (H-, L-), and 2 boundary tones marking the
edge of an intonational phrase (H%, L%).! The sequence of the
final pitch accent in the intonational phrase, referred to as the
nuclear pitch accent, followed by the phrase accent and
boundary tone constitute the “nuclear tune” of an utterance.

! Some authors [e.g., 4] further distinguish a downstepped high
tone ('H), which we set aside here.

Taking all possible combinations of 5 pitch accents, 2 phrase
accents and 2 boundary tones, the AM model of American
English  predicts 20 phonologically distinct nuclear tune
shapes, which may be used by speakers and listeners to signal
distinct discourse meanings.

Empirical investigations of the AM model for American
English have focused on distinctions among pitch accents [e.g.,
5-8] and phrase accents [9], with relatively less work examining
nuclear tone sequences (but see [10]) and their phonetic
implementation. With the goal of addressing this gap, [11]
tested the distinctions among a subset of 8 nuclear tunes in
American English (those using only the monotonal pitch
accents) through the analysis of imitated intonation. In that
study, participants heard a set of short sentences resynthesized
with one of 8 nuclear tunes (the model tunes), and reproduced
the heard tune on a new sentence presented orthographically
(the imitations). Distinctions among f0 trajectories of the
imitations were analyzed using k-means clustering for time-
series data, which identified five clusters, each having a distinct
mean f0 trajectory. Of these five clusters, only one mapped
neatly onto a distinct tune from the set of model tunes (the mid-
plateau H*H-L%); the remaining four clusters comprised
imitations of two or more model tunes. The five-cluster solution
reflected a loss of distinction between tunes of three types:
steep-rising tunes ending on a high f0 {H*H-H%, L*H-H%},
rise-fall tunes {H*L-L%, H*L-H%}, and low-rising tunes
ending on a mid or mid-low f0 {L*L-H%, L*H-L%}.

The results from [11] suggest that speakers in that study
were operating with fewer tunes than were hypothesized in the
model tune set, making distinctions based on overall tune shape
and final fO (high/mid/low), rather than individual tone
components. We raise two questions about these results. The
first question concerns tune scaling. The high-rising tunes in
[11] ended in very high {0, resulting in fO excursions much
larger than those of the other tunes. The very large fO excursions
of the steep-rising tunes in that study, which were based on an
f0 scale obtained from natural productions, may have drawn
participants’ attention away from the smaller distinctions in f0
that distinguished other tunes from one another. If so, we may
expect more tune distinctions to be preserved when model tunes
are resynthesized to avoid large scaling differences. Our second
question concerns the use of k-means clustering to identify
groups of similar f0 trajectories in the imitated data. The
optimization method used in selecting the clustering solution
finds the grouping of data that maximizes the distance between
clusters, while minimizing distance among items belonging to



the same cluster. With this algorithm, f0 trajectories with
different shapes that are nonetheless close in fO space may be
grouped in the same cluster, while those with larger differences
are more likely to be grouped in different clusters. Would the
smaller f0 differences between “lost” tune distinctions in the
clustering analysis emerge using a different method for
evaluating distinctions among imitated tunes?

The present paper addresses these questions in a follow-up
study, using the imitative speech production paradigm from
[11], now modifying the resynthesized f0 trajectories of the 8
model tunes to reduce scaling differences among them. First,
distinctions in the f0 trajectories of imitations were assessed
using classification analysis, with bidirectional Long-Short-
term-Memory (LSTM) neural networks trained to classify f0
trajectories of the imitations in the 8 categories of the model
tune set. LSTMs are a type of recurrent neural network widely
used in ‘deep learning’ and are especially successful at pattern
recognition in sequence data, including speech and language
[12, 13]. Further hierarchical clustering over the classification
output provides a model of the relative distinctiveness among
the 8 classes of imitated tunes. Second, we compare the
classification results with results from a perceptual
discrimination experiment with human listeners to evaluate the
role of perceptual factors in the imitation of input tunes. Below
we show that, when model tunes are scaled to a similar {0 range,
machine classification of the imitations is overall very good
(65% accuracy). Yet the tune pairs that the classifier most often
confuses are mostly the same tune pairs that are very poorly
discriminated by human listeners. Notably, two of the three tune
pair distinctions that were lost in the clustering analysis of [11]
are among the most poorly discriminated and least accurately
classified in the present study. Based on these findings, we
discuss the parameters in tune shape that are robustly
distinguished, and those that are not, and consider the
implications for the phonological representation of intonational
tunes and their perceptual salience.

2. Methods

2.1. Speech production experiment

Imitative productions of the 8 nuclear tunes formed over
combinations of a monotonal pitch accent, phrase accent and
boundary tone (tunes now abbreviated as HHH, HHL, HLH,
HLL, LHH, LHL, LLH, LLL) were elicited using the
experimental paradigm from [11]. Speakers heard model
utterances with resynthesized f0 trajectories representing the 8
tested tunes. On each trial, speakers imitated the heard tune,
reproducing it in a new sentence presented on the computer
screen. Participants were encouraged to reproduce the tunes in
a way that sounded natural to them. The sentences in the model
utterances and the new sentences were syntactically similar,
ending in a trisyllabic, stress-initial name on which the nuclear
tune was instantiated. Model utterances were produced by 2
model speakers (one male, one female) with 3 sentences (“Her
name is Marilyn”/ “He answered Jeremy”/ “He quoted
Helena”). The new sentences that participants said aloud were
“She remained with Madelyn”/ “He modeled Harmony’/ “They
honored Melanie”.

In each trial, the participant heard 3 model utterances
instantiating the same nuclear tune. FO was resynthesized for
the model utterances using PSOLA in Praat [14], with a linear
fO decline over the preamble and implementing straight-line
approximations of the nuclear tunes, shown schematically in
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Figure 1: Schema for the models tunes

Figure 1. The resynthesized fO contours differed from those
used in [11] in both {0 scaling (lower peak {0, most notably for
HHH, LHH) and in the alignment of f0 turning points to
consistent segmental landmarks. Tunes were implemented
using five target fO values located in each model speaker’s pitch
range. The scaling and alignment of resynthesized tunes were
based on examples from online training materials [3], and were
judged to sound appropriate for each tune by two expert ToBI-
trained listeners (including the first author).

30 self-reported native speakers of American English (18
female, 11 male, 1 gender non-binary, mean age = 21) were
recruited from the Northwestern University subject pool (22)
and from Prolific (8). They participated remotely in the
experiment, using their own computer, microphone, and
headphones/earbuds. There were 144 trials (8 tunes x 18 trials
per tune). The 18 trials for a given tune differed in the order of
the 3 model sentences (6 orders, balanced for gender of the
model speaker), and in the target sentence (3 sentences). FO in
the participants’ imitative productions was measured using
STRAIGHT in Voicesauce [15, 16]. Textgrids were force-
aligned [17], individually inspected, and manually corrected
where needed. FO was measured in the nuclear accented word,
and in the preceding (preamble) portion of the sentence. A
hybrid automated/manual f0 error detection procedure resulted
in the exclusion of 11% of the utterances, for a total of 3,798
imitative utterances analyzed (f0 samples were flagged as an
error when exceeding f0 rate-of-change thresholds from [18] —
non modal phonation was a frequent source of errors).

To test whether participants produced distinct f0 patterns
for all 8 input tunes, we evaluated distinctions among imitations
based on the accuracy of a bidirectional LSTM neural net
classifier that assigned f0 trajectories of imitations to one of 8
classes corresponding to the input tune labels. If tunes are
accurately imitated, with distinct fO trajectories reliably
implemented for different tunes, classification performance
should be optimal, with all imitations of a given tune assigned
to the same class. Errors in the classifier output (e.g., imitations
of HLL are assigned to the HLH class) are expected if
imitations fail to reliably implement the distinct {0 pattern for a
given tune. Frequent pairwise errors (e.g., HLL identified as
HLH, and vice-versa) would reflect a loss of distinction
between a pair of tunes.

Average classification accuracies for each category, along
with average between-category misclassification rates, were
calculated over 20 repetitions of a training-testing procedure. In
each repetition, the data were randomly partitioned into training



(45%), validation (10%), and test (45%) subsets.! Various input
representations of the {0 trajectory were tested.? Here we report
only the combination of parameters which yielded the highest
average accuracy in classification: time-normalized ERB at two
time steps (x & dx), in the nuclear word only.

Agglomerative hierarchical clustering was used to infer
groupings among the 8 tune classes based on average
proportions of misclassfied trials, using the distance metric
8(A,B) =1—P(4,B), where P(4,B) is the proportion of
trials where tune A is classified as B. Tune pairs that are more
often confused in the classifier output will be separated by
smaller distances in the hierarchical clustering analysis. The
overall hierarchical structure shows how the tune classes are
dispersed in f0 space.

2.2. Speech perception experiment

The perceptual salience of the input tunes was tested by human
listeners in an AX discrimination task, using model utterances
from the speech production experiment. There were 8 tunes
(shown in Fig. 1), produced by 2 model speakers, on 3 different
sentences for 48 unique stimuli. 30 different native speakers of
American English, recruited on Prolific, participated remotely
(14 female, 15 male, 1 gender non-binary, mean age = 23). On
each trial participants were presented with recordings of a tune
pair and asked to respond, by mouse click, if the two tunes were
the same or different, with an inter-stimulus-interval of 500 ms.
Participants were instructed to focus on the intonational melody
of the utterance. Tunes were paired with each other in all
possible order-sensitive combinations yielding 64 tune pairs (8
x 8 tunes). This 64-tune list was repeated, yielding 128 trials in
total. For both tunes in a given trial, the model speaker voice
and the model sentence were the same. Model speaker and
sentence varied across trials and were combined with tune pair
in 3 counter-balanced lists. 10 participants were randomly
assigned to each list, hearing different model speakers and
sentences across randomized trials, with all possible
combinations attested across the 3 counterbalanced lists.

We analyzed responses to order-insensitive tune pairs
(e.g., combining responses to HHH-HHL & HHL-HHH) to
assess how accurately listeners discriminated tune pairs.
Bayesian logistic regression in Stan [20] was conducted to
model variation in listeners’ responses (“same” or “different”),
as a function of tune pair, with random intercepts for listener,
and weakly informative normal priors, for both the intercept
and fixed effects. Results are reported only for “different” trials;
performance on same-tune trials was near ceiling for all tune
pairs.

3. Results

Neural network classification accuracy of imitative productions
is high overall, with 65% correct classification of tunes (chance
= 12.5%). Similarly, perceptual discrimination for most tune
pairs was well above chance (mean 80% correct; chance =

! The 8 tune categories were balanced within each subset. The
classification networks consisted of an input layer and two
bidirectional LSTM layers of 200 units, each followed by a 50%
dropout layer. These were followed by a fully connected layer,
a softmax layer, and a classification layer. The Adam training
algorithm was used [19] with L2 regularization 0.001, learning
rate 0.0001, and validation patience 20 epochs.
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Figure 2: Heat maps showing the percentage of NN
classification confusions and listener perceptual
confusions for tune pairs (a), and their correlation (b).

50%). However, for both the classifier and human listeners,
certain tune pairs were frequently confused, as shown in the
confusion matrices over tune pairs in Figure 2a. Figure 2b
shows there is a relationship between the perceptual
discriminability of the model tunes and classification accuracy
for the imitations. In addition, confusions among imitations are
less frequent than confusions among the model tunes that they
were meant to imitate. This suggests that human listeners were
unable to take full advantage of f0 information marking tune
distinctions in the model utterances. It is also possible that in
imitating the model tunes, speakers enhance acoustic
distinctions between tunes, providing the classifier with extra
information beyond what was available in the resynthesized
model utterances.

Which tunes are confusable? From Figure 2b, four pairs of
tunes stand out as being the most poorly discriminated, both in
classification of the imitative production data and perception of
the model tunes. These pairs are: {HHH, HHL}, {HLH, HLL},
{LHL, LLH} and {LHH, LLH}. Taking a closer look first at
the imitative production data, hierarchical clustering of the
classifier output (Figure 3a) shows that the tunes in these
confusable pairs define clusters in the similarity space defined
by the classifier output. The tunes in the high-rising pair {HHH,
HLL} are the least separable (smallest distance), followed by
the rise-fall {HLH, HLL} and low-to-mid rising pair {LHL,
LLH}. The low-to-high rising tune LLH joins the low-to-mid

2 Input representations that were tested varied in the use of (1)
time-normalized vs. raw-time measurements, (2) FO estimates
in speaker-centered Hz or ERB units, or autocorrelograms
(vectors of correlations between a frame of the signal with itself
at all possible lags); (3) FO estimates at each sample x, the
difference between x and the following sample (dx), or both (x
& dx), and (4) the whole utterance, just the preamble, or just
the nuclear word.
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Figure 3: Hierarchical clustering for the speech
production data (a), and model estimates and 95%
credible intervals for tune-pair discriminability (b).

rising pair to form a broader similarity grouping of low-rising
tunes. The low-falling/flat LLL tune stands alone—imitations
of LLL are rarely misclassified. These results suggest a
mapping of imitated tunes onto a similarity space with four
clusters, described in terms of their holistic shape: high-rising,
rise-fall, low-rising, and low-fall/flat. Within a cluster, tunes
with distinct tone labels can be distinguished with lower
accuracy, and are often misclassified for one another.

Turning to the perception results for the model tunes, Figure
3b plots estimates from the Bayesian model of the proportion
of “same” responses given for a particular tune pair
(corresponding to confusions in Fig. 2a, right), sorted from
lowest to highest. In addition, the phonetic distance between the
tunes in a given pair, calculated as the root-mean squared error
between f0 trajectories of the model tunes (RMSE), is color-
coded. RMSE is clearly related to perceptual discriminability.
The model estimates shows that four tune pairs are
discriminated at or below chance, based on 95% Credible
Intervals that include or exceed 50% (chance), i.e., more
“same” than “different” responses. The poorly discriminated
tune pairs include the same tunes that are grouped together in
the hierarchical clustering of the imitated production data:
{HHH, HHL}, {HLH, HLL}, {LHL, LLH} and {LHH, LLH}.

We now have converging evidence for weak distinctions
for four tune pairs, both in the perception of the model tunes,
and in imitative productions of those tunes. Notably, all of these
confusable tune pairs vary primarily in the fO value at the end

of the tune, seen in the model tunes (Fig. 1), and in the by-
speaker average f0 trajectories of those tunes (not shown). Put
differently, what the tunes in each pair have in common is their
shape at the beginning of the nuclear word, including the f0
movement associated with the pitch accent.

Classifier confusions for some of the imitated tune pairs are
lower than perceptual confusions of the model tunes for the
same pairs: {LLH, LLL} and {LHH, LHL} (see Fig. 2b). This
finding suggests that in imitating these tunes, speakers are
enhancing relatively small FO distinctions present in the model
tunes. Conversely, classifier confusions for other imitated tune
pairs are higher than perceptual confusions of the model tunes:
{HHH, HHL} and {HLH, HLL}, which suggests that speakers
are diminishing FO-based distinctions in imitating these tunes.

Which tune distinctions are robust? The hierarchical
clustering of imitated tunes and the perceptual discrimination
of model tunes alike indicate robust distinctions between most
tunes. The most robust distinctions are between the tune groups
that emerge from the hierarchical clustering analysis, i.e., high-
rising tunes that start high and end higher {HHH, HHL}, rise-
fall tunes {HLL, HLH}, low-rising tunes that end in a mid-level
fo {LHH, LLH, LHL}, and low-falling/flat tunes that start and
end low {LLL}. Two of these clusters can be described in terms
of their tonal specification: high-rising {HHX} and rise-fall
{HLX}. The grouping of the low-rising cluster {LHL, LLH}
does not neatly align with tonal specification, nor does the
larger grouping of low-rising tunes that includes LHH.

4. Conclusions

This study tested distinctions in the perception and imitative
production of 8 hypothesized nuclear tunes of American
English. Tune pairs whose f0 trajectories are phonetically well
separated are generally perceived and reproduced as distinct,
while tune pairs that are closer in fO space are more likely to be
confused. Thus, we found similar results for classifier
confusions and perceptual confusions for some tune pairs, but
also divergent results, indicating that imitations sometimes
enhance and sometimes minimize FO distinctions in the model
tunes. Classification accuracy of the imitative productions is
highest for tune pairs that differ in holistic shape (high-rising
vs. rise-fall), and poorest for tunes with the same shape that
differ in (higher vs. lower) final f0. One limitation of this study
is that we focus solely on f0; certain pitch distinctions may be
perceived differently if co-varying with other cues such as
duration and intensity. Broadening the cues under consideration
in both human perceptual discrimination and machine
classification will accordingly be a useful further direction.

Our results partially converge with findings from [11],
suggesting that the differential scaling of tunes in a larger f0
space does not fully account for lost tune distinctions in that
study. Major shape distinctions (e.g., low-rising vs. rise-fall) are
maintained in both studies, while smaller differences in final f0
for tunes of the same shape are not. This finding raises questions
about the categorical status of distinctions in holistic tune shape
vs. final f0, and in the potential for each to convey distinctions
in discourse meaning. We leave this for future research.
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