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Abstract

Rising pitch movements associated with pitch accents are
frequently described in terms of alignment and scaling; for
example, L+H* versus H* accents vary in these parameters.
We examine how 12 American English nuclear tunes, created
by combining three pitch accents {H*, L+H*, L*+H}, and four
edge tone sequences {H-H%, H-L%, L-H%, L-L%}, are
distinguished in an imitative speech production paradigm.
Bottom-up clustering analyses of unlabeled time-series f0
identify a robust distinction between trajectories that rise
throughout (rise-only) and those with rising-falling movements
(rise-fall). Additional clustering distinctions between tunes
with different pitch accents are observed only in the rise-only
cluster, and further reflect variation in holistic nuclear tune
shape. For rise-fall movements, further distinctions in
clustering are best defined by ending f0, corresponding to a
boundary tone distinction {H%, L%}. With only 4 distinct
clusters emerging from the imitated tunes, it appears that some
tune distinctions are lost. Nevertheless, modeling trajectories
with ToBI labels using a GAMM, and testing alignment of {0
turning points, reveals small differences between tunes in f0
scaling and alignment, distinguishing ToBI labels that were
grouped together in clustering. We discuss these results in terms
of the hierarchy of distinctions they imply, and categories of
tune shapes.

Index Terms: intonation, nuclear tunes, alignment, scaling,
clustering, imitative speech production.

1. Introduction

Phonological categories in AM models are often described in
terms of alignment and scaling. For example, distinctions
between pitch accents such as L*+H and L+H* are identified
based on the alignment of an f0 event, e.g., a rise, with respect
to a metrically prominent syllable. Scaling is another parameter
which has been described as differentiating categories,
particularly in the case of pitch accents, for example the same
tonal element may be realized with a higher f0 value in one
context than in another (as in H* versus L+H*). A common
and recurring question in the intonation literature is if, and how,
continuous parameters such as alignment and scaling of f0 map
to phonological categories [e.g., 1-5]. Put differently, how
much does variation in alignment and scaling reflect the
implementation of discrete, categorical representations?

More generally, it is an open question whether the full set
of pitch distinctions predicted by the phonological inventory of
tones in the AM model of American English [6,7] are readily
available for speakers to produce [8]. We address this question

in an experiment testing how speakers produce distinctions
among a set of tunes which are predicted to vary in alignment
and scaling, testing three pitch accents (H*, L+H* and L*+H),
combined with all boundary tone sequences (H-H%, H-L%, L-
H% and L-L%): twelve total nuclear tunes. We examine which
0 parameters best distinguish the nuclear tune shapes produced
in imitative speech, and ask if the observed distinctions map
straightforwardly onto ToBI labels. The fO trajectories are
analyzed using a clustering analysis on unlabeled data. We
further use GAMM modeling to examine what differences in
alignment and scaling are detectable when the analysis takes
pre-defined tune categories into account.

2. Methods

We adopted an imitative speech production paradigm modeled
on [8]. Speakers were asked to reproduce the tunes of heard
model utterances, for which f0 trajectories have been
resynthesized based on [9,10]. Within a trial, the participant
listens to model utterances, and then reproduces the exposure
tune from the model utterances on a new sentence (the
imitation), which is shown orthographically on the computer
monitor. Participants are instructed to do so in a way that sounds
natural to them. The model utterances and imitative utterances
were syntactically similar, and all ended in a tri-syllabic, stress-
initial name, on which the nuclear tune was instantiated. Model
utterances were produced by two model speakers (one male,
one female) and contained two sentences (“Her name is
Marilyn”/ “He answered Jeremy”). The new sentences that
speakers were prompted to say aloud were “She remained with
Madelyn”/ “He modeled Harmony™/ “They honored Melanie”.

In a trial, a participant heard two model utterances,
instantiating the same exposure tune on the final tri-syllabic,
stress-initial name (e.g., “Marilyn”). In each trial, the model
utterances comprised one production from each model speaker,
and both model sentences, for a total of four possible (2 x 2)
stimulus combinations, which appeared with equal frequency
throughout the experiment. Each stimulus combination was
paired with each of 12 tunes (described below) for a total of 48
unique trials, repeated three times and presented in a fully
randomized order for a total of 144 trials in the experiment. The
experiment was completed remotely, with participants listening
to stimuli over headphones/earbuds, and recording their
responses with their own built-in/external microphone. 70
speakers participated in the experiment, recruited from Prolific
and the Northwestern Linguistics Subject Pool, with each self-
identifying as a native American English speaker (36 female,
31 male, 3 gender non-binary; mean age =22).



2.1. Materials and measurement

Stimuli were created by resynthesizing naturally produced
utterances, with f0 trajectories created on the basis of straight-
line approximations as described in [6,11], using 6 {0 target
heights located at the same proportional location in each
speaker’s pitch range. Alignment of f0 movements
corresponded to segmental landmarks, as shown in Figure 1A.

Utterances were segmented via text grid to identify the
region predicted to carry the nuclear tune (e.g., “Melanie” in
“They honored Melanie”), and the portion of the sentence
preceding the nuclear tune. Text grids were force-aligned using
the Montreal Forced Aligner [12], and subsequently manually
checked and hand corrected when necessary. Aligned files were
submitted for f0 measurement using STRAIGHT, as
implemented in VoiceSauce [13,14]. Files containing likely fO
tracking errors were detected by an algorithm that computed
sample-to-sample changes in f0 implemented as in [15], and
flagged as likely errors those changes which exceeded f0 rate
of change thresholds described in [16]. Flagged files were
subsequently manually inspected, and excluded if an f0-
tracking error was confirmed. In total we excluded 9% of the
files on this basis (note that non-modal phonation was common
and led to inaccurate sudden jumps in estimated f0). We
additionally excluded two speakers (from an original total of
72), for whom poor audio quality made reliable fO extraction
difficult. We time-normalized the f0 measurements, taking 30
equidistant samples per nuclear word. We further converted fO
measures from Hz to ERB and scaled and centered each
speaker’s measures, effectively normalizing for differences in
pitch height and pitch range. Figure 1B plots the by-speaker
average time-normalized f0 trajectories for imitative
productions of each exposure tune.

2.2. Analyses

Here we report on three analyses, each providing a different
assessment of the distinctions present in the imitative data.
First, we present the results of a clustering analysis,
implementing k-means clustering for longitudinal data [17]
(Section 3.1). Unlabeled f0 trajectories are partitioned into
clusters which are iteratively optimized via cluster centroids.
We selected the optimal partition of the data using the Calinski-
Harabatz criterion [18], which selects as optimal the solution
with the highest ratio of between to within cluster dispersion,
computed over time series vectors. We tested two through ten
clusters as possible partitions. Here we are effectively asking
what number of clusters best characterizes the unlabeled data, a
“bottom up” approach to discovering distinctions among
imitated tunes. The analysis was carried out on speaker mean
trajectories for each tune (12 trajectories per speaker).

We also assessed differences between trajectories which
were labeled by exposure tune, a “top down” approach to
describing contour differences, carried out with individual trial-
level productions (not speaker means). First, we modeled time-
normalized scaled ERB for imitations of each tune using a
GAMM (Section 3.2), fit using [19,20] and predicting {0 by
tune, with random effects specified using reference/difference
factor smooths, comparable to random intercepts for speaker
and by-speaker random slopes for tune, implemented as in [21].
Our second “top down” analysis modeled f0 turning points, no
longer in normalized time, but instead in terms of (raw)
temporal distance from the end of the first syllable in the
nuclear word (this boundary was manually checked in the
auditing of the text grids). We modeled the timing of fO turning
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Figure 1: Schematic model tunes, with vertical lines
indicating segmental landmarks (A), and mean time-
normalized speaker productions (B), with thin lines
indicating speaker means and the thick line indicating
the grand mean. H*HH refers to H*H-H%, and so on.

points (Section 3.3) using a mixed-effects regression model
implemented in the Bayesian framework [22], which predicted
turning point timing by exposure tune, with random intercepts
for participant, and by-participant slopes for tune.

3. Results

3.1. Clustering analysis

The results of the clustering analysis are shown in Figure 2. As
shown in Figure 2A, the optimal partition of the data was into
only two clusters, here labeled 1 and 2. Cluster 1 mainly
includes imitations of tunes with a rise-fall contour, while
cluster 2 mostly includes imitations of tunes which contain no
fall. A second-pass clustering analysis was carried out
separately for the imitations in each of the two first-pass
clusters, as shown in Figure 2B with subclusters (1a, 1b, 2a, 2b).
Here we examine how each cluster varies in shape, and how
exposure tunes, defined based on ToBI labels, map to clusters.

First, consider clusters 1a and 1b and their mean trajectories
in Figure 2B. These mean cluster shapes are best distinguished
by the scaling of f0 after the initial peak f0 associated with the
pitch accent: In cluster 1b, f0 falls from the initial peak to a low
value, while in cluster 1a there is a much smaller {0 fall after
the peak, ending in a mid-level f0. The mapping of exposure
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Figure 2: Cluster partitions for the full data set (A) and
each sub-cluster (B). Faint lines are speaker means for
each tune; dotted lines are cluster means. Heat maps at
right show cluster composition in terms of the
proportion of contributing tunes, indexed by color.

tunes to clusters is largely, though not entirely, based on
boundary tones: imitations of LH-ending tunes tend to fall into
cluster 1a, while those of LL-ending tunes fall into cluster 1b.
Imitations of H*LH are evenly distributed across the two
clusters. The mean trajectories of the two clusters differ slightly
in alignment of the initial pitch movement (associated with the
pitch accent), but more so in the scaling of the final portion of
the tune, with higher (1a) or lower (1b) f0.

The 10 trajectories in clusters 2a and 2b rise throughout, and
differ in two parameters: whether the rise is scooped in shape
(2a) or domed (2b), and the scaling of the ending f0 in each,
with cluster 2a ending higher. This distinction in shape maps
onto exposure tune labels, with imitations of L*HHH, L*HHL
and H*HH mostly making up cluster 2a, and imitations of
LH*HH and LH*HL mostly making up cluster 2b. This
distinction in scooped vs. domed rise shape has been
documented elsewhere, where it is described in terms of the
Tonal Center of Gravity [4,23,24] of an f0 event. This may be
the basis of the distinction among the high-rising nuclear tunes
in our study as well, distinguishing clusters 2a and 2b, though
this merits further investigation.

In summary, the four clusters which emerge from our
analysis define a hierarchy of distinctions, with rising vs. rising-
falling at the highest level. A further distinction in the rising-
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Figure 3: GAMM fits for tunes over normalized time,
with 95%CI. Non-overlapping CI can be taken to
indicate a significant difference across tunes.

falling subset corresponds primarily to the boundary tone
sequence (cluster 1a/1b), manifest in final fO height. For the
rising subset, a distinction in rise shape (domed vs. scooped)
corresponds fairly well to a distinction between the two bitonal
pitch accent categories in the exposure tunes, though
differences in fO contour shape are holistic, spanning the tune.

3.2. GAMM modeling of trajectories

Given the results of the clustering analysis, we have evidence
that some distinctions between exposure tunes are not well
preserved by speakers in the experiment. For example,
imitations of LH*HH and LH*HL mostly cluster together in
cluster 2b, suggesting that they are produced without clear
distinctions in shape. To further assess distinctions among
tunes, we visualized GAMM smooth fits and confidence
intervals (Cls), shown in Figure 3. For any pair of tunes, we
take non-overlapping Cls as evidence of a reliable difference
between exposure tune shapes. Figure 3A and 3B show
GAMM fits for each pitch accent, grouped by edge tone
sequence. We note here that each set of tunes (within a panel)
shows regions that are differentiated by the GAMM analysis-
and moreover each contour shows the expected distinction in
shape based on the exposure tunes (see Fig. 1), save for H*HH,
which has been reproduced as a scooped low-to-high rise. With
respect to panel B in particular, we see that, although imitations
of tunes with different pitch accents were grouped in the same
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Figure 4. Alignment of fO peaks (A) and valleys (B),
with tune at left. Violin plots show the distribution, the
large points show the mean. Tunes are ordered top to
bottom from latest to earliest alignment. Color indicates
pitch accent. Time 0 marks the end of the first syllable.

cluster (1a/1b), there are detectable differences in the region of
the pitch accent in f0 scaling (H*LL vs. LH*LL) and in
alignment (LH*LL vs. L*HLL). We can make analogous
comparisons for the imitations of tunes that clustered together
in clusters 2a and 2b, shown in panel C of Figure 3. These
clusters grouped imitations of tunes with different edge tones
(HL and HH); however GAMM fits show differences between
these two edge tone sequences corresponding to distinctions in
rise shape between scooped and domed (particularly for
LH*HH/LH*HL), and in scaling of final fO height.

3.3. Alignment of f0 peaks and valleys

Some of the differences among nuclear tunes relate to the
alignment of f0 peaks and valleys. In our set of resynthesized
exposure tunes, differences in f0 alignment are important for
distinguishing the 3 pitch accent categories. We find marginal
evidence for alignment distinctions among imitated productions
in the clustering analysis, where 2 (but not 3) pitch accents are
distinguished, only in the rising subset (Fig. 2B, cluster 2a/2b).
We took a closer look at alignment through the timing of two
fO events with respect to the boundary between the first and
second syllable in the word carrying the nuclear tune. We
measured alignment of the f0 peak associated with the pitch
accent rise for imitations of exposure tunes with a rise-fall shape
(those with an L- phrase accent), in terms of the (often positive)
distance from the syllable boundary to the f0 peak of the rise.
For exposure tunes with an overall rising shape (those with H-
phrase accents), we measured alignment of the valley of the rise
(i.e., the rise onset) as the (often negative) distance of the f0
minimum to the syllable boundary (Fig 4). We report estimates
from the statistical model which were found to have a reliable
effect on alignment, assessed by inspecting the 95% posterior
distribution for a given effect. When the posterior excludes 0,
this indicates a clear directionality for the effect. We also report
the percentage of the posterior with a given directionality [25]

as “pd” (for “probability of direction”); pd = 99% indicates that
99% of the distribution has a given sign: strong evidence for an
effect. With L+H* as the reference level in the peak alignment
model, H* is earlier (B = -17; CI = [-27,-9]; pd = 100%) and
L*+H is later (f =42; CI =[33,50]; pd = 100%), without strong
evidence for an effect of edge tone sequence (pd = 83%). In the
valley alignment model, with L+H* as the reference level,
L*+H shows later alignment (f =20; CI =[10,31]; pd = 100%),
with a further credible effect of boundary tone where HL
boundary tones lead to earlier valley alignment (f =-11; CI =
[-20,-3]; pd = 100%). There is also an interaction (pd = 100%),
indicating the boundary tone effect is larger for H* pitch accents
- this seems related to the fact that H¥*HH is imitated with a
different shape in the initial portion compared to H¥*HL (see
Fig. 1/Fig. 3); H*HH shows the latest mean alignment while
H*HL shows the earliest. Especially for L+H* and L*+H, the
joint influence of edge tones and pitch accent on alignment of
the valley (rise onset) is a departure from what we see in peak
alignment, suggesting that rise onset timing is more holistically
determined by these two parameters. In both peak and valley
alignment, but especially valley alignment, distributions are
heavily overlapping, and effects are small in magnitude.
Nevertheless, these results suggest fine-grained distinctions
that were not captured in the clustering analysis.

4. Discussion

Our results suggest a hierarchy of distinctions among nuclear
tunes, as reflected in imitated productions. Clustering of
unlabeled f0 trajectories of imitations shows a primary partition
into rise and rise-fall shapes, with a secondary partition defined
by scaling of final f0. For imitations in the rise class only, this
secondary partition also marks a distinction between scooped
vs. domed rises, corresponding to a Tonal Center of Gravity
distinction. Within these four clusters, finer distinctions in {0
alignment and scaling emerge when imitated productions are
grouped by exposure tune category, some of which correspond
to predicted distinctions between tonal categories (e.g., pitch
accent distinctions, Fig. 3B), while others are best described in
terms of holistic tune shape (domed vs. scooped rises) that
integrate pitch accent and edge tone features. That finer
distinctions are not captured in the clustering analysis reflects
their smaller scale and variable implementation. We note here
that with the present data we are not able to localize the source
of noisy imitations to perception (of model tunes) or to
speakers’ production systems reducing or eliminating perceived
distinctions. In sum, the present results show the importance of
considering distinctions among tunes as part of a whole system.
To evaluate the AM model of American English nuclear tunes
it is necessary to consider how tunes in the inventory are
implemented in relation to one another, and the extent to which
they are reliably distinguished from all other members of the
inventory. This approach gives further insight into the ways in
which speakers actually make tunes distinct, some of which are
predicted by the AM model, and some of which are not (e.g.,
domed vs. scooped rises). Further tests of tune categories in this
vein will benefit from examining other acoustic correlates of
intonation (duration, intensity, voice quality), as well as
perceptual data, and also from putting tunes in discourse
contexts, which may support or enhance certain distinctions.
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