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Abstract: Analyzing the tail quantiles of a response distribution is sometimes more
important than analyzing the mean in biomarker studies. Inferences in a quantile
regression are complicated when there exist a large number of candidate markers,
together with some prespecified controlled covariates. In this study, we develop
a new and simple testing procedure to detect the effects of biomarkers in a high-
dimensional quantile regression in the presence of protected covariates. The test is
based on the maximum-score-type statistic obtained from a conditional marginal
regression. We establish the asymptotic properties of the proposed test statistic
under both null and alternative hypotheses and propose an alternative multiplier
bootstrap method, with theoretical justifications. We use numerical studies to show
that the proposed method provides adequate controls of the family-wise error rate
with competitive power, and that it can also be used as a stopping rule in a for-
ward regression. The proposed method is applied to a motivating genome-wide
association study to detect single nucleotide polymorphisms associated with low
glomerular filtration rates in type 1 diabetes patients.

Key words and phrases: Conditional marginal regression, extreme value distribu-
tion, high dimensional, maximal score statistic, multiplier bootstrap.

1. Introduction

A genome-wide association study (GWAS) screens for associations between
a large number of single-nucleotide polymorphisms (SNPs) and phenotypes such
as disease symptoms and clinical indices. It is known that genes often do not
function individually, but tend to work together in a biological process; see, for
instance, Zou et al. (2004), de Leeuw et al. (2016), and Sun et al. (2019). There-
fore, it is important to identify gene sets, that is, classes of genes that jointly
have an association with disease phenotypes. Inferences in the context of gene
set detection face challenges in terms of both high-dimensionality and multiplic-

ity, because the number of genes in a set can be much larger than the sample
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size, and genes in different sets may overlap.

This study is motivated by a GWAS from the Diabetes Complication and
Control Trial (DCCT), which searches for SNPs associated with the glomerular
filtration rate (GFR) using genome-wide screening. The GFR is an important
clinical index for the risks of nephropathy, one of the major microvascular compli-
cations in diabetic patients. The study has three unique features. First, the mean
level of the GFR among participants is less clinically informative than the left tail
quantiles. This is because the mean values are usually driven by the majority of
participants without nephropathy, whereas the lower quantiles reflect the charac-
teristics of the subset of participants that progressed to nephropathy. Second, the
GFR data are skewed to the left, even after log-transformation; see Figure 2 in
Section 4. Third, the data contain a large number of SNPs and some “protected”
covariates that are known to impact GFR levels, such as age, duration of dia-
betes, and body mass index. Let Y be a scalar response variable corresponding
to the GFR, and let (ZT,X )T be a p,-dimensional set of covariates, where n is
the sample size, Z is a g-dimensional (g is fixed) conditioning set corresponding
to the “protected” covariates, and X is the set of the remaining d,-dimensional
covariates, with d,, = p, — ¢, corresponding to the SNPs. Our goal is to assess
the association between the SNPs and the lower tails of the GFR distribution in
order to identify SNPs and gene pathways associated with patients at higher risk
of kidney failure, after controlling the effect of the protected covariates.

In a GWAS, the most commonly used approach is to test trait-SNP as-
sociations (conditioning on Z) for one SNP at a time, followed by a multiple
comparison adjustment, such as a Bonferroni adjustment or a false discovery rate
(FDR) control. Although a Bonferroni adjustment controls the family-wise er-
ror rate (FWER) well, it is usually conservative, which may result in low power
under the alternative. An FDR control works differently to an FWER control,
which is suitable when there exist many important covariates. Other works based
on a GWAS focus mainly on mean-regression-based tests. Without including Z,
Zou et al. (2004) proposed a resampling procedure to assess the significance of
genome-wide quantitative trait loci mapping for Drosophila backcross. In ad-
dition, McKeague and Qian (2015) proposed an adaptive resampling test and
applied it to glioblastoma cancer data. Guo and Chen (2016) proposed test-
ing the overall significance of X conditional on Z, based on a quadratic form
of the score functions. Tang, Wang and Barut (2018) proposed a hybrid test
of maximum- and sum-squared-type statistics based on conditional marginal re-
gressions, where they regress Y on Z and each X; separately. Based on the sum
of powered scores (Pan et al. (2014); Xu et al. (2016)), Wu, Xu and Pan (2019)
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proposed an adaptive test for generalized linear models, in which they assume
that the errors satisfy the subGaussian condition and p,, = o(n?). However, none
of these mean-based methods are suitable for analyzing GFR data to meet the
research goals.

As a valuable alternative to the mean regression, a quantile regression pro-
vides a natural way to capture the impact of covariates on the tail of the response
distribution. A quantile regression does not, in general, require parametric dis-
tributional assumptions, and can accommodate skewed distributions and het-
eroscedasticity automatically. There exist various inference methods for quantile
regression, including Wald-type, quasi-likelihood-ratio, and rank score tests, as
well as resampling-based approaches; see Koenker (2005, Chap. 3), Kochergin-
sky, He and Mu (2005), Feng, He and Hu (2011), and Wang, Van Keilegom and
Maidman (2018). Unfortunately, the existing tests apply only to low-dimensional
covariates, and either have low power for large p, or are infeasible for cases with
pn > n. For an inference with high-dimensional X, one may first select a subset
of predictors using a variable selection method (Wu and Liu (2009); Belloni and
Chernozhukov (2011); Wang, Wu and Li (2012); Sherwood and Wang (2016)),
and then conduct hypothesis testing on the selected model using conventional
methods. However, this practice ignores the uncertainty involved in the model
selection step and, thus, often leads to an inflated FWER (Leeb and Pd&tscher
(2003, 2005)).

To detect significant predictors while accounting for the uncertainty involved
in the selection stage, Wang, McKeague and Qian (2018) proposed a quantile
marginal effect test based on the maximum of the marginal t-statistics. In addi-
tion, Wang, Van Keilegom and Maidman (2018) considered wild residual boot-
strap inference for a penalized quantile regression, without the presence of Z.
However, their theories only work for a fixed dimension, and the method of Wang,
McKeague and Qian (2018) uses a computationally intensive double bootstrap
procedure to select the tuning parameter involved in the test calibration. Further-
more, in clinical studies, prognostic factors should be selected after accounting
for the effects of protected covariates with known impacts on the outcome. By
including Z, Park and He (2017) extended the rank score test for quantile regres-
sions with fixed dimensions to settings with diverging p,; however, this method
still requires p, < n.

We propose a conditional marginal score-type test for a quantile regression in
an ultrahigh-dimensional setting in order to detect the overall significance of X on
the quantile of Y in the presence of “protected” covariates Z. More specifically,
for j =1,...,d,, we evaluate the additional effect of each X; conditional on Z,
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using rescaled conditional marginal rank scores, and define the final test statistic
as the maximum of d,, squared score statistics. In contrast to existing works, our
method allows the dimension d,, to diverge with n and be much larger than n, for
instance, d, = O{exp(n®)}, for some ¢y > 0. Under some regularity conditions,
we establish the asymptotic properties of the proposed test statistic under null
and alternative hypotheses. To improve the finite-sample performance, we pro-
pose an alternative calibration method based on a multiplier bootstrap procedure
and provide theoretical justifications. Numerical studies show that the proposed
test provides adequate control of the FWER with competitive power. We demon-
strate that the proposed procedures are computationally efficient, taking much
less time than those methods that require intensive resampling or a double boot-
strap (McKeague and Qian (2015); Wang, McKeague and Qian (2018); Tang,
Wang and Barut (2018)). Combination tests are alternatives to the proposed
maximum-type statistic for determining group-wise significance. For instance,
the Cauchy combination test (Liu and Xie (2019, CCT)) combines the P-values
obtained from the individual covariate tests into a single P-value in order to as-
sess the group-wise significance. However, our simulation studies show that the
CCT tends to be conservative in high dimensions.

In addition to the nice properties presented above, the proposed test can
be used as a stopping rule in forward selection, where in each step, the prese-
lected set is treated as the conditioning set. In settings with high-dimensional
covariates, penalization and variable screening methods are commonly used to
select significant covariates. For example, Wu and Liu (2009), Belloni and Cher-
nozhukov (2011), Peng and Wang (2015), and others have proposed penalized
variable selection methods for quantile regressions. Zhao and Li (2014) proposed
a score-test-based variable screening method, and Li, Li and Tsai (2015) and
Ma, Li and Tsai (2017) proposed screening methods based on quantile partial
correlations. Screening and penalized selection methods can only tell us whether
a covariate is selected, whereas the proposed method can assess the significance
of the covariate by providing a P-value that is more informative.

The rest of the paper is organized as follows. In Section 2, we describe the
proposed conditional marginal score-type test, present the asymptotic properties
under the null and local alternative hypotheses, and introduce the multiplier
bootstrap method. In Section 3, the finite-sample performance of the proposed
test is assessed using simulation studies. In Section 4, we apply the proposed
method to the motivating GWAS data with GFR outcomes. In Section 5, we
conclude the paper. Additional simulation results and all technical proofs are
provided in the online Supplementary Material.
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2. Conditional Maximum-Score Test
2.1. Model settings

Let {(Y;,Z;,X;.),i = 1,...,n} be independent and identically distributed
(i.i.d.) copies of the triplet (Y, Z,X). Let Q,(Y; | Z;.,X;.) be the conditional 7th
quantile of Y; given {Z;., X;.}. We assume the following linear quantile regression
model:

Q- (Yi | Zi, X)) = Z} azo(t) + X Bxo(1), i =1,...,n, (2.1)

where azo(7) = (1,0(7),...,000(7))" and Bxo(T) = (Bro(7),- .-, Bdmo(T))T
are the quantile-specific coefficient vectors of Z and X, respectively. We are in-
terested in testing the existence of an association between X and the 7th quantile
of Y, after accounting for the effect of Z; that is, we test

Hy: Bxo(r) =04, versus H,: Bxo(T) # 0g4,. (2.2)

The testing of (2.2) can be viewed as a first step in a GWAS to assess the overall
significance of a gene set, and if Hy is rejected, a second step can be conducted
to identify important SNPs in the gene set.

2.2. Proposed test statistic
We define

gi(1) =Y — Q;(Yi|Zi, Xi) = Y — Zl azo(1) — X Bx 0(7), (2.3)

such that Q,{&;(7)|Z;.,X;.} = 0. Welet X = (Xy.,..., X)), Z = (Z1.,...,Z,) ",
XA]' = (XL]', ce ,Xnyj)—r, for j =1,...,d,, and £, = diag(fl,T(O), PPN fn,‘r(o)),
where f; 7(-) is the density of ;(7)|{X;., Z;.}. To detect the significance of X in
the presence of Z, we construct a score-type test statistic as follows.

First, we estimate the marginal effect of Z as

n
az(t) = argminz p-(Y; — Z] o),
acR? T

where p-(t) = t{7 — I(t < 0)} is the quantile check loss function. To evaluate the
additional effect of each X conditional on Z, we project X; on Z with weights
£, to obtain

n7]77-

X%, = {In - fTZ(ZTfEZ)_lszT} Xy = (X X, (24)

such that the jth component of X is orthogonal to Z in a weighted manner;
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that is, ZTfTX?;-J =0, for j =1,...,d,. We consider the weighted projection
to account for the heteroscedasticity using f; -(-), thus eliminating the first-order
difference; see the proof of Theorem 1 in the Supplementary Material (equation
(S.16), Section S3.2) for more details. Similar projections can also be found in
the quantile literature; see for instance, Park and He (2017).
Second, we define the rescaled conditional marginal score statistic as
S, (o) 1 2y X550 (Yi — Zf oz) i1
T.J Z) = — = ) =1, 0Un,
v {r(1=7)|X5 |12 /n}t/?
where - (t) = 7 — I(t < 0). The score statistic S; j(az) is the rescaled negative
subgradient of >0 p-(Y; — Z] az — Bj X} ;) with respect to §; evaluated at
Bj = 0, which captures the association between the jth component of X and the

signs of the quantile residuals, after accounting for the effect of Z.
Finally, the proposed maximum-score test statistic is defined as

Toa(r) = max S7{Gz(r)}

2
1, _ (1 —7)[IX5 )12
max \/ﬁ;Xi,j,TwT{n—ZIaz<7)}] /{ pa— } (2.5)

In practice, f; is unknown and has to be estimated and substituted in. We

propose estimating f; using the quotient method (Siddiqui (1960)); that is,

2h
Qrin(Yi | Zi, X)) = Qr_n(Vi | Zi, X5

and T, = diag(f1.+(0), ..., fn+(0)), where Q,(Y; | Zi., X)) = (Z],X])0(r), and
6(7) is the Li-penalized estimator of y(r) = (azo(T)",Bx0(T)T)T (Belloni
and Chernozhukov (2011)). The bandwidth A is specified by the “bandwidth.rq”
function of the R package quantreg. By the proofs in Section S3 of the Supplemen-

Fir (0)

(2.6)

tary Material, the effect of the plug-in estimator /f:T can be ignored asymptotically.
Thus, we ignore the difference between f; and ?T for ease of presentation, but we
need to be aware of the finite-sample difference.

The test statistic T}, 1(7) can be simplified in the special homoscedastic case
such that f; -(-) = f-(-) for some f;(); that is, the errors ¢;(7) have a common
distribution that does not depend on the covariates. In this case, f;(-) cancels
out in expression (2.4), and the test statistic T}, 1(7) reduces to

To(r) = | max S2 {az(n)},
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@DT Y Z aZ)
Where S’r] aZ Z {7_ 1 s HX* HQ/’I’L}I/Q’

with X = {I-Z(ZTZ) ' Z}X j = (X{;, ...,

X j)T. Note that the score function
gf,j{&z(T)} used to construct the test statistic 75, 2(7) is the same as the sample
quantile partial correlation between Y and X; given Z, as defined in Ma, Li
and Tsai (2017). The test statistic T, 2(7) has a simpler form, and does not
depend on the unknown density function. In low-dimensional quantile regression
settings, it is known that a score test that assumes homoscedastic errors still
performs competitively well when the homoscedasticity assumption is violated;
see Wang and Fygenson (2009) and Park and He (2017). We show in Section
3 that the proposed test based on T}, o(7) is also robust against the violation of

homoscedasticity in the high-dimensional setting.

2.3. Asymptotic properties under the null

In this section, we present the asymptotic properties of T}, 1 (7), for k = 1,2,
under the null hypothesis. We define the partial correlation matrix of X con-
ditional on Z, weighted by the density matrix f-, as R x|z = Corr(X;T) =

dn _

(rji)jizy, where X7 = (X7 D ¢ L

i1 A Under the special case of ho-

moscedastic errors, R, x|z = corr(X | Z). We assume the following conditions,
where Cy, for k =1,...,5, are some positive constants.

Al. (i) The dimension of Z, ¢, is fixed; (ii) the dimension of X is log(d,) =
o{n'/*/log(n)?/*}; (iii) B(X;) = 0 and X is subGaussian; that is, E[exp{C}
XZ/Var( ) < Co for j=1,...,d,.

A2. For Ry xjz = (rj0)%i_y: (1) 03_1 < Amin(Rrxiz) < Amax(Rrxjz) < Cs;
(i) maxi<j<i<d, |11 < ro < 1, for some constant 0 < 79 < 1; (iii)
maxi<j<d, iy 3, < Ca.

A3. The density function f;,(-) and its derivative f; (-) are continuous and
bounded from above, and f; -(0) is bounded away from zero, fori =1,...,n,
uniformly in n.

A4. Let h} be some positive sequence satisfying nt/ 5hr > Cs. For v € [T —
hi, T + hi), assume that Q,(Y; | Z;.,X;.) = (Z],X/])0(v), where s, =
max,efr—ps r+h:] |00(¥) o is bounded, and Q. (Y; | Z;.,X;.) is smooth in v
and has a bounded third derivative with respect to v.

For technical convenience, condition Al (i) requires the dimension of Z to
be fixed, which is also practically reasonable in a GWAS. We can relax this con-
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dition by allowing ¢ to diverge slowly. A possible relaxation is that h;’;_l(q +
sn)v/1og(pn V n)/n — 0, which is required in Lemma S.1. Our Lemma S.2 is
based on a fixed g. A more careful investigation is needed for diverging ¢q. Condi-
tions A1 (ii) and (iii) describe the dimension and distribution of X, respectively,
and are standard in high-dimensional settings. Condition A3 is an assumption
on the density function that is standard in quantile regressions. Condition A4
ensures that f; can be consistently estimated; see Lemma S.1 in the Supplemen-
tary Material for more details. Now, we discuss condition A2. By the assumption
that X; is centralized, under Hyp, we have

corr(Srj{az,o()}, Sri{azo(r)} | Z,X)
dic1 Xi*,j,er{Ei(T)} > X;,Z,T¢T{5i’ (7)}
{r(L=n)|IX5 2H27 {r (1 — ) [[X5 ][22

nooXE X
j .1

| Z,X

= corr

A

Al

Let S-{azo(1)} = (Sri{azo(T)}, ..., Sra, {azo(T)}) . Then, corr[S,;{azo(r)}
| Z,X] = RT7X‘Z+OP(n_1/2), where the convergence rate O, (n~1/?) is component-
wise. That is, conditions A2 (i)—(iii) are essentially imposed on the score functions
under the null hypothesis, and are analogous to conditions 1 and 3 and that in
Lemma 6 of Cai, Liu and Xia (2014). Conditions A2 (i)—(ii) are mild, and A2
(iii) is needed to control the number of positively correlated covariates, which is
a key condition in the proof of the asymptotic results.
Theorem 1 presents the asymptotic null distribution of T}, 1 (7).

Theorem 1. Suppose that conditions A1-A4 hold. Then, for any x € R, we

have

P[T;,1 (1) — 2log(dy) + log{log(d,)} < x | Hy] — exp { —n V2exp ( — ;”) }

as n,d, — 00.

The proof of Theorem 1 consists of two parts, where the first part controls
maxi<;<d, |Srj{0z(7)}—Sr;{azo(7)}|, and the second part is used to derive the
asymptotic distribution of maxi<;<q, S%j{az’o(T)}. The derivation of the first
part is challenging because the asymptotic difference between az o(7) and az(7)
is reflected in the indicator function. We overcome this challenge by applying the
Hoeffding inequality and a chaining argument, as in Lemma A.2 of Wang and He
(2007). We prove the second part by using the fact that for each j € {1,...,d,},
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#{1 : |corr[S; j{azo(T), Sri{azo(T)]] > d,"°} is well controlled by A2 (iii) for
some g > 0, which is similar to the proof of Theorem 6 in Cai, Liu and Xia
(2014).

By Theorem 1, we can reject the null hypothesis at the significance level ~ if
Ty (1) > 2log(dy,) —log{log(dy)} + g, where ¢, = —log(m) —2log{log(1 —~)~'}.
Alternatively, we can calculate the P-value as

- < e [_ Toa(r) — 210g(d;) + log{log(dn)}} )

For the homoscedastic case, we have the following corollary.

Corollary 1. Assume that f; -(-) = f-(-), for some f.(-) acrossi, and, conditions
A1-A3 hold. Then, for any x € R, we have

P[T;,2(7) — 2log(dy) + log{log(d,)} < x | Hy] — exp { —n V2exp ( — ;”) }

asn,d, — 00.
2.4. Asymptotic properties under the local alternative

In this section, we study the asymptotic properties of T}, x(7), k = 1,2 under
the local alternative,

Hy: Q:(Yi|Zi, X)) = Z] azo(r) + X Bxn(r), i=1,...,n,

log(d,
Bxn(r) = bo(r)y ED) (2.7)
where bo(7) = (b10(7),...,b4,0(7))". We assume that the number of nonzero

components in bg(7), denoted as so(7), is fixed. Without loss of generality, we
assume that the first so(7) components of bg(7) are nonzero.

To establish the asymptotic property of the test statistics under (2.7), we
make an additional assumption; see the discussion in Section S2.

Ab. Let wy, = E{fir(0)X]; X[ }/A{r(1 - T)E(XZ%T)}I/Q. Assume that
max<;<d, | lei(f) bio(T)ws, | > V2 + ¢, for some positive constant e.
Theorem 2. Assume that conditions A1-A5 hold, and so(T) is fized. Under the

local alternative (2.7), for any v > 0, we have

P[T,1(7) — 2log(dy) + log{log(d,)} > ¢y | Ha] — 1, as n,d, — oo.

Because /log(d,)/n is the optimal convergence rate that can be obtained
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in a high-dimensional setting (Belloni and Chernozhukov (2011)), Theorem 2
indicates that the proposed test is asymptotically sharp.

2.5. Multiplier bootstrap

The asymptotic results in Theorem 1 and Corollary 1 provide a simple cali-
bration method for the proposed maximum-score test statistic. Our preliminary
results show that this asymptotic calibration performs well for large samples, but
that it tends to be conservative in finite-samples. To achieve better finite-sample
performance, we propose an alternative calibration method based on a multiplier
bootstrap procedure. Multiplier bootstrap are also considered in other settings
for low-dimensional data; see, for example, He and Zhu (2003), Zhang, Wang and
Zhu (2014), and Horowitz (2019). We shall show that the proposed multiplier
bootstrap method is computationally convenient and theoretically valid under the
high-dimensional setting. Below, we describe the procedure for the test statistic
T,,1(7), which includes T}, o(7) as a special case.

Step 1. Let

2

Tn,1<f>*=1%n{ sz Xijrtr e»} J{r@=nlIxs 12/}, (28)

where {e;;i =1,...,n} is a random sample with the 7th quantile zero, and
{w;;i =1,...,n} is a random sample independent of e; with zero mean, unit
variance, and a finite third moment. We generate e; from N(—®~1(7), 1),
and w; from a two-point distribution with P(w =1) = P(w = —-1) =1/2.

Step 2. Repeat Step 1 M times to obtain the bootstrap statistics {T},1(7)*},.. .,
T (7)*M}, and calculate the P-value as M1 Zé\il H{T,1(7)* > T,1(7)}.

Unlike conventional bootstrap methods, the multiplier bootstrap does not
require reanalyzing the data repeatedly, and thus is computationally efficient.
An intuitive justification is given by (S.17) in Section S3.2, where we show that

Sri{@z(r)} = Srilazo(r)} + Oy {n 4 (logn)*/* |

1 2? ’L]Tw'r{ Z( )} —
= AT _1 T)IIX.jTlli/n}l/g + O,,{ 1/4(10gn)3/4}

under the null hypothesis. Theorem 3 provides a theoretical justification for the

multiplier bootstrap method in a high-dimensional setting. Similar results can
be obtained under conditions A1-A3 for the homoscedastic case.
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Theorem 3. Suppose that conditions A1-A4 hold. Then, for any x € R, we
have

PP [T,1(7)* — 2log(dy) + log{log(dy)} < x|Ho] — exp { — 72 exp ( . ‘;) }

as n,d, — 00, where the superscript D means conditional on the observed data
{(}/Z, Zi., Xij.),i = 1, ceey n}

2.6. Forward selection using a sequential conditional test

The proposed conditional maximum-score test aims to assess the overall sig-
nificance of X. If the test leads to the rejection of Hy, indicating that at least one
component of X is associated with the 7th quantile of Y after accounting for the
effect of Z, the next natural question is to identify those important variables. The
proposed test can be used as a stopping rule in a forward regression to discover
significant components in X. To account for multiple testing in the sequential
procedure, we follow a two-stage selection similar to that in Tang, Wang and
Barut (2018).

In the first stage, we initialize the forward regression by sequentially applying
the proposed test. Specifically, we perform the conditional marginal test with
X0 =X and Z© = Z. Let 31 be the index of the predictor in X(©) that gives the
largest squared conditional marginal-score statistic, and let P; be the associated
P-value. If P, > ~, the prespecified significance level, we stop and declare that
there is no significant X;. Otherwise, we move Xﬂ from X©) to Z©), and repeat
the procedure until no further significant predictors are detected. Assume that
the selected covariate set is Z(5) = {Z,X;l, . 7X3K}7 with associated P-values
as {Py,...,Pg}. In the second stage, we perform multiple test adjustments.
Suppose that K > 1. Define K* = 1if P; > v/K, otherwise K* = maxj<p<x{k :
P <~/(K—-1+1),l=1,...,k}. Finally, the selected covariate set is chosen as
7K = {Z,X5,....X; ).

1 JIK

Note that it is challenging to establish a formal theoretical justification for
the proposed two-stage method, owing to its sequential nature. However, our
numerical studies in Section 3 show that the method performs well in terms of
both false positives and false negatives for modest and large samples.

3. Simulation Study
3.1. Size and power study

We generate the simulation data from the following model:
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log(d )
Y, = ZiT.az,Q + )(ZT grfln)bo + (1 + aoXi,1)5i7 1=1,...,n,

where Z;. = (1,22— )T, ap is the parameter controlling the heterogeneity of the
noise, az, o =14=6, bo=04,—p, —4 under Hy, and by=4(1,0.8,0.6,0.4,0.2, 0;_5)T
under H,. We let § € (0, dmax,p,] for some prespecified dmax,p, -

We consider three cases to examine the performance of the proposed test.
In Case 1, (Z],X])T ~ N(0,I(,, 1)x(p, 1)) and & ~ N(0,1), with ap = 0. In
Case 2, (ZT,X:)T ~ N(0,%), where ¥ = (01 )10=1,...p.—1, Ol = 0.5l and
g; ~ t3, with ag = 0. In Case 3, nonGaussian regressors with heteroscedastic
errors are considered. Specifically, we first generate U;. = (Ui 1, .. ., Ui,pn,l)T ~
N(0,X), where X is the same as in case 2. Then, we let Zi,l = 2\/§Q’(Ui,l)—\/§7 for
l=1,...,5,andlet X;; 5 = 2\/§<I>(Ui7l) —/3, forl =6,...,p,—1. Furthermore,
we let &; ~ t3, with ap = 1/2. Therefore, in this heteroscedastic case, the true
quantile coefficient of X 1 is 810(7) = bo1 —i—aoFt;l(T), which is nonzero and, thus,
corresponds to the alternative model for all 7 # 0.5, even when by = 04,. For all
cases, we consider p, = 10, 50,200,1000 and n = 200, 800, and set the nominal
level as v = 0.05 and the number of repetitions in the multiplier bootstrap method
as M = 500. We also consider a case to mimic the motivating GFR study in
Section S1.2; the main observations are similar to Cases 1-3.

The following tests are compared: (i) four variations of the proposed test,
Tfl (1), Tfl (1), T,fQ (1), T,EQ (1), where the superscript indicates using the asymp-
totic extreme value distribution (E) or the multiplier bootstrap procedure (B) to
obtain the critical value; (ii) RS, the regularized rank score test of Park and He
(2017), with p, < n; (iii)) QME, the quantile marginal effect test of Wang, McK-
cague and Qian (2018), with the tuning parameter set as A\, = 3\/7(1 — 7) logn;
(iv) BON, the Bonferroni adjustment method, where the individual P-values are
based on S:;j{az(7)} and its asymptotic normality, for j = 1,...,d,, that is,
the proposed conditional marginal rank score statistics for heteroscedastic cases;
(v) CCT, the Cauchy combination test of Liu and Xie (2019), where the indi-
vidual P-values are the same as in BON; (vi) CAR, the conditional adaptive
resampling test of Tang, Wang and Barut (2018) for the mean model, and the
tuning parameter is set as A, = max [3(log n)/2, &1 {1 - v/(2dy)}]; and (vii)
GC, the partial test of Guo and Chen (2016) for the mean model, which is based
on a sum-squared-type U-statistic. The number of bootstraps is set as 500 for
both QME and CAR. In Wang, McKeague and Qian (2018) and Tang, Wang and
Barut (2018), the tuning parameter is selected using a double bootstrap, which
is computationally intensive; thus we fix the parameter to a value that performs
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relatively well to reduce the computation time. Table S.1 in the Supplementary
Material summarizes the average computing time for each method. The results
show that the methods that do not require an estimation of f,., namely, RS,
Ty,2(7), and GC, are computationally more efficient than those that do, namely,
T»1(7), BON and CCT. In addition, the resampling-bootstrap-based methods
QME and CAR are computationally much more expensive than the other meth-
ods, even if a double bootstrap is not used for the tuning parameters.

Table 1 summarizes the rejection percentages of the various methods in Cases
1 and 3 with by = 0. The empirical sizes from Case 2 are similar to those from
Case 1, and thus are moved to Table S.2 in the Supplementary Material. In
all scenarios except Case 3 with 7 = 0.25, the null hypothesis is true; thus,
the rejection rate corresponds to the empirical size. In Case 3 with 7 = 0.25,
Bro(T) = (1/2)Ft;1(0.25), and thus the rejection rate corresponds to the power.

Under the null model, all four variations of the proposed test result in type-
I errors close to the nominal level. However, the tests based on the asymptotic
critical values are slightly more conservative, especially for n = 200. Even though
the test based on T, o(7) assumes homoscedastic errors, the method still performs
competitively well in the heteroscedastic Case 3 in terms of both the type-I error
and power, and is computationally much simpler than the test based on T}, 1 (7).
The RS test performs well for small p,, but becomes quite conservative for larger
pn and is not applicable when p, > n. The QME test is sensitive to the choice
of the tuning parameter; it gives a deflated type-I error in most scenarios, but
inflated type-I errors at 7 = 0.25, for n = 200 and p,, = 1000. The BON and CCT
tests control the type-I errors reasonably well. However, in the heteroscedastic
Case 3 with 7 = 0.25, they are both more conservative than the proposed mul-
tiplier bootstrap method in terms of detecting signals, especially for n = 200.
Finally, the mean-based tests CAR and GC perform well in the homoscedastic
cases, but are not able to detect the signal at the tail quantiles caused by the
heteroscedasticity, as seen in Case 3.

The limited performance of QME is probably caused by three reasons. First,
the QME theory works only for fixed-dimensional covariates. Second, QME is
proposed for the marginal test. When adapting it to the conditional test, the
method treats the quantile residuals obtained from regressing Y on Z as the
new response, and then applies the marginal test over X. This may lead to an
inflated error rate if the components in Z and X are highly correlated, which is
often seen in high-dimensional settings, owing to the spurious correlation in the
sample. Third, the tuning parameter ), is chosen using the same rule of thumb
across the simulations, and thus is not data adaptive. Its performance may be
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improved by using a double bootstrap to select a data-adaptive A\,,. However, the
computation is heavily intensive and not practical for large p,.

To compare the power of different tests, we focus on 7 = 0.5 and n =
200. We let the number of nonzero coefficients be so(7) = 5, and set by =
6(1,0.8,0.6,0.4,0.2, O;’_5)T, where ¢ varies from zero to dmax p,, , With dmaxp, =6
for p, = 10 and dmaxp, = 5 for p, = 50,200,1000. In the following analysis,
we exclude QME because it is difficult to control the type-I error, owing to its
sensitivity to the choice of the tuning parameter. We also exclude BON and CCT,
because they are shown in Table 1 to be more conservative in terms of detecting
signals in heteroscedastic cases with small samples.

Figure 1 presents the power curves of the different methods. Both CAR and
GC are designed to detect the mean effect. The CAR method gives higher power
in Case 1 with homoscedastic normal errors, but the method is less powerful for
models with heavy-tailed (Case 2) and heteroscedastic (Case 3) errors. The GC
test is based on a sum-squared-type test statistic, and so is less powerful in terms
of detecting the sparse signal in all four cases, especially for large p,,. In addition,
neither CAR nor GC can identify the signal at the tails, as shown in Table 1.
The RS test performs competitively well for p, = 10, but it quickly loses power
for larger p,, and the method does not work for cases with p, > n. The four
variations of the proposed test perform similarly, yielding either competitive or
higher power than the other three methods. Among the four variations, the tests
based on the multiplier bootstrap tend to be more powerful than their asymptotic
counterparts, and the tests based on T}, 2(7) that assume homoscedastic errors
are slightly more powerful than those based on T}, 1 (7).

3.2. Forward selection

In this section, we assess the performance of forward selection by using the
proposed test as the stopping rule. Data are generated from the following model:

Vi =Z] azo+ X, Bxo+ (1 +aoXi1)ei, i=1,...,n,

where Z;. = (1,Z])7, azo = 15, and Bxo = (0,1,1,0.8,0.8,0] _;;)", with
n = 200 and p, = 200 and 1,000; (ZI,XI)T and ¢; are generated as in Cases
1 and 3, with ag = 0 for Case 1 and 0.5 for Case 3, and 1,000 replicates are
considered with a nominal level v = 0.05. We compare the following forward se-
lection procedures: (i) Tfl (1), a sequential test based on Tf,l (7); (ii) L1, the Ls-

penalized variable selection method of Belloni and Chernozhukov (2011), without
penalizing the coefficients of Z; (iii) QPCOR-L1, the quantile partial correlation
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Figure 1. Power curves of the methods in cases 1 (first row), 2 (second row), and 3
(third row), with n = 200 and 7 = 0.5: T,¢, (1) (dashed), T;7, () (line with solid square),
TFy(r) (line with solid dots), T2, (7) (line with triangle), RS (line with open circle),
CAR (dotted), GC (line with diamond). The gray horizontal line indicates the nominal
level of 0.05.
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screening method of Ma, Li and Tsai (2017), where we use their algorithm 3
to reduce the dimension of X from d,, to n/logn, followed by the Lj-penalized
method of Belloni and Chernozhukov (2011); and (iv) CAR, a sequential test
based on CAR, with the same tuning parameter over the replicates as in Section
3.1. For the sequential-test-based methods Tfl (1) and CAR, multiple test ad-
justments are applied; see Section 2.6. For the quantile based methods, we focus
on 7 = 0.5.

To evaluate the performance of the methods, we consider the percentages of
replicates in which X, for j = 1,...,5, are selected (PS), the average number of
false positives (FP), the percentages of replicates of under-fit (UF) in which at
least one important X; is not selected, and the percentages of the replicates in
which the exact true model (TM) is selected. We find the following: (i) the perfor-
mance of T, (7) is competitive or better in all scenarios; (i) L and QPCOR-L;
both tend to over-fit the model (higher FP); further steps may be applied to the
selected model to refine the selection accuracy, but inherent uncertainty may ac-
cumulate; (iii) CAR performs well when the noise is homoscedastic normal (Case
1), but the under-fit percentages (UF) can be high when the noise is heavy-tailed
with heteroscedasticity (Case 3).

4. Analysis of the Glomerular Filtration Rate

An SNP is a substitution of a single nucleotide that occurs at a specific po-
sition in the genome, and some are linked to genes affecting specific phenotypes.
In this section, we apply the proposed test and forward selection procedure to
screen a large number of SNPs in a thorough search for mutations associated with
phenotypes of interest, in the presence of some “protected” demographic covari-
ates. Over a million SNPs are mapped in the GWAS of the DCCT, a randomized
clinical trial studying the effects of intensive monitoring of glucose levels on long-
term microvascular complications among type 1 diabetes patients. The response
variable of interest is the GFR, measured in percentages, a popular clinical index
of overall kidney function. Although multiple GFR measurements were collected
during follow-up, we are interested in the most severe status of nephropathy risk,
which is usually measured using the most recent kidney functions, that is, the
GFR measurement at the last visit. The “protected” covariates include gender,
treatment, age (in years, centered), duration of diabetes (in weeks, centered), and
body mass index (BMI, centered), where the duration of diabetes measures the
stage of nephropathy development in patients.
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Table 2. Forward selection results in Cases 1 and 3, n = 200.

Case Pn Method PS FP UF TM
X1 Xo X3 X4 X5
1 200 Tfl(T) 0.0 100.0 100.0 100.0 100.0 0.071 0.0 93.1

Ly 00 1000 1000 99.6 99.9 0.085 0.5 915
QPCOR-L; 0.1 100.0 100.0 100.0 99.9 0.276 0.1 76.2

CAR 0.0 100.0 100.0 100.0 100.0 0.058 0.0 94.4

1,000 TB/(r) 00 1000 998 998 998 0071 02 929

Li 00 999 1000 975 98.0 0.092 4.5 87.0

QPCOR-L; 04 1000 100.0 99.9 100.0 0.688 0.1 50.0

CAR 0.0 1000 100.0 100.0 100.0 0.071 0.0 93.3

3 200 TB(r) 0.0 992 999 97.9 993 0074 28 90.4
Ly 0.6 1000 100.0 100.0 100.0 0.112 0.0 89.9

QPCOR-L; 0.9 100.0 100.0 100.0 100.0 0.332 0.0 723

CAR 0.1 964 951 832 884 0045 30.0 66.3

1,000 TB/(r) 00 987 987 942 980 0071 81 855

Ly 03 1000 100.0 100.0 100.0 0.085 0.0 91.8

QPCOR-L; 0.5 100.0 100.0 100.0 100.0 0.813 0.0 43.4

CAR 01 932 928 757 831 0033 439 546

Tfl(T): forward selection based on T£1 (7); L1: the Li-penalized variable selection method of Belloni
and Chernozhukov (2011); QPCOR-L;: the QPCOR of Ma, Li and Tsai (2017); CAR: forward select-

ion based on CAR of Tang, Wang and Barut (2018). PS: percentage of being selected; FP: average nu-
mber of false positives; UF: percentage of replicates in which at least one important X; is not selected;
TM: percentage of replicates in which the exact true model is selected.

The GWAS of the DCCT contains 1.18 million candidate SNPs for 1,304
patients, which is far less than the number of SNPs. An important statisti-
cal issue concerns assessing the overall significance of groups of SNPs; that is,
whether SNPs exist in a set of genes that have an effect on the disease, while
controlling for the family-wise error rate. Most works based on a GWAS con-
sider mean-based tests. However, in this study, the mean of the GFR is less
important clinically than the tail quantiles, because the mean values are usually
driven by the majority of participants with normal kidney function, whereas the
lower quantiles reflect the characteristics of participants with elevated risks of
nephropathy. Furthermore, the GFR values are skewed to the left, even after a
logarithm transformation (Figure 2). Thus, a quantile regression at several lower
quantile levels could provide more clinically relevant information than that of
the mean regression, and it enables us to work on the original scale, providing a
better interpretation for clinicians and patients. For these reasons, we assess the
significance of SNPs on lower quantiles of the GFR to identify SNPs and gene
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Figure 2. Log-transformed GFR% from the type 1 diabetes patients at the last visit in
the DCCT study.

pathways associated with patients with a high risk of nephropathy; as such, we
consider quantile levels 7 = 0.05,0.1,0.25 and 0.5.

To apply the proposed method, we focus on a subset of SNPs that be-
long to genes related to nephropathy in the MSigDB Curated Gene Sets (http:
//software.broadinstitute.org/gsea/msigdb/), including 2,908 SNPs after
deleting those not satisfying the Hardy—Weinberg equilibrium (Crow (1999)). For
further preprocessing, we (i) delete one female patient who has 98% of the SNPs
missing, (ii) delete SNPs with any missing values, (iii) delete SNPs with a minor
allele frequency of less than 5%, and (iv) prune highly correlated SNP pairs, de-
fined as correlation coefficients larger than 0.99. Finally, we have 1,303 patients,
consisting of 695 males and 608 females, and 981 SNPs. The SNPs are coded as
-1, 0, 1, that is, the number of minor alleles minus one. Previous works have sug-
gested that the risk factor mechanisms of nephropathy may be different in males
and females (Silbiger and Neugarten (2003)). Therefore, we study male and fe-
male participants separately. The forward selection presented later shows that
different sets of SNPs are identified for men and women, which further validates
our stratified analysis by gender.

We first apply all four variations of the proposed test as the overall signif-
icance test at different quantiles. Conditional on Z, all variations of the pro-
posed test suggest that significant (at the level of 0.05) SNPs exist in the male
group at 7 = 0.05, 0.1, but not for the female group or other quantiles. We
also apply the CAR of Tang, Wang and Barut (2018) for the overall signifi-
cance test on the conditional mean. We consider the test with tuning parameter
Ap = max [a(logn)¥/2, &1 {1 — v/(2d,)}] ,a € {3,4,5,6,7}. All )\, lead to the
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Table 3. Summary of SNPs selected in the random subsets for males.

T SNP Frequency 7Tuar Tmean TQ,
0.05  1rs9331949_C 11 17 3 1
rs12411439_A 8 66 5 11
rs6866731_.G 7 18 38 49
rsd4714956_T 6 576 11 10

0.1  rsl1742097_A 27 22 14 94
rs463701_G 9 20 17 29
rs6866731_G 6 26 15 89

same P-values, namely, 0.572 and 0.324 for the male and female groups, respec-
tively, indicating that no SNP is significantly associated with the conditional
mean of the GFR.

Next we proceed to forward selection by applying Tfl (1) (sequentially), Ly,
and QPCOR-L; to select the significant SNPs. To account for the randomness in
the selection procedure, the covariate selection procedure is repeated in randomly
selected subsets of size 0.8n in each gender group. No SNP is selected by either
L1 or QPCOR-L in any random split, which is probably caused by weak signals
and/or over penalization. Table 3 presents the frequencies of the SNPs selected
at least 5 times by our method over 50 random subsets.

For further verification, we regress Y on Z at the 7th quantile, obtaining
the residuals under the null model. In general, if one SNP has an effect on
the response, residuals with different genotypes have different distributions. We
calculate the variance, mean, and 7th quantile of the residuals in genotype “AA”
and “Aa” for each SNP, and report the ranks of the differences between 981 SNPs
in Table 3. We find that most of the SNPs selected with high frequencies have
high ranks in at least one of the three criteria, providing further evidence of the
effects of the selected SNPs on the lower quantiles of GFR.

Furthermore, we searched PubMed for publications that studied the same
SNPs identified in our analysis as a source of validation from external data for
the functions of the reported SNPs. Specifically, rs9331949 has been found to
be associated with epilepsy, cognitive impairment, and Alzheimer’s disease (Yu
et al. (2013); Tan et al. (2016); Du et al. (2016); Xian et al (2017)). The six
SNPs belong to five different genes (ATP10B, CLU, FAM53B, ADGRF5, SPGT7)
with rs11742097 and rs6866731 both locating within gene ATP10B. Therefore, we
carried out gene set enrichment analysis (GSEA), searching for functional gene
sets overlapping significantly with the selected SNPs.

The five identified genes all belong to gene set BAELDE DIABETIC NEPH-
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ROPATHY UP (P-value=4.68 x 10~'4), which is a set of genes up-regulated in
glomeruli of kidneys from patients with diabetic nephropathy (type 2 diabetes
mellitus).

5. Discussion

The proposed method is based on a maximum-type test statistic, which is
known to be powerful when the signals are sparse. In some studies, the signals
may be weak and dense; that is, groups of markers may jointly affect the pheno-
type, while the signal of each marker is faint. To adapt different types of signals,
we consider a hybrid test statistic by taking a weighted average of the maximum-
and sum-squared-type statistics, tests as in Tang, Wang and Barut (2018). How-
ever, the existing literature on sum-squared-type tests requires smoothed loss
functions (Guo and Chen (2016)), limited dimensionality of the markers (Park
and He (2017)), or stronger conditions on the noise (Wu, Xu and Pan (2019)).
Further investigation is needed in this direction for high-dimensional quantile
regressions with possibly heavy-tailed noise.

Supplementary Material

The online Supplementary Material includes additional numerical results, a
discussion of condition A5, and proofs of Theorems 1-3.
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