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Abstract
In this paper, we propose a functional partially linear regression model with
latent group structures to accommodate the heterogeneous relationship between
a scalar response and functional covariates. The proposed model is motivated by
a salinity tolerance study of barley families, whose main objective is to detect
salinity tolerant barley plants. Our model is flexible, allowing for heterogeneous
functional coefficients while being efficient by pooling information within a
group for estimation. We develop an algorithm in the spirit of the K-means
clustering to identify latent groups of the subjects under study. We establish
the consistency of the proposed estimator, derive the convergence rate and the
asymptotic distribution, and develop inference procedures. We show by simula-
tion studies that the proposed method has higher accuracy for recovering latent
groups and for estimating the functional coefficients than existing methods. The
analysis of the barley data shows that the proposed method can help identify
groups of barley families with different salinity tolerant abilities.
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1 INTRODUCTION

As new technologies rapidly develop, more and more pro-
cesses can be monitored dynamically over time and space.
Densely observed data can be modeled as realizations of
random curves or surfaces, which are examples of func-
tional data. Functional data analysis (FDA) has been suc-
cessfully applied in fields such as neuroimaging (Yu et al.,
2016), plant science (Meng et al., 2017), andmedical science
(Kong et al., 2018); see Ramsay and Silverman (2005) for a
comprehensive review.
Functional linear regression is an elegant statistical

framework that links functional covariates with response
variables. Because the space of functions is infinite
dimensional, dimension reduction techniques, especially
the functional principal component analysis (FPCA),

are widely applied before further modeling. Yao et al.
(2005), Hall and Horowitz (2007), and Hall and Hosseini-
Nasab (2009) established sound theoretical properties of
the FPCA-based estimators for functional linear models.
When scalar covariates are present, Shin (2009) and Kong
et al. (2016a, 2016b, 2018) studied the functional partially
linear regression model for possibly high-dimensional
covariates. Another line of work approximates functional
coefficients by fixed basis functions. Popular basis func-
tions are B-splines (Cardot et al., 2003), smoothing splines
(Crambes et al., 2009), and reproducing kernel Hilbert
spaces (Yuan and Cai, 2010). Functional linear regres-
sion has been generalized to deal with discrete responses
(Müller and Stadtmüller, 2005), to model conditional
quantiles of the response (Kato, 2012), and to handle com-
plex nested structures in functional data (Xu et al., 2018).
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Our work is motivated by the research on salinity tol-
erance of barley plants. Salinity is the primary environ-
mental stress that limits growth and productivity of crops
(Munns and Tester, 2008). Plant scientists are dedicated to
finding salinity tolerant barley plants and understanding
the underlying mechanism (Meng et al., 2017). In a bar-
ley salinity tolerance experiment conducted in The Plant
Accelerator R©, a facility of smart houses with automated
phenotyping technologies at King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia, plant sci-
entists recorded daily growth rates of barley plants stressed
with salt water for a period of 32 days. The growth rates
were naturally modeled as functional data. The barley
plants were from different families; those from the same
family are treated as replicates because of their genetic
similarity. To understand how the barley families react to
the stress imposed by saltwater, we model the relation-
ship between the final biomass of the barley plants and the
relative growth rate using a functional regression model.
The ability to tolerate saltwater was found inhomogeneous
among barley families. Some barley families were more
salt tolerant than others (Meng et al., 2017). This means
that there may exist heterogeneous latent groups of barley
plants that have different salinity tolerant abilities.
Subject heterogeneity is a fundamental model specifi-

cation problem. It arises due to individual characteristics,
either unobserved or unknown. For example, in precision
medicine, the ability to benefit from treatments is often dif-
ferent across different subgroups of patients based on their
health conditions or genes (Wang et al., 2019). Because het-
erogeneity is induced by the studied subjects, functional
data are not exempted from this issue. Exploring hetero-
geneity offers us an opportunity to gain insight into the
underlying scientific problem, whereas failing to account
for heterogeneity leads to biased estimates and inference.
Models that properly handle subject heterogeneity have

not been extensively studied in FDA. Yao et al. (2011)
and Wang et al. (2016) proposed a functional mixture
model that allows the regression structure to vary across
latent groups of subjects. Their estimator exploited FPCA
for dimension reduction and mixture regression methods
for recovering latent group structures. A mixture model
requires stringent distribution assumptions and suffers
from high computational complexity. For nonfunctional
data, one line of work penalizes the pairwise differences of
the subject-specific coefficients for group recovery (Ma and
Huang, 2017). Another line of research extends the clus-
tering algorithms to detect latent groups; see Bonhomme
andManresa (2015) and Zhang et al. (2019). Lastly, Ke et al.
(2016) proposed amethod based on change-point detection
algorithms. These studies are restricted to scalar data, and
functional data are not allowed.

Motivated by the barley data, we propose a functional
partially linear regression model with latent group struc-
tures to account for subject heterogeneity. The regression
coefficients are shared within the same group, whereas
they are distinct across groups. Ourmodel does not assume
a particular relationship between the latent group mem-
bership and the observed covariates, as it usually does in
mixture modeling. The latent group structure can thus be
driven by arbitrary combinations of observed covariates
and unobserved features. The analysis of the barley data
demonstrates that the proposed method can help detect
barley families that are more tolerant to saline conditions.
Potential applications of the proposed methodology are
treatment regime estimation with functional covariates
(Ciarleglio et al., 2018) and assessment of heterogeneous
effects of air pollution on health across different regions
and age groups (Kong et al., 2016b).
We propose a new method to identify latent groups

based on FPCA and the idea of K-means clustering algo-
rithm. In our experiment, the proposed algorithm is very
fast, often converges within 10 iterations and is 10 times
faster than the fused penalization approach. Compared to
the competingmethods, the proposed estimator has higher
accuracy for recovering latent groups and for estimating
the functional coefficients. We develop confidence sets of
the parameters, including both the scalar coefficients and
the functional coefficients. We prove the consistency of
the group membership estimator, derive the asymptotic
distribution of the estimator for the scalar coefficients,
and obtain the convergence rate of the functional coeffi-
cient estimator.
The remainder of the paper is organized as follows.

In Section 2, we present the proposed model and the
estimator, establish the theoretical properties, and dis-
cuss inference problems. We examine the performance
of the proposed methodology in a simulation study in
Section 3 and present the analysis of the motivating
barley growth data in Section 4. Section 5 concludes
the paper.

2 THE PROPOSEDMETHOD

2.1 Motivation and model

We propose a functional partially linear regression model
with latent group structures. For 𝑖 = 1, … ,𝑁 and 𝑗 =
1,… , 𝑇𝑖 , denote by 𝑦𝑖𝑗 the response variable, by 𝐳𝑖𝑗 a vec-
tor of scalar covariates, and by𝑥𝑖𝑗(𝑡) ∈ 2(𝐼) the functional
covariate, where 𝐼 ⊂ ℝ and 2(𝐼) is the space of square
integrable functions on 𝐼. For simplicity, we assume the
design is balanced with 𝑇𝑖 = 𝑇 for all 𝑖. We model 𝑦𝑖𝑗 by
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a functional partially linear regression model,

𝑦𝑖𝑗 = 𝛼𝑖 + 𝐳
′
𝑖𝑗
𝜸 + ∫

𝐼

𝑥𝑖𝑗(𝑡)𝛽𝑔𝑖 (𝑡)𝐝𝑡 + 𝜖𝑖𝑗, (1)

where 𝛼𝑖 is a familywise fixed effect, 𝜸 is the effect of
the scalar covariates, and 𝛽𝑔𝑖 (𝑡) is the coefficient of the
functional predictor. A parameter with a superscript 0, for
example, 𝜸0, refers to its true value. In themodel, we allow
clustered patterns of heterogeneity in the coefficient of the
functional predictor. The groupmembership 𝑔𝑖 ∈ {1, … , 𝐺}
and the number of potential groups 𝐺 are unknown and
shall be estimated from the data. Within a group, subjects
share the same functional coefficient, whereas subjects
have distinct functional coefficients in different groups.
Denote 𝐲𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑇)⊤ and 𝐳𝑖 = (𝐳⊤𝑖1, … , 𝐳

⊤
𝑖𝑇
)⊤. Let 𝐲 =

(𝐲⊤1 , … , 𝐲
⊤
𝑁)
⊤ and 𝐙 = (𝐳⊤1 , … , 𝐳

⊤
𝑁)
⊤ denote the stacked

observations. In addition, denote by 𝜶 = (𝛼1, … , 𝛼𝑁)⊤ the
vector of fixed effects and 𝝐 = (𝜖11, … , 𝜖𝑁𝑇)⊤ the vector
of errors.

2.2 Proposed estimation method

To estimate the parameters of the model, we first apply
FPCA for dimension reduction. Let (𝑦, 𝑧, 𝑥(𝑡), 𝜖) denote
a generic (𝑦𝑖𝑗, 𝑧𝑖𝑗, 𝑥𝑖𝑗(𝑡), 𝜖𝑖𝑗). Denote the covariance func-
tion of 𝑥(𝑡) by 𝐾(𝑢, 𝑣) = cov{𝑥(𝑢), 𝑥(𝑣)}. To simplify nota-
tions, we assume the mean of 𝑥(𝑡) is zero and use 𝐾
to denote the covariance operator associated with the
covariance function 𝐾(𝑢, 𝑣), that is, for any 𝜙 ∈ 2(𝐼),
(𝐾𝜙)(𝑢) = ∫

𝐼
𝐾(𝑢, 𝑣)𝜙(𝑣)𝐝𝑣. By the Mercer’s lemma (Hall

and Hosseini-Nasab, 2006), the covariance function can be
decomposed as 𝐾(𝑢, 𝑣) =

∑∞
𝑘=1
𝜅𝑘𝜙𝑘(𝑢)𝜙𝑘(𝑣), where 𝜅1 >

𝜅2 > ⋯ > 0 and 𝜙1, 𝜙2, … are the eigenvalues and normal-
ized eigenfunctions of the population covariance operator,
respectively. We assume that there are no ties in the eigen-
values. The eigenfunctions 𝜙1, 𝜙2, … form an orthonormal
basis of 2(𝐼) (Hall and Hosseini-Nasab, 2006). With the
decomposition of the covariance function, we have the
Karhunen–Loève (K-L) expansion, 𝑥(𝑡) =

∑∞
𝑘=1
𝑓𝑘𝜙𝑘(𝑡),

where 𝑓𝑘 = ∫
𝐼
𝑥(𝑡)𝜙𝑘(𝑡)𝐝𝑡, 𝑘 = 1, 2, …, are principal com-

ponent scores.
The covariance function 𝐾(𝑢, 𝑣) can be estimated by

𝐾(𝑢, 𝑣) = (𝑁𝑇)−1
∑𝑁
𝑖=1

∑𝑇
𝑗=1
(𝑥𝑖𝑗(𝑢) − 𝑥(𝑢))(𝑥𝑖𝑗(𝑣) −

𝑥(𝑣)), where 𝑥(𝑢) = (𝑁𝑇)−1
∑𝑁
𝑖=1

∑𝑇
𝑗=1 𝑥𝑖𝑗(𝑢). Let

𝐾(𝑢, 𝑣) =
∑∞
𝑘=1
𝜅𝑘𝜙𝑘(𝑢)𝜙𝑘(𝑣) be the spectral decom-

position of 𝐾(𝑢, 𝑣), where 𝜅1 ≥ 𝜅2 ≥⋯ ≥ 0 and
𝜙1, 𝜙2, … are the corresponding estimators of the
eigenvalues and eigenfunctions, respectively. To esti-
mate the parameters in model (1), we need to trun-
cate the K-L expansion (Hall and Horowitz, 2007).

Let 𝑓𝑖𝑗𝑘 = ∫
𝐼
𝑥𝑖𝑗(𝑡)𝜙𝑘(𝑡)𝑑𝑡, 𝑘 = 1,… ,𝑚 and denote

𝐟𝑖𝑗 = (𝑓𝑖𝑗1, … , 𝑓𝑖𝑗𝑚)
⊤, where 𝑚 is the truncation param-

eter. Similarly, we denote the empirical principal com-
ponent scores by 𝑓𝑖𝑗𝑘 = ∫

𝐼
𝑥𝑖𝑗(𝑡)𝜙𝑘(𝑡)𝑑𝑡, 𝑘 = 1,… ,𝑚 and

denote 𝐟𝑖𝑗 = (𝑓𝑖𝑗1, … , 𝑓𝑖𝑗𝑚)⊤. The functional slope 𝛽𝑔𝑖 (𝑡)
can also be expanded as 𝛽𝑔𝑖 (𝑡) =

∑∞
𝑘=1 𝑏𝑔𝑖,𝑘𝜙𝑘(𝑡). After

applying FPCA, model (1) can be approximated by

𝑦𝑖𝑗 ≈ 𝛼𝑖 + 𝐳
⊤
𝑖𝑗
𝜸 + 𝐟⊤

𝑖𝑗
𝐛𝑔𝑖 + 𝜖𝑖𝑗, 𝑖 = 1, … ,𝑁, 𝑗 = 1,… , 𝑇,

(2)
where 𝐛𝑔𝑖 = (𝑏𝑔𝑖,1, … , 𝑏𝑔𝑖 ,𝑚). We transform the functional
covariates into scalar principal component scores, which
facilitate further estimation steps. Although model (2)
bears some resemblance to a linear model, the interpre-
tation and the statistical theory are totally different. In
model (1), the problem of estimating 𝛽𝑔𝑖 (𝑡) is related to
the ill-posed inverse problem in operator theory (Hall
and Hosseini-Nasab, 2006), and the solution by truncating
FPCA is also called regularization in the literature (Shin,
2009).
In practice, the trajectories of the functional covariate

𝑥𝑖𝑗(𝑡)may not be fully observed. In this paper, we consider
the case where 𝑥𝑖𝑗(𝑡) is observed on a dense grid. Smooth-
ing techniques, such as the spline smoother (Ramsay and
Silverman, 2005), kernel smoother (Kong et al., 2016b), and
local constant or local linear interpolation (Kato, 2012), can
be used to estimate the trajectories of 𝑥𝑖𝑗(𝑡). Once we esti-
mated trajectories of 𝑥𝑖𝑗(𝑡), the estimation steps are the
same with fully observed trajectories.
We temporarily assume that the number of groups 𝐺 is

known, and in Section 2.5 we propose a criterion for select-
ing 𝐺 from the data. The parameters are estimated by min-
imizing the least squares objective function,

(
𝜶, 𝜸, 𝐁̂, ̂) = argmin 𝑁∑

𝑖=1

𝑇∑
𝑗=1

(𝑦𝑖𝑗 − 𝛼𝑖 − 𝐳
⊤
𝑖𝑗
𝜸 − 𝐟⊤

𝑖𝑗
𝐛𝑔𝑖 )

2,

(3)

where ̂ = {𝑔1, … , 𝑔𝑁} and 𝐁̂ = {̂𝐛1, … , 𝐛̂𝐺}. Because the
groupmembership  is discrete and takes values in a finite
set {1, … , 𝐺}, algorithms for solving least squares problems
cannot be implemented directly. We optimize the objec-
tive function (3) by iterating between optimizing 𝑔𝑖, 𝑖 =
1, … ,𝑁, and other parameters which take continuous val-
ues.
The initial values can be set by first estimating model

(1) without the functional covariate. We then apply the
classical K-means algorithm to the residuals and initial-
ize the group membership as the clustering results. Algo-
rithm 1 is similar in spirit to the algorithm 1 of Bonhomme
and Manresa (2015) and can be considered as a general-
ization of the K-means algorithm. Because the minimum
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4 WANG et al.

ALGORITHM 1 Iterate between the following two steps until
convergence

1. Group membership assignment, 𝑔(𝑠+1)𝑖 =

argmin
𝑔∈{1,…,𝐺}

∑𝑇
𝑗=1
(𝑦𝑖𝑗 − 𝛼

(𝑠)
𝑖 − 𝑧

′
𝑖𝑗
𝛾(𝑠) − 𝑓′

𝑖𝑗
𝑏
(𝑠)
𝑔 )
2.

2. Update continuous parameters,

(𝛼(𝑠+1), 𝛾(𝑠+1), 𝑏
(𝑠+1)
𝑔𝑖
) =

argmin
𝛼,𝛾,𝑏𝑔𝑖

∑𝑁
𝑖=1

∑𝑇
𝑗=1
(𝑦𝑖𝑗 − 𝛼𝑖 − 𝑧

′
𝑖𝑗𝛾 − 𝑓

′
𝑖𝑗𝑏𝑔(𝑠+1)𝑖

)2.

sum-of-squares clustering problem is NP-hard (Aloise
et al., 2009), we can only expect that our algorithm con-
verges to a local minima.

Proposition 1. The series of estimates generated by Algo-
rithm 1 converge to a local minima of the objective function
(3) in finite many steps.

Proposition 1 confirms that Algorithm 1 converges to a
local minima of the objective function (3). The proof of
Proposition 1 is collected in Web Appendix A. For large
datasets with many latent groups, for example, 𝐺 > 10,
Algorithm 1 can be improved by exploiting the ideas in
recent advances in clustering algorithms, such as the vari-
able neighborhood search method (Hansen and Mladen-
ovic, 2001) and careful selection of initial values (Ordin and
Bagirov, 2015).We stick to the simple and clear Algorithm 1
to convey ideas.

2.3 Large sample theory

In this section, we study the asymptotic properties of the
proposed estimator. Themain results are the consistency of
the group membership estimator, the asymptotic distribu-
tion of the estimator for the scalar coefficients and the con-
vergence rate of the functional coefficient estimator. These
results are established through the asymptotic equivalence
of the proposed estimator and an infeasible estimator that
assumes the knowledge of group memberships. We con-
sider the setup where both 𝑁 and 𝑇 go to infinity and the
number of groups is known.
The difficulty in establishing the asymptotic properties

is twofold. On the one hand, the group membership esti-
mators, 𝑔𝑖, 𝑖 = 1, … ,𝑁, only take discrete values, whose
number is increasing to infinity as 𝑁 increases. On the
other hand, the approximation error in the principal com-
ponent analysis needs to be carefully bounded, and we
need to establish accurate bounds for both the approxima-
tion error and the observation error.
We first fix notations and introduce some regular-

ity conditions. There are three types of parameters in

the model (1): the parameters 𝛼0
𝑖
∈  ⊂ ℝ, 𝑖 = 1,… ,𝑁,

and 𝜸0 ∈ Γ ⊂ ℝ𝑑 are finite dimensional; the group
memberships 𝑔0

𝑖
, 𝑖 = 1, … ,𝑁, are discrete, and they

take values in {1, … , 𝐺}; the functional coefficients
𝛽01(𝑡), … , 𝛽

0
𝐺
(𝑡) are elements of 2(𝐼), and we assume

that 𝛽0𝑔(𝑡) =
∑∞
𝑘=1 𝑏

0
𝑔𝑘
𝜙𝑘(𝑡) ∈ Ξ ⊂ 2(𝐼), 𝑔 = 1,… , 𝐺,

where Ξ = {𝑓(𝑡) ∶ 𝑓(𝑡) =
∑∞
𝑘=1 𝑏𝑘𝜙𝑘(𝑡),

∑∞
𝑘=1 𝑏

2
𝑘
< ∞}.

Using nonstandard notations, we use ‖𝐳‖ to denote the
Euclidean norm of 𝐳 ∈ ℝ𝑑, we also use ‖𝑥‖2 = ∫

𝐼
𝑥(𝑡)2𝐝𝑡

to denote the 𝐿2 norm of 𝑥(𝑡). Themeaning should be clear
in the context. We consider the following assumptions:
(A1) The spaces , Γ, and Ξ are bounded subsets of

ℝ,ℝ𝑑, and 2(𝐼), respectively.
(A2) The data {𝑦𝑖𝑗, 𝐳𝑖𝑗, 𝑥𝑖𝑗(𝑡)} are independent both

within and across families.
Assumption (A1) is standard in the literature. Since

the objective function (3) is not convex, the bounded-
ness assumption ensures that the estimator does not drift
away from the truth asymptotically. In assumption (A2),
we require that the data are independent both within and
across subjects. This is reasonable in the plant data analy-
sis. The plantswere fully randomized to the positions of the
Smarthouse using a split-plot design (Meng et al., 2017) and
grown separately in pots. Possible sources of dependency
between plants are the unobserved features of the barley
plants both within and across families and the microcli-
mate. The effects of microclimate can be removed by the
method used in Meng et al. (2017). The latent group struc-
ture model is used to accommodate the salinity tolerance
heterogeneity. The fixed effect is adopted to capture unob-
served familywise heterogeneity.
(A3) For some 𝑟 ≥ 2, 𝔼‖𝑥‖2𝑟 < ∞, 𝔼‖𝑧‖2𝑟 < ∞, and

𝔼|𝜖|2𝑟 < ∞. For all 𝑘 ≥ 2, 𝔼 (∫ 𝑥(𝑡)𝜙𝑘(𝑡)𝐝𝑡)2𝑟 < 𝐶𝜅𝑟𝑘 for
some constant 𝐶 > 0.
(A4) For some 𝜒 > 1 and 𝜈 > 𝜒∕2 + 1, 𝐶−1𝑘−𝜒 ≤ 𝜅𝑘 ≤

𝐶𝑘−𝜒 , and max
𝑔=1,…,𝐺

| ∫ 𝛽0𝑔(𝑡)𝜙𝑘(𝑡)𝐝𝑡| ≤ 𝐶𝑘−𝜈 for some con-
stant 𝐶 > 0. The truncation parameter𝑚 ∝ 𝑛1∕(𝜒+2𝜈).
(A5) For all 𝑔 ∈ {1, … , 𝐺}, lim𝑁→∞𝑁−1

∑𝑁
𝑖=1 𝐼{𝑔

0
𝑖
=

𝑔} = 𝜋𝑔 > 0.
(A6) For all {𝑔, 𝑔′} ∈ {1, … , 𝐺}, lim

𝑚→∞
min
𝑔≠𝑔′

∑𝑚
𝑘=1(

𝑏0
𝑔𝑘
− 𝑏0

𝑔′𝑘

)2
𝜅𝑘 > 0.

Lastly, we need to restrict the dependence between the
finite dimensional covariate 𝐳 and the functional covari-
ate 𝑥(𝑡), which is a common assumption in semiparamet-
ric regression analysis; see Shin (2009) and Wang et al.
(2009). Let  = {∑∞

𝑘=1
ℎ𝑘𝑓𝑘,

∑∞
𝑘=1
ℎ2
𝑘
< ∞}, where 𝑓𝑘 =∫

𝐼
𝑥(𝑡)𝜙𝑘𝐝𝑡. Let 𝑧𝑘, 𝑘 = 1,… , 𝑑, denote the 𝑘th element of

𝐳. For 𝑘 = 1,… , 𝑑, let 𝜁𝑘 be the projection of 𝑧𝑘 to .
That is 𝜁𝑘 = argmin

𝜁∈
𝔼(𝑧𝑘 − 𝜁)

2 = argmin
𝜁∈

𝔼(𝔼(𝑧𝑘|𝑥) − 𝜁)2.
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WANG et al. 5

Let 𝑧𝑘 = 𝑧𝑘 − 𝜁𝑘, and 𝐳̃ = (𝑧1, … , 𝑧𝑑)′, wemake the follow-
ing additional assumption.
(A7) The covariance matrix of 𝐳̃ is positive definite.
The moment conditions which appear in assumption

(A3) on the functional observations also appear inHall and
Hosseini-Nasab (2006, 2009). Assumption (A4) is adapted
from Hall and Horowitz (2007). Specifically, assumption
(A4) means that the eigenvalues of the functional covari-
ate are positive andwell separated from each other, and the
functional coefficients are smooth relative to the covari-
ance function 𝐾(𝑢, 𝑣). Under this assumption, the eigen-
functions 𝜙𝑘, 𝑘 = 1, 2, …, can be identified and estimated
with a reasonable rate. Assumption (A5) requires that the
number of observations for all the groups are in the same
order as 𝑁 grows.
The identification condition of a general functional lin-

ear model has been discussed in detail by Cardot et al.
(2003), Shin (2009), and Scheipl and Greven (2016). Essen-
tially, a functional linear model is identifiable if the cross-
covariance function, which is defined as the covariance of
the response and the functional covariate, is in the range of
the covariance operator, and the Picard’s condition is sat-
isfied (Cardot et al., 2003; Shin, 2009). We state the identi-
fiability of model (1) in Proposition 2.

Proposition 2. Under assumptions (A1)–(A7), the parame-
ters 𝛼0

𝑖
, 𝑖 = 1, … ,𝑁, 𝜸0, 𝛽0𝑔, 𝑔 = 1,… , 𝐺, are identifiable. The

group membership parameters 𝑔0
𝑖
, 𝑖 = 1, … ,𝑁, are asymp-

totically identifiable up to a permutation.

In Proposition 2, the asymptotic identifiability of the
group membership parameters 𝑔0

𝑖
, 𝑖 = 1, … ,𝑁, is defined

as follows. Denote 𝑔𝑖 = argmin
𝑔∈{1,…,𝐺}

∑𝑇
𝑗=1
(𝑦𝑖𝑗 − 𝛼

0
𝑖
− 𝐳′
𝑖𝑗
𝜸0 −

𝐟 ′
𝑖𝑗
𝐛0𝑔)
2. The groupmembership parameters 𝑔0

𝑖
, 𝑖 = 1, … ,𝑁,

are asymptotically identifiable if lim𝑇→∞ ℙ(𝑔𝑖 ≠ 𝑔0𝑖 ) = 0
for all 𝑖 = 1, … ,𝑁. Assumption (A6) is a key to the asymp-
totic identifiability of 𝑔0

𝑖
, which says that the group-specific

functional coefficients are well separated in the sense
that 𝐸(𝐟 ′

𝑖𝑗
𝑏0𝑔 − 𝐟

′
𝑖𝑗
𝑏0
𝑔′
)2 =

∑𝑚
𝑘=1
(𝑏0
𝑔𝑘
− 𝑏0

𝑔′𝑘
)2𝜅𝑘 > 0. That is,

the contribution of the functional coefficients is different
across groups. A slightly stronger condition which induces
assumption (A6) is that ‖𝛽0𝑔 − 𝛽0𝑔′‖ = ∑∞

𝑘=1
(𝑏0
𝑔𝑘
− 𝑏0

𝑔′𝑘
)2 >

𝐶 for all 𝑔 and 𝑔′ for some constant 𝐶 > 0.
To state the consistency results, we use the Hausdorff

distance. For two sets of ℝ𝑚 vectors 𝐁(1) = {𝐛(1)1 , … , 𝐛
(1)
𝐺
}

and 𝐁(2) = {𝐛(2)1 , … , 𝐛
(2)
𝐺
}, the Hausdorff distance between

𝐁(1) and 𝐁(2) is defined as

𝑑𝐻(𝐁
(1), 𝐁(2))

= max

{
max
𝑔′
min
𝑔

‖𝐛(1)𝑔 − 𝐛(2)𝑔′ ‖, max𝑔 min𝑔′ ‖𝐛(1)𝑔 − 𝐛(2)𝑔′ ‖}.

Let the true values of the functional coefficient truncated
at 𝑚 be 𝐁(0) = {𝐛(0)1 , … , 𝐛

(0)
𝐺
}, where 𝐛(0)𝑔 = (𝑏0𝑔,1, … , 𝑏0𝑔,𝑚) and 𝑏0𝑔,𝑘 =

∫
𝐼
𝛽0𝑔(𝑡)𝜙𝑘(𝑡)𝐝𝑡. Theorem 1 establishes the consistency of the

proposed estimators (𝜶, 𝜸, 𝐁̂) with 𝐁̂ = {̂𝐛1, … , 𝐛̂𝐺}.

Theorem 1. Under assumptions (A1)–(A6), the proposed estimator is
consistent: sup

𝑖=1,…,𝑁
|𝛼𝑖 − 𝛼0𝑖 | = 𝑜𝑝(1), ‖𝜸 − 𝜸0‖ = 𝑜𝑝(1), and 𝑑𝐻(𝐁0, 𝐁̂) =

𝑜𝑝(1).

For the functional coefficients 𝛽0𝑔(𝑡), 𝑔 = 1,… , 𝐺, we
only proved consistency of its coefficients expanded on
the eigenfunctions 𝜙1, 𝜙2, …. This result will be refined in
Corollary 1, where we establish the convergence rate of
𝛽𝑔(𝑡). As argued in Bonhomme and Manresa (2015), con-
sistency under the Hausdorff distance along with assump-
tion (A6) implies that there exists a permutation of group
labels 𝜎 ∶ {1, … , 𝐺} → {1, … , 𝐺}, such that ‖𝐛̂𝜎(𝑔) − 𝐛(0)𝑔 ‖→
0 in probability. Without loss of generality, we assume that
𝜎(𝑔) = 𝑔, 𝑔 = 1,… , 𝐺, in the rest of the article.
Based on the consistency of the estimator in Theorem 1,

we can establish the asymptotic equivalence between the
proposed estimator and an infeasible estimator which
assumes the knowledge of the group memberships 𝑔0

𝑖
, 𝑖 =

1, … ,𝑁, defined as(
𝜶, 𝜸, 𝐁̃

)
= sup
(𝜶,𝜸,𝐁)

1

𝑁𝑇

𝑁∑
𝑖=1

𝑇∑
𝑗=1

(𝑦𝑖𝑗 − 𝛼𝑖 − 𝐳
′
𝑖𝑗
𝜸 − 𝐟 ′

𝑖𝑗
𝐛𝑔0
𝑖
)2.

(4)

Theorem 2. Let 𝑎(𝑛; 𝑟) = 𝑇1−𝑟 + (log 𝑛)𝑟𝑚3𝑟𝑛−𝑟, where
𝑛 = 𝑁𝑇 and 𝑟 ≥ 2 is defined in assumption (A3). Under
assumptions (A1)–(A6), we have
(i) 𝜶 = 𝜶 + 𝑂𝑝(𝑎(𝑛; 𝑟)), 𝜸 = 𝜸 + 𝑂𝑝(𝑎(𝑛; 𝑟)), and 𝐁̂ =

𝐁̃ + 𝑂𝑝(𝑎(𝑛; 𝑟)) and
(ii) ℙ( sup

𝑖=1,…,𝑁
|𝑔𝑖 − 𝑔0𝑖 | > 0) = 𝑜(1) + 𝑜(𝑁𝑎(𝑛; 𝑟)).

The convergence rate 𝑎(𝑛; 𝑟) has two parts. The first
part 𝑇1−𝑟 quantifies the observation error. The second part
bounds the approximation error of FPCA to the functional
covariate. Theorem 2 (i) establishes that the proposed esti-
mator (𝜶, 𝜸, 𝐁̂) is equal to the infeasible estimator (𝜶, 𝜸, 𝐁̃)
up to an error of order𝑂𝑝(𝑎(𝑛; 𝑟)). Under assumption (A4),
it is easy to see that 𝑎(𝑛; 𝑟) converges to zero as both𝑁 and
𝑇 go to infinity. The proposed estimator and the infeasible
estimator are thus asymptotically equivalent. Theorem 2
(ii) implies the consistency of the group membership
estimator when 𝑁𝑎(𝑛; 𝑟) goes to zero as both 𝑁 and 𝑇 go
to infinity. Under assumption (A4), the rate 𝑁𝑎(𝑛; 𝑟) goes
to zero if (log(𝑁𝑇))(𝜒+2𝜈)(𝑟−1)∕(𝜒+2𝜈−3)𝑁𝑇1−𝑟 converges
to zero. Using the asymptotic equivalence established in
Theorem 2, we can derive the asymptotic distribution of
𝜸 and the convergence rate of 𝛽𝑔(𝑡), 𝑡 = 1, … , 𝐺, where
𝛽𝑔(𝑡) =

∑𝑚
𝑘=1 𝑏𝑔,𝑘𝜙(𝑡).
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6 WANG et al.

Corollary 1. Suppose that assumptions (A1)–(A7) hold.
Let 𝑁 and 𝑇 go to infinity such that 𝑁∕𝑇2𝑟−3 → 0, then we

have
√
𝑛(𝜸 − 𝜸0)

𝑑
→ 𝑁(𝟎, Σ), where Σ = cov(𝑧). Further-

more, ‖𝛽𝑔(𝑡) − 𝛽0𝑔(𝑡)‖ = 𝑂𝑝(𝑛− 2𝜈−1

2(𝜒+2𝜈) ), for all 𝑔 = 1,… , 𝐺.

Under the condition that the observations have certain
moments and 𝑇 is relatively large compared to 𝑁, that is,
𝑁∕𝑇2𝑟−3 → 0, Corollary 1 shows that the proposed estima-
tor for 𝜸0 has the same asymptotic distribution as the infea-
sible estimator defined in (4). The convergence rate of the
estimator for the functional coefficients 𝛽0𝑔(𝑡), 𝑔 = 1,… , 𝐺,
is the same as that obtained by Hall and Horowitz (2007)
and Shin (2009). The convergence rate attains theminimax
lower bound derived by Hall and Horowitz (2007).
Remark: In the plant data analysis, the number of fam-

ilies 𝑁 = 17 is relatively small. Following the same argu-
ments in the proofs, we can show that all the theoretical
results still hold with a finite𝑁 as long as 𝑇 goes to infinity.
The consistency of the parameters and the group member-
ships crucially depends on a large 𝑇 but not a large 𝑁.

2.4 Inference

In Corollary 1 of Section 2.3, we established the asymp-
totic distribution of the estimator 𝜸 . As in Shin (2009),
we utilize the asymptotic distribution for constructing
confidence intervals and conducting hypothesis testings.
In practice, we estimate the asymptotic variance of 𝜸
as follows: Conditional on the estimated group struc-
ture, we denote 𝐅𝑖 = (𝑓′𝑖1, … , 𝑓

′
𝑖𝑇
)′, 𝑖 = 1, … ,𝑁 and define

𝐅 as a block matrix with the block at the 𝑖th row
and 𝑘th columnbeing𝐅𝑖𝐼{𝑔𝑖 = 𝑘}, 𝑖 = 1, … ,𝑁, 𝑘 = 1,… , 𝐺.
The asymptotic variance of 𝜸 is estimated as 𝜎2(𝐙′(𝐈𝑁𝑇 −
𝐏𝐅)𝐙)

−1, where 𝐈𝑁𝑇 is the identity matrix of size 𝑁𝑇 ×
𝑁𝑇, 𝐏𝐅 = 𝐅(𝐅

′𝐅)−1𝐅′, 𝜎2 = 1∕(𝑁𝑇)
∑𝑁
𝑖=1

∑𝑇
𝑗=1
(𝜖̂𝑖𝑗 − 𝜖̂)

2,

𝜖̂𝑖𝑗, 𝑖 = 1, … ,𝑁, 𝑗 = 1,… , 𝑇 are the residuals, and 𝜖̂ is the
mean of the residuals. Confidence intervals for 𝜸0 can
be formulated using the estimated variance and the nor-
mal approximation.
To construct confidence bands for the functional coeffi-

cients 𝛽0𝑔(𝑡), 𝑔 = 1,… , 𝐺, we adapt the strategy in Imaizumi
and Kato (2019) to our model. Instead of constructing a
confidence band that uniformly covers 𝛽0𝑔(𝑡), a more prac-
tical strategy is constructing a band such that with proba-
bility at least 1 − 𝜉1, the proportion of 𝑡 ∈ 𝐼where 𝛽0𝑔(𝑡) lies
outside the band is less than a small number 𝜉2 ∈ (0, 1).
This strategy is also adopted in Juditsky and Lambert-
Lacroix (2003) for nonparametric function estimation. We
first derive an asymptotic expansion of 𝛽𝑔(𝑡) − 𝛽0𝑔(𝑡), 𝑔 =
1,… , 𝐺. Let 𝐄 = (𝐅′𝐅)−1𝐅′(𝝐 − 𝐙(𝐙′(𝐈𝑁𝑇 − 𝐏𝐅)𝐙)𝐙

′(𝐈𝑁𝑇 −

𝐏𝐅)𝝐), and let 𝐞𝑔 = (0, … , 1, … , 0), 𝑔 = 1,… , 𝐺, be unit vec-
tors of length 𝐺 where the 𝑔th element is 1. Let 𝟏𝑚 be a
vector of length𝑚 with elements all equal to 1. Then

‖𝛽𝑔 − 𝛽0𝑔‖2 ≈ (𝐞𝑔 ⊗ 𝟏𝑚)′𝐄𝐄′(𝐞𝑔 ⊗ 𝟏𝑚), (5)

The approximation (5) is derived in Web Appendix A. We
use a simple bootstrap procedure to estimate the quan-
tiles of ‖𝛽𝑔 − 𝛽0𝑔‖2, 𝑔 = 1,… , 𝐺, based on (5). Let 𝝐∗

𝑏
, 𝑏 =

1,… , 𝐵, be 𝐵 bootstrap samples from the residuals 𝝐 ,
and let 𝐄∗

𝑏
, be the corresponding bootstrap version of 𝐄.

Denote by 𝑐𝑔(1 − 𝜉1) the (1 − 𝜉1)th sample quantile of
(𝐞𝑔 ⊗ 𝟏𝑚)

′𝐄∗
𝑏
𝐄′∗
𝑏
(𝐞𝑔 ⊗ 𝟏𝑚), 𝑏 = 1,… , 𝐵. As in Juditsky and

Lambert-Lacroix (2003) and Imaizumi and Kato (2019), a
confidence band that covers 1 − 𝜉2 proportions of 𝑡 ∈ 𝐼 of
𝛽0𝑔(𝑡) is

[
𝛽𝑔(𝑡) − 𝑐𝑔(1 − 𝜉1)

√
1

𝜉2𝜆(𝐼)
, 𝛽𝑔(𝑡) + 𝑐𝑔(1 − 𝜉1)

√
1

𝜉2𝜆(𝐼)

]
,

𝑔 = 1, … , 𝐺, (6)

where 𝜆(𝐼) is the length of 𝐼. The confidence band (6)
has a constant length. One shortcoming of the proposed
confidence band is that the stochastic error in the group
membership estimation is ignored. The resulting effect
on empirical coverage probabilities is small as shown
in the simulation studies in Section 3, especially when
different groups are well separated and the sample size
is large.

2.5 Selection of 𝑮 and𝒎

To implement the proposed estimator, we need to deter-
mine the number of groups 𝐺 and the number of principal
components 𝑚 used in the truncation of the K-L expan-
sion. We propose to select these parameters by minimizing
a Bayesian information criterion ,

𝐵𝐼𝐶(𝑚,𝐺) = log

(
1

𝑁𝑇

𝑁∑
𝑖=1

𝑇∑
𝑗=1

(𝑦𝑖𝑗 − 𝛼̂𝑖 − 𝐳
′
𝑖𝑗
𝜸 − 𝐟 ′

𝑖𝑗
𝐛̂𝑔𝑖 )

2

)

+
𝐺𝑚 +𝑁 + 𝑑

𝑁𝑇
log(𝑁𝑇).

(7)

Note that the estimators (𝜶, 𝜸, 𝐛̂, ̂) are understood to be
a function of the parameters 𝑚 and 𝐺 implicitly. The
Bayesian information criterion balances the model fit and
the parsimony of the parameters. In practice, weminimize
the Bayesian information criterion on a grid of the param-
eter values.
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WANG et al. 7

TABLE 1 The rand index (RI), the percentage that the estimated number of groups equals to the truth (P, in %), and the averaged
number of estimated groups (M). C1–C5 refer to cases 1–5

𝑻 = 𝟒𝟎 𝑻 = 𝟔𝟎

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5
Setting 1 RI Proposed 0.46 0.65 0.82 0.92 0.96 0.61 0.82 0.94 0.98 0.99

SCAD 0.00 0.00 0.03 0.17 0.51 0.00 0.01 0.13 0.52 0.73
LASSO 0.00 0.00 0.02 0.10 0.32 0.00 0.01 0.11 0.47 0.77
NKMEAN 0.34 0.50 0.63 0.73 0.77 0.48 0.68 0.78 0.84 0.87

M Proposed 2.01 2.09 2.05 2.02 2.02 2.05 2.01 2.01 2.01 2.01
SCAD 1.01 1.04 1.16 2.09 4.18 1.02 1.05 1.45 3.61 4.72
LASSO 1.00 1.00 1.04 1.18 1.79 1.01 1.03 1.20 1.80 2.85
NKMEAN 2.54 2.60 2.65 2.68 2.70 2.44 2.42 2.49 2.51 2.48

P Proposed 89.0 90.0 95.4 97.6 97.6 93.8 98.8 98.8 99.4 99.2
SCAD 0.8 2.6 7.0 7.2 7.0 1.8 3.6 8.4 16.4 10.8
LASSO 0.2 0.0 3.4 7.6 18.8 0.6 2.2 9.8 32.0 34.6
NKMEAN 50.0 43.4 42.8 42.2 44.0 57.6 60.8 55.4 56.0 58.0

Setting 2 RI Proposed 0.59 0.79 0.88 0.94 0.94 0.78 0.91 0.96 0.97 0.98
SCAD 0.05 0.31 0.65 0.81 0.92 0.09 0.51 0.75 0.90 0.97
LASSO 0.02 0.17 0.45 0.50 0.47 0.06 0.45 0.66 0.64 0.62
NKMEAN 0.45 0.58 0.65 0.68 0.70 0.60 0.70 0.73 0.73 0.73

M Proposed 2.24 2.21 2.24 2.19 2.24 2.12 2.10 2.08 2.09 2.07
SCAD 1.56 3.23 4.76 3.98 2.91 1.62 4.38 4.68 3.22 2.41
LASSO 1.24 2.44 4.96 6.95 7.35 1.28 3.16 5.10 5.65 5.79
NKMEAN 2.78 2.96 3.12 3.21 3.24 2.76 2.91 3.03 3.13 3.15

P Proposed 78.0 81.8 79.2 83.6 82.0 89.0 90.2 93.2 92.0 94.6
SCAD 6.8 8.0 10.0 19.2 45.8 9.6 8.8 11.4 32.6 68.0
LASSO 2.8 8.6 11.6 4.2 1.2 10.4 16.2 12.4 7.6 6.0
NKMEAN 25.8 14.8 13.8 13.2 13.2 31.2 25.6 23.8 18.6 18.4

3 SIMULATION STUDY

In this section, we investigate the finite sample perfor-
mance of the proposed estimator through simulation stud-
ies. We simulated two settings with two latent groups,
wherein setting one the functional coefficients depend on
the first four principal components, and in setting two
the generalized Fourier coefficients decrease smoothly. In
each setting, we simulated five cases (C1)–(C5), such that
the functional coefficients of the two groups deviate from
each other gradually from the case (C1) to the case (C5).
The detailed setup of the simulation study is presented in
Web Appendix B.1.
In the simulation, the sample size is 𝑇 = 40 or 𝑇 = 60,

and 𝑁 = 25, which is close to the sample size in the moti-
vating barley data. The simulations are repeated 500 times
for each case. The adjusted Rand index (RI) of Rand (1971)
is used to assess similarities between the truth and the esti-
mated groups. Larger values of RI indicate that the truth
and the estimated groups are more similar, where 1 means
complete recovery. We also report the percentage that the

estimated number of groups equals the truth (P, in %) and
the averaged number of estimated groups (M). The aver-
aged number of selected PCs and the computing time are
reported in Web Table A.1.
For comparisons, we adapt the penalization methods of

Ma and Huang (2017) to our setting with the smoothly
clipped absolute deviation (SCAD) and least absolute
shrinkage and selection operator (LASSO) penalty. We
also compare with a two-step naive K-means (NKMEAN)
approach, where in the first step the family-specific func-
tional coefficients are estimated, and in the second step
group membership is recovered by the K-means algo-
rithms. The details of these methods are described in Web
Appendix B.1.
Generally, the proposed method performs the best in

all the cases because it has a larger RI and P, and the
averaged number of estimated groups (M) is closer to the
truth (Table 1). For example, in case C5 of setting 1, RIs
for the proposed method are 0.96 and 0.99 when the sam-
ple size is 𝑇 = 40 and 60, respectively. In contrast, RIs are
much smaller, 0.51, 0.32, and 0.77 for SCAD, LASSO, and
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8 WANG et al.

TABLE 2 The integrated mean square error (×10), integrated variance (×10), and integrated bias (×10) for the functional coefficients for
setting 1. C1–C5 refer to cases 1–5

𝑻 = 𝟒𝟎 𝑻 = 𝟔𝟎

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5
Setting 1 IMSE Proposed 3.01 3.02 2.43 1.86 1.62 1.75 1.33 0.97 0.80 0.75

SCAD 2.54 4.15 6.24 8.88 10.06 2.29 3.82 5.71 7.25 5.79
LASSO 2.59 4.17 6.12 8.52 11.29 2.30 3.81 5.67 7.35 8.69
FAMILY 19.15 18.41 17.63 17.27 17.17 14.53 14.83 15.07 14.87 14.83
POOL 2.59 4.16 6.14 8.59 11.52 2.32 3.90 5.90 8.33 11.24
NKMEAN 17.65 16.89 16.05 15.38 15.29 13.04 13.27 13.51 13.23 13.12

IVAR Proposed 2.86 2.91 2.37 1.84 1.61 1.69 1.31 0.96 0.80 0.74
SCAD 0.57 0.69 1.10 3.60 5.84 0.36 0.45 1.18 4.25 3.37
LASSO 0.62 0.67 0.73 0.97 1.94 0.36 0.39 0.60 1.11 1.89
FAMILY 4.83 4.59 4.22 4.36 4.60 5.55 4.74 3.86 3.50 3.07
POOL 0.60 0.61 0.61 0.62 0.67 0.33 0.36 0.37 0.37 0.40
NKMEAN 3.17 3.03 2.60 2.46 2.65 3.99 3.16 2.31 1.82 1.36

IBIAS Proposed 0.15 0.11 0.05 0.02 0.02 0.06 0.02 0.01 0.00 0.00
SCAD 1.96 3.46 5.13 5.26 4.19 1.93 3.37 4.51 3.00 2.41
LASSO 1.97 3.49 5.39 7.54 9.36 1.94 3.41 5.07 6.24 6.80
FAMILY 14.33 13.87 13.41 12.89 12.63 8.97 10.10 11.20 11.37 11.75
POOL 1.99 3.54 5.53 7.97 10.85 1.99 3.54 5.53 7.97 10.84
NKMEAN 14.48 13.87 13.45 12.92 12.65 9.05 10.11 11.21 11.41 11.79

Setting 2 IMSE Proposed 4.20 3.63 3.30 2.91 2.81 2.96 2.55 2.30 2.11 1.99
SCAD 5.01 6.66 5.96 4.24 3.22 4.38 5.16 3.90 2.79 2.17
LASSO 4.74 6.61 7.95 8.05 7.90 4.30 5.74 6.28 6.23 6.14
FAMILY 10.73 10.29 9.72 9.18 8.79 8.98 8.42 8.39 8.04 7.84
POOL 4.73 6.69 9.17 12.28 16.05 4.43 6.33 8.88 11.96 15.67
NKMEAN 10.42 10.02 9.35 8.73 8.26 8.59 7.91 7.89 7.55 7.33

IVAR Proposed 2.39 1.90 1.64 1.36 1.32 1.39 1.06 0.86 0.80 0.64
SCAD 1.55 3.28 2.56 1.60 1.22 1.18 2.22 1.02 0.90 0.72
LASSO 1.10 1.89 2.36 1.98 1.71 0.87 1.49 1.52 1.55 1.47
FAMILY 2.74 2.40 2.20 2.06 1.94 2.65 2.44 2.10 1.87 1.69
POOL 0.88 0.90 0.83 0.79 0.85 0.74 0.67 0.61 0.65 0.57
NKMEAN 2.44 2.11 1.83 1.61 1.42 2.23 1.95 1.59 1.38 1.17

IBIAS Proposed 1.81 1.74 1.64 1.56 1.50 1.56 1.48 1.43 1.31 1.35
SCAD 3.42 3.38 3.40 2.64 2.00 3.21 2.93 2.89 1.90 1.45
LASSO 3.71 4.77 5.59 6.07 6.18 3.50 4.29 4.76 4.68 4.66
FAMILY 7.97 7.88 7.52 7.11 6.85 6.34 5.98 6.30 6.17 6.15
POOL 3.88 5.82 8.34 11.49 15.20 3.73 5.68 8.26 11.31 15.10
NKMEAN 8.01 7.93 7.51 7.11 6.85 6.37 5.96 6.30 6.17 6.16

NKMEAN, receptively, when 𝑇 = 40 and increase to 0.73,
0.77, and 0.87 when 𝑇 increases to 60 (Table 1). Moreover,
the averaged number of estimated groups (M) for the pro-
posed method is close to the truth (G = 2). In contrast, the
number of groups is overestimated for other methods.
Next, we compare the estimation error of the proposed

method with other methods. Besides the methods dis-
cussed above, we compare the proposed method with the
pooled model (POOL), where the functional coefficients

are constant across families, and the familywise model
(FAMILY), where each family has its own functional coef-
ficient. Table 2 shows the integrated mean squared error
(IMSE), the integrated variance (IVAR), and the integrated
squared bias (IBIAS) of the functional coefficient for all the
estimators. We first examine the estimation error for set-
ting 1. In most cases, the proposed method has a smaller
IMSE than all other methods. For example, IMSE is 0.075
for the proposed method when 𝑇 = 60 in case C5, whereas
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WANG et al. 9

TABLE 3 The empirical coverage percentages (%) of the
proposed 95% confidence interval for 𝜸0 and the confidence band
for the functional coefficients 𝛽0𝑔(𝑡), 𝑔 = 1, 2

Setting 1 Setting 2
𝑻 = 𝟒𝟎 𝑻 = 𝟔𝟎 𝑻 = 𝟒𝟎 𝑻 = 𝟔𝟎

Case 𝜸𝟎 𝜷𝟎𝒈(𝒕) 𝜸𝟎 𝜷𝟎𝒈(𝒕) 𝜸𝟎 𝜷𝟎𝒈(𝒕) 𝜸𝟎 𝜷𝟎𝒈(𝒕)

C1 93.0 85.9 94.4 89.7 94.1 93.1 94.4 95.2
C2 93.2 89.7 94.4 95.2 93.5 96.3 94.5 98.4
C3 94.5 94.9 95.0 98.3 94.2 98.3 94.1 99.3
C4 94.5 97.8 94.6 99.5 94.2 99.4 94.5 99.8
C5 94.8 99.1 93.9 99.6 94.5 99.7 95.5 99.8

IMSEs for all other methods are greater than 0.5 (Table 2,
the last column). The proposed method has the smallest
bias, compared with all the methods, whereas the pooled
method has the smallest variance over all the methods
(Table 2).
Next, we examine the estimation error for setting 2. The

proposed method performs the best in terms of IMSE and
IBIAS, in all the cases. For example, IMSE is 0.281 for the
proposedmethod in case C5 when 𝑇 = 40 and decreases to
0.199 when 𝑇 increases to 60. In contrast, IMSEs are larger,
0.322 and 0.790 for SCAD and LASSO, respectively, in case
C5 when 𝑇 = 40, and 0.217 and 0.614 when 𝑇 increases to
60 (Table 2).
Lastly, we investigate the performance of the proposed

confidence sets. For 𝛽0(𝑡), 𝑡 ∈ 𝐼, we define the empirical
coverage probability of the confidence bands for 𝛽0𝑔(𝑡), 𝑔 =
1, 2 as

1

𝑁

𝑁∑
𝑖=1

ℙ

(
𝜆

(
𝑡 ∈ [0, 1] ∶ 𝛽0

𝑔0
𝑖

(𝑡) ∈ ̂𝑔𝑖 (𝑡)
)

≤ 1 − 𝜉2
)
,

where ̂𝑔𝑖 (𝑡) is the confidence band for the functional coef-
ficient of group 𝑔𝑖 . The confidence level is 95% for both 𝜸0
and 𝛽0𝑔(𝑡), 𝑔 = 1, 2; we set 𝜉2 = 0.1 for 𝛽0(𝑡) as previously
done by Imaizumi and Kato (2019). The data presented in
Table 3 show that the empirical coverage percentages for
𝜸0 are close to 95%, in all the cases. The empirical cover-
age percentages of the confidence band for 𝛽0𝑔(𝑡), 𝑔 = 1, 2,
are greater than 95%, except for cases C1 and C2 in which
the groups are not well separated. The proposed confi-
dence band for𝛽0𝑔(𝑡), 𝑔 = 1, 2, is conservative, as previously
reported by Imaizumi and Kato (2019).

4 PLANT DATA ANALYSIS

In this section, we study the effect of salinity stress on
the growth of barley plants. After data cleaning, the data
from 17 barley families, and in total, 725 barley plants

are available for analysis. For more details on the exper-
iment design and how the data were collected, we refer
the reader to Meng et al. (2017). Let 𝜔𝑖𝑗(𝑡) denote the pro-
jected shoot area of barley 𝑗 in family 𝑖 at the 𝑡th day. The
response is defined as 𝑦𝑖𝑗 = log(𝜔𝑖𝑗(32)) − log(𝜔𝑖𝑗(19)).
The response measures the growth of the plant during the
period when saltwater was applied. The relative growth
rate 𝑥𝑖𝑗(𝑡) is defined as 𝑥𝑖𝑗(𝑡) = 𝜔′𝑖𝑗(𝑡)∕𝜔𝑖𝑗(𝑡), 𝑡 ∈ [21, 30].
We obtain 𝑥𝑖𝑗(𝑡) by smoothing the discrete observations of
𝜔𝑖𝑗(𝑡)using cubic splines. Themodel used in the analysis is
𝑦𝑖𝑗 = 𝛼𝑖 + Na

+
𝑖𝑗𝛾 + ∫ 𝑥𝑖𝑗(𝑡)𝛽𝑔𝑖 (𝑡)𝐝𝑡 + 𝜖𝑖𝑗 , where Na+ is the

concentration of Na+ in the leaves of the barley plants. In
the literature, there is no evidence of heterogeneity for the
effects of Na+ across barley families (Meng et al., 2017).
The main interest lies in the growth pattern under salin-
ity stress.
We apply the proposed algorithm to the data. By the BIC

criterion, two groups of barley families are detected, and
four PCs are used in the estimation. The detected group 1
contains 10 families of barley, and group 2 contains seven
families. We also apply the penalization methods with the
SCAD or LASSO penalty to the data, but these two meth-
ods do not detect any groups. The marginal distribution
of the response shows two modes (Figure 1A). The figures
appear in color in the electronic version of this article, and
any mention of color refers to that version. After fitting
the proposed model, the residuals do not show a bimodal
structure anymore (Figure 1B). The bimodal structure of
the response in Figure 1A is well accommodated by the
proposed latent group structure model. Figure 2B shows
the pooled estimate and the familywise estimates of the
functional coefficients. The effect of Na+ is −0.135, with
a standard error 0.128. The negative relationship of Na+
is consistent with the findings reported in the literature
(Munns and Tester, 2008).
The average final biomass is 1.04 and 1.34 for groups

1 and 2, respectively. The higher biomass of group 2 is
reflected in the estimated functional coefficients. Overall,
the estimated coefficient 𝛽2(𝑡) of group 2 lies above the
coefficient 𝛽1(𝑡) of group 1 (Figure 2A), which means that
the growth of the barley plants in group 2 contributesmore
to the final biomass than that of the barley plants in group
1 at every stage under salinity stress.
To assess the prediction accuracy of the proposed

method and other methods, we randomly split the data in
each family 100 times and use 90% of the data for train-
ing, 10% of the data for prediction. We compare the mean
absolute prediction error (MAPE), which is defined as the
mean absolute difference between the true and estimated
responses. The average MAPE is 0.0695 for the proposed
method, 0.0759, 0.1167, 0.0719, and 0.0718, respectively, for
the pooled model, familywise model, penalized method
with the SCAD penalty and LASSO penalty. The standard
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F IGURE 1 (A) The histogram of the response 𝑌. (B) The histogram of the residuals from fitting the proposed model. This figure appears
in color in the electronic version of this article, and any mention of color refers to that version

22 24 26 28 30

0.
0

0.
5

1.
0

1.
5

(A)

Day

E
st

im
at

ed
 fu

nc
tio

na
l c

oe
ffi

ci
en

ts

Group 1
Group 2

22 24 26 28 30

0.
0

0.
5

1.
0

1.
5

(B)

Day

E
st

im
at

ed
 fu

nc
tio

na
l c

oe
ffi

ci
en

ts

POOL
FAMILY

F IGURE 2 (A) The estimated functional coefficients of the two groups of barley. (B) The functional coefficients estimated by the
familywise model (FAMILY) and the pooled model (POOL). This figure appears in color in the electronic version of this article, and any
mention of color refers to that version

error of MAPE is less than 0.0012 for all the methods.
The proposed method has a lower prediction error than
other methods.
In the following, we further explore differences between

the detected barley groups. From Figure 3A, group 2 accu-

mulates less Na+ than group 1. The average Na+ are 174
and 167 𝜇mol/g of drymass for groups 1 and 2, respectively.
The difference is significant, with p-values of the one-sided
t-test and Wilcoxon rank sum test being 0.002 and 0.008,
respectively. Accumulating lessNa+means a higher ability
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(B) Estimated early growth contribution

F IGURE 3 (A) The boxplot of Na+ concentration of the two groups. (B), the boxplot of ∫ 25
21
𝑥𝑖𝑗(𝑡)𝛽𝑔𝑖 (𝑡)𝐝𝑡 of the two groups as an

index for osmotic tolerance. This figure appears in color in the electronic version of this article, and any mention of color refers to that
version

for Na+ exclusion, which is a main aspect of salinity toler-
ance in plants (Munns and Tester, 2008).
Next, we compare the barley groups in terms of osmotic

tolerance. As suggested by Munns and Tester (2008), the
growth reduction in the first few days after applying salt-
water can be attributed to osmotic stress. Since 𝛽2(𝑡)
reaches a plateau around the 25th day, we define an index
for osmotic tolerance as ∫ 25

21
𝑥𝑖𝑗(𝑡)𝛽𝑔𝑖 (𝑡)𝐝𝑡. The barley fam-

ilies in group 2 exhibit a higher osmotic tolerance than
those in group 1 (Figure 3B), because the contribution of
growth in the first four days for group 2 is higher than that
of group 1, with a mean of 0.21 and 0.36 for groups 1 and
2, respectively. The above analyses suggest that the bar-
ley plants in group 2 have a better salinity tolerance ability
than that of group 1.

5 CONCLUSION

Motivated by the barley salinity tolerance study, we pro-
posed a functional partially linear regression model with
latent group structures. The proposed method provides
a new tool to account for heterogeneity in functional
linear regression. The developed algorithm is accurate
for recovering the latent groups compared to competing
methods in simulation studies. This paper considers latent
group structures in the conditional mean of the response
given the covariates. It is interesting to extend the current

methodology to model discrete responses, for example,
counts or binary data, using the generalized linear model.
Another promising extension is to consider conditional
quantiles of the response rather than the conditional
mean, which might give a more complete description of
the heterogeneity in the conditional distribution of the
response.
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