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Abstract

In this paper, we propose a functional partially linear regression model with
latent group structures to accommodate the heterogeneous relationship between
a scalar response and functional covariates. The proposed model is motivated by
a salinity tolerance study of barley families, whose main objective is to detect
salinity tolerant barley plants. Our model is flexible, allowing for heterogeneous
functional coefficients while being efficient by pooling information within a
group for estimation. We develop an algorithm in the spirit of the K-means
clustering to identify latent groups of the subjects under study. We establish
the consistency of the proposed estimator, derive the convergence rate and the
asymptotic distribution, and develop inference procedures. We show by simula-
tion studies that the proposed method has higher accuracy for recovering latent
groups and for estimating the functional coefficients than existing methods. The
analysis of the barley data shows that the proposed method can help identify

KEYWORDS

1 | INTRODUCTION

As new technologies rapidly develop, more and more pro-
cesses can be monitored dynamically over time and space.
Densely observed data can be modeled as realizations of
random curves or surfaces, which are examples of func-
tional data. Functional data analysis (FDA) has been suc-
cessfully applied in fields such as neuroimaging (Yu et al.,
2016), plant science (Meng et al., 2017), and medical science
(Kong et al., 2018); see Ramsay and Silverman (2005) for a
comprehensive review.

Functional linear regression is an elegant statistical
framework that links functional covariates with response
variables. Because the space of functions is infinite
dimensional, dimension reduction techniques, especially
the functional principal component analysis (FPCA),

groups of barley families with different salinity tolerant abilities.

functional data analysis, homogeneity pursuit, latent structure, longitudinal data analysis,
model-based clustering

are widely applied before further modeling. Yao et al
(2005), Hall and Horowitz (2007), and Hall and Hosseini-
Nasab (2009) established sound theoretical properties of
the FPCA-based estimators for functional linear models.
When scalar covariates are present, Shin (2009) and Kong
et al. (2016a, 2016b, 2018) studied the functional partially
linear regression model for possibly high-dimensional
covariates. Another line of work approximates functional
coefficients by fixed basis functions. Popular basis func-
tions are B-splines (Cardot et al., 2003), smoothing splines
(Crambes et al.,, 2009), and reproducing kernel Hilbert
spaces (Yuan and Cai, 2010). Functional linear regres-
sion has been generalized to deal with discrete responses
(Miiller and Stadtmiiller, 2005), to model conditional
quantiles of the response (Kato, 2012), and to handle com-
plex nested structures in functional data (Xu et al., 2018).

Biometrics. 2021;1-12.

wileyonlinelibrary.com/journal/biom

© 2021 The International Biometric Society | 1

puop) pue swid . a1 39S “[€207/10/91] U0 A1e1qr] QuiuQ A3[1A 1) PIN AUf) UOIFUIYSEAL 951090 Aq LGSE 1 WOLG/[ | [ [01/10p/wi0d" Ka[imKxeiqr[aut[uoy/:sdiy woiy papeoumod 0 “0zb01 S|

:sdny)

1a)/wod" Kapim reiqrpaury

QSR suowwo)) aanear) a[qeorjdde oYy £q pauroroS are sa[onIe Y Lasn Jo sanI 10J AIeIqr] auluQ AJ[IA\ U0 (Suonip


https://orcid.org/0000-0001-6703-4270
mailto:wu.wang@ruc.edu.cn
https://wileyonlinelibrary.com/journal/biom
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbiom.13557&domain=pdf&date_stamp=2021-09-14

: | wiLey Diomelrics

WANG ET AL.

Our work is motivated by the research on salinity tol-
erance of barley plants. Salinity is the primary environ-
mental stress that limits growth and productivity of crops
(Munns and Tester, 2008). Plant scientists are dedicated to
finding salinity tolerant barley plants and understanding
the underlying mechanism (Meng et al., 2017). In a bar-
ley salinity tolerance experiment conducted in The Plant
Accelerator®), a facility of smart houses with automated
phenotyping technologies at King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia, plant sci-
entists recorded daily growth rates of barley plants stressed
with salt water for a period of 32 days. The growth rates
were naturally modeled as functional data. The barley
plants were from different families; those from the same
family are treated as replicates because of their genetic
similarity. To understand how the barley families react to
the stress imposed by saltwater, we model the relation-
ship between the final biomass of the barley plants and the
relative growth rate using a functional regression model.
The ability to tolerate saltwater was found inhomogeneous
among barley families. Some barley families were more
salt tolerant than others (Meng et al., 2017). This means
that there may exist heterogeneous latent groups of barley
plants that have different salinity tolerant abilities.

Subject heterogeneity is a fundamental model specifi-
cation problem. It arises due to individual characteristics,
either unobserved or unknown. For example, in precision
medicine, the ability to benefit from treatments is often dif-
ferent across different subgroups of patients based on their
health conditions or genes (Wang et al., 2019). Because het-
erogeneity is induced by the studied subjects, functional
data are not exempted from this issue. Exploring hetero-
geneity offers us an opportunity to gain insight into the
underlying scientific problem, whereas failing to account
for heterogeneity leads to biased estimates and inference.

Models that properly handle subject heterogeneity have
not been extensively studied in FDA. Yao et al. (2011)
and Wang et al. (2016) proposed a functional mixture
model that allows the regression structure to vary across
latent groups of subjects. Their estimator exploited FPCA
for dimension reduction and mixture regression methods
for recovering latent group structures. A mixture model
requires stringent distribution assumptions and suffers
from high computational complexity. For nonfunctional
data, one line of work penalizes the pairwise differences of
the subject-specific coefficients for group recovery (Ma and
Huang, 2017). Another line of research extends the clus-
tering algorithms to detect latent groups; see Bonhomme
and Manresa (2015) and Zhang et al. (2019). Lastly, Ke et al.
(2016) proposed a method based on change-point detection
algorithms. These studies are restricted to scalar data, and
functional data are not allowed.

Motivated by the barley data, we propose a functional
partially linear regression model with latent group struc-
tures to account for subject heterogeneity. The regression
coefficients are shared within the same group, whereas
they are distinct across groups. Our model does not assume
a particular relationship between the latent group mem-
bership and the observed covariates, as it usually does in
mixture modeling. The latent group structure can thus be
driven by arbitrary combinations of observed covariates
and unobserved features. The analysis of the barley data
demonstrates that the proposed method can help detect
barley families that are more tolerant to saline conditions.
Potential applications of the proposed methodology are
treatment regime estimation with functional covariates
(Ciarleglio et al., 2018) and assessment of heterogeneous
effects of air pollution on health across different regions
and age groups (Kong et al., 2016b).

We propose a new method to identify latent groups
based on FPCA and the idea of K-means clustering algo-
rithm. In our experiment, the proposed algorithm is very
fast, often converges within 10 iterations and is 10 times
faster than the fused penalization approach. Compared to
the competing methods, the proposed estimator has higher
accuracy for recovering latent groups and for estimating
the functional coefficients. We develop confidence sets of
the parameters, including both the scalar coefficients and
the functional coefficients. We prove the consistency of
the group membership estimator, derive the asymptotic
distribution of the estimator for the scalar coefficients,
and obtain the convergence rate of the functional coeffi-
cient estimator.

The remainder of the paper is organized as follows.
In Section 2, we present the proposed model and the
estimator, establish the theoretical properties, and dis-
cuss inference problems. We examine the performance
of the proposed methodology in a simulation study in
Section 3 and present the analysis of the motivating
barley growth data in Section 4. Section 5 concludes
the paper.

2 | THE PROPOSED METHOD

2.1 | Motivation and model

We propose a functional partially linear regression model
with latent group structures. For i =1,...,N and j=
1,...,T;, denote by y; | the response variable, by z; j a vec-
tor of scalar covariates, and by x;;(¢) € L£%(I) the functional
covariate, where I C R and £%(I) is the space of square
integrable functions on I. For simplicity, we assume the
design is balanced with T; = T for all i. We model y;; by
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a functional partially linear regression model,
yy=at g+ [xOp O e
I

where «; is a familywise fixed effect, y is the effect of
the scalar covariates, and S, (t) is the coefficient of the
functional predictor. A parameter with a superscript °, for
example, yo, refers to its true value. In the model, we allow
clustered patterns of heterogeneity in the coefficient of the
functional predictor. The group membership g; € {1, ..., G}
and the number of potential groups G are unknown and
shall be estimated from the data. Within a group, subjects
share the same functional coefficient, whereas subjects
have distinct functional coefficients in different groups.
Denote y; = Vi1, ., yir)" and z; = (z,...,z,)". Lety =
(), yy)" and Z=(z],..,z})" denote the stacked
observations. In addition, denote by & = (ay, ..., ay)" the
vector of fixed effects and € = (¢, ...,ex7)" the vector
of errors.

2.2 | Proposed estimation method
To estimate the parameters of the model, we first apply
FPCA for dimension reduction. Let (y, z, x(t),€) denote
a generic (y;j, z;j, X;j (), €;;)- Denote the covariance func-
tion of x(t) by K(u, v) = cov{x(u), x(v)}. To simplify nota-
tions, we assume the mean of x(t) is zero and use K
to denote the covariance operator associated with the
covariance function K(u,v), that is, for any ¢ € £(I),
(Kp)(w) = [, K(u,v)$p(v)dv. By the Mercer’s lemma (Hall
and Hosseini-Nasab, 2006), the covariance function can be
decomposed as K(u,v) = Z;ozl 1P (WP (v), where x; >
K, > --- > 0and ¢q, ¢,, ... are the eigenvalues and normal-
ized eigenfunctions of the population covariance operator,
respectively. We assume that there are no ties in the eigen-
values. The eigenfunctions ¢, ¢,, ... form an orthonormal
basis of £2(I) (Hall and Hosseini-Nasab, 2006). With the
decomposition of the covariance function, we have the
Karhunen-Loéve (K-L) expansion, x(t) = ZZOZI frdr (),
where f; = f] x(t)¢,(t)dt, k =1,2,..., are principal com-
ponent scores.

The covariance function K(u,v) can be estimated by

5 N T —
K(u,0) = (NT)™" X._) X Grij() = %) (xi; () —

X(u), where Xu)=(NT)" X ¥ x;). Let
I?(u,v):ZZozlfkqﬁk(u)qbk(v) be the spectral decom-
position of K(u,v), where %, >%,>-->0 and
¢$1,¢,,... are the corresponding estimators of the
eigenvalues and eigenfunctions, respectively. To esti-

mate the parameters in model (1), we need to trun-
cate the K-L expansion (Hall and Horowitz, 2007).

Let fijx = [, x;(O¢i()dt,k=1,..,m and denote
fi; = (fij1s ...,fl-jm)T, where m is the truncation param-
eter. Similarly, we denote the empirical principal com-
ponent scores by fijk = /Ixij(t)$k(t)dt,k =1,..,m and
denote ﬁj = (ﬁﬂ,...,fijm)T. The functional slope S, (t)
can also be expanded as S, (f) = ZZOZI bg[’kcf?k(t). After
applying FPCA, model (1) can be approximated by

ViR +zy +E by +ej =1, N, j=1,.,T,

)
where by, = (b, 1, ..., by, 1n). We transform the functional
covariates into scalar principal component scores, which
facilitate further estimation steps. Although model (2)
bears some resemblance to a linear model, the interpre-
tation and the statistical theory are totally different. In
model (1), the problem of estimating B (¢) is related to
the ill-posed inverse problem in operator theory (Hall
and Hosseini-Nasab, 2006), and the solution by truncating
FPCA is also called regularization in the literature (Shin,
2009).

In practice, the trajectories of the functional covariate
x;j(t) may not be fully observed. In this paper, we consider
the case where x;;(t) is observed on a dense grid. Smooth-
ing techniques, such as the spline smoother (Ramsay and
Silverman, 2005), kernel smoother (Kong et al., 2016b), and
local constant or local linear interpolation (Kato, 2012), can
be used to estimate the trajectories of x;;(t). Once we esti-
mated trajectories of x;;(¢), the estimation steps are the
same with fully observed trajectories.

We temporarily assume that the number of groups G is
known, and in Section 2.5 we propose a criterion for select-
ing G from the data. The parameters are estimated by min-
imizing the least squares objective function,

N T
<5?, 7.8, é) = argmin Z Z(yij —a— ZiTjY - fi;bgi)z’
i=1 j=1
3

where ¢ ={g,,...,8y} and B = {b,,...,bs}. Because the
group membership G is discrete and takes values in a finite
set {1, ..., G}, algorithms for solving least squares problems
cannot be implemented directly. We optimize the objec-
tive function (3) by iterating between optimizing g;,i =
1,...,N, and other parameters which take continuous val-
ues.

The initial values can be set by first estimating model
(1) without the functional covariate. We then apply the
classical K-means algorithm to the residuals and initial-
ize the group membership as the clustering results. Algo-
rithm 1 is similar in spirit to the algorithm 1 of Bonhomme
and Manresa (2015) and can be considered as a general-
ization of the K-means algorithm. Because the minimum
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ALGORITHM 1 Iterate between the following two steps until
convergence

L Group membership assignment, g**" =
argmin 37, (v = “i‘) -z - fijbg>)2-
g€{1,...G}

2. Update continuous parameters,

(a(s+1), },(s+1)’ bgﬂ)) —

. N T A
argmin},_, ¥, (v —a; — zlij - f[jbg’gm))Z.

a,y.by;

sum-of-squares clustering problem is NP-hard (Aloise
et al., 2009), we can only expect that our algorithm con-
verges to a local minima.

Proposition 1. The series of estimates generated by Algo-
rithm 1 converge to a local minima of the objective function
(3) in finite many steps.

Proposition 1 confirms that Algorithm 1 converges to a
local minima of the objective function (3). The proof of
Proposition 1 is collected in Web Appendix A. For large
datasets with many latent groups, for example, G > 10,
Algorithm 1 can be improved by exploiting the ideas in
recent advances in clustering algorithms, such as the vari-
able neighborhood search method (Hansen and Mladen-
ovic, 2001) and careful selection of initial values (Ordin and
Bagirov, 2015). We stick to the simple and clear Algorithm 1
to convey ideas.

2.3 | Large sample theory

In this section, we study the asymptotic properties of the
proposed estimator. The main results are the consistency of
the group membership estimator, the asymptotic distribu-
tion of the estimator for the scalar coefficients and the con-
vergence rate of the functional coefficient estimator. These
results are established through the asymptotic equivalence
of the proposed estimator and an infeasible estimator that
assumes the knowledge of group memberships. We con-
sider the setup where both N and T go to infinity and the
number of groups is known.

The difficulty in establishing the asymptotic properties
is twofold. On the one hand, the group membership esti-
mators, g;,i =1,...,N, only take discrete values, whose
number is increasing to infinity as N increases. On the
other hand, the approximation error in the principal com-
ponent analysis needs to be carefully bounded, and we
need to establish accurate bounds for both the approxima-
tion error and the observation error.

We first fix notations and introduce some regular-
ity conditions. There are three types of parameters in

the model (1): the parameters a? eACR,i=1,..,N,
and y° €T cR? are finite dimensional; the group
memberships g?,i =1,..,N, are discrete, and they
take values in {1,...,G}; the functional coefficients
BY(D), ....BL(t) are elements of £,(I), and we assume
that [HOEDI bgkqbk(t) eEcL,(),g=1,..,0,
where &= {f(t) : f(t) = X, begi(0). T, by < oo}.
Using nonstandard notations, we use ||z|| to denote the
Euclidean norm of z € R¢, we also use ||x||?> = [, x(t)dt
to denote the L, norm of x(¢). The meaning should be clear
in the context. We consider the following assumptions:

(A1) The spaces A,T, and E are bounded subsets of
R, R4, and £,(I), respectively.

(A2) The data {y;;,z;;,x;j(t)} are independent both
within and across families.

Assumption (Al) is standard in the literature. Since
the objective function (3) is not convex, the bounded-
ness assumption ensures that the estimator does not drift
away from the truth asymptotically. In assumption (A2),
we require that the data are independent both within and
across subjects. This is reasonable in the plant data analy-
sis. The plants were fully randomized to the positions of the
Smarthouse using a split-plot design (Meng et al., 2017) and
grown separately in pots. Possible sources of dependency
between plants are the unobserved features of the barley
plants both within and across families and the microcli-
mate. The effects of microclimate can be removed by the
method used in Meng et al. (2017). The latent group struc-
ture model is used to accommodate the salinity tolerance
heterogeneity. The fixed effect is adopted to capture unob-
served familywise heterogeneity.

(A3) For some r > 2, E||x||* < o0, E|z||*" < c0, and
Ele|* < oo. For all k >2, E (f x(t)gbk(t)dt)zr < CK,’{' for
some constant C > 0.

(A4) For some y >1landv> y/2+1,C 'k % <x; <

.....

stant C > 0. The truncation parameter m « n'/(x+2”),
. _1 N
(A5) For all gefl,..,G}, limy_ N'Y _ Ifg =
gt=my > 0.

(A6) For all lim min kazl

8¢} €il....G}, :
m— 0o gi£g

2
(b‘g’k — bg,k> X > 0.

Lastly, we need to restrict the dependence between the
finite dimensional covariate z and the functional covari-
ate x(t), which is a common assumption in semiparamet-
ric regression analysis; see Shin (2009) and Wang et al.
(2009). Let H ={Y, - hifi» Xy h? < oo}, where f) =
/1 x(t)¢dt. Let z, k = 1,...,d, denote the kth element of
z. For k=1,...,d, let {, be the projection of z, to H.

Thatis ¢, = arg minE(z;, — ¢)? = argminE(E(zy|x) — ¢)%.
{eH {eH
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LetZ, =z — ¢, andZ = (Z1, ..., Z;)’, we make the follow-
ing additional assumption.

(A7) The covariance matrix of Z is positive definite.

The moment conditions which appear in assumption
(A3) on the functional observations also appear in Hall and
Hosseini-Nasab (2006, 2009). Assumption (A4) is adapted
from Hall and Horowitz (2007). Specifically, assumption
(A4) means that the eigenvalues of the functional covari-
ate are positive and well separated from each other, and the
functional coefficients are smooth relative to the covari-
ance function K(u,v). Under this assumption, the eigen-
functions ¢,k = 1,2, ..., can be identified and estimated
with a reasonable rate. Assumption (A5) requires that the
number of observations for all the groups are in the same
order as N grows.

The identification condition of a general functional lin-
ear model has been discussed in detail by Cardot et al.
(2003), Shin (2009), and Scheipl and Greven (2016). Essen-
tially, a functional linear model is identifiable if the cross-
covariance function, which is defined as the covariance of
the response and the functional covariate, is in the range of
the covariance operator, and the Picard’s condition is sat-
isfied (Cardot et al., 2003; Shin, 2009). We state the identi-
fiability of model (1) in Proposition 2.

Proposition 2. Under assumptions (A1)-(A7), the parame-
ters oc?,i =1,..,N, yo,ﬁg,g = 1,...,G, are identifiable. The
group membership parameters g?,i =1,...,N, are asymp-
totically identifiable up to a permutation.

In Proposition 2, the asymptotic identifiability of the
group membership parameters g?,i =1,..,N, is defined
as follows. Denote g; = argmin Zle(yl- j—a)— zgjy0 -

g€f{l,...,.G}
fl.’jbg)z. The group membership parameters g’,i = 1,..., N,
are asymptotically identifiable if limy_ o, P(g; # g)) =0
foralli =1,...,N. Assumption (A6) is a key to the asymp-
totic identifiability of g?, which says that the group-specific
functional coefficients are well separated in the sense
m .
that E(fi’jbg - fi’jbg,)2 = Ek:l(bgk - bg,k)zxk > 0. That is,
the contribution of the functional coefficients is different
across groups. A slightly stronger condition which induces
. . (e}
assumption (A6) is that || 87 — ﬁg, | = Zkzl(bgk - bg, 7>
C for all g and g’ for some constant C > 0.
To state the consistency results, we use the Hausdorff

distance. For two sets of R™ vectors B = {b(ll), ,bg)}

and B® = {bgz), ,bg) }, the Hausdorff distance between
B® and B@ is defined as

dy(BD, B@)

= max { max min [[b{" — b ||, max min 6" — b §.
g’ g g g g/ 8

Let the true values of the functional coefficient truncated
at m be BO = (b'”,...,b}, where b = (b0 1, b8, and B, =
/; Ba($(t)de. Theorem 1 establishes the consistency of the
proposed estimators (&,7,8) with B = {b,, ..., bs}.

Theorem 1. Under assumptions (A1)-(A6), the proposed estimator is
consistent: sup |& —a?| = o,(1), |7 — 7°ll = 0p(1), and dyy(B°,B) =

i=1,..N
0,(1).

For the functional coefficients 6g(t), g=1,..,G, we
only proved consistency of its coefficients expanded on
the eigenfunctions ¢;, ¢, .... This result will be refined in
Corollary 1, where we establish the convergence rate of
/?g(t). As argued in Bonhomme and Manresa (2015), con-
sistency under the Hausdorff distance along with assump-
tion (A6) implies that there exists a permutation of group
labelso : {1,...,G} = {1, ..., G}, such that ||IAaa(g) - bé0)|| -
0 in probability. Without loss of generality, we assume that
o(g) =g,g =1,...,G, in the rest of the article.

Based on the consistency of the estimator in Theorem 1,
we can establish the asymptotic equivalence between the
proposed estimator and an infeasible estimator which
assumes the knowledge of the group memberships g?, i=
1, ..., N, defined as

N
s~ 1 P
(@7.8) = sup 7 3. Yoy~ =7y =~ Fjby)’

i=1 j=1

4
Theorem 2. Let a(n;r) = T + (logn) m* n~", where
n=NT and r > 2 is defined in assumption (A3). Under
assumptions (A1)-(A6), we have

() &=a+0,(a(m;r)), ¥ =7 +0,(a(n;r)), and B=
B +0p(a(n;r)) and

(i) PC SlupNIgAi —g'1 > 0) = o(1) + o(Na(n;r)).

1=1,...,

The convergence rate a(n;r) has two parts. The first
part T'~" quantifies the observation error. The second part
bounds the approximation error of FPCA to the functional
covariate. Theorem 2 (i) establishes that the proposed esti-
mator (&, 7, B) is equal to the infeasible estimator (&, 7, B)
up to an error of order O, (a(n; r)). Under assumption (A4),
it is easy to see that a(n; r) converges to zero as both N and
T go to infinity. The proposed estimator and the infeasible
estimator are thus asymptotically equivalent. Theorem 2
(ii) implies the consistency of the group membership
estimator when Na(n;r) goes to zero as both N and T go
to infinity. Under assumption (A4), the rate Na(n;r) goes
to zero if (log(NT))x+2)(r—D/Gx+2v=3)NT1=" converges
to zero. Using the asymptotic equivalence established in
Theorem 2, we can derive the asymptotic distribution of
7 and the convergence rate of /?g(t), t=1,..,G, where

Bo(t) = X1 by d(0).
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Corollary 1. Suppose that assumptions (A1)-(A7) hold.
Let N and T go to infinity such that N/T? =3 — 0, then we

have \/— 7 -7 —> N(0,%), where £ = cov(Z). Further-

v 1

more, ||ﬁg(t) - ﬁg(t)ll = p(n 20+2), forallg =1, ..., G.

Under the condition that the observations have certain
moments and T is relatively large compared to N, that is,
N/T? =3 - 0, Corollary 1 shows that the proposed estima-
tor for y° has the same asymptotic distribution as the infea-
sible estimator defined in (4). The convergence rate of the
estimator for the functional coefficients ,Gg(t), g=1,..,G,
is the same as that obtained by Hall and Horowitz (2007)
and Shin (2009). The convergence rate attains the minimax
lower bound derived by Hall and Horowitz (2007).

Remark: In the plant data analysis, the number of fam-
ilies N = 17 is relatively small. Following the same argu-
ments in the proofs, we can show that all the theoretical
results still hold with a finite N as long as T goes to infinity.
The consistency of the parameters and the group member-
ships crucially depends on a large T but not a large N.

2.4 | Inference

In Corollary 1 of Section 2.3, we established the asymp-
totic distribution of the estimator 7. As in Shin (2009),
we utilize the asymptotic distribution for constructing
confidence intervals and conducting hypothesis testings.
In practice, we estimate the asymptotic variance of ¥
as follows: Conditional on the estimated group struc-
ture, we denote ﬁ- = (ﬁ.l, ,flfT)’,i =1,...,N and define
F as a block matrix with the block at the ith row
and kth column being ﬁil{g‘i =k}i=1,..,Nk=1,..,G.
The asymptotic variance of 7 is estimated as 6*(Z'(Iyy —
P:)Z)~!, where Iy is the identity matrix of size NT X
NT, P = REFR)'F, & =1/ND) T, T @, -9,
El-j,i =1,..,N,j=1,..,T are the residuals, and ’E‘ is the
mean of the residuals. Confidence intervals for ° can
be formulated using the estimated variance and the nor-
mal approximation.

To construct confidence bands for the functional coeffi-
cients Bg(t), g =1,...,G,we adapt the strategy in Imaizumi
and Kato (2019) to our model. Instead of constructing a
confidence band that uniformly covers ﬁg(t), a more prac-
tical strategy is constructing a band such that with proba-
bility atleast 1 — &}, the proportion of t € I where ﬁg(t) lies
outside the band is less than a small number &, € (0, 1).
This strategy is also adopted in Juditsky and Lambert-
Lacroix (2003) for nonparametric function estimation. We
first derive an asymptotic expansion of B\g(t) - ﬁg(t), g=
1,..,G.LetE = (FF)"'F (e — Z(Z'(Iyr — Pp)Z)Z' (Iyr —

Pg)e), and let e, = o,..,1,..,0),g =1,...,G, be unit vec-
tors of length G where the gth element is 1. Let 1,, be a
vector of length m with elements all equal to 1. Then

1B, — B> ~ (e, ® 1, EE'(e, ® 1,,), )
The approximation (5) is derived in Web Appendix A. We
use a simple bootstrap procedure to estimate the quan-
tiles of ||,8Ag — Boll>,g =1,...,G, based on (5). Let ¢,b =
1,...,B, be B bootstrap samples from the residuals &
and let E;, be the corresponding bootstrap version of E.
Denote by ¢,(1—§;) the (1 — &;)th sample quantile of
(e, ®1 )’E*E'A(e ®1,),b=1,..,B. Asin Juditsky and
Lambert- Lacr01x (2003) and Imaizumi and Kato (2019), a
confidence band that covers 1 — &, proportions of ¢t € I of

BU(t) is

[ﬁg(t) §)\/“(I B +6,0-¢) \/gm \

g= 1,..,G,

where A(I) is the length of I. The confidence band (6)
has a constant length. One shortcoming of the proposed
confidence band is that the stochastic error in the group
membership estimation is ignored. The resulting effect
on empirical coverage probabilities is small as shown
in the simulation studies in Section 3, especially when
different groups are well separated and the sample size
is large.

2.5 | Selection of G and m

To implement the proposed estimator, we need to deter-
mine the number of groups G and the number of principal
components m used in the truncation of the K-L expan-
sion. We propose to select these parameters by minimizing
a Bayesian information criterion ,

BIC(m,G) =log <]%

N T -
ZZ(yl] i—Z ?—flljbg)2>

i=1 j=1

Gm
+

+N+d
NT log(NT).

(7)

Note that the estimators (&, ?,f), QA) are understood to be
a function of the parameters m and G implicitly. The
Bayesian information criterion balances the model fit and
the parsimony of the parameters. In practice, we minimize
the Bayesian information criterion on a grid of the param-
eter values.
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TABLE 1 Therand index (RI), the percentage that the estimated number of groups equals to the truth (P, in %), and the averaged
number of estimated groups (M). C1-C5 refer to cases 1-5
T =40 T = 60
C1 Cc2 C3 C4 Cs5 C1 Cc2 C3 C4a C5
Setting 1 RI Proposed 0.46 0.65 0.82 0.92 0.96 0.61 0.82 0.94 0.98 0.99
SCAD 0.00 0.00 0.03 0.17 0.51 0.00 0.01 0.13 0.52 0.73
LASSO 0.00 0.00 0.02 0.10 0.32 0.00 0.01 0.11 0.47 0.77
NKMEAN 0.34 0.50 0.63 0.73 0.77 0.48 0.68 0.78 0.84 0.87
M Proposed 2.01 2.09 2.05 2.02 2.02 2.05 2.01 2.01 2.01 2.01
SCAD 1.01 1.04 116 2.09 4.18 1.02 1.05 1.45 3.61 4.72
LASSO 1.00 1.00 1.04 118 1.79 1.01 1.03 1.20 1.80 2.85
NKMEAN 2.54 2.60 2.65 2.68 2.70 2.44 242 2.49 2.51 2.48
P Proposed 89.0 90.0 95.4 97.6 97.6 93.8 98.8 98.8 99.4 99.2
SCAD 0.8 2.6 7.0 7.2 7.0 1.8 3.6 8.4 16.4 10.8
LASSO 0.2 0.0 3.4 7.6 18.8 0.6 2.2 9.8 32.0 34.6
NKMEAN 50.0 43.4 42.8 42.2 44.0 57.6 60.8 55.4 56.0 58.0
Setting 2 RI Proposed 0.59 0.79 0.88 0.94 0.94 0.78 0.91 0.96 0.97 0.98
SCAD 0.05 0.31 0.65 0.81 0.92 0.09 0.51 0.75 0.90 0.97
LASSO 0.02 0.17 0.45 0.50 0.47 0.06 0.45 0.66 0.64 0.62
NKMEAN 0.45 0.58 0.65 0.68 0.70 0.60 0.70 0.73 0.73 0.73
M Proposed 2.24 2.21 2.24 2.19 2.24 212 2.10 2.08 2.09 2.07
SCAD 1.56 3.23 4.76 3.98 2.91 1.62 4.38 4.68 3.22 2.41
LASSO 1.24 2.44 4.96 6.95 7.35 1.28 3.16 5.10 5.65 5.79
NKMEAN 2.78 2.96 3.12 3.21 3.24 2.76 291 3.03 3.13 3.15
P Proposed 78.0 81.8 79.2 83.6 82.0 89.0 90.2 93.2 92.0 94.6
SCAD 6.8 8.0 10.0 19.2 45.8 9.6 8.8 11.4 32.6 68.0
LASSO 2.8 8.6 11.6 4.2 1.2 10.4 16.2 12.4 7.6 6.0
NKMEAN 25.8 14.8 13.8 13.2 13.2 31.2 25.6 23.8 18.6 18.4

3 | SIMULATION STUDY

In this section, we investigate the finite sample perfor-
mance of the proposed estimator through simulation stud-
ies. We simulated two settings with two latent groups,
wherein setting one the functional coefficients depend on
the first four principal components, and in setting two
the generalized Fourier coefficients decrease smoothly. In
each setting, we simulated five cases (C1)-(C5), such that
the functional coefficients of the two groups deviate from
each other gradually from the case (C1) to the case (C5).
The detailed setup of the simulation study is presented in
Web Appendix B.1.

In the simulation, the sample size is T = 40 or T = 60,
and N = 25, which is close to the sample size in the moti-
vating barley data. The simulations are repeated 500 times
for each case. The adjusted Rand index (RI) of Rand (1971)
is used to assess similarities between the truth and the esti-
mated groups. Larger values of RI indicate that the truth
and the estimated groups are more similar, where 1 means
complete recovery. We also report the percentage that the

estimated number of groups equals the truth (P, in %) and
the averaged number of estimated groups (M). The aver-
aged number of selected PCs and the computing time are
reported in Web Table A.1.

For comparisons, we adapt the penalization methods of
Ma and Huang (2017) to our setting with the smoothly
clipped absolute deviation (SCAD) and least absolute
shrinkage and selection operator (LASSO) penalty. We
also compare with a two-step naive K-means (NKMEAN)
approach, where in the first step the family-specific func-
tional coefficients are estimated, and in the second step
group membership is recovered by the K-means algo-
rithms. The details of these methods are described in Web
Appendix B.1.

Generally, the proposed method performs the best in
all the cases because it has a larger RI and P, and the
averaged number of estimated groups (M) is closer to the
truth (Table 1). For example, in case C5 of setting 1, RIs
for the proposed method are 0.96 and 0.99 when the sam-
ple size is T = 40 and 60, respectively. In contrast, RIs are
much smaller, 0.51, 0.32, and 0.77 for SCAD, LASSO, and
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TABLE 2
setting 1. C1-C5 refer to cases 1-5

The integrated mean square error (x10), integrated variance (x10), and integrated bias (x10) for the functional coefficients for

T =40 T = 60
C1 c2 3 ca Cs c1 c2 C3 ca Ccs

Settingl ~ IMSE  Proposed 301 302 243 186 1.62 175 133 097 080 075
SCAD 254 415 624 888 1006 229 38 571 7.25 5.79
LASSO 259 417 612 852 129 230 381 567 735 8.69
FAMILY 1915 1841 1763 1727 1717 1453 1483 1507 1487 1483
POOL 250 416 614 85 1.2 232 390 590 833 1124
NKMEAN 1765 1689 1605 1538 1529 1304 1327 1351 1323 1312

IVAR  Proposed 286 291 237 184 16l 1.69 131 096 080 0.7
SCAD 057 069 110 360 58 036 045 118 425 3.37
LASSO 062 067 073 097 194 036 039 060 LI 1.89
FAMILY 483 459 422 436 460 555 474 38 350  3.07
POOL 060 06l 06l 062 067 033 036 037 037 040
NKMEAN 317 303 260 246 265 399 316 231 182 136
IBIAS  Proposed 0.15 0.11 005 002 002 006 002 00l 000  0.00
SCAD 196 346 513 526 419 193 337 48l 3.00 241
LASSO 197 349 539 754 936 194 341 507 624 680
FAMILY 1433 1387 1341 1289 1263 897 1010 1120 1137 175
POOL 199 354 55 797 1085 199 354 55 797 1084
NKMEAN 1448 1387 1345 1292 1265 905 1011 1121 1.4  1.79
Setting2 ~ IMSE  Proposed 420 363 330 291 2.81 296 255 230 211 1.99
SCAD 501 666 596 424 322 438 516 390 279 217
LASSO 474 661 795 805 790 430 574 628 623 614
FAMILY 1073 1029 972 9.8 879 898 842 839 804 784
POOL 473 669 917 1228 1605 443 633 888 1196 1567
NKMEAN 1042 1002 935 873 826 859 791 789 155 7.33

IVAR  Proposed 2.39 190 164 136 132 139 106 086 080  0.64
SCAD 155 328 256 160 122 118 222 102 090 072
LASSO 110 189 236 198 171 087 149 152 155 147
FAMILY 274 240 220 206 194 265 244 210 187 169
POOL 088 090 08 079 08 074 067 06l 065 057
NKMEAN 244 211 1.83 161 142 223 195 159 138 117

IBIAS  Proposed 181 174 164 156 150 156 148 143 131 135
SCAD 342 338 340 264 200 321 293 289 190 1.45
LASSO 371 477 559 607 618 350 429 476 468  4.66
FAMILY 797 788 752 71 685 634 598 630 617 6.15
POOL 388 58 834 1149 1520 3.7 568 826 1131 1510
NKMEAN 801 793 751 7.11 685 637 596 630 617 6.16

NKMEAN, receptively, when T = 40 and increase to 0.73,
0.77, and 0.87 when T increases to 60 (Table 1). Moreover,
the averaged number of estimated groups (M) for the pro-
posed method is close to the truth (G = 2). In contrast, the
number of groups is overestimated for other methods.
Next, we compare the estimation error of the proposed
method with other methods. Besides the methods dis-
cussed above, we compare the proposed method with the
pooled model (POOL), where the functional coefficients

are constant across families, and the familywise model
(FAMILY), where each family has its own functional coef-
ficient. Table 2 shows the integrated mean squared error
(IMSE), the integrated variance (IVAR), and the integrated
squared bias (IBIAS) of the functional coefficient for all the
estimators. We first examine the estimation error for set-
ting 1. In most cases, the proposed method has a smaller
IMSE than all other methods. For example, IMSE is 0.075
for the proposed method when T = 60 in case C5, whereas
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TABLE 3 The empirical coverage percentages (%) of the
proposed 95% confidence interval for y° and the confidence band
for the functional coefficients B2(1), g = 1,2

Setting 1 Setting 2

T =40 T =60 T =40 T = 60
case 1° B Y0 A® 7 B® 1°  A®
C1 93.0 859 94.4 89.7 941 931 944 952
C2 932 89.7 944 952 935 963 945 984
C3 945 949 950 983 942 983 941 99.3
C4 945 978 946 99.5 942 994 945 998
C5 948 99.1 939 99.6 945 99.7 955 99.8

IMSE:s for all other methods are greater than 0.5 (Table 2,
the last column). The proposed method has the smallest
bias, compared with all the methods, whereas the pooled
method has the smallest variance over all the methods
(Table 2).

Next, we examine the estimation error for setting 2. The
proposed method performs the best in terms of IMSE and
IBIAS, in all the cases. For example, IMSE is 0.281 for the
proposed method in case C5when T = 40 and decreases to
0.199 when T increases to 60. In contrast, IMSEs are larger,
0.322 and 0.790 for SCAD and LASSO, respectively, in case
C5when T = 40, and 0.217 and 0.614 when T increases to
60 (Table 2).

Lastly, we investigate the performance of the proposed
confidence sets. For ,BO(t),t € I, we define the empirical
coverage probability of the confidence bands for ,Bfg’(t), g=
1,2 as

N
%;P(A(r efo,1] : 52?(0 € %(t)) <1 —§z>,

where é\@ (t)is the confidence band for the functional coef-
ficient of group &;. The confidence level is 95% for both y°
and ﬁg(t),g =1,2; we set &, = 0.1 for B°(t) as previously
done by Imaizumi and Kato (2019). The data presented in
Table 3 show that the empirical coverage percentages for
y© are close to 95%, in all the cases. The empirical cover-
age percentages of the confidence band for ,B(g)(t), g=1,2,
are greater than 95%, except for cases C1 and C2 in which
the groups are not well separated. The proposed confi-
dence band for [32(1.‘), g = 1,2, isconservative, as previously
reported by Imaizumi and Kato (2019).

4 | PLANT DATA ANALYSIS

In this section, we study the effect of salinity stress on
the growth of barley plants. After data cleaning, the data
from 17 barley families, and in total, 725 barley plants

are available for analysis. For more details on the exper-
iment design and how the data were collected, we refer
the reader to Meng et al. (2017). Let w;;(¢) denote the pro-
jected shoot area of barley j in family i at the tth day. The
response is defined as y;; = log(w;;(32)) — log(w;;(19)).
The response measures the growth of the plant during the
period when saltwater was applied. The relative growth
rate x;;(¢) is defined as x;;(t) = col.’j(t)/cuij(t),t € [21, 30].
We obtain x;;(¢) by smoothing the discrete observations of
w; j(t) using cubic splines. The model used in the analysis is
yij =+ Na;;y + [ x;;()B,,()dt + €;;, where Na* is the
concentration of Na* in the leaves of the barley plants. In
the literature, there is no evidence of heterogeneity for the
effects of Na* across barley families (Meng et al., 2017).
The main interest lies in the growth pattern under salin-
ity stress.

We apply the proposed algorithm to the data. By the BIC
criterion, two groups of barley families are detected, and
four PCs are used in the estimation. The detected group 1
contains 10 families of barley, and group 2 contains seven
families. We also apply the penalization methods with the
SCAD or LASSO penalty to the data, but these two meth-
ods do not detect any groups. The marginal distribution
of the response shows two modes (Figure 1A). The figures
appear in color in the electronic version of this article, and
any mention of color refers to that version. After fitting
the proposed model, the residuals do not show a bimodal
structure anymore (Figure 1B). The bimodal structure of
the response in Figure 1A is well accommodated by the
proposed latent group structure model. Figure 2B shows
the pooled estimate and the familywise estimates of the
functional coefficients. The effect of Nat is —0.135, with
a standard error 0.128. The negative relationship of Na*
is consistent with the findings reported in the literature
(Munns and Tester, 2008).

The average final biomass is 1.04 and 1.34 for groups
1 and 2, respectively. The higher biomass of group 2 is
reflected in the estimated functional coefficients. Overall,
the estimated coefficient B\z(t) of group 2 lies above the
coefficient ,8A1(t) of group 1 (Figure 2A), which means that
the growth of the barley plants in group 2 contributes more
to the final biomass than that of the barley plants in group
1 at every stage under salinity stress.

To assess the prediction accuracy of the proposed
method and other methods, we randomly split the data in
each family 100 times and use 90% of the data for train-
ing, 10% of the data for prediction. We compare the mean
absolute prediction error (MAPE), which is defined as the
mean absolute difference between the true and estimated
responses. The average MAPE is 0.0695 for the proposed
method, 0.0759, 0.1167, 0.0719, and 0.0718, respectively, for
the pooled model, familywise model, penalized method
with the SCAD penalty and LASSO penalty. The standard
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(A) The histogram of the response Y. (B) The histogram of the residuals from fitting the proposed model. This figure appears

in color in the electronic version of this article, and any mention of color refers to that version
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(A) The estimated functional coefficients of the two groups of barley. (B) The functional coefficients estimated by the

familywise model (FAMILY) and the pooled model (POOL). This figure appears in color in the electronic version of this article, and any

mention of color refers to that version

error of MAPE is less than 0.0012 for all the methods.
The proposed method has a lower prediction error than
other methods.

In the following, we further explore differences between
the detected barley groups. From Figure 3A, group 2 accu-

mulates less Na* than group 1. The average Na‘t are 174
and 167 umol/g of dry mass for groups 1 and 2, respectively.
The difference is significant, with p-values of the one-sided
t-test and Wilcoxon rank sum test being 0.002 and 0.008,
respectively. Accumulating less Nat means a higher ability
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FIGURE 3 (A)The boxplot of Nat concentration of the two groups. (B), the boxplot of ;S X; j(t)[% (t)dt of the two groups as an
index for osmotic tolerance. This figure appears in color in the electronic version of this article, and any mention of color refers to that

version

for Na* exclusion, which is a main aspect of salinity toler-
ance in plants (Munns and Tester, 2008).

Next, we compare the barley groups in terms of osmotic
tolerance. As suggested by Munns and Tester (2008), the
growth reduction in the first few days after applying salt-
water can be attributed to osmotic stress. Since ,[/i’\z(t)
reaches a plateau around the 25th day, we define an index
for osmotic tolerance as f2215 X; j(t),é\gi (t)dt. The barley fam-
ilies in group 2 exhibit a higher osmotic tolerance than
those in group 1 (Figure 3B), because the contribution of
growth in the first four days for group 2 is higher than that
of group 1, with a mean of 0.21 and 0.36 for groups 1 and
2, respectively. The above analyses suggest that the bar-
ley plants in group 2 have a better salinity tolerance ability
than that of group 1.

5 | CONCLUSION

Motivated by the barley salinity tolerance study, we pro-
posed a functional partially linear regression model with
latent group structures. The proposed method provides
a new tool to account for heterogeneity in functional
linear regression. The developed algorithm is accurate
for recovering the latent groups compared to competing
methods in simulation studies. This paper considers latent
group structures in the conditional mean of the response
given the covariates. It is interesting to extend the current

methodology to model discrete responses, for example,
counts or binary data, using the generalized linear model.
Another promising extension is to consider conditional
quantiles of the response rather than the conditional
mean, which might give a more complete description of
the heterogeneity in the conditional distribution of the
response.
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