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EXTREME QUANTILE ESTIMATION BASED
ON THE TAIL SINGLE-INDEX MODEL
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Abstract: It is important to quantify and predict rare events that have significant
societal effects. Existing works on analyzing such events rely mainly on either in-
flexible parametric models or nonparametric models that are subject to “the curse
of dimensionality.” We propose a new semiparametric approach based on the tail
single-index model to obtain a better balance between model flexibility and par-
simony. The procedure involves three steps. First, we obtain a y/n-estimator of
the index parameter. Next, we apply the local polynomial regression to estimate
the intermediate conditional quantiles. Lastly, these quantiles are extrapolated to
the tails to estimate the extreme conditional quantiles. We establish the asymp-
totic properties of the proposed estimators. Furthermore, we demonstrate using
a simulation and an analysis of Los Angeles mortality and air pollution data that
the proposed method is easy to compute and leads to more stable and accurate
estimations than those of alternative methods.

Key words and phrases: Extreme quantile, local linear regression, semi-parametric,
single-index, tail.

1. Introduction

An important problem in fields such as econometrics, finance, hydrology,
and climate science is to model and predict events that are rare, but that have
significant consequences. Examples include a large financial loss, heavy snowfall,
extreme temperatures, high medical costs, and a low birth weight, among others.
For such data, modeling and estimating the tail quantiles are of more interest
than doing so for the mean. Numerous works have examined the estimation of
extreme quantiles for univariate data; see Embrechts, Kliippelberg and Mikosch
(2013) and De Haan and Ferreira (2006), and the references therein.

To predict rare events, it would be helpful to quantify the tail quantiles of
the response by accounting for information provided by relevant predictors (co-
variates). Studies on conditional tail quantiles can be roughly divided into two
classes. The first models extreme conditional quantiles by fitting either paramet-
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ric distributions, such as a generalized extreme value distribution or a generalized
Pareto distribution (GPD), or linear quantile regression models; see Davison and
Smith (1990), Beirlant and Goegebeur (2003), Beirlant and Goegebeur (2004),
Chavez-Demoulin and Davison (2005), Chernozhukov (2005), Wang and Tsai
(2009), Wang, Li and He (2012), Wang and Li (2013), and Li and Wang (2019).
These methods assume that the conditional quantiles are parametric functions of
the covariates and, thus, are not flexible in some applications. The second class
estimates extreme quantiles by fitting nonparametric models; see Gardes and
Girard (2010), Gardes, Guillou and Schorgen (2012), Daouia et al. (2011), and
Daouia, Gardes and Girard (2013). These methods are based on local estimations
using observations in a small neighbourhood. Thus, the finite-sample behavior
depends heavily on the richness of the data in the neighborhood. However, owing
to the “curse of dimensionality,” these methods generally do not work well when
the number of covariates increases.

To overcome the “curse of dimensionality,” while still allowing for model
flexibility, we propose a new extreme quantile estimation method based on a tail
single-index model. The single-index model is a semiparametric regression model
that captures the nonlinear relationship between the response and the covari-
ates using an unspecified univariate link function and the index, an unknown
linear combination of covariates. Therefore, the model provides a convenient
tool to overcome the “curse of dimensionality” encountered in nonparametric re-
gressions with multivariate covariates; see Powell, Stock and Stoker (1989) and
Hardle, Hall and Ichimura (1993). Some works have integrated the single-index
model and quantile regression; see Wu, Yu and Yu (2010), Zhu, Huang and Li
(2012), Kong and Xia (2012), and Zhong et al. (2016), among others. To the
best of our knowledge, only one work (Gardes (2018)) discusses the estimation
of extreme conditional quantiles for single-index and multi-index models. Gardes
(2018) proposed a new dimension-reduction approach and a conditional extremal
quantile estimator by considering the tail dimension-reduction subspace. How-
ever, this method is computationally complex, and the authors do not formally
establish the theoretical properties of the estimator when the index parameters
are unknown and have to be estimated from the data.

In this study, we consider a new tail single-index model that assumes there
exists a single-index structure at the tail and, thus, is less restrictive than the
global single-index models assumed in Zhu, Huang and Li (2012) and Zhong et
al. (2016). The estimation of the extreme conditional quantiles involves esti-
mating three unknown quantities, namely, the index parameter, link function,
and extreme value index that characterizes the heaviness of the tail distribu-
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tion. We propose a convenient three-step estimator for the extreme conditional
quantiles based on the tail single-index model. In the first step, we construct a
v/n-estimator of the unknown index parameter under a misspecified linear quan-
tile regression model at a central quantile level close to the tail. In the second
step, we apply a local polynomial regression technique (Fan and Gijbels (1996))
to estimate the intermediate conditional quantiles. These estimates are then ex-
trapolated in the third step to extreme tails by adapting the univariate extreme
value theory to the regression setup. Our method provides a convenient and flex-
ible tool to analyze rare events by considering the effects of multiple covariates
with possibly large dimensions.

Our proposed method differs from existing works in the following ways. First,
to the best of our knowledge, this is the first work to systematically examine the
extreme quantile estimation using single-index models, and to provide theoretical
guarantees for cases with unknown index parameters. Second, the proposed tail
single-index model not only provides more flexibility than parametric models,
but also leads to a simple approach for estimating the index parameters with
a /n-convergence rate. As a result, this estimation does not affect the asymp-
totic properties of the final extreme quantile estimation. In contrast, the index
estimation method in Gardes (2018) is more complicated and numerically less
stable, and its theoretical properties and effects on the extreme quantile estima-
tion have not been studied formally. Third, instead of indirectly estimating the
conditional quantiles by inverting the conditional cumulative distribution func-
tion, as in Gardes (2018), our procedure is based on a direct estimation of the
conditional quantiles in all three steps. We show that this coherence helps reduce
errors from different layers of the modeling and ameliorates the tuning param-
eter selection, leading to numerically more accurate estimations. Furthermore,
the direct estimation helps quantify the effect of the covariates on the extreme
tails of the response in a more straightforward and interpretable way.

The rest of this paper is organized as follows. In Section 2, we present the
proposed method and investigate its theoretical properties. In Section 3, we
assess the finite-sample performance of the proposed method using a simulation
study and an analysis of Los Angeles mortality and air pollution data. Section 4
concludes the paper. All technical details are given in the online Supplementary
Material.

2. Methodology

2.1. Notation and the tail single-index model
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Let Y be the response variable of interest, and Fy (-|X) be the cumulative dis-
tribution function (CDF) of Y conditional on the covariate X = (X1, Xa, ..., X,)7T.
Denote Q- (Y |X) as the 7th conditional quantile of Y given X, namely, Q,(Y|X) =
inf{y : Fy(y|X) < 7}. Suppose that we observe a random sample {(X;,Y;),i =
1,2,...,n} from (X,Y). Our main objective is to estimate the extreme condi-
tional high quantile Q.- (Y'|X). Here, 7,; may approach one at any rate, including
special cases, such as the intermediate quantiles with n(1 — 7,}) — oo and the
extreme quantiles with n(1 — 7)) — ¢ > 0. For simplicity, we denote 7,7 = 7.

Throughout, we assume that the conditional distribution of Y|X for the
given X belongs to the maximum domain of attraction of some extreme value
distribution H.,x) with the extreme value index (EVI) v(X), denoted by Y|X €
D(H,x)). That means, for independent and identically distributed (i.i.d.) sam-
ple {U; : i = 1,2,...,n} from the conditional distribution of Y|X, there exist
an > 0 and b, € R, such that

1= n Uz - bn —
p<max < u) = Hyog) (1) 1= exp{~(1 4 5 (X)u) 109},

an

as n — oo, for all u with 1 + v(X)u > 0. We assume ~(X) > 0, which means
that Y|X has a heavy-tailed distribution. Such distributions are common in
applications such as financial returns and insurance claims, and the heavy tails
often make the estimation of extreme quantiles more challenging.

Here, we consider a new tail single-index model, which assumes that there
exists Bp € R? and the unknown function G, (-), such that

Q,(YX) =G (XT8y) for 7e(r,1), (2.1)

where 7. is a fixed quantile level close to one. For model identifiability, we assume
throughout that ||3o|| = 1, where || - || denotes the Ls norm. Model (2.1) requires
that the single-index structure holds only in the right tail, which is a weaker
assumption than the global single-index quantile regression model considered by
Zhu, Huang and Li (2012) and Zhong et al. (2016).

2.2. Three-step estimation

We propose a three-step estimation procedure. The first step estimates the
index parameter Bg. The second step estimates the unknown link function G
and the conditional quantile at intermediate quantile levels. In the third step, we
use extrapolation and extreme value theory to estimate Q- (Y |X).

We first discuss the estimation of the index parameter 8y. Zhu, Huang and Li
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(2012) and Zhong et al. (2016) showed that under the global single-index quantile
regression model and some conditions on X, the direction of By can be estimated
consistently using the slope estimation obtained by fitting a misspecified linear
quantile regression model. We show in Proposition 1 that this result still holds
under the tail single-index model (2.1) and a relaxed assumption on X.

Let pr(r) = 7r — rI(r < 0) be the quantile check loss function (Koenker,
Chesher and Jackson (2005)), and £, (u,3) = E{p.(Y —u — XTB) — p,(Y)}.
Define

(ur, Br) = argmin L (u, 3), (2.2)

U’B

which are the population parameters resulting from fitting the misspecified linear
quantile regression model.

Proposition 1. Let 7 € (7.,1) be a given quantile level. Under model (2.1), if
the covariate vector X satisfies

E(X|8;X) = CB{ X, (2.3)

where C is a p-dimensional constant vector, then B, = kBq, for some constant
k.

When X follows an elliptically symmetric distribution (e.g., the normal dis-
tribution), the linearity assumption (2.3) is satisfied. Li (1991) and Hall and Li
(1993) showed that the linearity condition (2.3) is typically regarded as mild,
particularly when p is fairly large.

Proposition 1 implies that the direction of 3;, defined in (2.2) for 7 € (7., 1),
is the same as that of By. Obviously, because ||Bo|| = 1, k is the Ly-norm of
B-. Hence, the conditional distribution of Y|(XT3g) is equivalent to that of
Y |(X”3,). Based on the observed data, we obtain the sample version of (u,, 3,)
as (tir, By) = argmin, gL (u, 3), where Lo (u, 3) =n~t >0 p-(Yi—u—X!B).

We propose estimating the index parameter B3y using B, at 79 € (7¢,1).
Theoretically, 79 can be any value in (7., 1), and this results in a /n-consistent
estimator of By. The following proposition presents the asymptotic normality of

({LTO?BT())T‘

Proposition 2. Let e =Y — XT3, , and denote F.(t|X) and f.(-|X) as the con-
ditional CDF and conditional density function of € given X, respectively. Then,
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1/2(’11,7—0 - uTU) d
<n1/2(/37—0 _ /Brg)> — N(0,%),

where ¥ = B"'VB™!, with

_ ( B{fo(ur, X))} E{XTf€<uTo|x>}> V:W< F (ur, | X) = 7o )
E{X fe(ur,|X)} E{XXTfE(uTO|X)} 7 X{Fe(ur,|X) — 70}

Remark 1. We propose estimating the index parameter using the linear quan-
tile slope estimator ,é.ro at a central quantile level 7y, because this estimator is
v/n-consistent to B,,. We can also use the estimator Bm at an intermediate ex-
treme quantile level 79 — 1 and n(1 — 79) — oo. For this case, we can follow
similar arguments to those in Chernozhukov (2005) and Angrist, Chernozhukov
and Ferndndez-Val (2006) to establish the asymptotic normality of BTO, but this
estimator has a lower convergence rate of \/nfy{Gr,(x)|x}/v/1 — 79, where the
fy{G~,(x)|x} is the conditional density function of ¥ evaluated at the 7pth con-
ditional quantile given X = x.

In the second step, we estimate the intermediate conditional quantiles of Y by
applying the local linear quantile regression, and then use the results to estimate
the EVI. For ease of presentation, let z = Xg,@m, z= XOT,éTO, Z; = X;TFBTO, and
Z;i = X?,@TO. Note that by Model (2.1) and Proposition 1, we have Q- (Y |X) =
Q- (Y|IXTBy) = Q. (Y|X"B,,). Using the pseudo sample data {(X78;,, Vi) :
i =1,2,...,n}, we can estimate G.(X{B,,) for a given new X using a local
linear regression. For Z in the neighborhood of z, G;(Z) can be approximated
as Gr(Z) = Gr(2) + G7(2)(Z — z). Define (@, b) = argming ;n~' 30 pr{Y; —
a—b(Z; — 2)YK((Z; — 2)/h). Let G,(2) = @ and G/.(2) = b. We can estimate
G.(2) as G (2) at a sequence of quantile levels 7; = 1—j/n, with j = [n7],...,k,
for 0 < n < 1, where [a] denotes the ceiling function that returns the smallest
integer greater than or equal to a, k satisfies k = k(n) — oo, k/n — 0, and
(0] = o(k'/?).

We can then estimate the EVI v(x) = 7(z) based on the estimated intermedi-
ate quantiles {GT](é) :j=1[n"],[n"| +1,...,k}. For heavy-tailed distributions,
a commonly used estimator for the extreme value index is Hill’s estimator. We

propose estimating y(z) using the following Hill-type estimator:

LS [1oa(G 4)) — loatG (1)

J:M"T

In the third step, we adapt the univariate extreme value theory and ex-
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trapolate from the intermediate quantile level to the extreme tail to estimate
the extreme conditional quantile G,-(z) for 7 — 1. Specifically, by adapting
Weissman’s estimator to the conditional case (Weissman (1978)), we obtain the
extreme conditional quantile estimator,

) NG
GT*<2>—(1 ’“) G (2).

1—7*

where 7, = 1 — k/n. In addition to Hill-type estimators, we can consider al-
ternative methods for estimating the EVI, such as the moment estimator of Li
and Wang (2019), Pickands estimator of Daouia, Gardes and Girard (2013), and
peaks over random threshold (PORT) estimator of Santos, Alves and Gomes
(2006). Our numerical study (in Section S3 of the Supplementary Material)
suggests that the proposed extreme conditional quantile estimator is stable for
different EVI estimators.

3. Theoretical Properties

In order to derive the asymptotic properties of 4(2) and G- (2), we need to as-
sume some second-order condition. A positive function h is called regularly vary-
ing at infinity with index o € R, denoted by h € RV (), if lims_,oc h(tz)/h(t) =
z®, for z > 0. Let U(t;2) = G1_1/:(2). We assume the following second-order
condition:

C There exists a function A(t; z) € RV (o(z)), for some p(z) < 0 and A(t; z) —
0, as t — o0, such that
Ulte; 2) /U (t; 2) — 273 4(2) o) — 1

— T

A(t; 2) o(2)

x> 0. (3.1)

Most families of continuous distributions satisfy condition (3.1), for instance, the
t distribution and the Pareto distribution. We also need the following regularity
conditions:

Cy The quantile function G(Z) has a continuous and bounded second deriva-
tive G”(Z) with respect to Z.

C3 The density function of X3 is positive and uniformly continuous for 3 in
a neighborhood of By. Furthermore, the density function of Z = XT3, is
continuous and bounded away from zero and infinity on its support.

C, The conditional density of Y given x’ By, fy(y|x?Bo), is continuous in
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xT' By, for each y € R. Moreover, there exist positive constants ¢ and &
and a positive function f(y|x? B), such that SUD||xT B—xT By ||<e fy(yxTe) <
f(ylxT'By). For any fixed value of xT By, [ f(yxTBy)dy < oo; further-
more, as £ = 0, [{pr(y — t) — pr(y) — pr (T (YIXTBo)dy = o(t?), where
pr(u) = {sgn(u) + (27 — 1)}/2, for u < 0 and p,(0) = 0.

C5 The kernel function K(+) is symmetric with a compact support [—1, 1], and
satisfies the first-order Lipschitz condition.

Cs U(t;z) = Gi_11(2) has the first-order derivative U’(t; z) with respective to
t, and satisfies lim;_,oo tU'(¢; 2) /U (t; z) = (2) uniformly for z in a compact
support Z.

Condition C9 is a common assumption in semiparametric regression for the
true link function. Condition C3 presents assumptions on the density of the
single index. Condition Cy is a mild condition that is weaker than the Lipschitz
condition on the function p,(-). Condition C5 requires the kernel function to be
a proper density function with a compact support. Condition Cg includes some
classic assumptions on the extreme value index and the distribution function in
extreme value theory.

Theorems 1-3 present the asymptotic properties of the conditional quantile
estimator at the intermediate order, extreme value index estimator, and extrap-
olation estimator of the extreme conditional quantile, respectively. Throughout
this paper, we denote s = ﬁl u? K (u)du and vg = fil K2 (u)du.

Theorem 1. Suppose that model (2.1) and conditions Co-Cg hold. Define T =
{tm <+ <}, withm = [n"] for0<n<1,75=1—j/n forj=[n"],... k,
where k satisfies k = k(n) — oo, k/n — 0, and [n"] = o(kY/?). If h — 0 and

nh — 0o as n — oo, we have

{nh(1 —7)}V2 [ .
v@av>{@(

uniformly for T € T, where Wy (1) = {nh(1 — 1)} V2 (1 (2) 0 [r — I{Y; <
G+ (Z;)}| K, which converges to a Gaussian process with mean zero and covariance

(14, 75) = vo{min (1, 75) — Tth}fgl(z)/\/(l —71)(1 —7s), where K; = K{(Z; —
2)/h} and fz(2) is the density function of Z = XT3, .

)= Grlo) - PGHEN | = W1+ (1)

Theorem 2. Suppose that the conditions in Theorem 1 and the second-order
condition (3.1) hold with v(z) > 0 and o(z) < 0, and k and h satisfy kh — oo,
(kh)Y2h?log(n/k) — M\ € R, and (kh)'/2A(n/k;z) — Ay € R. Then, there exist
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a sequence of Brownian motions {W,(t) : t € [0,1]}, such that

<kh>1/2{ CE <z>—1<f/g’“(z)> u(2)

F / (o™ W) = Wa(1)}d + 0y(1),

where

I3n(2)= ;h%zCW)]EQW(ZY(Z){log(Z) 2 f(z)z v'(2) =0,0'(2) #0,
d

EEVER {c”i,;zj)(z)_ "(z)}<z>a<z> 16(22) s

Remark 2. By Theorem 2, the asymptotic bias of 4(2) consists of two parts,
I3,(2) and A(n/k;2)/{1 — 0(2)}. The first I3,(z) is from the kernel estimation,
and the second A(n/k;z)/{1 — o(z)} is the result of the second-order approxi-
mation to the conditional distribution Fy (y|X). The convergence rate of 4(2) is

(kh)'/2, which is slower than k'/? for the ordinary Hill estimator in the univariate

extreme analysis without a kernel estimation.

Theorem 3. Assume that the conditions in Theorem 2 hold. Then, we have

(kh)\/2 {G -(2) (k/(npy))?) — 1}

1 _ -2 1" Q'Z
R ke R LAC L ()“2+A<k’> o(2)

o5 [ e ) = W1 + 0,0

where pp, =1 —7*, 7" = 1, k/(np,) — o0, and (k:h)_l/2 log{k/(npy)} — 0.

Remark 3. Similarly to 4(2), the asymptotic bias of G-(2) consists of two
parts. The first, (1/2)h*G;1(2)GY, (2)pe, is from the kernel estimation, and the
second, —A(n/k; 2)[{k/(np,)}2*) —1]/0(z), is from the second-order approxi-
mation of the conditional distribution of Y. The convergence rate of the ex-
treme conditional quantile estimator obtained under the single-index model is
(kh)'/?[log{k/(np,)}]~"!, which slower than the rate of k'/2[log{k/(np,)}]~" un-
der the parametric regression models. In addition, the condition k/(np,) — oo
implies 7* approaches one at a faster rate than 7, does, which makes the extrap-
olation feasible.
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4. Tuning Parameters Selection
4.1. Bandwidth selection

The bandwidth h balances the bias and the variance: a smaller A leads to a
smaller modeling bias, but a larger variance. We can choose h by minimizing the
mean squared error (MSE) of the nonparametric conditional quantile estimator
at an intermediate quantile level 7. By Theorem 1, at an intermediate quantile
level 7, where 7 — 1 and n(1 — 7) — oo, we have

V()G (vt f7(2)
nh(l — 1) '

. 1
MSE{G-(2)} = (WG (2)us +

Minimizing MSE{G, (%)} gives

ot oy [PEGEE@WTL, (2)]°
O o o

- [ vr(l - 7)f7'(2) ]1/5n1/5
G-I HEL 2 |

The approximation in (4.1) is from fy{G,(2)|z} = (1 — 7){7(2)G,(2)}7L, by
Condition Cj.

Fan and Gijbels (1996) showed that in local linear mean regression, the op-
timal bandwidth is

(4.1)

opt (s — VOU2(Z) 1/5n—1/5
6 = o) ’ (42)

where G(z) and 02(z) are the conditional mean and the variance of Y given the
covariate z, respectively.
Combining (4.1) and (4.2), we have

(1= 1{G"(2)Y }1/5
() FAG (I HGIE ]

The optimal bandwidth in (4.3) depends on the unknown conditional density

hoP(2) ~= hPY(3) { (4.3)

function fy(:|z) and G”(z). For simple calculation, we take the following ap-
proximations: (1) assume that the curvatures of the quantile function G’ (z) and
the conditional mean function G”(2) are similar; (2) take 02(2) f2{G-(2)|z} =
#*{®~1(7)} under the normal distribution, where ¢(-) and ®(-) are the standard
normal density and distribution functions, respectively.
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Finally, we choose the bandwidth using the following rule of thumb:

A A 1—7) V5
hapt 2) = h?yft 3 |: T( :| ’
S A PRI
where ﬁ%t(é) can be attained using the plug-in method, using the “lpbwselect”
function in the R package nprobust.

4.2. Selection of 1y

The quantile level 7y is involved in estimating the index parameter By. As
discussed in Remark 1, we can choose a fixed 79 € (7, 1), and this results in a
\/n-consistent estimation of B3y. Alternatively, we can choose 7y at an intermedi-
ate quantile level, such that 79 — 1, and n(1 — 79) — oo. Correspondingly, the
convergence rate of By, is v/nfy{Gr, (x)|x}/v/1— 79, which is slower than \/n
from a fixed quantile level. If 7y also satisfies h(1 —7)/(1 — 79) — 0 uniformly
for 7 € T, the conclusion of Theorem 1 still holds. The main reason is that by
Condition Cg, we have fy{G,(2)|z} ~ (1 — 7){7(2)G,(2)} ! and, consequently,
Vnh(1 —7)/{v(2)G-(2)} v fy {Gr (x)|x}/v/T = 70]"t — 0. Therefore, the es-
timation error involved in By does not affect the asymptotic properties of the
estimators of the EVI and extreme conditional quantile in Theorems 2 and 3,
respectively. For instance, we can choose 7 = 1 — n"/n and h = h°P!(2). Thus,
the condition h%P*(2)(1 — 7)/(1—10) — 0 is equivalent to n~("=6M/5 /(1 —75) — 0;
that is, 7 approaches one at a slower rate than n~(7=6M/5 Because 0 < n <1,
we suggest the following rule of thumb: 79 = 1 — en™1/5, where ¢ is a constant.
Our numerical study in Section 5.1 suggests that this rule of thumb leads to a
stable estimation for ¢ € (0.1,0.4).

5. Numerical Studies

In this section, we investigate the finite-sample performance of our pro-
posed method, referred to as the single-index model extreme quantile (SIMEXQ)
method, using a simulation study and an analysis of the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS) data set of Los Angeles (LA).

5.1. Simulation
We consider the following three models to generate the simulation data:

e Case 1 (univarite x): Conditional on X = z, Y is distributed from F(y|z) =
exp{—y~ /7@ y > 0, where the extreme value index () = (1/2){(1/10)+
sin(7z)}[(11/10) — (1/2) exp{—64(z — 1/2)?}]. Therefore, the true extreme



904 XU, WANG AND LI

conditional quantile function is Q,(Y|z) = (—log7)~7®). The covariate X
is generated from the standard uniform distribution U(0,1). This model
was also considered in Daouia et al. (2011).

e Case 2 (single-index model): Conditional on X = x, the response variable is
generated from Y = sin{2(x?8)} + 2exp{—16(xTB0)?} + (xI' By)e, where
Bo = (2,-2,-1,1,0,...,0)7/4/10 is a p x 1 vector, the covariate vector
X = (X1,...,X,)T is multivariate normal with mean zero and covariance
matrix Cov(X) = (0ij)pxp, With ;5 = 0.5/ and ¢ ~ ¢(3) is the random
noise. Therefore, the extreme value index is y(x) = 1/3. This model was
also considered in Zhu, Huang and Li (2012). We consider p = 4,50, and
100.

e Case 3 (tail dimension-reduction subspace): Conditional on X = x, the
7th conditional quantile of Y for 7 € (0,1) is defined as Q-(Y|x) = {In(1/
T)}_gO(ng) [1 + a0 (BIX) exp {—(1 — T)_l}] _1, where xI' = (z1,...,14),
BS— = (2, 17070)/\/57 B/ = (0,0,1,1), go(2) = g(2;1/3,8/3), g(z;a,b) =
all(—o0,0)(2) + (a+blexp(22) —1)/(exp(6/v/5) — 1)) Iy 5/ /51 (2) + (a + D)
/50y (2): and 1(2) = Loy (2) + exp(5)n)(2) + exp(10)I ) (2).
The covariates x;, for j = 1,...,4 are generated as independent normal
variables with mean 1/2 and variance 1/9. Gardes (2018) also considered
this case, showing that the extreme value index v(x) = go (BJx) in this
model.

The EVI varies with the covariates in Cases 1 and 3, but is constant in Case
2. In Case 1, the conditional quantiles of Y depend on the univariate x. In Case 2,
the tail single-index model assumption in (2.1) is satisfied. Case 3 is a multi-index
model that depends on two indices and satisfies the TDR space assumption in
Gardes (2018). As 7 — 1, the quantile of Y depends on x approximately through
the single index Bg x. The sample size is set to n = 1,000. For each scenario,
the simulation is repeated 500 times. As suggested in Wang, Li and He (2012),
we choose k = [4.5n'/3] and n = 0.1 when estimating the EVI. We choose
0=1-0.2n"1/5, resulting in 79 = 0.95 for n = 1,000.

We include the following four methods for comparison: (i) the method of
Beirlant and Goegebeur (2004), denoted by BG, which is based on the local poly-
nomial maximum likelihood estimation and the generalized Pareto distribution,
fitted locally to excedances over a high specified threshold; (ii) the inverse CDF
method of Daouia et al. (2011), denoted by ICDF, which first gets the estimator
of the conditional kernel survival function, inverses it to get conditional quantile
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estimates, and then extrapolates these to estimate the extreme quantiles; (iii) the
tail dimension-reduction method of Gardes (2018), denoted by TDR, which first
estimates the unknown index to reduce the dimension of the covariate, and then
uses a kernel-based method to estimate the conditional extreme quantiles; and
(iv) the local linear estimator of Zhu, Huang and Li (2012), denoted by SIMQ),
which is developed for the single-index quantile regression model at central quan-
tiles. The tuning parameters u, and h in BG are chosen as the minimizers of the
asymptotic MSE of 4(x). The bandwidth parameter in ICDF is chosen using the
cross-validation method proposed in Daouia et al. (2011). The parameter and
kernel function of TDR are chosen in the same way as in Gardes (2018). The
TDR method is for general multiple-index models and we apply this method with
p = 1 when estimating the single index. The bandwidth A in SIMQ is chosen to
be the same as in SIMEXQ.

Estimation of extreme conditional quantiles. We first compare the per-
formance of the five methods when estimating the extreme conditional quantiles
Q-(Y|x) at 7 = 0.99, 0.995, and 0.999. For each simulation, we calculate the
integrated squared error (ISE), defined as

1< QTYX* ?
ISE:L;{QTE}/L{%;—l} , (5.1)

where x7,...,x} are evaluation points of the covariates, and we define the mean
integrated squared error (MISE) as the average ISE across 500 simulations. In
our simulation, we set L = 50. We choose fixed evaluation points z; = 1/(1+ L),
forl =1,2,...,L, in Case 1, and let x; be random replicates of X in Case 2 with
p = 4 and in Case 3. Table 1 summarizes the MISE for different estimators of
the extreme conditional quantiles at 7 = 0.99,0.995, and 0.999. The values in
parentheses are the standard errors of the MISE.

In general, ICDF gives the least accurate estimators at high quantiles, while
the proposed SIMEXQ method performs best in most cases. The larger MISE
of ICDF is mainly due to the overestimation of the conditional quantiles. Case
1 can be regarded as a special case of the single-index model with Sy = 1, the
TDR methods, for which SIMQ and SIMEXQ do not involve an index estimation
error. In Case 1, the BG method performs reasonably well and better than TDR,
but its performance deteriorates quickly when the number of covariates increases.
In all the scenarios considered, SIMEXQ is more efficient than SIMQ, and the
advantage of SIMEXQ is more visibile at higher quantile levels. Compared to
SIMEXQ, TDR performs competitively when estimating the single index, but
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Table 1. The mean integrated squared error (standard errors) for different estimators of
the extreme conditional quantiles at 7 = 0.99,0.995, and 0.999.

Case Method 7=0.99 7 =0.995 7 =0.999
Casel,p=1 BG 0.64 (0.12) 0.72 (0.37) 0.89 (0.23)
ICDF 1.51 (0.09) 2.94 (0.21) 12.23 (0.27)
TDR 0.87 (0.08) 1.35 (0.18) 2.67 (0.29)
SIMQ 0.16 (0.15) 0.24 (0.22) 0.37 (0.27)
SIMEXQ 0.15 (0.01) 0.18 (0.04) 0.27 (0.07)
Case 2, p=4 BG 12.42 (0.04) 8.37 (0.07) 5.04 (0.11)
ICDF 6.22 (0.05) 11.23 (0.08) 57.38 (0.12)
TDR 0.18 (0.04) 0.67 (0.07) 0.89 (0.09)
SIMQ 0.06 (0.09) 0.13 (0.12) 0.24 (0.15)
SIMEXQ 0.04 (0.02) 0.05 (0.03) 0.07 (0.07)
Case 3, p=4 BG 18.76 (0.14) 26.53 (0.27) 37.27 (0.91)
ICDF 12.43 (0.12) 31.26 (0.24) 52.31 (0.67)
TDR 0.64 (0.08) 0.86 (0.35) 1.51 (0.51)
SIMQ 0.41 (0.11) 0.98 (0.42) 1.67 (0.87)
SIMEXQ 0.16 (0.09) 0.41 (0.13) 0.99 (0.24)

BG: the estimator proposed of Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail-dimension reduction estimator; SIMQ: the single-index model estimator of Zhu, Huang
and Li (2012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator.

is less stable and gives a larger bias when estimating the extreme conditional
quantiles.

Estimation of extreme value index. Because the estimation of the EVI is
very important in extremal analysis, we also compare the performance of BG,
ICDF, TDR, and the proposed SIMEXQ methods for estimating ~(x). For each
method, we calculate the MISE as the mean of the ISE across 500 simulations,

ts e
o+ X))
ISE_L;{V(XD 1},

where x7,...,x] are set in (5.1).
Table 2 summarizes the MISE of different estimators of (x) in Cases 1-

where

3. The four methods perform similarly in Case 1. However, in Cases 2 and 3,
BG and ICDF are clearly worse than SIMEXQ, with BG being the worst. The
TDR method suffers from its complex estimation procedure, and leads to a more
unstable estimation than that of SIMEX(Q in Case 2. In Case 3, the quantile
function depends on two indices, except when 7 — 1, and the TDR method is
based on estimating both indices, while SIMEXQ estimates only the single index.
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Table 2. The mean integrated squared error (standard errors) of different estimators of
7(x).

Case BG ICDF TDR SIMEXQ
Case ,p=1 0.02(0.10) 0.02 (0.02) 0.03 (0.06) 0.01 (0.03)
Case 2,p=4 0.25 (0.09) 0.17 (0.07) 0.34 (0.12) 0.11 (0.07)
Case 3,p=4 098 (0.09) 052 (0.05) 0.24 (0.04) 0.30 (0.09)

BG: the estimator proposed of Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail dimension-reduction estimator; SIMEXQ: the proposed extreme quantile estimator.

The more accurate index estimation in the TDR method leads to smaller MISEs
in the EVI estimation in Case 3.

To better understand the performance of the different methods, we plot in
Figures 1-3 the true and estimated conditional quantiles and the corresponding
EVI estimators for BG, TDR, and SIMEXQ at 7 = 0.995 from one typical ex-
ample in each case. For Case 1, the conditional quantile of Y is a sine function
of z, and the true quantile curve has two peaks. We can see in Figure 1 that
the proposed SIMEXQ method performs best, especially around the two sides of
the conditional quantile curve. The BG method captures the two-peak structure,
but overestimates them; hence, its MISE is large. The overestimation also occurs
in BG’s EVI estimation. For Case 2, the data are generated from a single-index
model, so the z-axis is the single index z = x” 3. The conditional quantile curve
is smooth, but not symmetric. The BG estimators are conditioned on x, whereas
the TDR and SIMEX(Q estimators are conditioned on their own index estima-
tors 2. That is why their conditional quantile estimation curves are not smooth
against the real index z. The EVI in Case 2 is a constant, so we present a box
plot of (2) in Figure 2, which shows clearly that BG overestimates the EVI and
has outliers, while TDR, has the biggest range. For Case 3, the data are gener-
ated from tail single-index models, so the z-axis is the single index z = x* 3y. In
Figure 3, we can see that BG also overestimates the extreme conditional quantile,
while TDR has more underestimation.

Performance in high dimensions. We also investigate the performance of
our proposed method when p is relatively large. Table 3 reports the MISE when
p = 50 and 100, together with the previously considered p = 4, for different
estimators in Case 2 with e ~ ¢(3). The results show that as p increases, the
MISEs of TDR, SIMQ, and SIMEX(Q increase much more slowly than those of
ICDF and BG, manifesting the advantage of the dimension-reduction procedure
in the former methods. The SIMEXQ performs similarly to TDR for p = 4,
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Figure 1. The truth (solid) and the estimations from BG (triangle), TDR (cross), and
SIMEXQ (circle) for the conditional quantiles at 7* = 0.995 (left), and the EVI ~(x)
(right) for one example in Case 1.
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Figure 2. The truth (solid) and the estimations from BG (triangle), TDR (cross), and
SIMEXQ (circle) for the conditional quantiles at 7% = 0.995 (left), and the EVI ~(x)
(right) for one example in Case 2 with p = 4.

but the former is consistently more efficient for p = 50 and 100. In addition,
SIMEXQ performs better than SIMQ across all of the scenarios and quantile
levels considered.

5.2. Mortality data analysis

For centuries, the impact of weather and air pollution on people has been
a public health concern. In this section, we analyse a subset of the National
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Figure 3. The truth (solid) and the estimations from BG (triangle), TDR (cross), and
SIMEXQ (circle) for the conditional quantiles at 7 = 0.995 (left) and the EVI ~(x)
(right) for one example in Case 3.

Table 3. The mean integrated squared error (standard errors) for different estimators of
the conditional quantiles with 7 = 0.99,0.995, and 0.999 in Case 2.

P Method 7 =0.99 7 =0.995 7 =0.999
4 BG 12.42 (0.04)  8.37 (0.07) 5.04 (0.11)
ICDF 6.22 (0.05) 11.23 (0.08)  57.38 (0.12)
TDR 0.05 (0.02)  0.06 (0.03) 0.07 (0.07)
SIMQ 0.13 (0.09)  0.13 (0.12) 0.24 (0.15)
SIMEXQ  0.04 (0.02)  0.05 (0.03) 0.07 (0.07)
50 BG 43.79 (0.21) 80.12 (0.25) 123.30 (0.38)
ICDF 12.57 (0.28) 36.21 (0.36)  64.78 (0.42)
TDR 0.32 (0.07)  0.41 (0.13) 0.57 (0.17)
SIMQ 0.35 (0.12)  0.59 (0.14) 0.98 (0.19)
SIMEXQ  0.27 (0.08)  0.39 (0.12) 0.52 (0.15)
100 BG 52.72 (0.27) 81.34 (0.28) 133.20 (0.41)
ICDF 11.84 (0.23) 42.67 (0.32)  69.83 (0.39)
TDR 0.36 (0.09)  0.53 (0.17) 0.68 (0.21)
SIMQ 0.52 (0.13)  0.65 (0.18)  1.02 (0.20)
SIMEXQ  0.31 (0.08)  0.45 (0.13) 0.59 (0.16)

BG: the estimator proposed of Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail dimension-reduction estimator; SIMQ: the single-index model estimator of Zhu, Huang
and Li (2012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator.

Morbidity, Mortality, and Air Pollution Study (NMMAPS) data to study the

influence of weather and air pollution on the high quantile of mortality.

The
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NMMAPS database consists of daily data on mortality, weather, and air pollu-
tion (e.g., pm10) for 109 US cities for the period 1987-2000. We use data from
the city of Los Angeles (LA). The data set consists of daily mortality counts (all
causes, CVD, respiratory), weather (temperature, dew point temperature, rela-
tive humidity), and pollution factors (O3, NOsz, SOo, CO). We are interested
in how the mortality count ¥ in Los Angeles is affected by the following six
variables: temperature, relative humidity, Oz, NOs, SOz, and C'O, denoted by
X1, Xo, ..., Xg, respectively. After deleting observations with missing values, we
have 4,017 observations; that is, n = 4,017. We scale all covariates to have a zero
sample mean and a unit sample variance. Peng, Dominici and Louis (2006) also
analyze mortality data from the NMMAPS database by fitting a Poisson regres-
sion to assess the effect of pollution on the mean of mortality. In contrast, we
estimate the extreme high quantiles of mortality and examine how they depend
on air pollution and weather.

Because the mortality Y is count data, which are discrete, we perform the
jittering process of Machado and Silva (2005). Specifically, add an independent
random variable U from standard uniform distribution on Y; that is, Y = Y +U.
Then, we consider the single-index model Q,(Y|X) = G- (X?8y), where X =
(X1,Xo,...,Xg)T. After estimating Q,(Y|X), denoted by QT(Y\X), we obtain
the estimation of the conditional quantile of ¥ using Q. (Y |X) = [Q-(Y|X) —1].

To reduce the variability of the estimates, we repeat the jittering processes
20 times, and take the average as our final estimator. That is, for the Ith
time, we estimate the extreme conditional quantiles based on the typo sam-
ple {(Yi(l),Xi) : 4 = 1,2,...,n}, where Yi(l) =Y + Ui(l), UZ-(Z) are drawn in-
dependently from U[0,1], and I = 1,...,20. As suggested in Section 4.2, we
take 70 = 1 — 0.2~/ = 0.96. We estimate the index parameter as Bm =
(—0.61,—0.29, —0.23, —0.13,0.11,0.66)”. Because all the covariates are scaled,
the absolute values of the estimators imply that the pollutant CO (Xg) is likely
to have the largest impact on the mortality variable (Y), and hence on the mor-
tality (Y), followed by the temperature variable (X1).

To better understand the performance of our proposed SIMEX(Q method, we
compare it with that of SIMQ. We set 79 = 0.96 for both methods, and choose
k = [4.5n"/3] and n = 0.1 when estimating the EVI. Figure 4 plots the estimation
of extreme conditional quantiles at 7* = 0.995 and 0.999 against Z = XTBO.%.
The plots shows that the SIMEXQ method gives a much smoother estimation
than that of SIMQ. When the quantile level increases, SIMQ cannot capture the
extreme behavior well, owing to the data sparsity. In addition, SIMQ also has a
quantile crossing issue.



EXTREME QUANTILE ESTIMATION BASED ON THE TAIL SINGLE-INDEX MODEL 911

tau=0.995 and 0.999

Figure 4. Estimation of the conditional quantile of mortality counts at 7* = 0.995 and
0.999 against 2 = xT Bg.96 by SIMEXQ (dashed) and SIMQ (lined).

To compare the performance of the methods for predicting the extreme con-
ditional quantiles of mortality counts, we carry out a cross-validation study. We
randomly divide the data set into a training set (20% of the data set, 827 obser-
vations) and a testing set (the remaining 80% of the data set, 3,190 observations).
We apply BG, ICDF, TDR, SIMQ, and SIMEXQ to analyze the training set, and
predict the extreme quantiles of the mortality counts conditional on the covariates
in the testing set. Let QT(Y/\Xz) and QT(?]XZ-), with7=1,2,...,m = 3,190, de-
note the estimated and the true conditional quantiles of the mortality counts for
subject 7 in the testing set, respectively. Conditional on X;, I{V; < Q,(Y|X;)}
has mean 7 and variance 7(1 — 7). We consider the following prediction error
(PE) measurement, PE = {m7(1 — )}~ 237" [I{V; < Q. (Y|X;)} — 7]. We
repeat the cross-validation 500 times. Table 4 summarizes the mean absolute PE
of different methods at 7 = 0.99,0.995, and 0.999. The values in the parentheses
are the corresponding standard errors. The results suggest that SIMEXQ has the
highest prediction accuracy for extreme conditional quantile estimation, even for
T =0.99.

6. Discussion

We have proposed a the new tail single-index model to estimate the extreme
quantile conditional on multi-dimensional covariates. We propose an efficient
three-step procedure for estimating extreme conditional quantiles. We establish
the asymptotic properties of our new estimators for the extreme value index and
extreme conditional quantiles. The results of our numerical and empirical studies
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Table 4. Mean absolute prediction error (standard errors) of different methods at
7 =0.99,0.995, and 0.999 for predicting the extremal conditional quantiles of mortality
counts.

Method 7=099 7=099  7=0.999
BG 3.79 (0.10)  5.02 (0.21)  9.73 (0.43)
ICDF 6.67 (0.07) 13.53 (0.12) 25.34 (0.18)
TDR 4.21 (0.08)  5.72 (0.09) 10.26 (0.14)
SIMQ 3.58 (0.12)  6.04 (0.23) 12.16 (0.31)
SIMEXQ 3.32 (0.03) 5.22 (0.07) 8.67 (0.13)

BG: the estimator proposed of Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail dimension-reduction estimator; SIMQ: the single-index model estimator of Zhu, Huang
and Li (2012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator.

imply that the proposed SIMEXQ method performs more effectively and is more
stable than competing methods.

Although we assume heavy-tailed distributions, the proposed method can be
extended to general cases with v(x) € R by considering other types of estima-
tors for the extreme value index, such as the moment estimators of De Haan
and Ferreira (2006) and Li and Wang (2019). For single-index models with high
dimensional covariates, variable selection is important, and research in this di-
rection under the extreme quantile setting deserves further investigation.

Supplementary Material

The online Supplementary Material contains some remarks, additional sim-
ulation results, and all technical details.
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