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ABSTRACT
One primary goal of subgroup analysis is to identify subgroups of subjects with differential treatment
effects. Existing methods have focused on the mean treatment effect and may be ineffective when the
two distributions differ in scales or in the upper or lower tails. We develop a new generalized quantile tree
method for subgroup identification. The method first uses quantile rank score tests to select split variables
and then estimates the split point byminimizing a composite quantile loss. The proposed split rule is free of
variable selection bias and robust against outliers and heavy-tailed distributions. In addition, we introduce
a generalized quantile treatment effect estimator and a testing method for the selection and confirmation
of predictive subgroups. Simulation shows that the proposed method gives more accurate subgroup
identification than existing methods for cases with heteroscedastic or heavy-tailed errors. The practical
value of the method is demonstrated through the analysis of an AIDS clinical trial data. Supplementary
materials for this article are available online.
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1. Introduction

For many diseases, treatment efficacy may vary across indi-
viduals. Rather than searching for a beneficial treatment for
all subjects, it would be more practical to identify subgroups
with differential treatment effects. With the assessment of het-
erogeneous effects, subgroup analysis explores how patients
with particular characteristics respond to a given treatment,
and therefore, provides guidance for tailored therapies. Fur-
thermore, for failed clinical trials, subgroup identification has
attracted increasing attentions as it helps examine hidden bene-
ficial effects among subpopulations. For example, Lefitolimod, a
drug developed byMologen AG for the treatment of HIV infec-
tions and various cancers, has been shown to prolong survival
to a subgroup of patients with extensive-stage small-cell lung
cancer (Mologen 2018).

Various methods have been proposed to facilitate the pro-
cedure of subgroup identification. The model-based cluster-
ing approaches of Imai and Ratkovic (2013), Cai et al. (2011)
and Zhao et al. (2013) require fitting a model with prespeci-
fied main and interaction terms. The resulting model is then
used to evaluate subject-specific treatment differences, and the
target subgroup is formed by including individuals with esti-
mated treatment effects exceeding a certain threshold. For such
approaches, it is often difficult to interpret the features of the
selected group. Alternative methods are developed under the
formulation of change set regression; see, for example, Chen
et al. (2015) and Huang et al. (2017). These methods identify
subgroups with improved treatment effects by examining the
significance of the treatment-covariate interactions, but they do
not account for the potential prognostic effects of the predic-
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tive variables. Bayesian methods have also been employed to
evaluate predictive effects in complex regression models; see
Jones et al. (2011), Sivaganesan, Laud, and Müller (2011), Gu,
Yin, and Lee (2013) and Berger, Wang, and Shen (2014). These
methods can easily incorporate prior information but they are
often computationally expensive.

Tree-based methods have drawn more attention in recent
years for subgroup analysis due to the appealing feature that
treatment-covariate interactions can be identified without the
need to prespecify the interaction terms in the model. Rather
than fitting a global model over the entire data space, a regres-
sion tree applies a split rule recursively to partition the space into
small regions. Therefore, the interactions can be identified in a
more convenient way by fitting local models. This is appealing
especially when the study includes a large number of features
that may interact with the treatment in complicated and non-
linear ways. Furthermore, the resulting tree structure can help
with data visualization and interpretation, since subgroups are
defined naturally by the path from root to leaf. Most existing
tree-based methods (Breiman et al. 1984; Su et al. 2009; Foster,
Taylor, and Ruberg 2011; Lipkovich et al. 2011; Loh, He, and
Man 2015; Seibold, Zeileis, and Hothorn 2016) are confined to
searching for predictive subgroups via the assessment of mean
or median treatment effects. However, several clinical studies
have shown that the treatment and control distributions may
differ not in the center, but in scales or at the lower or upper tails;
see, for example, Keystone et al. (2004) and Kremer et al. (2006).
For such data, the mean or median methods may be ineffective
to identify subgroups with differential treatment effects.

To capture different forms of heterogeneous treatment
effects, we develop a new generalized quantile tree method
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for subgroup identification. The method first uses quantile
rank score tests to determine the split variable, and this
approach is free of variable selection bias and able to capture
noncentral difference induced by predictive variables. After
this, the method estimates the associated split points for
selected variables by minimizing a composite quantile loss. The
proposed split rule not only reduces computational efforts but
is also robust against outliers and heavy-tailed distributions.
Furthermore, we introduce a generalized quantile treatment
effect (GQTE) estimator tomeasure and test the treatment effect
at each node. Compared with conventional testing procedures,
the GQTE test is adaptive to detecting treatment effects of
various forms.

The remainder of the article is organized as follows. Section 2
introduces the proposed method, including the tree-building
and the evaluation of treatment effects. We assess the perfor-
mance of the proposed method through simulation studies in
Section 3, and apply themethod to an AIDS clinical trial dataset
in Section 4. Section 5 concludes the article with some discus-
sion. Technical proofs and some additional simulation results
are provided in the supplementary materials.

2. ProposedMethod

2.1. Notation andMotivation

Let {yi, zi, xi} be the observed data of subject i, where yi denotes
the continuous response, zi is the binary treatment indicator
and xi = (xi1, . . . , xip)T is the p-dimensional covariate vec-
tor. The covariates can be either categorical or continuous. An
important part of subgroup analysis is to identify covariates
that define patient subgroups with more (or less) beneficial
treatment effects, which are referred to as predictive variables in
the medical literature (Mehta et al. 2010; Italiano 2011). In con-
trast, a variable is prognostic if it provides information on the
outcome distribution and does not interact with the treatment.
Under the regression setup, prognostic variables have marginal
effects on the response for untreated subjects, while predictive
covariates are involved in treatment-covariate interaction terms,
which can be used to define subgroups.

For example, consider the following model

Y = 1.56+ 0.8Z + 0.75I(X1 > 0.45)+ 1.6I(X2 < 1.34)Z + ϵ,

where ϵ ∼ N(0, 1). Then X1 is a prognostic variable since it
has marginal effects on the response distribution for untreated
patients. On the other hand, X2 is a predictive variable that
interacts the treatment indicator Z. The predictive variable X2,
together with the cutoff 1.34, defines a subgroup with enhanced
treatment effect, that is, X2 < 1.34. In this project, we focus
on experimental studies with balanced designs. Our goal of
subgroup identification is to identify subgroups with differential
treatment effects that are characterized by predictive variables
and the associated cutoff values.

In general, there are three important steps when applying
tree-based approaches for subgroup identification. The first
two steps are split variable selection and split point estimation,
which are employed repeatedly to dichotomize the data at each
node. Once the tree is generated by applying the split rule

recursively, the next step is to select and confirm the predictive
subgroups by evaluating the treatment effect at each node.

Most existing tree-based methods search for subgroups by
assessing the mean or median treatment effects, which may
overlook some important differences in the scales or tails of the
distributions. Furthermore, tests based on centermeasurements
may suffer from low power for cases with outlying observations
or data from skewed distributions. For example, as demon-
strated in a rheumatoid arthritis clinical trial study (van derHei-
jde et al. 2006; He et al. 2010), the changes in Total Sharp Scores,
the primary measurements of the treatment effects, are nearly
identical for about 75% of patients and differ from patients with
the most progressive diseases on the right tail; see Figure 1. For
such data, existing tree-basedmethodsmay fail to detect the tail
difference.

To capture different forms of treatment effects, we develop a
new regression tree method for subgroup identification based
on quantile rank scores and generalized quantile treatment
effect. The method uses quantile-based approaches for all
three steps: split variable selection, split point estimation,
and the selection and confirmation of predictive subgroups.
Compared with existing approaches, the method can better
adapt to different forms of treatment effects, and is robust
against outliers and heavy-tailed distributions. Hereafter we
refer to the proposed procedure as the generalized quantile
(GQ) method. Below we will introduce the proposed method
for the three steps separately.

2.2. Split Variable Selection

For tree-based methods, the tree structure is determined by
the selected split variables and the corresponding split points.
Existing methods are either based on exhaustive searches (Su
et al. 2009; Lipkovich et al. 2011), which are computationally
intensive and often select variables that allow more splits, or
focus on mean measurements (Loh 2002; Zeileis, Hothorn, and
Hornik 2008; Loh, He, and Man 2015; Seibold, Zeileis, and
Hothorn 2016), which are susceptible to outliers. To overcome
such limitations, we propose a quantile-based splitting proce-
dure, where a quantile rank score test is used for choosing the
split variable and a composite quantile method is then used
for estimating the split point. The method is computationally
convenient, free of selection bias and robust against outliers.

We propose to detect treatment-covariate interactions
induced by predictive covariates and select the splitting variables
by adapting the rank score test in Gutenbrunner et al. (1993)
and Koenker (2010). Suppose that the candidate covariate X is a
categorical variable with L levels. A continuous covariate can be
discretized, for example, by the sample quartiles and converted
to a category variable with L = 4. We consider the following
quantile regression model:

Qτ (yi|zi, xi) = α(τ )+ ziβ(τ )+ lTi η(τ )+ zilTi δ(τ ), (1)

whereQτ (yi|zi, xi) is the τ th conditional quantile of yi given the
covariates with 0 < τ < 1 being the quantile level, li = (I(xi =
2), . . . , I(xi = L))T ∈ RL−1 is an indicator vector representing
the level of X for subject i, and (α(τ ),β(τ ), η(τ ), δ(τ )) are
unknown coefficients. A popular class that leads to model (1)
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Figure 1. The changes from baseline in Total Sharp Scores of the three treatment groups.

is the location-scale-shiftmodel

yi = α + ziβ + lTi η + zilTi δ + σiϵi, (2)

where ϵi are iid from the distribution function F, and σi =
(1, zi, lTi , zilTi )γ is the positive scale function that is left unspec-
ified.

Hereafter we focus on this class to explain the properties of
the rank score test. To detect the interaction effect between X
and the treatment, we can test the following hypotheses H0 :
δ(τ ) = 0, τ ∈ T for some index set T ⊂ (0, 1) against Ha :
δ(τ ) ̸= 0.

Under the null model, regression rank scores are defined as

â(τ ) = argmax{aTy|DT
0 a = (1 − τ )DT

0 1, a ∈ [0, 1]n},
where D0 = {1, zi, lTi }ni=1 is the design matrix under H0.
Let ϵ̂i(τ ) be the residuals obtained under H0. Then âi(τ ) =
I{ϵ̂i(τ ) > 0} for ϵ̂i(τ ) ̸= 0 and∈ (0, 1) for ϵ̂i(τ ) = 0. The vector
â(τ ) is the dual solution to the quantile regression problem for
fitting Model (1) under H0, and can be interpreted as “signed
residuals.” Define

b̂φ
i = −

∫ 1

0
φ(u)dâi(u), (3)

where φ(·) is some score function on (0, 1). When φ(u) =
u − 1/2, b̂φ

i yields “ranks” of the observations. One can choose
different score functions to get more general notions of “ranks.”
For example, the quantile sign score φ(u) = sgn(u − τ )/2 +
(τ − 1/2), yielding b̂φ

i = τ − I{ϵ̂i(τ ) < 0}.
To test for the interaction effect, we consider the test statistic

Tn = STnQ−1
n Sn/A2(φ),

where Sn = (D1 − D̂1)Tb̂φ ,Qn = (D1 − D̂1)T(D1 − D̂1), D̂1 =
D0(DT

0 '−1D0)−1DT
0 '−1D1, ' = diag(σi) and D1 = {lTi zi}ni=1,

A(φ) =
∫ 1
0 {φ(u) − φ̄}2du and φ̄ =

∫ 1
0 φ(u)du. Koenker and

Machado (1999) showed that Tn is asymptotically χ2
L−1 under

H0, and it converges to a noncentral χ2 distribution under the
local alternativeHn : δn(τ ) = δ0(τ )/

√
n, where δ0(τ ) is a fixed

continuous function for τ ∈ [0, 1].

At each node, we apply the rank score test with a chosen
score function to each candidate covariate, and then choose
the split variable as the one that yields the most significant
interaction effect, that is, gives the smallest p-value. The testing
procedure has threemain advantages. First, it is computationally
convenient since it requires estimation only under the null
hypothesis. Second, the rank score test has shown robustness
to the error heteroscedasticity in various setups (Kocherginsky,
He, and Mu 2005; Wang and Fygenson 2009), therefore, we
can implement the testing procedure under the working iid
error model (Model (2) with σi ≡ 1), which further reduces
the computational effort. Third, by examining the noncentrality
parameters of the rank score test under local alternatives, we
can choose the score function to optimize the power and thus,
accommodate different types of signals in an efficient way. The
following proposition summarizes the optimal scores for the
location-scale-shiftmodels.

Proposition 1. Suppose thatmodel (2) holds and the distribution
function F has a strictly positive and continuous density f .
Then

(i) for location-shift local alternatives with δ0(τ ) = δ0, the
optimal score function is

φ(u) ∝ − f ′
f {F

−1(u)}. (4)

(ii) for scale-shift local alternatives with δ0(τ ) = δ0F−1(τ ), the
optimal score function is

φ(u) ∝ −
[
1+ F−1(u) f

′

f {F
−1(u)}

]
. (5)

Remark 1. Proposition 1 suggests that the optimal score func-
tion depends on both the model and the error distribution, and
any constant rescaling does not change the efficiency of score
functions. Below we summarize the optimal score function for
several scenarios.
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(i) Location-shiftmodelwithNormal error:φN(u) = )−1(u),
referred to as the Normal score.

(ii) Location-shiftmodel with Logistic error:φW(u) = u−1/2,
referred to as the Wilcoxon score.

(iii) Scale-shiftmodel with Normal error: φNS(u) = {)−1(u)}2
− 1, referred to as the Normal scale score.

(iv) Scale-shift model with W error: φW(u) = u − 1/2, where
W has cdf FW(x) = (1+cx−1/2)−1I(x > 0) for some c > 0.

For cases with signals on the tails, for example, β(τ ) is
nonzero only for τ > τ0 for some fixed quantile level τ0 ∈ (0, 1),
there is no closed expression for the optimal score. However,
our numerical studies and the simulation in Koenker (2010)
suggest that trimmed scores, such as the half Normal scale score
φHNS(u) = φNS(u)I(0.5 < u < 1) and the trimmed Wilcoxon
score φTW(u) = φW(u)I(0.6 < u < 0.95), are often more
efficient than nontrimmed scores. For real data, it could be
challenging to identify the model type and error distribution.
Therefore, we suggest an adaptive approach, which chooses the
splitting variable based on the smallest p-value from multiple
score functions with Bonferroni adjustment. In our numerical
implementation, we consider the following four scores: Normal,
Wilcoxon, half Normal scale, and trimmedWilcoxon. Our stud-
ies show that the adaptive approach can accommodate different
types ofmodels and distributions, and it performs competitively
well with the method based on the optimal scores; see details in
Section 3.

2.3. Split Point Estimation

The second step of the data-splitting procedure is to estimate
the cutoff point (or set) of the selected split variable, which
can be viewed as a threshold regression problem. Most existing
methods estimate the cutoff value by minimizing the sum of
squared errors (SSE) obtained from mean regression models
fitted to two child nodes, and thus, may be negatively affected
by outliers or heterogeneity. To overcome such limitations, we
consider estimating the split point by minimizing a composite
quantile loss. This method combines information frommultiple
quantiles and thus, often leads to more stable and efficient
estimation of the split point; see some related discussion under
a different context in Zou and Yuan (2008). Let τ1 < · · · < τK
be a given grid of quantile levels. For simplicity, we consider the
case where the splitting variable X is continuous; the method
can also be used to dichotomize discrete splitting variables. We
want to estimate the split point t to partition the data into the
left node: {X ≤ t} and the right node: {X > t}. The proposed
composite quantile estimator of the split point is defined as

t̂ = argmin
c

∑

xi≤c

K∑

k=1
ρτk{yi − ziβ̂L(τk) − α̂L(τk)}

+
∑

xi>c

K∑

k=1
ρτk{yi − ziβ̂R(τk) − α̂R(τk)}, (6)

where ρτ (u) = {τ − I(u < 0)}u is the quantile loss func-
tion,

(
α̂L(τk), β̂L(τk)

)
and

(
α̂R(τk), β̂R(τk)

)
are estimated quan-

tile regression coefficients in the left and right child nodes,
respectively.

In practice, we consider grid search among sample quantiles
for continuous split variables, and this method can be extended
readily for categorical covariates to estimate the split set. By
considering the composite loss across different quantile levels,
the proposed method often leads to more robust and efficient
estimation, especially in the case of heavy-tailed distributions.

Remark 2. The GQ method estimates the split point by min-
imizing the composite loss function in (6), assuming that the
intercept and slope are split by the same threshold. Note that our
primary interest is in the threshold splitting the slope (treatment
effect). To accommodate cases where the thresholds vary in
the intercept and slope, we could consider an alternative GQδ

estimator of the desired split point, defined as

t̂ = argmax
c

∑

xi≤c

K∑

k=1

⎡

⎢⎣
δ̂(τk)√

var{β̂L(τk)} + var{β̂R(τk)}

⎤

⎥⎦

2

,

where β̂L(τk) and β̂R(τk) are estimated quantile regression
slopes (coefficients associated with the treatment variable Z)
in the left and right child nodes, respectively, and δ̂(τk) =
β̂L(τk) − β̂R(τk) is the estimated treatment effect difference
between the two child nodes. Even though the GQδ method
can accommodate more general cases, the GQ method is
computationallymore efficient since it does not require variance
estimation at any candidate split point. In addition, our
numerical study shows that even when the thresholds due to the
intercept and slope are different, the GQ method still performs
competitively well or better if the differential effect in the slope
is larger than that in the intercept. Therefore, throughout the
rest of the article, we focus on the GQ approach for the split
point estimation.

2.4. Selection and Confirmation of Predictive Subgroups

Evaluation of treatment efficacy in a given subgroup is impor-
tant since it determineswhether the subgroup should be selected
or confirmed. Most existing methods focus on mean treatment
effect and the two sample t-test or its regression counterpart
is commonly used to measure the difference. But when two
distribution functions differ only in the upper (or lower) tail, the
mean-based tests may suffer from low power. Moreover, mean-
based evaluations are easily affected by outliers and skewed
distributions. To remedy such limitations, we propose to use the
generalized quantile treatment effect (GQTE) testing procedure
for the selection and confirmation of predictive subgroups.

2.4.1. Generalized Quantile Treatment Effect Test
Suppose that model (2) holds without covariate xi (η(τ ) =
δ(τ ) = 0), and in this case β(τ ) refers to the treatment effect
at the τ th quantile. We define the GQTE as

θ =
∫ 1

0
β(τ )ω(τ )dτ ,

where ω(τ ) is some weight function on (0, 1). Replacing β(τ )

with the sample counterpart, we can obtain the following esti-
mator θ̂ =

∫ 1
0 β̂(τ )ω(τ )dτ . Assuming independence in the
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control and treatment groups, the test statistic for assessing
GQTE is given by

Tn = θ̂
√

σ 2(ω, F1)/n1 + σ 2(ω, F0)/n0
.

Here nz and Fz are the sample size and the response distribution
for the treatment group Z = z, and

σ 2(ω, F) =
∫ 1

0

∫ 1

0
(s ∧ t − ts)[f {F−1(t)} × f {F−1(s)}]−1

ω(t)ω(s)dsdt.

Under H0 : θ = 0, Tn converges to a standard normal distribu-
tion (Koenker and Portnoy 1987). By choosing different weight
functions, the GQTE test is flexible and adaptive to different
types of treatment effects. In particular, for the uniform weight
ω(τ ) ≡ 1, Tn reduces to the standard two sample t-test statistic.

The density f in σ 2(ω, F) is difficult to estimate. In practice,
we consider using bootstrap to estimate the standard deviation
of θ̂ . Specifically, for each bootstrapped sample, we calculate the
GQTE estimator θ̂ , and then replace the denominator of Tn by
the bootstrap sample standard deviation of θ̂ .

2.4.2. Recommendation for Score andWeight Functions
In the proposed GQ algorithm, the rank score test is applied
to determine the split variable at each node and the GQTE
test is employed for selection and confirmation of predictive
subgroups. The choice of scores in the former may affect the
resulting tree structure, and the choice of weight functions in
the latter may affect the assessment of treatment effect in a
given subgroup and thus, the final subgroup identification. To
obtain a consistent and reliable result, an appropriate pair of
score and weight functions should be considered. We discussed
in Section 2.2 how to choose the score function to optimize
the power of the rank score test under local alternatives. For
the GQTE test, we can choose the weight function to minimize
the asymptotic variance of θ̂ . The following proposition gives
the optimal weight functions for the class of location-scale-shift
models.

Proposition 2. Suppose that Model (2) holds without covariate
X, and the error distribution F has a strictly positive and contin-
uous density f . Then

(i) for location-shift models with β(τ ) = β0, the optimal
weight function takes the form

ω(u) ∝ (f ′)2 − f ′′f
f 2 {F−1(u)}; (7)

(ii) for scale-shift models with β(τ ) = β0F−1(τ ), the optimal
weight function takes the form

ω(u) ∝ − f ′
f {F

−1(u)} + F−1(u) (f
′)2 − f ′′f
f 2 {F−1(u)}. (8)

Remark 3. With the optimal choice of weight function, the
asymptotic variance of θ̂ reaches the Cramér–Rao bound.
Below we summarize the optimal weight function for several
scenarios.

(i) Location-shift model with Normal error: ωLN(u) ≡ 1,
referred to as the Location-Normal weight.

(ii) Location-shiftmodel with Logistic error:ωLL(u) = u−u2,
referred to as the Location-Logistic weight.

(iii) Scale-shift model with Normal error: ωSN(u) = )−1(u),
referred to as the Scale-Normal weight.

(iv) Scale-shit model with W error: ωSW(u) = (1 − u)3/u,
referred to as the Scale-W weight.

To accommodate signals on the tails, we suggest trimmed
weights such as the half Scale-Normal weight ωHSN(u) =
)−1(u)I(0.5 < u < 1) and the trimmed Scale-W weight
ωTSW(u) = (1 − u)3/uI(0.6 < u < 0.95). In practice it is often
hard to determine the model and error distribution. Similar to
the split variable selection, we also suggest an adaptive approach
for applying the GQTE test. That is, we use the smallest p-value
from the GQTE test based on multiple weight functions with
Bonferroni correction to assess the significance of treatment
effect of different forms. In our implementation, we consider
four weight functions, ωLN ,ωLL,ωHSN and ωTSW .

2.4.3. Confirmation of Predictive Subgroups
We propose to select candidate subgroups by assessing the sig-
nificance of the GQTE for each node separately. However, it is
known that inference on the subgroup identified from the same
data may suffer from inflated false discovery rate (the chance
of incorrectly identifying admissible subgroups when there’s no
predictive effects in any subsets); see, for example, Ruberg and
Shen (2015) and Thomas and Bornkamp (2017). Therefore, the
selected promising subgroups from the same sample are likely to
be false positive due to over-optimism. To overcome this issue,
we conduct analysis by dividing the entire data into training
and testing samples. Let L, Np and Nc be the maximum depth
of the tree, the minimum sample size of a parent node and the
minimum treatment group sample size, respectively. Below we
provide a detailed description of the proposed algorithm:

(i) Divide the entire data into training and testing samples.
(ii) Refer to a node M at level l (l = 0 corresponds to the

entire training sample) as the “parent group,” and denote
the sample size of M by np. For l < L, consider the
following:

– If np < Np, then stop generating subsequent nodes and
M is declared as a terminal node.

– If np ≥ Np, divide M into two child nodes by (iia)
selecting the split variable using the quantile rank score
test as described in Section 2.2; (iib) estimating the
associated split point based on Equation (6) in Sec-
tion 2.3. We add an additional step to avoid search-
ing the change point near the boundary, which may
result in small sample size in one child node. In step
(iib), if min(nL0 , nL1 , nR0 , nR1 ) < Nc, we exclude the cor-
responding candidate split point from consideration,
where nL0 , nL1(nR0 , nR1 ) are the sample sizes of the two
treatment groups in the left (right) child node.

If child nodes are generated, repeat (ii) with l = l+ 1.
(iii) Select nodes with significant GQTEs (evaluated with the

training sample) as the candidate subgroups.
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(iv) Confirm the candidate subgroups by reevaluating the treat-
ment effect using the testing-sample.

Remark 4. For the selection and confirmation of predictive
subgroups in (iii) and (iv), we examine all the terminal nodes
and the internal nodes (including the root node). Since ourmain
target is to identify subgroups with enhanced treatment effect, if
the root node is confirmed by the testing sample and it has the
most significant GQTE among all confirmed subgroups, then
there is no advantage to divide the entire data into subsamples
and thus, no subgroup is identified. Our numerical results show
that the proposed procedure provides adequate control of false
subgroup discovery rate; see Section 3.3.

3. Simulation Study

We carry out simulations to assess the performance of the
proposed GQ method on split variable selection, split point
estimation and subgroup identification. For comparison,we also
include the following methods, the interaction trees (IT) (Su
et al. 2009), subgroup identification based on differential effect
search (SIDES) (Lipkovich et al. 2011), model-based recur-
sive partitioning (MOB) (Zeileis, Hothorn, and Hornik 2008;
Seibold, Zeileis, and Hothorn 2016) and generalized unbiased
interaction detection and estimation (GUIDE) (Loh 2002; Loh,
He, andMan 2015). The IT method is applied using the R func-
tions provided by the authors. The SIDES and MOB methods
are based on the R packages SIDES and partykit, respectively.
In our implementation of the MOB algorithm, at each node,
we fit a linear model including all candidate split variables and
the treatment indicator, with categorical covariates converted
into dummy variables. Results from GUIDE are based on the
software from http://pages.stat.wisc.edu/~loh/guide.html using
the recommended “Gi” option with a constant model fitted at
each node.

3.1. Split Variable Selection

We first compare the methods in terms of accuracy for selecting
the true split variables in five simulation models, presented in
Table 1. In all models, there are four candidate split variables X1
–X4 that are mutually independent and defined as:

X1 ∼ C(2), X2 ∼ C(6), X3 ∼ N(0, 1), X4 ∼ exp(1),
(9)

where X1 and X2 are two categorical variables with two and six
levels, respectively. Model 1 is the null model with prognostic
effect (X1) only. Models 2 and 3 are location-shift models with
predictive variables X1 and X3, respectively. To access the per-
formance of different methods under heterogeneity, we further
consider two location-scale-shift models, and include a case
where the errors follow a heavy-tailed t2 distribution.

We generate 1000 observations for each example, and repeat
the procedure 500 times. For our proposedmethod, we consider
Normal, Wilcoxon, half Normal scale and trimmed Wilcoxon
scores, referred to as GQN, GQW, GQHNS and GQTW, respec-
tively.We also include the results given by the adaptive approach
(GQA), assuming no prior information on either model type or
error distribution.

Table 2 summarizes the selection percentages of all candi-
date split variables under the null Model 1. Since there’s no

Table 1. Simulation design for split variable selection.

Model Error Dist.

1: Y = 1+ I(X1 = 1)+ ϵ N(0, 1)
2: Y = 1+ 0.4I(X1 = 1)Z + ϵ N(0, 1)
3: Y = 1+ 0.4I(X3 > 0.5)Z + ϵ N(0, 1)
4: Y = 1+ 0.4I(X3 > 0.5)Z + (0.4I(X3 > 0.5)Z + 1)ϵ N(0, 1)
5: Y = 1+ 0.4I(X3 > 0.5)Z + (0.4I(X3 > 0.5)Z + 1)ϵ/2 t2

Table 2. Percentage of times each covariate is selected as the splitting variable in
the null model.

Var. IT SIDES GQA GQN GQHNS GQW GQTW MOB GUIDE

X1 2.4 5.0 29.2 28.6 27.2 26.4 27.0 12.6 27.4
X2 21.4 34.6 22.6 23.4 20.0 24.4 25.6 53.6 23.6
X3 40.2 30.0 26.0 21.8 31.6 23.4 27.4 18.8 22.8
X4 36.0 30.4 22.2 26.2 21.2 25.8 20.0 15.0 26.2

Table 3. Percentages of times each covariate is selected as the splitting variable
under alternative models.

Model Var. IT SIDES GQA GQN GQHNS GQW GQTW MOB GUIDE

2 X1 65.4 76.8 90.8 92.8 76.6 92.0 84.4 77.8 92.0
X2 8.2 11.0 2.4 1.2 7.4 2.4 4.8 14.8 1.8
X3 13.4 5.8 4.8 4.2 9.0 3.8 7.2 3.6 4.6
X4 13.0 6.4 2.0 1.8 7.0 1.8 3.6 3.8 1.6

3 X1 0.4 2.6 11.8 9.0 18.0 9.8 14.8 3.2 8.8
X2 4.8 11.0 7.4 7.0 12.8 7.8 10.6 13.0 7.4
X3 85.6 77.8 72.0 76.8 57.2 76.2 65.0 79.6 77.0
X4 9.2 8.6 8.8 7.2 12.0 6.2 9.6 4.2 6.8

4 X1 1.0 3.4 4.6 13.0 2.8 13.2 6.2 5.8 8.6
X2 5.8 18.2 1.2 11.0 1.4 11.0 3.0 17.2 5.2
X3 81.4 65.2 92.0 66.8 93.2 65.6 87.6 72.0 80.6
X4 11.8 13.2 2.2 9.2 2.6 10.2 3.2 5.0 5.6

5 X1 1.6 3.2 2.2 5.4 7.2 3.6 1.8 5.6 17.4
X2 12.8 20.6 2.2 5.2 6.8 2.6 2.0 33.8 14.4
X3 64.6 57.6 94.2 84.8 79.4 90.2 95.0 54.0 54.0
X4 21.0 18.6 1.4 4.6 6.6 3.6 1.2 6.6 14.2

NOTE: The true splitting variable is X1 in Model 2 and X3 in Models 3–5.

predictive effect, a method has unbiased variable selection if
the proportions are all around 25%. Both IT and SIDES employ
exhaustive search algorithms to find the split variable, and they
give biased results and tend to choose covariates that allowmore
splits. The MOB method is also biased toward X2 that has six
levels. In contrast, GUIDE and our proposed methods lead to
selections with much smaller bias. Among different variations
of the proposed method, the method withWilcoxon score gives
the smallest selection bias, and the adaptive method performs
competitively well.

Selection percentages under the alternative Models 2–5 are
reported in Table 3. Under the homogeneous Model 2, the
proposed methods (specifically with Normal, Wilcoxon and
adaptive scores) and GUIDE outperform the others. For Model
3 where the true split variable is X3, IT gives the best selection
accuracy. In Models 4 and 5, the errors depend on the split
variable X3, and δ(τ ), and the interaction effect between Z and
X3 on the τ th quantile of Y is increasing in τ . In these twomod-
els, the proposed method with the half Normal and trimmed
Wilcoxon scores perform the best, which is not surprising since
the signal is stronger on the right tail. Compared to existing
approaches, the GQ methods show more advantages in cases
with heteroscedastic or heavy-tailed errors. Across all different
scenarios considered, the proposed adaptive method GQA is
competitive to the best performer and thus, is recommended
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Figure 2. The mean squared errors (MSEs) of the estimated split points from different methods in Models 3–5.

Table 4. Simulationmodels considered for subgroup identification analysis, where
ϵ ∼ t2 in Model D, and ϵ ∼ N(0, 1) elsewhere.

Model Formula

A Y = 1+ 4I(X3 > 0.5)+ ϵ
B Y = 1+ 4I(X1 = 1)+ ϵ
C Y = 1+ I(X3 > 0.5)+ I(X4 > 0.5)+ I(X3 > 0.5)I(X4 > 0.5)Z + ϵ
D Y = 1+ I(X3 > 0.5)+ I(X4 > 0.5)+ I(X3 > 0.5)I(X4 > 0.5)Z + ϵ/2
E Y = 1+ I(X3> 0.5)+ I(X3> 0.5)Z + I(X4> 0.5)+ [1+ 2I(X3> 0.5)Z]ϵ
F Y = 1+ I(X3 > 0)+ I(X4 > 0.5)+ [1+ 1.5I(X3 > 0)I(ϵ > 0.5)Z]ϵ

for practice when no prior information about the model and
distribution is available.

3.2. Split Point Estimation

To assess the performance of different methods for split point
estimation, we focus on Models 3–5, assuming that the split
variable X3 is correctly selected from the previous step. Figure 2
presents the mean squared errors of the estimated split points
fromdifferentmethods. Results show that our proposedmethod
provides more efficient estimator than existing approaches,
especially for cases with heteroscedastic or/and heavy-tailed
errors.

3.3. Subgroup Identification Analysis

To compare the overall performance of different methods for
subgroup identification, we consider six simulationmodels with
various types of treatment effect and error distribution; see
specifications in Table 4. For eachmodel, we consider covariates
X1 – X4 as candidate split variables. Models A and B correspond
to the null model with no interactions between any covariates
and the treatment indicator. Models C and D are location-shift
models with the true subgroup {X3 > 0.5,X4 > 0.5}, andModel
D has heavy-tailed t2 errors. Model E is a location-scale-shift
model with the true subgroup {X3 > 0.5}. We further include
Model F, where the enhanced treatment effect in the subgroup
{X3 > 0} appears only on the right tail and this mimics the
pattern seen from the rheumatoid arthritis data in Figure 1 and
the AIDS clinical trial data in Figure 4.

Table 5. False positive rates (in percentages) of differentmethods for identifying at
least one admissible subgroup under the null Models A and B.

Model GQ IT SIDES MOB GUIDE

A 4.0 5.0 4.7 85.3 100.0
B 4.3 2.3 4.3 0.7 0.3

For each case, a random sample of size n = 500 is generated
for both treatment groups, and the same procedure is repeated
300 times. It has been shown in Section 3.1 that the proposed
split variable selection method with the adaptive score gives
competitive results irregardless of the model and error distribu-
tion. Therefore, for the remaining of this simulation study, we
will only focus on the proposed GQ method with the adaptive
score and weight functions.

Table 5 summarizes the false positive rates for identifying
admissible subgroups under the nullModels A and B, defined as
the proportion of times at least one subgroup is confirmed for
SIDES and GQ and a nontrivial tree is generated after pruning
for IT, GUIDE and MOB methods. Results show that the false
positive rates of GQ, IT and SIDES are well controlled under
the 5% nominal level. However, MOB and GUIDE have inflated
false discovery rate (over 80%) when there exists a continuous
prognostic variable. One possible reason is that both methods
search through all distinct values to determine the best split
point for a given split variable while there are infinite number
of possible splits for a continuous prognostic variable.

Next, we compare the performance of different methods in
identifying predictive subgroups under the alternative Models
C–F. Let ST be the true predictive subgroup, that is, the region
with enhanced treatment effect, and let SI denote the identified
subgroup. For the GQ approach, SI is chosen as the one that has
themost significant generalized quantile treatment effect, that is,
the smallest p-value with adaptive weights among all confirmed
subgroups. For the other methods, SI is defined as the leaf node
with the most significant mean treatment difference. We use
the following criteria to evaluate the performance for subgroup
identification,
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Table 6. Summaries of subgroup identification results of different methods under
the alternative Models C–F.

Model Method PMR Power STY SFY RSS RMTE

C GQ 0.58 0.80 0.87 0.97 1.06 0.97
IT 0.29 0.57 0.80 0.97 1.14 0.98

SIDES 0.39 0.80 0.80 0.96 1.13 0.99
MOB 0.86 0.97 0.95 1.00 1.08 0.97
GUIDE 0.93 1.00 0.96 0.99 0.98 1.00

D GQ 0.64 1.00 0.84 0.97 1.12 0.88
IT 0.14 0.33 0.76 0.96 1.16 0.90

SIDES 0.42 0.80 0.82 0.94 0.98 0.92
MOB 0.50 0.83 0.80 0.96 1.24 0.72
GUIDE 0.43 0.75 0.81 0.98 1.27 0.84

E GQ 0.99 1.00 0.98 0.96 0.92 1.06
IT 0.61 0.66 0.97 0.94 0.89 1.16

SIDES 0.31 0.50 0.84 0.84 0.74 1.47
MOB 0.61 0.62 0.99 0.97 0.92 1.10
GUIDE 0.96 1.00 0.97 0.95 0.91 1.22

F GQ 0.89 0.91 0.99 0.94 0.92 1.07
IT 0.17 0.19 0.96 0.90 0.88 1.12

SIDES 0.21 0.36 0.89 0.72 0.71 1.50
MOB 0.54 0.56 0.98 0.96 0.96 1.08
GUIDE 0.92 1.00 0.94 0.82 0.77 1.24

• Partial match rate (PMR): proportion of times that SI is
covered by an expanded region of the truth, that is, SI ⊂
{X3 > 0.4,X4 > 0.4} (Models C & D), {X3 > 0.4} (Model E)
or {X3 > −0.1} (Model F);

• Power: proportion of times at least one admissible subgroup
is identified;

• Sensitivity (STY): average of |SI ∩ ST |/|SI|, measuring the
relative region that is identified correctly;

• Specificity (SFY): average of |S̄I ∩ S̄T |/|S̄I|;
• RSS: relative ratio of sizes, defined as the average of |SI|/|ST |;
• RMTE: relative ratio of treatment effects, defined as the aver-

age of ratios between the mean treatment effect in SI and ST ,

where | · | denotes the cardinality of a set. The last four criteria
are calculated only among simulations when a subgroup is
identified. A better performedmethod is expected to give higher
values for the first four criteria and values closer to one for the
last two criteria.

Table 6 summarizes the subgroup identification results. Gen-
erally speaking, the IT and SIDES methods show less power
and lower accuracy than the other methods. The MOB and
GUIDE methods give better performance for Model C with
homogeneous and normal errors, but they are less effective
than GQ for cases with heteroscedastic or heavy-tailed errors
(Models D–F). Across all scenarios considered, the proposed
algorithm GQ produces identified subgroups very close to the
truth, and its overall performance is competitive or better than
the other fourmethods, especially for the heterogeneousModels
E & F when the treatment effect differs mostly in the upper tail.

4. Analysis of the AIDS ACTG175 Data

We illustrate the merit of the proposed method by analyzing
data fromAIDSClinical Trials Group Protocol 175 (ACTG175),
which contains 2139 HIV-infected patients and is available in R
package speff2trial. Study subjects are randomized to four treat-
ment arms: zidovudine (ZDV)monotherapy, ZDV+didanosine

Table 7. Description of variables in the ACTG175 data.

Variable Description

Y The response variable
Z Treatment (ZDV+ddI) versus control (ddI)
age Age in years
wtkg Weight in kilogram
karnof Karnofsky score (scale of 0–100)
cd40 CD4 count (cells/mm3) at baseline
cd80 CD8 count (cells/mm3) at baseline
hemo Hemophilia (yes/no)
homo Homosexual activity (yes/no)
drugs History of intravenous drug use (yes/no)
race White versus non-white
gender Male and female
str2 Antiretroviral history (naive/experienced)
symptom Symptomatic status (asymptomatic/symptomatic)

(ddI), ZDV + zalcitabine, and ddI monotherapy (Hammer et al.
1996). Following Lu, Zhang, and Zeng (2013) and Tsiatis et al.
(2008), we choose the shifted CD4 count at 20 ± 5 weeks post-
baseline as the continuous response Y (defined as the CD4
count at 20 ± 5 weeks post-baseline minus the CD4 count at
baseline), and consider 12 baseline covariates as candidate split
variables; see variable descriptions in Table 7. Existing works
have shown that the cocktail treatment ZDV + ddI and ddI
monotherapy tend to be effective for increasing the CD4 count
of HIV-infected patients (Saravolatz et al. 1996; Collier et al.
1993). For our analysis, we focus on the difference between ZDV
+ ddI and ddI alone treatments. The entire sample consists of
n = 1083 patients, with nt = 522 subjects in the “treatment”
group (ZDV+ddI) and the rest nc = 561 belong to the “con-
trol” group (ddI). The objective of our study is to identify the
subgroups with potential enhanced treatment effects.

Figure 3 plots the sample quantiles of Y obtained from the
entire sample for two treatment groups. The preliminary results
suggest that CD4 counts of nearly 40% of the patient population
showed no or little progression from the baseline. Our primary
interest is to search for subgroups with enhanced treatment
effect on increasing the CD4 count. Therefore, it is appropri-
ate to focus more on patients who respond to the treatments,
corresponding to the upper tail of the response distribution. To
accommodate the tail effect, in addition to the adaptive score
and weight functions, we also apply the proposed procedure
with half Normal scale score (φHNS) and half Scale-Normal
weight (ωHSN).

We consider five methods to analyze this data: MOB, IT,
SIDES, GUIDE and the proposed GQ method. For this data,
the GUIDEmethod does not identify any admissible subgroups.
The MOB method selects an artificial subgroup that shows no
interactionwith the treatment variable atmean or any quantiles.
For GQ, IT and SIDESmethods, half of the entire sample is used
as a training set to find promising subgroups and the other half
serves as a testing set to confirm the candidate subgroups. To
accommodate the randomness from data partition, we repeat
the process 100 times and record the identified subgroups for
each repetition. Across 100 partitions, the proposed GQ algo-
rithm with the adaptive approach leads to confirmed subgroups
34 times, among which the subgroup {Homo: no} (consisting
of n = 358 subjects) is identified 30 times. Furthermore, for
the assessment of treatment effect in the identified subgroups,
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Figure 3. The sample quantiles of shifted CD4 count at 20± 5 weeks post-baseline for the ZDV+ddI and ddI treatment groups based on the entire sample.

Figure 4. Estimated quantile treatment effect (ZDV+ddI against ddI) of the entire sample (solid), the nonhomosexual group (dashed) and the low cd40 group (dotted).
The shaded area represents the 90% pointwise confidence band of the quantile treatment effect in the nonhomosexual group.

Figure 5. The sample quantiles of shifted CD4 count at 20± 5 weeks post-baseline for the ZDV+ddI and ddI treatment groups based on the low cd40 group and the high
cd40 group.

the most significant GQTE test results are often times given
by weight functions trimmed in upper tails. The GQ method
with trimmed score (φHNS) and weight (ωHSN) gives confirmed
subgroups 53 times, and 47 times the identified subgroup is
{Homo: no}, so the results agree quite well with those from
the adaptive approach. The IT and SIDES methods identify
admissible subgroups 22 and 75 times, respectively, and the
most common subgroups identified are {cd40 ≤ 484} (n = 959,
IT) and {cd40 ≤ 464} (n = 922, SIDES).

Since results from IT and SIDES are similar, we will next
focus on comparing two subgroups: the low cd40 subgroup
{cd40 ≤ 484} identified by the IT method, and the nonhomo-
sexual subgroup {Homo: no} identified by the GQ method. We
plot the estimated quantile treatment effect of the identified sub-
groups in Figure 4. The results suggest that the nonhomosexual
group ({Homo: no}) exhibits an enhanced treatment effect, and
the effect ismore pronounced in the upper tail, especially for τ ∈
[0.8, 1). The treatment effect of the low cd40 subgroup ({cd40 ≤
464}) differs from that of the entire sample only on the left tail for

τ < 0.15, mostly corresponding to those subjects with negative
CD4 changes post treatments. To gain a deeper understanding,
we plot in Figure 5 the sample quantiles of Y for two treatment
groups in the low cd40 group and its complement, the high
cd40 group ({cd40 > 464}). The plots show a reverse effect
of ZDV+ddI against ddI monoterapy in the high cd40 group,
which might be due to the deleterious effect of the cocktail
treatment containing ddI as observed in previous studies such
as Lacombe et al. (2005) andNegredo et al. (2004). In addition, a
higher proportion of subjects (about 60%) had no CD4 increase
post treatments in the high cd40 group, compared to about 30%
in the low cd40 group. One possible reason is the imbalance of
antiretroviral history between two groups, and specifically, the
higher proportion of antiretroviral-naive patients in the high
cd40 group. Therefore, the differences between the low and high
cd40 groups in antiretroviral history and the reverse drug effect
of nonresponders are likely the main reasons for the low cd40
subgroup to be identified. In contrast, Figure 4 suggests that
the subgroup identified by the GQ methods is driven by the
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enhanced treatment effect in the nonhomosexual subgroup over
the entire sample across quantiles but primarily on the right
tails, so it aligns better with the research objective.

5. Discussion

We have developed a generalized quantile tree method for
subgroup identification. Our numerical studies show that the
method can capture different forms of heterogeneous treatment
effects, and it leads to more accurate subgroup identification
than existingmean-basedmethods for caseswith heterogeneous
and heavy-tailed errors.

The proposed method consists of three key steps: (1) split
variable selection via the quantile rank score test; (2) split point
estimation based on a composite quantile loss; and (3) eval-
uation of treatment effects by the GQTE test. The proposed
GQ algorithm targets experiment data with balanced designs.
The algorithm can be extended to observational studies by, for
example, including the confounding variables as additionally
protected predictors in all three steps. Such an extension will
require more theoretical and practical investigations.

Our simulation study shows that the adaptivemethod is com-
petitive to the best performer across all scenarios considered,
even though no information about the latent model or error
distribution is used. However, the adaptive approach may result
in different choices of the score and weight functions in data
splitting and evaluating treatment effects at each node, causing
challenges in interpreting the final identified subgroup. For real
applications, we suggest using the adaptive approach to conduct
preliminary analysis, and then applying the proposed algorithm
by choosing a specific pair of score and weight functions based
on the preliminary results and the research interest; see for
example the application on ACTG175 data in Section 4.

To control the overall Type I error of identifying at least one
subgroup when there is no predictive effect in any subpopu-
lation, we divide the entire data into training and testing sets
to remedy the over-fitting problem. Simulation shows that this
method provides decent control of the false positive rate. The
random data partition, however, may affect the subgroup iden-
tification result for finite samples. The proposed algorithm can
be enhanced by adopting the tree pruning and cross-validation
procedure of CART (Breiman et al. 1984), though at the cost
of computational time. Recently, Fuentes, Casella, and Wells
(2018), and Guo and He (2020) proposed valid inference meth-
ods to address the over-optimism issue for inference on the
best subgroup selected from the same sample. Adapting these
approaches to conduct formal inference on subgroups identified
by the GQmethod without data partition is an interesting topic
for future investigation.

Supplementarymaterials

Technical proofs, the R code of the proposed GQ method and some addi-
tional simulation results are provided in the supplementary materials.
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