
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics

Volume 2: Short Papers, pages 113 - 118

May 22-27, 2022 c©2022 Association for Computational Linguistics

Counterfactual Explanations for Natural Language Interfaces

George Tolkachev

University of Pennsylvania

georgeto@seas.upenn.edu

Stephen Mell

University of Pennsylvania

sm1@seas.upenn.edu

Steve Zdancewic

University of Pennsylvania

stevez@seas.upenn.edu

Osbert Bastani

University of Pennsylvania

obastani@seas.upenn.edu

Abstract

A key challenge facing natural language inter-

faces is enabling users to understand the capa-

bilities of the underlying system. We propose a

novel approach for generating explanations of

a natural language interface based on seman-

tic parsing. We focus on counterfactual expla-

nations, which are post-hoc explanations that

describe to the user how they could have mini-

mally modified their utterance to achieve their

desired goal. In particular, the user provides an

utterance along with a demonstration of their

desired goal; then, our algorithm synthesizes

a paraphrase of their utterance that is guaran-

teed to achieve their goal. In two user studies,

we demonstrate that our approach substantially

improves user performance, and that it gener-

ates explanations that more closely match the

user’s intent compared to two ablations.1

1 Introduction

Semantic parsing is a promising technique for en-

abling natural language user interfaces (Ge and

Mooney, 2005; Artzi and Zettlemoyer, 2013; Be-

rant et al., 2013; Wang et al., 2015). However, a key

challenge facing semantic parsing is the richness of

human language, which can often encode concepts

(e.g., “circle”) that do not exist in the underlying

system or are encoded using different language

(e.g., “ball”). Thus, human users can have trouble

providing complex compositional commands in the

form of natural language to such systems.

One approach to addressing this issue is to de-

velop increasingly powerful models for understand-

ing natural language (Gardner et al., 2018; Yin and

Neubig, 2018). While there has been enormous

progress in this direction, there remains a wide gap

between what these models are capable of com-

pared to human understanding (Lake and Baroni,

2018), manifesting in the fact that these models can

1Code available at: https://github.com/

georgeto20/counterfactual_explanations.

fail in unexpected ways (Ribeiro et al., 2016). This

gap can be particularly problematic for end users

who do not understand the limitations of machine

learning models, since it encourages the human

user to provide complex commands, but then per-

forms unreliably on such commands.

Thus, an important problem is to devise tech-

niques for explaining these models. Generally

speaking, a range of techniques have recently been

developed for explaining machine learning mod-

els. The first technique is to use models that are

intrinsically explainable, such as linear regression

or decision trees. However, in the case of seman-

tic parsing, such models may achieve suboptimal

performance, and furthermore it is not clear that

the structure of these models would be useful to

end users. A second technique is to train a black-

box model, and then approximate it using an in-

terpretable model. Then, the interpretable model

can be shown to the human user to explain the

high-level decision-making process underlying the

blackbox model. However, this approach also suf-

fers from the fact that showing a decision tree or

regression model is likely not useful to an end user.

Instead, we consider an alternative form of

explanation called a counterfactual explana-

tion (Wachter et al., 2017). These explanations

are designed to describe alternative outcomes to

the user. In particular, given a prediction for a spe-

cific input, they tell the user how they could have

minimally modified that input to achieve a different

outcome. As an example, suppose a bank is using

a machine learning model to help decide whether

to provide a loan to an individual; if that individual

is denied the loan, then the bank can provide them

with a counterfactual explanation describing how

they could change their covariates (e.g., increase

their income) to qualify for a loan.

We propose a novel algorithm for computing

counterfactual explanations for semantic parsers.

In particular, suppose that a user provides a com-

113





In this context, our goal is to provide explana-

tions to the user to help them understand what ut-

terances can be correctly understood and executed

by the underlying system. In particular, we assume

the user has provided an utterance s0, but the out-

put Jfθ(s0)K is not the one that they desired. Then,

we ask the user to provide their desired output,

after which we provide them with an alternative

utterance s∗ that is semantically similar to s0 but

successfully achieves y0. Formally:

Definition 2.1. Given an utterance s0 ∈ Σ∗ and a

desired output y0 ∈ Y , the counterfactual explana-

tion for s0 and y0 is the sentence

s∗ =argmin
s∈L

d(s, s0) subj. to Jfθ(s)K = y0,

where d is a semantic similarity metric and L ⊆ Σ∗

is the search space of possible explanations.

The goal is that examining s∗ should help the

user provide utterances that are more likely to be

correctly processed in future interactions.

Search space of explanations. A key challenge

in generating natural language expressions is how

to generate expressions that appear natural to the

human user. To ensure that our explanations are

natural, we restrict to sentences generated by a

context-free grammar (CFG) C. In particular, we

consider explanations in the form of sentences s ∈

L(C) ⊆ Σ∗ (where Σ is the vocabulary and L(C)
is the language generated by C). We restrict to

sentences with parse trees of bounded depth d in

C; we denote this subset by Ld(C). In addition,

we assume sentences s ∈ Ld(C) are included in

the dataset used to train the semantic parser fθ to

ensure it correctly parses these sentences.

Semantic similarity. Our goal is to compute a

sentence s ∈ Ld(C) that is semantically similar

to the user-provided utterance s0. To capture this

notion of semantic similarity, we use a pretrained

language model x = gθ(s) that maps a given sen-

tence s to a vector embedding x ∈ R
k. Then,

we use cosine similarity in this embedding space

to measure semantic similarity. In particular, we

use the distance d(s, s0) = 1− sim(gθ(s), gθ(s0)),
where sim(x, x′) is the cosine similarity.

Goal constraint. Finally, we want to ensure that

the provided explanation successfully evaluates to

the user’s desired denotation y0. For a given ut-

terance s, we can check this constraint simply by

evaluating y = Jfθ(s)K and checking if y = y0.

Algorithm 1 Our algorithm for computing coun-

terfactual explanations for a semantic parser fθ.

procedure EXPLAIN(s0, y0)

(s∗, c∗)← (∅,−∞)
for s ∈ Ld(C) do

if Jfθ(s)K = y0 then

c← sim(gθ(s), gθ(s0))
if c > c∗ then s∗, c∗ ← s, c end if

end if

end for

return s∗

end procedure

Overall algorithm. Given user-provided utterance

s0 and desired denotation y0, the counterfactual

explanation problem is equivalent to:

s∗ =argmax
s∈Ld(C)

sim(gθ(s), gθ(s0))

subj. to Jfθ(s)K = y0.

Assuming Ld(C) is sufficiently small, we can solve

this problem by enumerating through the possible

choices s ∈ Ld(C) and choosing the highest scor-

ing one that satisfies the constraint. In practice,

we may be able to exploit the structure of the con-

straint to prune the search space. Our approach is

summarized in Algorithm 1.

3 Experiments

We perform two user studies to demonstrate (i)

correctness: our explanations preserve the user’s

original intent, and (ii) usefulness: our explanations

improve user performance.

3.1 BabyAI Task

We evaluate our approach on BabyAI (Chevalier-

Boisvert et al., 2018) adapted to our setting. In this

task, the human can provide commands to an agent

navigating a maze of rooms containing keys, boxes,

and balls. The goal is defined by the combination

of the agent position and the environment state

(e.g., the agent may need to place a ball next to a

box). Atomic commands (e.g., going to, picking

up, or putting down an object) can then be com-

posed in sequence to achieve complex goals. In our

setup, s0 is a natural language command, and y0
is a demonstration in the form of a trajectory the

agent could take to achieve the desired goal.

This task comes with a context-free grammar of

natural language commands, which we use as the

115



space of possible explanations. Next, we train a

semantic parser to understand commands from this

grammar. Since utterances in this grammar corre-

spond one-to-one with programs, we can generate

training data. We generate 1000 training examples

(s, π) consisting of an utterance s along with a pro-

gram π, and train TranX (Yin and Neubig, 2018) to

predict π = fθ(s). For semantic similarity, we use

a pretrained DistilBERT model gθ (Devlin et al.,

2018; Sanh et al., 2019) to embed utterances s.

Handling the goal constraint is more challeng-

ing, since the denotation can be nondeterministic—

in particular, multiple different trajectories can be

used to achieve a single goal (e.g., there are mul-

tiple paths the agent can take to a given object).

Thus, if we naïvely take the denotation of a pro-

gram to be a single trajectory that achieves the

goal, then this trajectory may be different than the

given demonstration even if the demonstration also

achieves the goal. To address this issue, we in-

stead enumerate the set Πy of all possible programs

that are consistent with the given demonstration

y, up to a bounded depth (selected so that Πy is

large enough while ensuring that the experiments

still run quickly). Then, we replace the constraint

Jfθ(s)K = y0 with a constraint saying that fθ(s) is

in this set—i.e., fθ(s) ∈ Πy0 .

3.2 Correctness of Explanations

We evaluate whether our explanations are valid

paraphrases of the user’s original command.

Baselines. We compare to two ablations of our

algorithm. The first one omits the goal constraint

fθ(s) ∈ Πy; thus, it simply returns the explana-

tion that is most semantically similar to the user-

provided utterance s0. Intuitively, this ablation

evaluates the usefulness of the goal constraint.

The second ablation ignores s0, and returns an

explanation s such that fθ(s) ∈ Πy0 ; we choose

s to minimize perplexity according to GPT-2. In-

tuitively, this ablation measures the usefulness of

specializing the explanation to the user’s utterance.

Setup. We selected 17 BabyAI tasks by randomly

sampling BabyAI levels until we obtain a set of

tasks of varying difficulty. For example, Task 1 has

the simple goal “go to the green ball”, while Task

10 has the more complex goal “pick up a green key,

then put the yellow box next to the grey ball”.

Then, our experiment proceeds in two phases. In

the first phase, we use Amazon Mechanical Turk

(AMT) to collect natural language commands for

Approach Correctness Usefulness

Ours 41.4 ± 1.48% 50.8 ± 2.22%
No demo 34.0 ± 1.42% 49.2 ± 2.01%
GPT-2 24.6 ± 1.29% 46.2 ± 1.96%
No training – 10.2 ± 0.74%

Table 1: Correctness: The frequency at which users

chose the explanation generated using the correspond-

ing approach as the best match. Usefulness: The per-

centage of user utterances correctly parsed (averaged

across the last 10 tasks), where users are given explana-

tions generated by the corresponding approach.

the agent. For each of our 17 tasks, we show the

user a video of the BabyAI agent achieving the task,

and then ask them to provide a single command

that encodes the goal. In total, we obtained 127

commands (one per user) for each task. Next, for

each user instruction, we find the counterfactual

explanation according to our algorithm and the two

ablations described above.

In the second phase, we conduct a second AMT

study to evaluate the correctness of these explana-

tions. In particular, for each of our 17 tasks, we

show each participant a single command for that

task (chosen randomly from the 127 commands

in the first phase), along with the three generated

explanations and the video of the agent achieving

that task. Then, we ask the user to choose the ex-

planation that is closest in meaning to the original

command. We obtained 50 responses.

Results. In Table 1, we show the fraction of times

users in the second phase selected each explana-

tion, averaged across both users and tasks. Our

approach significantly outperforms GPT-2, which

is unsurprising since this ablation makes no effort

to preserve the user’s intent. Our approach also out-

performs the ablation without the goal constraint,

demonstrating the usefulness of this constraint.

3.3 Usefulness of Explanations

Next, we evaluate whether providing explanations

can make it easier for users to provide commands

that can be understood by our semantic parser.

Baselines. In addition to the two ablations in Sec-

tion 3.2, we also compare to a baseline where the

user is not provided with any explanation.

Setup. We run an AMT study similar to the first

phase of our study in Section 3.2, except immedi-

ately after providing a command for a task, each

user is shown an explanation for their command

and that task. We collected 50 user responses.

116



Results. For each user command s0, we run our

semantic parser to obtain the corresponding pro-

gram and check whether it is in the set of programs

valid for that task—i.e., whether fθ(s0) ∈ Πy0 . Ta-

ble 1 shows the success rate across all users and

the last 10 tasks; we restrict to the last 10 to give

the user time to learn to improve their performance.

Users not provided any explanations performed

very poorly overall. The remaining approaches

performed similarly; our explanations led to the

best performance, followed closely by the ablation

without the demonstration, with a wider gap to the

ablation that ignores the user utterance. Thus, per-

sonalizing the explanation to the user based on their

utterance helps improve performance.

4 Conclusion

We have proposed a technique for explaining how

users can adapt their utterances to interact with

a natural language interface. Our experiments

demonstrate how our explanations can be used

to significantly improve the usability of semantic

parsers when they are limited in terms of their se-

mantic understanding. While any explanations are

already very useful, we show that personalizing

explanations can further improve performance.

A key design choice in our approach is to con-

struct a synthetic grammar from which counterfac-

tual explanations are generated. In a realistic appli-

cation, the semantic parsing model can be trained

on a combination of synthetic data and real-world

data, enabling our approach to be used in conjunc-

tion with the synthetic grammar. A key direction

for future work is extending our approach to set-

tings where such a grammar is not available. In our

experience, a key challenge in this setting is that

the generated text can be unnatural, possibly due

to the constraints imposed on the search space.

Acknowledgments

We gratefully acknowledge support from NSF CCF-

1917852 and CCF-1910769. The views expressed

are those of the authors and do not reflect the offi-

cial policy or position of the U.S. Government.

References

David Alvarez-Melis and Tommi S Jaakkola. 2018.
Towards robust interpretability with self-explaining
neural networks. arXiv preprint arXiv:1806.07538.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural lan-
guage processing, pages 1533–1544.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau,
Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. 2018.
Babyai: A platform to study the sample efficiency
of grounded language learning. arXiv preprint
arXiv:1810.08272.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Matt Gardner, Pradeep Dasigi, Srinivasan Iyer, Alane
Suhr, and Luke Zettlemoyer. 2018. Neural seman-
tic parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics:
Tutorial Abstracts, pages 17–18.

Ruifang Ge and Raymond Mooney. 2005. A statistical
semantic parser that integrates syntax and semantics.
In Proceedings of the Ninth Conference on Compu-
tational Natural Language Learning (CoNLL-2005),
pages 9–16.

Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell,
and Zeynep Akata. 2018. Generating counterfactual
explanations with natural language. arXiv preprint
arXiv:1806.09809.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873–2882. PMLR.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155.

Hui Liu, Qingyu Yin, and William Yang Wang. 2018.
Towards explainable nlp: A generative explanation
framework for text classification. arXiv preprint
arXiv:1811.00196.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-precision model-
agnostic explanations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

117



Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of nlp models with checklist. arXiv
preprint arXiv:2005.04118.

Alexis Ross, Himabindu Lakkaraju, and Osbert Bas-
tani. 2021a. Learning models for actionable re-
course. Advances in Neural Information Processing
Systems, 34.

Alexis Ross, Ana Marasović, and Matthew E Peters.
2021b. Explaining nlp models via minimal con-
trastive editing (mice). In Findings of the ACL.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Berk Ustun, Alexander Spangher, and Yang Liu. 2019.
Actionable recourse in linear classification. In Pro-
ceedings of the Conference on Fairness, Account-
ability, and Transparency, pages 10–19.

Sandra Wachter, Brent Mittelstadt, and Chris Russell.
2017. Counterfactual explanations without opening
the black box: Automated decisions and the gdpr.
Harv. JL & Tech., 31:841.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. arXiv preprint
arXiv:1908.07125.

Sida I Wang, Samuel Ginn, Percy Liang, and
Christoper D Manning. 2017. Naturalizing a pro-
gramming language via interactive learning. arXiv
preprint arXiv:1704.06956.

Sida I Wang, Percy Liang, and Christopher D Manning.
2016. Learning language games through interaction.
arXiv preprint arXiv:1606.02447.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1332–1342.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S Weld. 2021. Polyjuice: Generating
counterfactuals for explaining, evaluating, and im-
proving models. In ACL.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. arXiv preprint
arXiv:1810.02720.

118


