
TorchQuantum Case Study for RobustQuantum Circuits
(Invited Paper)

Hanrui Wang1, Zhiding Liang2, Jiaqi Gu3, Zirui Li4, Yongshan Ding5, Weiwen Jiang6, Yiyu Shi2,
David Z. Pan3, Frederic T. Chong7, Song Han1

1MIT 2Univ. of Notre Dame 3Univ. of Taxes at Austin 4Rutgers Univ. 5Yale Univ. 6George Mason Univ. 7Univ. of Chicago

Abstract

Quantum Computing has attracted much research attention be-

cause of its potential to achieve fundamental speed and efficiency

improvements in various domains. Among different quantum al-

gorithms, Parameterized Quantum Circuits (PQC) for Quantum

Machine Learning (QML) show promises to realize quantum ad-

vantages on the current Noisy Intermediate-Scale Quantum (NISQ)

Machines. Therefore, to facilitate the QML and PQC research, a re-

cent python library called TorchQuantum has been released. It can

construct, simulate, and train PQC for machine learning tasks with

high speed and convenient debugging supports. Besides quantum

for ML, we want to raise the community’s attention on the reversed

direction: ML for quantum. Specifically, the TorchQuantum library

also supports using data-driven ML models to solve problems in

quantum system research, such as predicting the impact of quan-

tum noise on circuit fidelity and improving the quantum circuit

compilation efficiency.

This paper presents a case study of the ML for quantum part

in TorchQuantum. Since estimating the noise impact on circuit

reliability is an essential step toward understanding and mitigating

noise, we propose to leverage classical ML to predict noise impact

on circuit fidelity. Inspired by the natural graph representation

of quantum circuits, we propose to leverage a graph transformer

model to predict the noisy circuit fidelity. We firstly collect a large

dataset with a variety of quantum circuits and obtain their fidelity

on noisy simulators and real machines. Then we embed each circuit

into a graph with gate and noise properties as node features, and

adopt a graph transformer to predict the fidelity. We can avoid

exponential classical simulation cost and efficiently estimate fidelity

with polynomial complexity.

Evaluated on 5 thousand random and algorithm circuits, the

graph transformer predictor can provide accurate fidelity estimation

with RMSE error 0.04 and outperform a simple neural network-

based model by 0.02 on average. It can achieve 0.99 and 0.95 R2

scores for random and algorithm circuits, respectively. Compared

with circuit simulators, the predictor has over 200× speedup for
estimating the fidelity. The datasets and predictors can be accessed

in the TorchQuantum library.

1 Introduction

Quantum Computing (QC) presents a new computational paradigm

that has the potential to address classically intractable problems

with much higher efficiency and speed. It has been shown to have

an exponential or polynomial advantage in various domains such

as combinatorial optimization [11], molecular dynamics [26, 34],

and machine learning [3, 7, 15, 20, 27, 28, 37, 56], etc. By virtue

of breakthroughs in physical implementation technologies, QC

｜0〉
｜0〉
｜0〉
｜0〉

X

X

RZ

CNOT

CNOT

CNOT

SX

Input Node Measurement Node X Node

CNOT NodeRZ Node SX Node

Embed
Circuit

to Graph

Graph Transformer

Graph Info

0 1 3

2

D
e
v
ic

e

 N

o
is

e
 I

n
fo

Predicted Fidelity

Torch

Quantum

Graph Transformer

Torch

Quantum

Quantum Device

0 1 3

2

Quantum Device

Figure 1: The proposed fidelity prediction framework. The

quantum circuit is firstly embedded into a graph inwhich the

nodes are gates and edges are execution orders. The feature

vector on each node contains the device noise information,

such as gate error rates. The graph is processed by a graph

transformer in TorchQuantum to estimate circuit fidelity.

hardware has advanced quickly during the last two decades. Mul-

tiple QC systems with up to 127 qubits have been released re-

cently [14, 18, 22, 38].

Despite the promising developments, it is still anticipated that

before we enter the fault-tolerant era, we will spend a number of

years in the Noisy Intermediate Scale Quantum (NISQ) [35] stage. In

this stage, the qubits and quantum gates suffer from significant error

(around 10−3), which is the bottleneck towards quantum advantages.

Therefore, Parameterized Quantum Circuits (PQC) have attracted

increasingly more attention thanks to their flexibility in the circuit

architecture (ansatz) and parameters that provides vast space for

noise mitigation and optimizations.

To facilitate the robust quantum circuits, especially parameter-

ized quantum circuits for quantummachine learning, the TorchQuan-

tum library is released, which supports easy construction, simula-

tion, and fast parameter training of PQCs. Several noise mitigation

techniques, such as noise-aware ansatz search [48], noise-aware

parameter training [49], gradient pruning for robust on-chip train-

ing [50], are also supported in the library.

Although plenty of work has been focusing on quantum for ma-

chine learning with parameterized circuits, little research explores

another direction – using machine learning to solve quantum sys-

tem research problems. To fill this vacancy, the TorchQuantum

library also provides multiple classical machine learning models to

perform quantum compilation, reliability estimation tasks, etc.

Spearman Correlation=0.993

Fidelity

P
S

T

PST can provide accurate
estimation for fidelity

Figure 2: Relationship between fidelity and PST of random

circuits. The PST of a circuit is obtained by appending the

inverse circuit to the original one and executing. There is a

strong positive correlation (Spearman = 0.993) between the

two metrics, so it is su�cient for the predictor to output PST.

In this paper, we show one case study of machine learning for

quantum – using graph transformer models to estimate the quan-

tum circuit fidelity under noise impact, as shown in Figure 1. Due to

the limited quantum resources, it is highly desirable to estimate the

circuit performance before submitting it for execution. If the fidelity

of a circuit is lower than a threshold, running it on real quantum

machines will not generate any meaningful result. One straightfor-

ward method is to perform circuit simulation on noisy simulators,

but the exponentially increasing cost is prohibitive for circuits with

many qubits. Therefore, in this work, we propose a polynomial

complexity method in which a data-driven graph transformer is

trained to perform fidelity estimation. Intuitively, estimating the

fidelity does not require precisely computing the complete density

matrix. So there are opportunities that the data-driven method can

provide accurate enough estimation with low computation costs.

In fact, there have been works on predicting circuit reliability using

simple machine learning models [30]. However, it considers neither

any graph information of the circuit nor the noise information and

thus has less accurate predictions in experimental results.

The first step of the framework is to collect a large dataset con-

taining various randomly generated circuits and circuits from com-

mon quantum algorithms. We run the circuits on both noisy simu-

lators and real quantum machines. On simulators, we change the

properties of the qubits, such as T1 and T2, and the error rates of

gates to diversify the data samples. The dataset contains over 20

thousand samples on simulators and 25 thousand samples on real

quantum machines. In order to reduce the overhead of collecting a

dataset, we use the “Probability of Successful Trials" (PST) [43] as

the proxy for the fidelity following the setting in [30]. Specifically,

for each circuit, we will concatenate the inverse of the circuit to

the original one and execute. Since the original quantum state is

all zero, the ground truth output of the concatenated circuit will

still be all zero. Therefore, the PST will be the frequency of getting

all zero bit-string. The dataset is embedded in the TorchQuantum

library and can be easily accessed for future studies.

Secondly, motivated by the fact that quantum circuits are graphs,

we propose to leverage a graph transformer to process the circuit

information. The nodes of the graph are the quantum gates, in-

put qubits, and measurements. The edges are determined by the

sequence of gate executions. The feature vector on each node con-

tains gate type, qubit index, qubit T1, T2 time, gate error rate, etc.,

to capture operation and noise information. In one layer of the

graph transformer, the attention layer will capture the correlations

between each node and its neighbors according to the graph and

compute the updated feature vector. Several fully-connected layers

are appended at the end to regress the circuit PST.

Overall, we present a case study on using graph transformer

models in the TorchQuantum library to estimate circuit fidelity

under noise. The contributions are summarized as below:

• A dataset for circuit fidelity on various noisy simula-

tors and real machines is presented and embedded in the

TorchQuantum library to facilitate research on reliability

estimations. It contains 20K simulation samples and 25K real

machine samples.

• A graph transformer model is constructed and trained to

process the quantum circuit graph and feature vectors on

nodes to provide accurate fidelity prediction.

• Extensive evaluations on around 2 thousand circuits on

noisy simulators and 3 thousand circuits on real machines

demonstrate the high accuracy of the predictor. It achieves

0.04 RMSE and over 0.95 R2 scores with 200× speedup over

circuit simulators.

2 Related Work

2.1 Quantum Basics

A quantum bit (qubit) can be in a linear combination of the two

basis states 0 and 1, in contrast to a classical bit, |𝜓 〉 = 𝛼 |0〉 + 𝛽 |1〉 ,

for 𝛼, 𝛽 ∈ C, where |𝛼 |2 + |𝛽 |2 = 1. Only one of the 2𝑛 states can

be stored in a classical 𝑛-bit register. However, we can employ an

𝑛-qubit system to describe a linear combination of 2𝑛 basis states

due to the ability to build a superposition of basis states. To perform

computation on a quantum system, we use a quantum circuit to

manipulate the state of qubits. A given quantum system can be

expressed as a Hamiltonian function and solved by Schrödinger’s

equation, and these operational steps can be performed by vari-

ous quantum gates. Results of a quantum circuit are obtained by

qubit readout operations called measurements, which collapse a

qubit state |𝜓 〉 to either |0〉 or |1〉 probabilistically according to the

amplitudes 𝛼 and 𝛽 .

2.2 Quantum Errors

Quantum errors are one of the most significant challenges that

NISQ-era quantum computing experiences. On real quantum ma-

chines, errors occur because of the interactions between qubits

and the environment, control errors, and interference from the

environment [4, 24, 32]. Qubits undergo decoherence error over

time, and quantum gates introduce operation errors (such as coher-

ent/stochastic errors) into the system. These systems need to be

characterized [32] and calibrated [19] frequently to mitigate the

quantum noise impacts.

The errors seriously interfere with the function of quantum cir-

cuits and form obstacles to further optimization of quantum circuits.

X CNOT

SX

X

X

RZ

CNOT

CNOT

SX

…

X

X

RZ

CNOT

CNOT

SX SX†

CNOT†

CNOT†

X†

X†

RZ†

Generate Random Circuits with Basis Gates Concatenate Inverse Circuit Obtain PST

0.0

0.5

1.0

|0
0
0
0〉

|0
0
0
1〉

|0
0
1
0〉

|0
0
1
1〉

|0
1
0
0〉

|0
1
0
1〉

|0
1
1
0〉

|0
1
1
1〉

|1
0
0
0〉

|1
0
0
1〉

|1
0
1
0〉

|1
0
1
1〉

|1
1
0
0〉

|1
1
0
1〉

|1
1
1
0〉

|1
1
1
1〉

0.11

0.000.000.020.000.010.030.000.000.010.000.000.00
0.04

0.08

0.70

Obtained Noise-free

PST = 0.7

Random Circuits Design Space

Target Device Coupling Map

Transpile

Obtain Inverse Circuit

Run on Simulator with
Differnet Noise Models

 or on Real Machines

Output [oiginal circuit, device

noise info, PST] Pairs

Figure 3: Overview of the dataset generation process. i) Prepare random circuits by mixing basis gate: RZ, SX, X, CNOT, namely

constructing native circuits. ii) Inverse all the gates in the transpiled native circuit and then concatenate the inverse circuit

to the original transpiled native circuit. iii) Calculate PST by dividing the number of trials (shots) with all zero state by the

number of total trials (shots).

A number of noise mitigation techniques have been developed to

attenuate negative effects [9, 16, 25, 28, 36, 48, 49]. [49] proposes a

framework to improve the quantum circuits’ robustness by making

them aware of noise. It consists of three main techniques: injection

of gate errors, regularization, and normalization of measurement

outcomes. Another literature [28] integrates the gate error charac-

teristics into the mapped quantum circuit to improve robustness.

2.3 Fidelity Estimation and Prediction

In order to validate and characterize the states generated by a

quantum computer, it is crucial to estimate the fidelity of quan-

tum states [12, 55]. However, calculating fidelities is already quite

computationally expensive. Numerous efforts have been made to

address this problem in the past few years. Variational quantum

algorithms have been adopted by recent works to perform fidelity

estimation [5, 6, 41]. Machine learning-based and statistical meth-

ods are also proposed to estimate the fidelity [30, 57, 59]. In addition,

“classical shadow” is proposed for more efficient tomography [17],

which can also benefit fidelity estimation. The works mentioned

above present various methods for estimating fidelity. Fewer works,

however, have focused on predicting fidelity given a quantum cir-

cuit and a noisy backend. [30] derives a fidelity prediction model

using polynomial fitting and a shallow neural network. The noisy

backend is considered as a black box in that work. [33, 42] calculate

fidelity with a simple equation and use it as a metric to optimize the

compilation workflow. These methods are inaccurate and do not

account for the structure of quantum circuits or noisy backends.

2.4 Randomized Benchmarking

Plenty of techniques have been developed to estimate the fidelity

of quantum circuits and identify errors in NISQ computers, and

they can provide indicators of the quality of quantum circuits and

directions for further improvement of quantum hardware. Among

them, randomized benchmarking is the most prominent [23, 31,

32] one. Randomized benchmarking can estimate the fidelity of

certain gates or circuits and further characterize noises to very high

accuracy in the presence of state preparation and measurement

errors. However, randomized benchmarking has several limitations.

For example, it usually requires strong assumptions about the error

pattern, such as assuming the errors are gate-independent, and the

benchmarked gate set must have group structures.

2.5 Transformers

The attention [1, 45] based Transformer models [47, 54] have pre-

vailed in sequence modeling. Recently, it is also widely applied in

other domains such as vision transformer [10] for computer vision

and graph transformer (graph attention networks) [46, 51, 53, 58]

for graph learning. The graph transformer leverages the attention

mechanism to generate the updated features of the next layer for

each node. The Query vectors come from the center node, while

the Key and Value vectors are calculated from the neighboring

nodes. Recently, several variants of traditional transformers have

been proposed, including AGNN, which removes all the FC lin-

ear layers in the model [44], Modified-GAT [39], which proposes

gate-augmented attention for better feature extraction, Linear At-

tention [40], which reduces the complexity of attention to linear

cost, and Hardware-Aware Transformer [52] that adjusts the archi-

tecture according to the hardware latency feedback.

3 Circuit Fidelity Dataset

In classical computing, training datasets must be fed into the ma-

chine learning algorithms before validation datasets (or testing

datasets) can be employed to validate the model’s interpretation of

the input data. However, when dealing with the fidelity prediction

problem, we do not have an off-the-shelf dataset that can be used

to train and evaluate different methods. To address this problem,

we present a scheme for generating datasets and incorporating the

gathered datasets into TorchQuantum in order to provide relevant

researchers with appropriate starting points.

3.1 Metrics

In order to accurately estimate the “success rate” of quantum circuits

on noisy devices, the conception of fidelity is introduced, which is a

measure of the “closeness” of two quantum states. In noisy quantum

computing, fidelity is adopted to illustrate the difference between

the quantum states generated by noisy devices and those generated

by noiseless classical simulations. Obtaining the fidelity of quantum

circuits is, however, computationally costly – exponential to the

qubit number. Intricate tomography would be required to “restore”

Noise Level

Number of CNOT Gates

Number of Gates

Circuit Depth

Number of Qubits

P
S

T
P

S
T

P
S

T
P

S
T

P
S

T

Figure 4: Dataset property profiling.

or “describe” quantum states[17]. To solve such a problem, we adopt

the idea of “Probability of Successful Trials" (PST) [43] as the proxy

of fidelity.

𝑃𝑆𝑇 =

#𝑇𝑟𝑖𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

#𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑎𝑙𝑠

Instead of measuring the fidelity of quantum circuits, we count the

proportion of unchanged qubits (all zeros) after concatenating the

circuits with their inverse. For concatenated circuits, the proportion

will be one if we conduct simulations on a noise-free simulator.

We compare the PST with fidelity for 1400 quantum circuits on

simulators. As shown in Figure 2, they exhibit a strong correlation

with a Spearman correlation coefficient of 0.993. Therefore, we can

conclude that PST can provide accurate fidelity estimations.

3.2 Dataset Generation

As shown in Figure 3, the generation of random datasets can be bro-

ken down into three major steps: initial random circuit generation,

concatenation with inverse circuits, and PST calculation.

Native Circuit Construction. In the first step, random gates

are generated from the basis gate set {RZ, SX, X, CNOT} and assigned

to quantum circuits to create an initial version of random circuits.

Single-qubit gates are assigned to all possible qubits, and two-qubit

gates are assigned to all available connections in the quantum

device. After finishing the assignments, the circuits will be compiled

to eliminate duplicated gates. As a result, we consider the number

of qubits and gates, the coupling map of quantum devices, and

the number of random circuits as parameters during the random

circuits generation process.

Concatenation of Inverse Circuit. Furthermore, the obtained

random circuits will be concatenated with their inverse. The inverse

circuit is obtained by reversing the gate sequence of the original

circuit and replacing each gate with its inverse gate, as shown

in Figure 3 middle. The purpose of concatenation is to use PST

rather than fidelity as our metrics, thereby allowing us to avoid the

computationally expensive state tomography. The detailed reasons

are elaborated on in the Section 3.1. For example, assuming a circuit

consisting of a CNOT gate and an X gate, after concatenation, the

circuit will be “CNOT + X + barrier + X + CNOT”. A barrier is placed to

prevent gate cancellation. The concatenated circuits will be sent to

the backends to obtain PSTs. Note that the dataset only contains the

original circuits without concatenation. As a result, if we need to

evaluate a new quantum circuit, we will feed it to the ML predictor.

Then the predicted PST for the concatenated circuit will be returned

by the ML model, which is highly correlated with the circuit’s

fidelity.

PST Calculation. The concatenated circuits will then be passed

to noisy backends to calculate the PST.We begin with the default ini-

tial state |00....0〉, and the PST represents the proportion of |00....0〉

in the output distribution. Our prediction model takes into account

the information from both quantum circuits and noisy backends.

As a result, the quantum circuits are simulated on backends with

differing noise levels to create our datasets. The backends’ noise

configurations are derived from real NISQ machines, with random

constants to change the noise levels.

3.3 Dataset Properties

Figure 4 depicts the relationships between PST and various circuit

and backend properties. We can anticipate a lower PST as the num-

ber of gates increases. The PST numbers are also influenced by the

number of CNOT gates, circuit depth, and noise level. To cover these

dimensions, we create random datasets with varying numbers of

qubits, gates, and backends of different noise levels. The PSTs of

these circuits are simulated on backends with five different noise

levels. As a result, the random circuits datasets contain 10000 data

points on noisy simulators. We also measure the PSTs of these cir-

cuits from five different real NISQ machines. The dataset on real

machines contains around 25000 data points. The performance of

our graph transformer model on random circuits is demonstrated

in Figure 7. In addition, our datasets include circuits used in quan-

tum algorithms such as quantum error correction [29], variational

quantum eigensolver [21], Grover search [13], quantum fourier

transform [8], quantum approximate optimization algorithm [11]

and quantum teleportation [2]. We select a total of 30 circuits de-

rived from quantum algorithms. The simulations are also carried

out on noisy simulators with varying noise levels to collect data

｜0〉
｜0〉
｜0〉

X

RZ

CNOT

CNOT

SX

Input Node

X Node
RZ Node

Measurement Node
CNOT Node
SX Node

Shared weights

Embed Circuit
to Graph (with

device noise info)

Graph Transformer Attention Layer

0
1

2

3

4

Node 1, 2, 3, 4 are neighbors of node 0

Global Average Pooling

FC Regressor Layers

Predicted Fidelity

0 1 3

2

Feature
Vectors

0

1
2
3
4

Compute
Query

0

1
2
3
4

1
2
3
4

Compute
Key

Compute
Value

V

K

Q

Compute
Attention
Scores

D

D

D

D

D

Softmax

Attention prob x Value

Output
New Features

4 4 D

Figure 5: Overview of the Graph Transformer for fidelity prediction. (i) Generate the graph according to quantum circuit, and

then generate the feature vector for each of the node according to the quantum device noise information. (ii) For one Graph

Transformer layer, we perform graph attention layer to extract information and captures the neighboring correlations. The

weight matrices are shared across all nodes. (iii) Finally, a regressor containing several FC layers regresses the circuit PST (an

approximation of fidelity).

Algorithm 1: Attention in Graph Transformer

Input: Circuit graph: 𝐺 with 𝐾 nodes
Length of feature vector: 𝐷

Node features: H ∈ R𝐾×𝐷

Query, Key, Value weights {W𝑄 ,W𝐾 ,W𝑉 } ∈ R𝐷×𝐷

Q = W𝑄 · H
K = W𝐾 · H
V = W𝑉 · H
do in parallel

for 𝑖 = 0 to 𝐾 do
Obtain neighbor nodes N𝑖 according to 𝐺

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑖 𝑗 = Q𝑖 · K
	
𝑗
, 𝑗 ∈ N𝑖

attention_score = attention_score/sqrt(|N𝑖 |)
attention_prob = Softmax(attention_score)
attention_out𝑖 =

∑
𝑗 ∈N𝑖

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑏𝑖 𝑗 ·𝑉𝑗

attention_out𝑖 ∈ R
𝐷

end
end

Output: attention_out ∈ R𝐾×𝐷

points. The performance of our graph transformer model on these

circuits is demonstrated in Figure 8.

4 Predictor

The dataset introduced in the previous section enables a data-driven

approach to learning the PST from circuit and noise features. This

section will continue to present a case study of a deep learning

model, graph transformer, for circuit PST prediction. Figure 5 shows

the overview of the framework. A gate graph is firstly extracted

from the circuit. Then the node features are generated according

to the gate type, noise information, etc. Next, a graph transformer

containing attention operations is introduced to process the node

features and neighboring relations. Finally, a PST regression layer

outputs the predicted values.

4.1 Graph Construction

We firstly use directed acyclic graphs (DAG) to represent the topol-

ogy of quantum circuits. Each node represents one qubit, quantum

gate, or measurement. Edges represent the time-dependent order of

different gates. One example of extracting the graph from the circuit

is presented on the left of Figure 5. The connectivity can be encoded

into an adjacent matrix. With the TorchQuantum framework, the

DAG can be conveniently converted from the circuit.

4.2 Node Features

For each node in the graph, we generate a vector representing the

features. The features include gate type, target qubit index, T1 and

T2 of the target qubit, gate error, and gate index, as shown in Fig-

ure 6. In our experiments, we set the maximum qubit number to

10, and the feature vector has a length of 24. The first 6 numbers

are one-hot vectors describing the gate type: initial input qubit,

measurement, RZ, X, SX, or CNOT. Then we use 10 numbers to de-

scribe the target gate qubit(s). If this gate acts on the 𝑖th qubit, the

𝑖th number of the vector is set to 1 and otherwise 0. That also ap-

plies to multi-qubit gates. Then we use the following 7 numbers to

describe the calibration information of the backend with the follow-

ing format: [T1, T2 for the first target qubit, T1, T2 for the second

target qubit, gate error rate, readout error10, readout error01]. If a

feature is not applicable for a particular node, the corresponding

value is set to 0. For example, RZ acts on only one qubit, so T1

and T2 for the second target qubit are set to 0. Since RZ is not a

measurement, readout error10 and readout error01 are set to 0 also.

The last number is used to encode the index of the node. The whole

featur vector is illustrated in Figure 6.

0, 1, 0, 0, 0, 0,

One-Hot
Node Type

0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

One-Hot
Gate Qubit

140.3, 200.2, 120.5, 230.6, 0.004,

First Qubit
T1, T2

Second Qubit
T1, T2

Gate Error
Rate

0.03,

Readout
Error 0 - 1

0.05,

Readout
Error 1 - 0

11

Gate
Index

Figure 6: Node feature vector.

Noisy Simulator IBM Geneva IBM Hanoi

IBM Montreal IBM Mumbai IBM Toronto

Ground Truth PST Ground Truth PST Ground Truth PST

Ground Truth PSTGround Truth PSTGround Truth PST

P
re

d
ic

te
d

 P
S

T
P

re
d

ic
te

d
 P

S
T

P
re

d
ic

te
d

 P
S

T

P
re

d
ic

te
d

 P
S

T

P
re

d
ic

te
d

 P
S

T

P
re

d
ic

te
d

 P
S

T

R2=0.991 R2=0.955 R2=0.969

R2=0.977 R2=0.971 R2=0.984

Figure 7: Scatter plots of PST of randomly generated circuits on noisy simulators and 5 real machines. Our transformer can

provide accurate estimations of PST with R2 higher than 0.95.

4.3 Graph Transformer

To process graphs with node features, we propose to use a graph

transformer as shown in Figure 5 right. The transformer contains

multiple layers, each containing the attention operation. The atten-

tion is described in Algorithm 1. the Query, Key, and Value vectors

for each node are computed with shared weights. Then for one

node, we fetch the Key vectors of its neighboring nodes and com-

pute Query × Key	 . The outputs are attention scores which are

then normalized according to the square root of the number of

neighbors. Softmax is adopted to normalize the attention scores.

The output is called attention probability because the values add

up to one. The probability vector is then employed as weights to

perform a weighted sum of the Value vectors of the neighboring

nodes. The output has the same dimension as the input feature

of the center node. After that, we perform a residual connection

between input and output of attention with a layer normalization.

The output will be the feature vector of the next layer. Note that

computations on all nodes are done simultaneously.

After multiple transformer layers, we obtain a learned feature

on each node, with its neighbors influenced. If deep enough, each

node can access to features of all nodes in the graph. Finally, we

perform a global average pooling of the node features and obtain

an aggregated node feature vector. Then a regressor with three FC

layers is appended to output the final regressed PST. Besides node

feature, we also leverage global features, representing the circuit

depth, width, and counts of RZ, X, SX, and CNOT gates. The global

feature vector is concatenated with the aggregated node feature

vector and fed to the regressor.

The computational complexity of the proposed graph trans-

former is polynomial to qubit number since the overall number of

gates is typically polynomial to qubit number.

5 Evaluation

5.1 Evaluation Methodology

Model and Training Setups. In the default setup, we use two

layers of graph transformers. The embedding dimension is 24 since

we have 24 features. The dimension for the Query, Key, and Value

Ground Truth PST Ground Truth PST Ground Truth PST

P
re

d
ic

te
d
 P

S
T

P
re

d
ic

te
d
 P

S
T

P
re

d
ic

te
d
 P

S
T

Figure 8: Scatter plots of circuit PST of 30 quantum algorithms on noisy simulators. Our transformer can provide accurate

estimations of PST with R2 0.99.

Training Steps Training Steps

R
M

S
E

R
M

S
E

Noisy Simulator IBM Hanoi

Final RMSE: 0.02239 Final RMSE: 0.04877

Figure 9: Training curves of transformer models on noisy

simulators and IBM Hanoi datasets for random circuits.

Table 1: Prediction RMSE vs. Whether Using Global Features

Features Noisy Simulator IBM Geneva IBM Hanoi

w/o Global Features 0.0239 0.0757 0.0506

w/ Global Features 0.0232 0.0723 0.0500

vectors is also 24. We use single-head attention layers. The global

average pooling across nodes generates a single 24 dimensional

vector as the aggregated feature for a circuit. If global features are

enabled, we use two FC layers with hidden and output dimensions

of 12 to pre-process and concatenate it with the aggregated node

feature. The concatenated feature is processed with additional three

FC layers with hidden dimension 128 and output dimension 1. This

output is treated as the predicted PST value.We use ReLU activation.

We normalize the node features across the dataset by removing

the mean and dividing the standard deviation. We then train the

models with Adam optimizer for 500 epochs with a constant learn-

ing rate of 10−2, weight decay 10−4, batch size 2500 and MSE loss.

Then we choose the model that performs best on the validation set

to test on the test set.

Dataset Setup. For noisy simulators datasets, we have 10000

random circuits and 350 circuits for 30 quantum algorithms each.

For real machine datasets, we collect 5000, 5000, 5450, 2750, and

6750 random circuits for IBM Geneva, IBM Hanoi, IBM Montreal,

IBM Mumbai, and IBM Toronto, respectively. We split the dataset

into three parts, the training set includes 70% data, the validation

set includes 20% data, and the test set consists of the last 10%.

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Random
Noisy Simulator

Random
Geneva

Random
Hanoi

Random
Montreal

Random
Mumbai

Random
Toronto

Algorithm
Noisy Simulator

Average

0.04

0.01

0.05

0.05
0.050.05

0.07

0.02

0.06

0.06

0.07

0.050.05
0.05

0.07

0.03

Simple NN Graph Transformer

R
M

S
E

Figure 10: The proposed graph transformer-based model can

outperform the simple NN model on various benchmarks.

5.2 Experimental Results

Figure 7 shows the scatter plots of transformer predicted PST vs.

the ground truth PST for randomly generated circuits on the test

set. The red dash line is the 𝑦 = � line. We train one separate model

for each of the backend settings. For results on noisy simulators,

the points are close to the 𝑦 = � line with an R2 value of 0.991. On

real machines, the difficulty is greater than on noisy simulators.

Although the predictor R2 is lower than noisy simulators, they are

still higher than 0.95. Furthermore, as in Figure 8, we select 30 repre-

sentative quantum algorithms as benchmarks and show the scatter

plots for predicted PST on the test set. Each color represents one al-

gorithm circuit under different noise models. We train one common

model for the 30 algorithm circuits. The transformer model can

effectively track the PST value, especially for those spanning a wide

range of PST. The overall R2 for 30 benchmarks is 0.9985. We also

show the two representative training curves on noisy simulators

and the real quantum machine IBM Hanoi in Figure 9. The training

loss converges after around 200 steps. The convergence speed on

real machine data is slightly slower than the noisy simulator data

and has a higher final RMSE (around 0.05).

Besides, we also compare our transformer-based model with the

simple NN model adapted from [30] as in Figure 10. The simple

NN model only takes 116 features as input, which include circuit

depth, width, and counts of RZ, X, SX, and CNOT gates, single-qubit

gate counts on each qubit, and two-qubit gate counts on each qubit

pair. It uses 3 FC layers with hidden dimension 128 and ReLU

activation to regress the PST. We compare the RMSE on the test set

for random circuits on 6 benchmarks and 30 algorithm circuits on

Table 2: Importance Comparison of Node Features

Features Noisy Simulator IBM Geneva IBM Hanoi

All Features 0.0232 0.0723 0.0500

w/o Gate Error Rate 0.0235 0.0732 0.0501

w/o Gate Index 0.0247 0.0730 0.0497

w/o Gate Type 0.0236 0.0742 0.0512

w/o Qubit Index 0.0239 0.0736 0.0514

w/o T1&T2 0.0239 0.0707 0.0491

Table 3: Prediction RMSE vs. Transformer Layer Number

Layers Noisy Simulator IBM Geneva IBM Hanoi

1 0.0230 0.0720 0.0491

2 0.0232 0.0723 0.0500

3 0.0232 0.0719 0.0500

noisy simulators. On average, the RMSE of the transformer model is

0.02 better than the simple NN model. On the algorithm circuit, the

gap is even more apparent – up to 0.05. The R2 on algorithm circuits

with transformer is also much higher than simple NN (0.9985 vs.

0.9110). That shows the effectiveness of involving circuit graph

information in the model.

5.3 Analysis

In Table 1, we show the effectiveness of concatenating the global

features to the aggregated node features. Adding global features can

reduce the RMSE loss on the test set with negligible computational

overhead. The effectiveness is especially significant in IBM Geneva,

where the RMSE is reduced by around 0.003.

Table 2 further performs an ablation study on the importance of

each feature in the node feature vectors. We remove one feature

while keeping all other features in each experiment and then train

the model again to obtain the results and report the RMSE loss

on the test set. The bold values mark the largest two losses when

removing different features. We can see that removing ‘Qubit Index’

severely degrades the accuracy in all three backends. This may be

because the qubit index helps the transformer model know the

location of the gate. Removing ‘Gate Type’ also has a substantial

negative impact since the model will not know the node type. We

also observe that removing some features even improves the accu-

racy. This only happens on the real machine backend and maybe

because of the large fluctuations of noise on the real backend.

Table 3 shows the relationship between the number of trans-

former layers with the prediction performance. We find that dif-

ferent model sizes do not greatly impact accuracy. On the noisy

simulator and IBM Hanoi datasets, the one-layer model slightly

outperforms the others, while on the IBM Geneva dataset, the three-

layer model is the best. Therefore, in most of our experiments, we

use a two-layer model as a trade-off.

Furthermore, we show the performance differences under differ-

ent numbers of shots in noisy simulators as in Table 4. As the shots

Table 4: Prediction RMSE vs. Number of Shots

Shots IBM Jakarta IBM Lima IBM Manila

512 0.0287 0.0266 0.0440

1024 0.0352 0.0246 0.0403

2048 0.0305 0.0217 0.0410

4096 0.0294 0.0250 0.0399

Table 5: Runtime of Simulation vs. Transformer Predictor

Simulation Predictor (bsz=1) Predictor (bsz=10)

Latency (s) 5.57E-1 2.79E-3 3.28E-4

increase, the precision of the ground truth PST in the training set

will be improved and will converge to the true PST when the shots

are infinity. However, counter-intuitively, we find that increasing

shot number does not guarantee better model accuracy.

Finally, besides theoretical proof of lower computation complex-

ity of our model, we also perform empirical runtime comparisons

as shown in Table 5. We run both the circuit simulator and the

graph transformer on an Nvidia 3090 GPU with 24GB memory for

1000 sampled circuits from the random circuit dataset, and report

average runtime. We select batch size 1 or 10 for the graph trans-

former predictor. The predictor achieves 200× and 1.7K× speedup

over classical simulators to obtain the PST for batch size 1 and 10,

respectively. That demonstrates the much higher efficiency of our

graph transformer-based predictor.

6 Conclusion

Using machine learning to optimize quantum system problems is

promising. This paper presents a case study of the ML for Quantum

part of TorchQuantum library. We are inspired by that a quantum

circuit is a graph and propose to leverage a graph transformer model

to predict the circuit fidelity under the influence of quantum noise.

First, we collect a large dataset of randomly generated circuits and

algorithm circuits, and measure their fidelity on simulators and

real machines. A graph with feature vectors for each node is con-

structed according to the circuit. The graph transformer processes

the circuit graph and calculates the anticipated fidelity value for the

circuit. Instead of the exponential cost of performing whole circuit

simulations, we can effectively evaluate the fidelity under polyno-

mial complexity. The datasets and models have been integrated

into the TorchQuantum library, and we hope they can accelerate

research in the ML and Quantum field.

Acknowledgment

We thank National Science Foundation, MIT-IBM Watson AI Lab,

and Qualcomm Innovation Fellowship for supporting this research.

This work is funded in part by EPiQC, an NSF Expedition in Com-

puting, under grants CCF-1730082/1730449; in part by STAQ under

grant NSF Phy-1818914; in part by DOE grants DE-SC0020289 and

DE-SC0020331; and in part by NSF OMA-2016136 and the Q-NEXT

DOE NQI Center. We acknowledge the use of IBM Quantum ser-

vices for this work.

References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine

translation by jointly learning to align and translate. arXiv:1409.0473 (2014).
[2] Charles H Bennett, Gilles Brassard, Claude Crépeau, et al. 1993. Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.
Physical review letters 70, 13 (1993), 1895.

[3] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, NathanWiebe,
and Seth Lloyd. 2017. Quantum machine learning. Nature (2017).

[4] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage. 2019.
Trapped-ion quantum computing: Progress and challenges. Applied Physics
Reviews 6, 2 (2019), 021314.

[5] Marco Cerezo, Alexander Poremba, Lukasz Cincio, and Patrick J Coles. 2020.
Variational quantum fidelity estimation. Quantum 4 (2020), 248.

[6] Ranyiliu Chen, Zhixin Song, Xuanqiang Zhao, and Xin Wang. 2021. Variational
quantum algorithms for trace distance and fidelity estimation. Quantum Science
and Technology 7, 1 (2021), 015019.

[7] Jinglei Cheng, Haoqing Deng, and Xuehai Qia. 2020. Accqoc: Accelerating
quantum optimal control based pulse generation. In ISCA (2020). IEEE, 543–555.

[8] Don Coppersmith. 2002. An approximate Fourier transform useful in quantum
factoring. arXiv preprint quant-ph/0201067 (2002).

[9] Poulami Das, Christopher A Pattison, Srilatha Manne, Douglas M Carmean,
Krysta M Svore, Moinuddin Qureshi, and Nicolas Delfosse. 2022. AFS: Accurate,
Fast, and Scalable Error-Decoding for Fault-Tolerant Quantum Computers. In
HPCA (2022). IEEE, 259–273.

[10] Alexey Dosovitskiy, Lucas Beyer, et al. 2020. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv:2010.11929 (2020).

[11] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

[12] András Gilyén and Alexander Poremba. 2022. Improved Quantum Algorithms
for Fidelity Estimation. arXiv preprint arXiv:2203.15993 (2022).

[13] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search.
In STOC (1996). 212–219.

[14] Jeremy Hsu. 2018. Intel49. In Intel.
[15] Zhirui Hu, Peiyan Dong, Zhepeng Wang, Youzuo Lin, Yanzhi Wang, and Weiwen

Jiang. 2022. Quantum Neural Network Compression. ICCAD (2022).
[16] Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and

Eddy Z Zhang. 2021. Autobraid: A framework for enabling efficient surface code
communication in quantum computing. In Micro (2021). 925–936.

[17] Hsin-Yuan Huang, Richard Kueng, and John Preskill. 2020. Predicting many
properties of a quantum system from very few measurements. Nature Physics
16, 10 (2020), 1050–1057.

[18] IBM. 2022. IBM Unveils Breakthrough 127-Qubit Quantum Processor. In IBM.
[19] Qiskit IBM. 2021. https://qiskit.org/textbook/ch-quantum-hardware/calibrating-

qubits-pulse.html
[20] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. 2021. A co-design framework of

neural networks and quantum circuits towards quantum advantage. Nature
communications 12, 1 (2021), 1–13.

[21] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M Chow, and Jay M Gambetta. 2017. Hardware-efficient variational
quantum eigensolver for small molecules and quantum magnets. Nature (2017).

[22] Julian Kelly. 2018. A Preview of Bristlecone, Google’s New Quantum Processor.
In Google.

[23] Emanuel Knill, Dietrich Leibfried, Rolf Reichle, Joe Britton, R Brad Blakestad,
John D Jost, Chris Langer, Roee Ozeri, Signe Seidelin, and David J Wineland. 2008.
Randomized benchmarking of quantum gates. Physical Review A 77, 1 (2008).

[24] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson,
and William D Oliver. 2019. A quantum engineer’s guide to superconducting
qubits. Applied Physics Reviews 6, 2 (2019), 021318.

[25] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois,
Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes
Herrmann, et al. 2022. Realizing repeated quantum error correction in a distance-
three surface code. Nature 605, 7911 (2022), 669–674.

[26] Zhiding Liang, Jinglei Cheng, Hang Ren, Hanrui Wang, Fei Hua, Yongshan Ding,
Fred Chong, Song Han, Yiyu Shi, and Xuehai Qian. 2022. PAN: Pulse Ansatz on
NISQ Machines. arXiv preprint arXiv:2208.01215 (2022).

[27] Zhiding Liang, Hanrui Wang, Jinglei Cheng, Yongshan Ding, Hang Ren, Xuehai
Qian, Song Han, Weiwen Jiang, and Yiyu Shi. 2022. Variational quantum pulse
learning. QCE (2022).

[28] Zhiding Liang, Zhepeng Wang, Junhuan Yang, Lei Yang, Yiyu Shi, and Weiwen
Jiang. 2021. Can noise on qubits be learned in quantum neural network? a case
study on quantumflow. In ICCAD (2021). IEEE, 1–7.

[29] Daniel A Lidar and Todd A Brun. 2013. Quantum error correction. Cambridge
university press.

[30] Ji Liu and Huiyang Zhou. 2020. Reliability Modeling of NISQ- Era Quantum
Computers. In IISWC (2020). 94–105.

[31] Easwar Magesan, Jay M Gambetta, and Joseph Emerson. 2011. Scalable and
robust randomized benchmarking of quantum processes. Physical review letters

106, 18 (2011), 180504.
[32] Easwar Magesan, Jay M Gambetta, and Joseph Emerson. 2012. Characterizing

quantum gates via randomized benchmarking. Physical Review A 85, 4 (2012),
042311.

[33] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Me-
ter. 2020. Extracting success from ibm’s 20-qubit machines using error-aware
compilation. JETC (2020) 16, 3 (2020), 1–25.

[34] Alberto Peruzzo, Jarrod McClean, et al. 2014. A variational eigenvalue solver on
a photonic quantum processor. Nature communications 5, 1 (2014), 1–7.

[35] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (2018), 79.

[36] Gokul Subramanian Ravi, Kaitlin N Smith, Pranav Gokhale, Andrea Mari, Nathan
Earnest, Ali Javadi-Abhari, and Frederic T Chong. 2022. Vaqem: A variational
approach to quantum error mitigation. In HPCA (2022). IEEE, 288–303.

[37] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum support
vector machine for big data classification. Physical review letters 113, 13 (2014),
130503.

[38] rigetti. 2021. Rigetti Quantum. In rigetti.
[39] Seongok Ryu, Jaechang Lim, Seung Hwan Hong, and Woo Youn Kim. 2018.

Deeply learning molecular structure-property relationships using attention-and
gate-augmented graph convolutional network. arXiv:1805.10988 (2018).

[40] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. 2021.
Efficient attention: Attention with linear complexities. In WACV (2021).

[41] Kok Chuan Tan and Tyler Volkoff. 2021. Variational quantum algorithms to
estimate rank, quantum entropies, fidelity, and Fisher information via purity
minimization. Physical Review Research 3, 3 (2021), 033251.

[42] Swamit S Tannu and Moinuddin Qureshi. 2019. Ensemble of diverse mappings:
Improving reliability of quantum computers by orchestrating dissimilar mistakes.
In Micro (2019). 253–265.

[43] Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all qubits are created
equal: a case for variability-aware policies for NISQ-era quantum computers. In
ASPLOS (2019). 987–999.

[44] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. 2018.
Attention-based graph neural network for semi-supervised learning. arXiv
preprint arXiv:1803.03735 (2018).

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc.

[46] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[47] Hanrui Wang et al. 2020. Efficient algorithms and hardware for natural language
processing. Massachusetts Institute of Technology (2020).

[48] Hanrui Wang, Yongshan Ding, Jiaqi Gu, Yujun Lin, David Z Pan, Frederic T
Chong, and Song Han. 2022. Quantumnas: Noise-adaptive search for robust
quantum circuits. In HPCA (2022). IEEE, 692–708.

[49] Hanrui Wang, Jiaqi Gu, Yongshan Ding, Zirui Li, Frederic T Chong, David Z Pan,
and Song Han. 2022. QuantumNAT: Quantum Noise-Aware Training with Noise
Injection, Quantization and Normalization. DAC (2022).

[50] Hanrui Wang, Zirui Li, Jiaqi Gu, Yongshan Ding, David Z Pan, and Song Han.
2022. QOC: Quantum On-Chip Training with Parameter Shift and Gradient
Pruning. DAC (2022).

[51] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung
Lee, and Song Han. 2020. GCN-RL Circuit Designer: Transferable Transistor
Sizing with Graph Neural Networks and Reinforcement Learning. In DAC 2020.

[52] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan,
and Song Han. 2020. Hat: Hardware-aware transformers for efficient natural
language processing. ACL (2020).

[53] Hanrui Wang, Jiacheng Yang, Hae-Seung Lee, and Song Han. 2018. Learning to
design circuits. NeurIPS MLSys Workshop (2018).

[54] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spatten: Efficient sparse
attention architecture with cascade token and head pruning. In HPCA 2021.

[55] Qisheng Wang, Zhicheng Zhang, Kean Chen, Ji Guan, Wang Fang, and Ming-
sheng Ying. 2021. Quantum algorithm for fidelity estimation. arXiv preprint
arXiv:2103.09076 (2021).

[56] Zhepeng Wang, Zhiding Liang, Shanglin Zhou, Caiwen Ding, Yiyu Shi, and
Weiwen Jiang. 2021. Exploration of quantum neural architecture by mixing
quantum neuron designs. In ICCAD (2021). IEEE, 1–7.

[57] Xiao-Dong Yu, Jiangwei Shang, and Otfried Gühne. 2022. Statistical Methods
for Quantum State Verification and Fidelity Estimation. Advanced Quantum
Technologies (2022), 2100126.

[58] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. NeurIPS 32 (2019).

[59] Xiaoqian Zhang, Maolin Luo, Zhaodi Wen, Qin Feng, Shengshi Pang, Weiqi
Luo, and Xiaoqi Zhou. 2021. Direct fidelity estimation of quantum states using
machine learning. Physical Review Letters 127, 13 (2021), 130503.

