
On Approximating Degree-Bounded Network Design Problems

Xiangyu Guo
Dept. of Comp. Sci. and Eng.

University at Buffalo, USA
xiangyug@buffalo.edu

Guy Kortsarz
Dept. of Comp. Sci.

Rutgers University Camden, USA
guyk@camden.rutgers.edu

Bundit Laekhanukit
ITCS,

SUFE, China
bundit@sufe.edu.cn

Shi Li
Dept. of Comp. Sci. and Eng.

University at Buffalo, USA
shil@buffalo.edu

Daniel Vaz
Operations Research Group,

TU Munich, Germany
daniel.vaz@tum.de

Jiayi Xian
Dept. of Comp. Sci. and Eng.

University at Buffalo, USA
jxian@buffalo.edu

Abstract

Directed Steiner Tree (DST) is a central problem in combinatorial optimization and theoret-
ical computer science: Given a directed graph G = (V,E) with edge costs c ∈ RE

≥0, a root r ∈ V
and k terminals K ⊆ V , we need to output the minimum-cost arborescence in G that contains an
r→t path for every t ∈ K. Recently, Grandoni, Laekhanukit and Li, and independently Ghuge
and Nagarajan, gave quasi-polynomial time O(log2 k/ log log k)-approximation algorithms for
the problem, which are tight under popular complexity assumptions.

In this paper, we consider the more general Degree-Bounded Directed Steiner Tree (DB-
DST) problem, where we are additionally given a degree bound dv on each vertex v ∈ V , and
we require that every vertex v in the output tree has at most dv children. We give a quasi-
polynomial time (O(log n log k), O(log2 n))-bicriteria approximation: The algorithm produces a
solution with cost at most O(log n log k) times the cost of the optimum solution that violates
the degree constraints by at most a factor of O(log2 n). This is the first non-trivial result for
the problem.

While our cost-guarantee is nearly optimal, the degree violation factor of O(log2 n) is an
O(log n)-factor away from the approximation lower bound of Ω(log n) from the set-cover hard-
ness. The hardness result holds even on the special case of the Degree-Bounded Group Steiner
Tree problem on trees (DB-GST-T). With the hope of closing the gap, we study the question of
whether the degree violation factor can be made tight for this special case. We answer the ques-
tion in the affirmative by giving an (O(log n log k), O(log n))-bicriteria approximation algorithm
for DB-GST-T.

1 Introduction

Network design is a central problem in combinatorial optimization and computer science. To
capture more practical situations, the more general model of network design with degree-constraints
was suggested in the early 90’s [21, 8] and has attracted researchers in both theory and practice
for decades. One of the most famous examples is the Degree-Bounded Minimum Spanning Tree
(DB-MST) problem, which models the problem of designing a multi-casting network in which each
node only has enough power to broadcast to a bounded number of its neighbors. This problem has
been studied in a sequence of works (see, e.g.,[15, 17, 11, 23]), leading to the breakthrough result
of Goemans [11] followed by the work of Singh and Lau [23], which settled down the problem by
giving an algorithm that outputs a solution with optimum cost, while violating the degree bound
by an additive factor of +1 [23]. Since the works on DB-MST, many works have been dedicated to
the study the generalizations of the problem: the Degree-Bounded Steiner Tree problem, in which
the goal is to find a minimum-cost subgraph that connects all the terminals, while meeting the
given degree bounds, was studied in [16, 20]. The Survivable Network Design problem, where each
pair of nodes v, w are required to have at least λvw edge-disjoint v-w paths, has also been studied
in literature; see, e.g., [19, 20].

Recently, degree-bounded network design problems have been studied in the online setting [4, 3,
5]. Besides the standard (also called point-to-point) network design problems, Dehghani et al. [4]
also studied the Degree-Bounded Group Steiner Tree problem (DB-GST). They gave a negative
result, which shows that it is not possible to approximate both cost and weight of the Online DB-
GST problem simultaneously, even when the input graph is a star. More specifically, there exists
an input demand sequence that forces any algorithm to pay a factor of Ω(n) either in the cost or
in the degree violation. To date there was no non-trivial approximation algorithm for DB-GST,
either in the online or offline setting, and even when all the edges have zero-cost. This was listed
as an open problem by Hajiaghayi [13] at the 8th Flexible Network Design Workshop (FND 2016).

In this paper, we study a degree-bounded variant of the classic network design problem, the
Degree-Bounded Directed Steiner Tree problem (DB-DST). Formally, in DB-DST, we are given an
n-vertex directed graph G = (V,E) with costs on edges, a root vertex r, a set of k terminals K,
and degree bounds dv for each vertex v. The goal is to find a minimum-cost rooted tree T ⊆ G
that contains a path from the root r to every terminal t ∈ K, while respecting the degree bound,
i.e., the out-degree of each vertex v in T is at most dv. Despite being a classic problem, there was
no previous positive result on DB-DST as it is a generalization of DB-GST.

The barriers in obtaining any non-trivial approximation algorithm for DB-GST and DB-DST
are similar. Most of the previous algorithms to these two problems either run on the metric
closure of the input graph [9, 7, 22], require metric-tree embedding [9, 1, 6] or use height-reduction
techniques [24, 2, 12, 10], all of which lose track of the degree of the solution subgraph.

We solve the open problem of Hajiaghayi [13], by presenting a bi-criteria (O(log k log n), O(log2 n))-
approximation algorithm for DB-DST that runs in quasi-polynomial-time (see Section 1.1 for the
definition). Our technique expands upon the recent result of Grandoni, Laekhanukit and Li [12] for
the Directed Steiner Tree problem. We observe that the algorithm in [12] can be easily extended
to the problem with degree bounds. Nevertheless, to amend the degree-constrained problem into
their framework, we are required to prove a concentration bound for the degrees, which is rather
non-trivial. Notice that the O(log n log k)-approximation factor on the cost of the tree is almost
tight due to the hardness of Ω(log2−ε n) in [14] for Directed Steiner Tree and the slightly improved
hardness of Ω(log2 n/ log log n) in [12].

1

While our result for DB-DST is (almost) tight on the cost guarantee, the degree violation factor
O(log2 n) is an O(log n) factor away from the approximation lower bound of Ω(log n) from the
set-cover hardness. To understand if the gap can be reduced, we study the special case of DB-DST
obtained from the hardness construction in [14], namely the Degree-Bounded Group Steiner Tree
problem on trees (DB-GST-T). In this problem, we are given an (undirected) tree T ◦ = (V ◦, E◦)
with edge-costs, a root r, k subsets of vertices (called groups) O1, . . . , Ok ⊆ V and a degree bound
dv for each vertex v ∈ V ◦. The goal is to find a minimum-cost subtree T ⊆ T ◦ that joins r to at
least one vertex from each group Ot, for every t ∈ [k], while respecting the degree bound, i.e., the
number of children of each vertex v in T is at most dv. We present an (O(log k log n), O(log n))-
bicriteria approximation algorithm for DB-GST-T. So, the degree violation of our algorithm is tight
and the cost-guarantee is almost tight. This improves upon the O(log n log k, log n log k)-bicriteria
approximation algorithm due to Kortsarz and Nutov [18] who observe that the randomized rounding
algorithm in [9] also gives a guarantee on degree-violation.

1.1 Our Results

Our first result is an (O(log k log n), O(log2 n))-bicriteria approximation for DB-DST that runs in
quasi-polynomial time: We say that a randomized algorithm is an (α, β)-bicriteria-approximation
algorithm if it outputs a tree T containing an r→t path for every terminal t ∈ K such that the
number of children of every vertex v in T is at most β · dv, and the expected cost of the tree is at
most α times the cost of the optimum tree that does not violate the degree constraints.

Theorem 1.1. There is a randomized (O(log n log k), O(log2 n))-bicriteria approximation algorithm
for the degree-bounded directed Steiner tree problem in nO(logn)-time.

To the best of our knowledge, our result for DB-DST is the first non-trivial bicriteria approx-
imation for the problem. As we mentioned, the O(log n log k)-factor for the cost is almost tight
due to the hardness results of [14] and [12] for DST. There is a hardness of Ω(log n) for the degree
violation factor from the set-cover problem, even if we ignore the cost of the output tree.

Remark As in [12, 10], we could save a factor of log log n in the approximation factor for the
problem, with a slight increase in the running time. However, this complicates the algorithmic
framework. To deliver the algorithmic idea in a cleaner way, we choose to present the results with
O(log n log k) approximation ratios.

Our second result is for the degree-bounded group Steiner tree problem on trees (DB-GST-T).
We obtain an

(
O(log n log k), O(log n)

)
-bicriteria approximation, which is (almost) tight on both

factors:

Theorem 1.2. There is a randomized
(
O(log n log k), O(log n)

)
-bicriteria approximation for the

degree-bounded group Steiner tree problem on trees.

1.2 Our Techniques

Our algorithm for degree-bounded directed Steiner tree takes ingredients from both [12] and [10].
As in these papers, we consider an optimum solution, and recursively partition it into balanced
sub-trees; we then assign a “state” to each of these sub-trees. The tree structure of this recursive
partition, as well as all of the states, form what we call a state tree. We solve the problem indirectly,

2

by finding a good state tree, which we can transform back into a corresponding good solution. The
state of a sub-tree contains a set of special vertices in the sub-tree that we call portals; these were
used in [10] to obtain their improved approximation algorithm for DST. We construct a super-tree
T◦ that contains all possible state trees as sub-trees and reduce the problem considered into that
of finding a good sub-tree of small cost in T◦. This can be done by formulating a linear program
(LP) relaxation and rounding the LP solution using a recursive procedure. The construction of the
super-tree and the LP rounding techniques are similar to those in [12]. To extend the algorithm to
DB-DST, we need to store the degrees of all of the portals in the state.

This algorithmic framework outputs a so-called “multi-tree”: This is a tree where a vertex or
an edge can appear multiple times. Repeating the procedure for Q = O(log n log k) times, we
obtain a set of Q multi-trees. This process violates the degree requirements and thus we obtain
bicriteria approximation results. The analysis of this process is non-trivial as we need to prove a
concentration bound on the number of times a vertex appears in a multi-tree.

Our technique for DB-GST-T is in observing that the rounding algorithm for GST-T (no degree
bounds) in [9] is indeed a generalization of random walk. As we slightly boost the branching
probability by a constant factor, this (almost) does not affect the degree bound, but the probability
of connecting the root vertex to each group is amplified dramatically. A drawback is that it also
incurs a huge blow-up in the cost. To handle the blow-up, we stop amplifying the branching
probability when the connecting probability is sufficiently large. The best (but inaccurate) way
to illustrate our algorithm is by considering a random walk from the root vertex to a group Ot.
We change the random process by branching into two directions simultaneously in each step, and
then stop the extra branching when it generates Θ(log n) simultaneous random walks. Since we
have O(log n) simultaneous random walks, the cost incurred by the process is blown-up by a factor
O(log n), but the degree-violation is blown-up by only a factor 2. At the same time, the probability
of reaching the group Ot goes up by a factor Ω(log n). Thus, if we need O(log k log n) rounds to
reach every group, then we now need only O(log k) rounds. There is no difference in the cost for
running the algorithm for O(log k log n) rounds or O(log k) rounds (with an extra O(log n) factor
in the cost), but it saves a factor in the degree-violation of O(log n).

2 Preliminaries for Degree-Bounded Directed Steiner Tree

2.1 Notations and Assumptions

In our algorithm and analysis for the DB-DST problem, a tree is always an out-arborescence. Given
a tree T , we use root(T) to denote its root. Given T and a vertex v in T , we use ΛT (v) to denote the
set of children of v, and Λ∗T (v) to denote the set of descendants of v (including v itself) in the tree
T . A sub-tree T ′ of T is a weakly-connected sub-graph of T ; such a T ′ must be an out-arborescence.
Sometimes, we shall use left and right children to refer to the two children of a vertex in a tree;
in this case, the order of the two children is important and will be clearly specified. For an edge
e = (u, v), we use tail(e) = v to denote its tail. For a triple ξ = (u, v, v′) of three vertices, we use
second(ξ) = v and third(ξ) = v′ to denote the second and third parameter of ξ.

Our input digraph is G. Let dmax = maxv∈V dv. We shall assume each terminal t ∈ K has only
one incoming edge and no outgoing edges in G. This can be assumed w.l.o.g using the following
simple operation: For every terminal t ∈ K that does not satisfy the condition, we add a new
vertex t′, an edge (t, t′) and replace t with t′ in K. We increase dt by 1 and set dt′ = 0.

3

One more assumption we can make is that each non-terminal u ∈ V \K has at most 2 outgoing
edges in G. To make sure that this holds, we focus on some non-terminal u with b ≥ 3 outgoing
edges. We replace the star centered at u with its b outgoing edges by a gadget which is a full
binary-tree rooted at u with b leaves being the out-neighbors of u. For every newly added vertex
u, we set du = dmax. This way every vertex in G will have at most 2 outgoing edges. The cost of
the edges in the gadget can be naturally defined. However, this operation changes the degree of
vertices. To address this issue, we define a simple transformation function φv : Z → Z for every
v ∈ V as follows: If v is a vertex in the original graph, then φv is identically 1. Otherwise, v is a
non-root internal vertex of some gadget and we define φv to be the identity function. Then we can
compute the original degree ρu of a vertex u in a tree T of G recursively as follows: ρu = 0 if u is
a leaf, and ρu =

∑
v∈ΛT (u) φv(ρv) otherwise. So, we require that for every v in the output tree T ,

the original degree ρv of v is at most dv.

2.2 Balanced Tree Partition

We shall use the following basic tool as the starting point of our algorithm design. Its proof is
elementary and deferred to Appendix A.

Lemma 2.1. Let T = (VT , ET) be an n-vertex binary tree. Then there exists a vertex v ∈ VT with
n/3 < |Λ∗T (v)| ≤ 2n/3 + 1.

Given a tree T = (VT , ET) as in the lemma, we can partition it into two trees T1 = (VT1 , ET1) and
T2 = (VT2 , ET2), where T2 contains vertices in Λ∗T (v) and T1 contains vertices in VT \ (Λ∗T (v) \ {v}).
First assume n ≥ 4. Since 2n/3 + 1 < n, we know that v 6= root(T), thus implying root(T1) =
root(T) 6= root(T2) = v, which is a leaf in T1. Consequently, we have ET1] ET2 = ET and
VT1 ∪ VT2 = VT , VT1 ∩ VT2 = {root(T2)}. Moreover, |VT1 |, |VT2 | ≤ 2n/3 + 1, which is strictly less
than n. Thus, T1 and T2 are sub-trees that form a balanced partition of (the edges of) T . We call
this procedure the balanced tree partitioning on T .

When n = 3, there are 2 types of trees. If the root has two children, then we could not make
both |VT1 | and |VT2 | to be smaller than 3. If the tree is a path of 2 edges, then we can choose v to
be the middle vertex and the procedure partitions the tree into two edges. Later, we shall apply
the balanced tree partitioning procedure recursively. We stop the recursion when the tree is either
an edge, or only contains the root and its 2 children. In other words, the tree has only 1 level of
edges.

2.3 Multi-Tree

We define a multi-tree in G as an intermediate structure. It is simply a tree over multi-sets of
vertices and edges in G:

Definition 2.2 (Multi-Tree). Given the input digraph G = (V,E), a multi-tree in G is a tree
T = (VT , ET) where every vertex a ∈ VT is associated with a label label(a) ∈ V such that for every
(a, b) ∈ ET , we have (label(a), label(b)) ∈ E.

We say that each vertex a ∈ VT is a copy of the vertex label(a) ∈ V and each edge (a, b) ∈ ET
is a copy of the edge (label(a), label(b)) ∈ E. So, we say that T is rooted at a copy of v ∈ V ,
if label(root(T)) = v, and T contains a copy of some v ∈ V if there exists some a ∈ VT with
label(a) = v. We extend the costs ce, the functions φv and the degree bounds dv automatically

4

to their copies in a multi-tree. That means, for a vertex a and an edge (a, b) in a multi-tree,
da = dlabel(a), φa ≡ φlabel(a) and c(a,b) = c(label(a),label(b)). The cost of a multi-tree T = (VT , ET) is
naturally defined as cost(T) =

∑
e∈ET ce. Given a multi-tree T , the “original degree” ρa of a vertex

a can be computed in the same way as before.

Definition 2.3 (Good Multi-Trees). Let T = (VT , ET) be a multi-tree in G. We say that T is good
if it is rooted at a copy of r, has leaves being copies of terminals, and the original degree of any
vertex a in T is at most da.

We can then state the main theorem for DB-DST, which we prove in Sections 3 to 5.

Theorem 2.4 (Main Theorem for DB-DST). There is an nO(logn)-time randomized algorithm that
outputs a good multi-tree T = (VT , ET) such that

(2.4a) ET [cost(T)] ≤ opt, where opt is the cost of the optimum solution for the instance.

(2.4b) For every t ∈ K, we have PrT [VT contains a copy of t] ≥ Ω(1/ log n).

(2.4c) For some s = Ω
(

1
logn

)
, it holds, for every v ∈ V , that

E
[
exp

(
s · (number of copies of v in T)

)]
≤ 1 +O

(
1

logn

)
.

We show that this implies Theorem 1.1.

Proof of Theorem 1.1. We run the algorithm in Theorem 2.4 Q times to obtain Q good multi-trees
T1, T2, · · · , TQ, for some large enough Q = O(log n log k). Our output will contain all edges that
appear in the Q multi-trees. Notice that the output may not be a tree, but we can remove edges
so that it becomes a tree. Applying union bound, all terminals appear in the union of the Q trees
with probability at least 0.9, when Q is big enough. By Property (2.4c) in the theorem statement,
we have for every v,

E
[
exp

(
s · (# copies of v in T1, · · · , TQ)

)]
≤
(

1 +O

(
1

log n

))Q
= exp(O(log k)).

The above inequality holds since the Q trees are produced independently.
Thus, if M = O(log n) is big enough, by Markov’s inequality we have

Pr
[
exp

(
s · (# copies of v in T1, · · · , TQ)

)
≥ exp(M)

]
≤ 1

10n
.

The event on the left side is exactly that the number of copies of v in T1, · · · , TQ is at least M/s.
Thus, with probability at least 0.8, every terminal t appears in one of the Q trees and every

vertex v appears at most M/s = O(log2 n) times in T1, T2, · · · , TQ. Taking the union of all trees and
reflecting the edges in original graph G, we have a sub-graph G′ of G that contains a path from r to
every terminal t ∈ K. The total cost of edges in G′ is at most O(log n log k)·opt. For every vertex v,
the out-degree of v in G′ will be at most (M/s)dv = O(log2 n)dv. We can take an arbitrary Steiner
tree T in G′ as the output of the algorithm. This gives us an (O(log n log k), O(log2 n))-bicriteria
approximation algorithm for the degree-bounded directed Steiner tree problem. The running time
of the algorithm is nO(logn).

5

Organization The remaining part of the paper is organized as follows. In Section 3, we define
states and good state trees. In Section 4, we argue that the problem of finding a small cost valid
tree can be reduced to that of finding a small cost state-tree. In Section 5, we present our linear
programming rounding algorithm that finishes the proof of Theorem 2.4. Section 6 is dedicated to
the proof of Theorem 1.2 for the degree-bounded group Steiner tree problem on trees (DB-GST-T).

3 States and State-Trees

Given the optimum tree T ∗ (which is binary by our assumptions) for the DB-DST problem, we can
apply the balanced tree partitioning recursively to obtain a decomposition tree: We start from T ∗

and partition it into two trees T1 and T2 using the balanced-tree-partitioning procedure, and then
recursively partition T1 and T2 until we obtain sub-trees with 1 level of edges: Such a tree contains
either a single edge, or two edges from the root. Then the decomposition tree is a full binary tree
where each node corresponds to a sub-tree of T ∗. Due to the balance condition, the height of the
tree will be O(log n). Throughout the paper, we shall use h = Θ(log n) to denote an upper bound
on the height of this decomposition tree.

Thanks to its small depth, the decomposition tree becomes the object of interest. However,
as each node in the tree corresponds to a sub-tree of the optimum solution T ∗, it contains too
much information for the algorithm to handle. Instead, we shall only extract a small piece of
information from each node that we call the state of the node. On one hand, a state contains much
less information than a sub-tree does, so we can afford to enumerate all possible states for a node.
On the other hand, the states of nodes in the decomposition tree still contain enough information
for us to check whether the correspondent multi-tree is good. We call the binary tree of states a
state tree; we require in a good state tree, the states of nodes satisfy some consistency constraints.
Then we can establish a two-direction connection between good multi-trees and good state trees.

Given a valid tree T in G and a sub-tree T ′ of T , we now start to make definitions related to
the state of T ′ w.r.t T . It is convenient to think that T is the optimum tree T ∗ and T ′ is a sub-tree
of T = T ∗ obtained from the recursive balanced-partitioning procedure, since this is how we use
the definitions. However, the definitions are w.r.t general T and T ′; from now on till the end of
Section 3, we fix any valid tree T and its sub-tree T ′.

3.1 Portals

Other than root(T ′), the state for T ′ w.r.t T contains the set of portals of T ′:

Definition 3.1. A vertex v in T ′ is a portal in T ′, if v is root(T ′) or a non-terminal leaf of T ′.

In general, the set of portals of T ′ can be large, but if T ′ is obtained from the recursive balanced-
tree-partitioning procedure for T , then the number of portals can be shown to be at most h + 1.
As we shall often use the root and set of portals together, we make the following definition:

Definition 3.2 (Root-Portals-Pair). (r′, S) is called a root-portals-pair if r′ ∈ S ⊆ V \K.

It is easy to see that the root-portal-pairs for an internal node of the decomposition tree and
its two children satisfy some properties stated in the following definition:

Definition 3.3 (Allowable Child-Pair). Given three root-portals-pairs (r′, S), (r′, S1) and (r′′, S2),
we say ((r′, S1), (r′′, S2)) is an allowable child-pair of (r′, S) if r′′ /∈ S, S1 ∪ S2 = S ∪ {r′′} and
S1 ∩ S2 = {r′′}.

6

The following claim motivates the definition of allowable child pairs:

Claim 3.4. Assume T ′ = (V ′, E′) contains at least 2 levels of edges. Let T ′1 = (V ′1 , E
′
1) and

T ′2 = (V ′2 , E
′
2) be the two sub-trees obtained by applying the balanced tree partitioning on T ′. Let

r′ = root(T ′) = root(T ′1), r′′ = root(T ′2) 6= r′ and S, S1, S2 be the sets of portals in T ′, T ′1, T
′
2

respectively. Then, ((r′, S1), (r′′, S2)) is an allowable child-pair of (r′, S).

Proof. First, r′′ is not a portal of T ′ since it is a non-root internal vertex in of T ′. Second, it is
easy to see that S1 = (S ∪ {r′′}) ∩ V ′1 and S2 = (S ∪ {r′′}) ∩ V ′2 . So, S1 ∪ S2 = S ∪ {r′′} and
S1 ∩ S2 = {r′′}.

3.2 Degree Vectors

The next piece of the information in a state is a degree vector :

Definition 3.5. A degree vector for a set S ⊆ V \K is a vector ρ = (ρv)v∈S, where ρv is an integer
in [1, dv] for every v ∈ S.

Supposedly, ρv will be the original degree of v in the tree T .

Definition 3.6 (Consistency of degree vectors). Given a root-portals-pair (r′, S), an allowable
child-pair ((r′, S1), (r′′, S2)) of (r′, S), three degree vectors ρ, ρ1 and ρ2 for S, S1 and S2 respectively,
we say ρ1 and ρ2 are consistent with ρ, if

• for every v ∈ S1 \ {r′′}, we have ρv = ρ1
v,

• for every v ∈ S2 \ {r′′}, we have ρv = ρ2
v and

• ρ1
r′′ = ρ2

r′′.

So, the degree vectors are consistent if there is no contradictory information among them.

Definition 3.7 (Edge/Triple Agreeing with Degree Vector). Given a root-portals-pair (r′, S) with
|S| ≤ 2, a degree vector ρ for S, and an edge (r′, v) ∈ E with {r′, v} \K = S, we say (r′, v) agrees
with ρ if ρr′ = (φv(ρv) or 1), where (φv(ρv) or 1) denotes φv(ρv) if ρv is defined (i.e, if v ∈ S) and
1 otherwise.

Similarly, given a root-portals-pair (r′, S) with |S| ≤ 3, a degree vector ρ for S, and two edges
(r′, v), (r′, v′) ∈ E such that {r′, v, v′} \ K = S, we say the triple (r′, v, v′) agrees with ρ if ρr′ =
(φv(ρv) or 1) + (φv′(ρv′) or 1).

Notice that in the above definition either v ∈ S or v ∈ K. In the former case, ρv is defined;
in the latter case ρv is not defined but we know φv is identically 1. The same argument holds for
v′. The definition corresponds to the case when T ′ is a base case of the recursive balanced tree
partitioning, i.e., T ′ contains only 1 level of edges. If T ′ contains an edge e = (r′, v), then the portal
set of T ′ is {r′, v}\K. We shall have ρr′ = φv(ρv) or 1. Thus, if ρ is restricted to the portal set, we
have ρr′ = (φv(ρv) or 1). Similarly, if T ′ contains 3 vertices (r′, v, v′) with r′ being the root, then
we must have ρr′ = (φv(ρv) or 1) + (φv′(ρv′) or 1).

7

3.3 States and Good State-Trees

With degree vectors, we can define states and good state-trees:

Definition 3.8. A state is a tuple (r′, S, ρ) where (r′, S) is a root-portals-pair and ρ is a degree
vector for S.

The state of the tree T ′ w.r.t T is the tuple (r′, S, ρ) with r′ = root(T ′), S being the set of portals
in T ′, and ρ being the vector of original degrees of vertices in S w.r.t the tree T .

Definition 3.9 (Good State Trees). A good state tree is a full binary tree τ of depth at most h,
where every node p is associated with a state (r′p, Sp, ρ

p), and every leaf o is associated with either
an edge eo ∈ E or a triple ξo such that the following conditions hold.

(3.9a)
(
r′root(τ), Sroot(τ)

)
= (r, {r}).

(3.9b) For any leaf o of τ , either eo or ξo agrees with ρo.

(3.9c) For an internal node p in τ , letting q and o be the left and right children of p, then the pair
((r′q, Sq), (r

′
o, So)) is an allowable child-pair of (r′p, Sp) (so, r′q = r′p 6= r′o), and ρq and ρo

are consistent with ρp.

We say that a terminal t ∈ K is involved in a good state tree τ if there exists a leaf o of τ with
t = tail(eo), or t ∈ {second(ξo), third(ξo)}.

Given a good state tree τ , and a leaf o in τ , we define the cost c(o) as follows. If eo is defined,
then we define c(o) = ceo ; otherwise, define c(o) = c(r′o,second(ξo)) + c(r′o,third(ξo)). The cost of a
state-tree τ is defined as cost(τ) :=

∑
o leaf of τ c(o).

4 Reduction to Finding Good State-Trees

4.1 From a Valid Tree to a Good State-Tree Involving All Terminals

In this section, we show that the decomposition tree of the optimum tree T ∗ can be turned into
a good state tree τ∗ with cost cost(τ∗) = cost(T ∗) that involves all terminals. As we alluded, the
state tree τ∗ is constructed by taking the state for each node in the decomposition tree for T ∗.
Formally, it is obtained by calling gen-state-tree(T ∗) (defined in Algorithm 1). In the algorithm
ρT
∗

is the vector of original degrees of all vertices in T ∗. The procedure is only for analysis purpose;
it is not a part of our algorithm.

Algorithm 1 gen-state-tree(T ′)

1: create a node p with r′p = root(T ′), Sp = portals of T ′ and ρp being ρT
∗

restricted to Sp
2: if T ′ has only 1 level of edges then
3: if T ′ contains a single edge e then let ep = e and return the single node p
4: otherwise, T ′ contains two edges (r′, v) and (r′, v′), let ξp = (r′, v, v′) and return p

5: apply balanced tree partitioning to decompose T ′ into T ′1 and T ′2
6: τ1 ← gen-state-tree(T ′1), τ2 ← gen-state-tree(T ′2)
7: return the tree τ obtained by combining p, τ1 and τ2 with edges (p, root(τ1)) and (p, root(τ2)),

with root(τ1) and root(τ2) being the left and right children of p respectively

8

Lemma 4.1. τ∗ is a good state tree involving all terminals and cost(τ∗) = cost(T ∗).

Proof. We first show that τ∗ is a good state tree, by showing that it satisfies all the properties
in Definition 3.9. Property (3.9a) trivially holds by the way we define the parameters for the
root recursion of gen-state-tree. Property (3.9b) holds by that each ρp is ρT

∗
restricted to Sp.

Property (3.9c) follows from the same facts and Claim 3.4. cost(τ∗) =
∑

e∈ET∗ ce = cost(T ∗) since
every edge in T ∗ counted exactly once in τ∗.

4.2 From a Good State Tree to a Good Multi-Tree

Now we focus on the other direction of the reduction. Suppose we are given a good state tree τ ,
and our goal is to construct a good multi-tree T with cost(T) = cost(τ). Moreover, if a terminal
t ∈ K is involved in τ , then T contains a copy of t.

The multi-tree T is constructed by joining the edges associated with all leaf nodes o in τ using
a recursive procedure. For each node p in τ we shall construct a multi-tree Tp for p, as well as a
mapping πp from Sp to vertices in Tp. The multi-tree Tp and the mapping πp satisfy the following
properties:

(P1) For every v ∈ Sp, we have label(πp(v)) = v; that is, πp(v) is a copy of v.

(P2) πp(r
′
p) = root(Tp).

In particular, the two properties imply that root(Tp) is a copy of r′p.
The trees and mappings are constructed from the bottom to the top of the tree τ . Focus on

a leaf node p with ep = (r′, v). If ep is defined, then Tp only contains a copy of the edge (r′, v).
πp maps r′ to the copy of r′, and if v /∈ K (thus, v ∈ Sp), v to the copy of v in Tp. Otherwise
ξp is defined. Then Tp contains a tree with two edges: a copy of (r′p, second(ξp)) and a copy of
(r′p, third(ξp)). πp can also be defined naturally.

Now consider the case that p is an internal node and let q and o be its left and right children.
Then, we have r′p = r′q, r

′
o /∈ Sp, Sq ∪ So = Sp ∪ {r′o} and Sq ∩ So = {r′o} by Property (3.9c). Then

we identify πq(r
′
o) with πo(r

′
o) = root(To), and then the multi-tree Tp is the new tree containing

vertices in Tq and To. Notice that both πq(r
′
o) and πo(r

′
o) are copies of r′o; thus the obtained Tp

can be well-defined. The mapping πp is just the combination of πq and πo: For a vertex v ∈ Sq, let
πp(v) = πq(v); for a vertex v ∈ So, let πp(v) = πo(v); since Sq ∩ So = {r′o} and we identified πq(r

′
o)

with πo(r
′
o), the mapping is well-defined. Also, it is easy to see that (P1) and (P2) holds for Tp and

πp.
Our final multi-tree for τ will be T = Troot(τ). It is straightforward to see that if t ∈ K is

involved in τ , then T contains a copy of t. Notice that all the ρp-vectors are consistent with each
other, and for every leaf o, eo or εo agrees with ρo. Thus, aggregating all the ρp vectors will recover
the vector ρT of original degrees of vertices in ρT . So, the multi-tree T is good since every v in T
has ρTv ∈ [1, dv]. The cost of T is

∑
e∈ET ce =

∑
o: leaves of τ c(o) = cost(τ).

5 Finding a Good State Tree using LP Rounding

5.1 Extended State Trees and Construction of T0

With the relationship between good multi-trees and good state trees established, we can now focus
on the problem of finding a good state-tree of small cost involving many terminals. We shall

9

construct a quasi-polynomial sized tree T◦ so that every good state-tree τ corresponds a sub-
tree T of T◦ satisfying some property. Roughly speaking, T◦ is the “super-set” of all potential
good state-trees τ . However, since the consistency conditions are defined over three states for a
parent and its two children, it is more convenient to insert a “virtual” node between every internal
node and its two children. Also, it is convenient to break a leaf state node o into two nodes, one
containing the state information and the other containing eo or ξo. Formally, for a good state-tree
τ , we construct a correspondent tree T as follows.

1. Let T be a copy of τ . All nodes in T are called state nodes.

2. For every internal state node p in T with left and right children p1 and p2, we create a virtual
node q and replace the two edges (p, p1) and (p, p2) with 3 edges (p, q), (q, p1) and (q, p2); p1

is still the left child and p2 is the right child.

3. For every leaf state node p, we create a base node o and let o be the child of p. Then we move
the ep or ξp information from the node p to node o: If ep is defined, then we let eo = ep and
undefine ep; otherwise, let ξo = ξp and undefine ξp.

4. We add a super node r and an edge from r to the root of T. r will be the new root for T.

We call this T the extended state-tree for τ ; we say T is good if its correspondent τ is good.
Clearly, there is a 1-to-1 correspondence between good state trees and good extended state trees.

Our T◦ will be the “super-set” of all potential good extended state trees T. Formally, we create
a super node r to be the root of T◦. Then, for every ρr ∈ [1, dr], we call cnstr-T◦(0, r, {r}, ρ = (ρr))
to obtain a tree and let its root be a child of r.

Algorithm 2 cnstr-T◦(h′, r′, S, ρ)

1: create a state node p with (r′p, Sp, ρ
p) = (r′, S, ρ)

2: for every (r′, v) ∈ E such that {r′, v} \K = S and (r′, v) agrees with ρ do
3: create a “base node” o with eo = (r′, v) and let o be a child of p
4: let c(o) = c(r′,v)

5: for every (r′, v), (r′, v′) ∈ E such that {r′, v, v′} \K = S and (r′, v, v′) agrees with ρ do
6: create a “base node” o with ξo = (r′, v, v′) and let o be a child of p
7: let c(o) = c(r′,v) + c(r′,v′)

8: if h′ < h then
9: for every allowable child-pair ((r′, S1), (r′′, S2)) of (r′, S) do

10: for every pair of degree vectors ρ1 for S1 and ρ2 for S2 such that ρ1 and ρ2 are consistent
with ρ do

11: create a “virtual node” q and let q be a child of p
12: T1 ← cnstr-T◦(h′ + 1, r′, S1, ρ

1)
13: T2 ← cnstr-T◦(h′ + 1, r′′, S2, ρ

2)
14: let the left and right sub-trees of q be T1 and T2 respectively

15: return the tree T rooted at p

The following claim is immediate from the construction of T◦.

Claim 5.1. A subtree T of T◦ with root(T) = root(T◦) is a good extended state tree if and only
if the following happens:

10

• The super node in T has exactly one child (which is a state node).

• Each state node in T has exactly one child (which is an base node or a virtual node).

• For each virtual node q in T, both q’s children in T◦ are in T.

On the other hand, every good extended tree T of depth at most h+ 1 is a sub-tree of T◦ with root
being root(T◦).

Also, we say that a vertex v is involved in T if there is an base node o in T with v = tail(eo)
or v ∈ {second(ξo), third(ξo)}. The cost of T, denoted as cost(T), is defined the sum of c(o) over
all base nodes in T. So, the problem now becomes finding a small-cost good extended state tree in
T◦ that involves each terminal with large probability.

5.2 LP Formulation

We formulate an LP relaxation for our task. Let V◦ be the set of nodes in T◦, r = root(T◦)
and let V◦state,V

◦
virt and V◦base be the sets of state, virtual and base nodes in T◦ respectively.

Notice that there is only one super node, which is the root r. For every t ∈ K, let Ot =
{t ∈ V◦base : t = tail(eo) or t ∈ {second(ξo), third(ξo)}} be the set of base nodes involving t. Let
T∗ be our target good extended state tree; this is the tree correspondent to the good state tree τ∗.
Then, in our LP, we have a variable xp for every p ∈ V◦, that indicates whether p is in the T∗ or
not.

min
∑

o∈V◦base

xoc(o) (1)∑
q∈ΛT◦ (p)

xq = xp, ∀p ∈ V◦state ∪ {r} (2)

xp = xq, ∀q ∈ V◦virt, p ∈ ΛT◦(q) (3)

xp ∈ [0, 1], ∀p ∈ V◦ (4)

∑
o∈Λ∗

T◦ (p)∩Ot

xo ≤ xp, ∀p ∈ V◦, t ∈ K (5)

∑
o∈Ot

xo = 1, ∀t ∈ K (6)

The objective function of LP (1) is to minimize the total cost of all leaves in T∗. (2) requires
that for every state or super node p in T∗, exactly one child of p is in T∗. (3) requires that a virtual
node q in T∗ has both its children in T∗. (5) says for every node p in T∗ and every terminal t ∈ K,
there is a most one descendant base node o of p that is in Ot. In the whole tree T∗, exactly one
leaf node o has t = tail(eo) or t ∈ {second(ξo), third(ξo)}, for every t ∈ K (Constraint (6)); in the
LP, all the variables are between 0 and 1 (Constraint (4)).

Notice that (5) for p = r and any t ∈ K and (6) for the same t imply that xr = 1. (2) and (3)
imply that the x values over the nodes of a root-to-leaf path in T◦ are non-increasing.

5.3 Rounding Algorithm

Given a valid solution x to LP (1), our rounding algorithm will round it to obtain set V ⊆ V◦, which
induces a good state tree. The algorithm is very similar to that of [9] with the only one difference:
For every state node or super-node p that is added to V, we add exactly one child q of p to V,
while the algorithm of [9] makes independent decisions for each child. The algorithm is formally
described in Algorithm 3. In the main algorithm, we simply call round(r). It is straightforward to
see that the tree induced by round(r) is a good extended state tree. The following claim also holds:

11

Algorithm 3 round(p)

1: if p ∈ V◦state ∪ {r} then

2: randomly choose a child q of p according to probability vector
(
xq
xp

)
q∈ΛT◦ (p)

3: return {p} ∪ round(q)
4: else if p ∈ V◦virt then
5: return {p} ∪ round(left child of p) ∪ round(right child of p)
6: else
7: return {p}

Claim 5.2. Let p ∈ V◦ and q ∈ Λ∗T◦(p). Let V be the random set returned by round(p). Then we
have Pr[q ∈ V] =

xq
xp

.

Applying the above claim for p = r and every q ∈ V◦base, we have that the expected cost of the
tree induced by V is exactly cost(x).

The main theorem we need about the rounding algorithm is as follows:

Theorem 5.3. Let V be the random set returned by round(r). Then, for any terminal t ∈ K we
have

Pr[V ∩O′t 6= ∅] ≥
1

h+ 1
.

Theorem 5.3 was proved [9] for the original rounding algorithm and was reproved in [22]. How-
ever, adapting the analysis to our slightly different rounding algorithm is straightforward and thus
we omit the proof of the theorem here.

We now wrap up and finish the proof of the main theorem (Theorem 2.4) except for Prop-
erty (2.4c), which will be proved in Section 5.4.

We solve LP(1) to obtain a solution x. Notice that cost(x) ≤ cost(T∗) = cost(τ∗) = cost(T ∗).
Let V ← round(r). Then by Claim 5.1 and the rounding algorithm, the tree T induced by V is a
good extended state tree. Let τ be the good state tree correspondent to T, and let T be the good
multi-tree in G constructed using the procedure in Section 4.2. The cost of the multi-tree T is at
most cost(x). By Theorem 5.3, for every t ∈ K, the probability that t is involved T is at least
1/(h+ 1) = Ω(1/ log n).

Let us consider the running time of the algorithmic framework, which is polynomial on the size
of the tree T◦. First notice that if ((r′, S1), (r′′, S2)) is an allowable child pair of (r′, S), then we
have |S1|, |S2| ≤ |S| + 1 since S1 ∪ S2 = S ∪ {r′′}. Thus, a state-node p at the h′-th level in T◦

(the children of r have level 0 and for simplicity we do not consider super and virtual nodes when
counting levels) has |Sp| ≤ h′ + 1. Thus, every state node p in T◦ has |Sp| ≤ h+ 1.

Then we consider the degree of the tree T◦, which is the maximum number of possible children
of a state node p with (r′p, Sp, ρ

p) = (r′, S, ρ). First, there are at most n× 2|Sp| ≤ n · 2h+1 different

allowable child pairs ((r′, S1), (r′′, S2)) of the pair (r′, S): there are at most n choices for r′′ and 2h

ways to split S into S1 and S2. Then, for a fixed allowable child pair ((r′, S1), (r′′, S2)) we consider
the number of pairs of degree vectors

(
ρ1, ρ2

)
such that ρ1 and ρ2 are consistent with ρ. This is

determined by the value of ρ1
r′′ = ρ2

r′′ , which has at most dmax possibilities. So, the number of
virtual children of a state node is at most n · 2h+1 · dmax = O(poly(n) since h = O(log n). The
number of child base nodes of p is at most n2. Since the height of the tree T◦ is at most O(log n),

12

its size bounded by (poly(n))O(logn) = nO(logn). So the running time of the LP rounding algorithm
is nO(logn). This finishes the proof of Theorems 2.4 except for Property (2.4c).

5.4 Concentration Bound on Number of Copies of a Vertex Appearing in T

Finally, we prove Property (2.4c) in Theorem 2.4. To this end, we shall fix a vertex v ∈ V .
For every vertex p ∈ V◦, let zp =

∑
o∈Λ∗

T◦ (p)∩Ov
xo. By Constraint (5), we have zp ≤ xp. Let

mp = |Λ∗T◦(p) ∩ Ov ∩ V| be the total number of nodes in Λ∗T◦(p) ∩ Ov that are selected by the
rounding algorithm.

As is typical, we shall introduce a parameter s > 0 and consider the expectation the random
exponential variables esmp (we use e for the natural constant). We shall bound E[esmp |p ∈ V] from
bottom to top by induction. So, in this proof, it is more convenient to for us to use a different
definition of levels: the level of a node p in T◦ is the maximum number of edges in a path in T◦

starting from p. So, the leaves have level 0 and for an internal node p in T◦, the level of p is 1 plus
the maximum of the level of q over all children q of p. We define an αi for every integer i ≥ 0 as
α0 = es and αi = eαi−1−1,∀i ≥ 1. Notice that α0, α1, · · · is an increasing sequence. Thus, we can
induce the following lemma.

Lemma 5.4. For any node p be in T◦ of level at most i, E
[
esmp

∣∣p ∈ V
]
≤ αzp/xpi .

Proof. We prove the lemma by induction on i. If i = 0, then p is a leaf, and thus, we have either
zp = 0 or zp = xp, depending on whether p ∈ Ov or not. If zp = 0, then mp is always 0, and thus,

E
[
esmp

∣∣p ∈ V
]

= 1 = α
zp/xp
0 . If zp = xp, then mp is always 1 (conditioned on p ∈ V), and thus,

E
[
esmp

∣∣p ∈ V
]

= es = α
zp/xp
0 . So, the lemma holds if i = 0.

Now, let i ≥ 1 be any integer and we assume the lemma holds for i− 1. We shall prove that it
also holds for i. Focus on a node p of level at most i. Then all children q of p have level at most
i−1. If p is a virtual node, then p ∈ V implies that both children of p in V. Since the two children
are handled independently in the rounding algorithm, we have

E
[
esmp

∣∣p ∈ V
]

=
∏

q∈ΛT◦ (p)

E
[
esmq

∣∣p ∈ V
]

=
∏

q∈ΛT◦ (p)

[
xq
xp
· E[esmq |q ∈ V] + 1− xq

xp

]

=
∏

q∈ΛT◦ (p)

[
1 +

xq
xp

(
E[esmq |q ∈ V]− 1

)]
.

If p is the super node or a state node, then we have
∑

q∈ΛT◦ (p) xq = xp. Conditioned on p ∈ V, the
rounding procedure adds exactly one child q of p to V. Then, we have

E
[
esmp

∣∣p ∈ V
]

=
∑

q∈ΛT◦ (p)

xq
xp

E
[
esmq

∣∣q ∈ V
]

= 1 +
∑

q∈ΛT◦ (p)

xq
xp

(
E[esmq

∣∣q ∈ V]− 1
)

≤
∏

q∈ΛT◦ (p)

[
1 +

xq
xp

(
E[esmq |q ∈ V]− 1

)]
.

13

Thus, we always have

E
[
esmp

∣∣p ∈ V
]
≤

∏
q∈ΛT◦ (p)

[
1 +

xq
xp

(
E[esmq |q ∈ V]− 1

)]

≤
∏

q∈ΛT◦ (p)

[
1 +

xq
xp

(
α
zq/xq
i−1 − 1

)]
by induction hypothesis

≤ exp

 ∑
q∈ΛT◦ (p)

xq
xp

(
α
zq/xq
i−1 − 1

) ≤ exp

[
zp
xp

(αi−1 − 1)

]
= α

zp/xp
i . since 1 + θ ≤ eθ for every θ

To see the second inequality in the last line, we notice the following three facts: (i) αθi−1−1 is a
convex function of θ and when θ = 0 its value is 0, (ii) zq/xq ∈ [0, 1] for every q in the summation,
and (iii)

∑
q∈ΛT◦ (p)

xq
xp
· zqxq =

zp
xp

. So, the quantity inside exp(·) has maximum value
zp
xp

(α1
i−1 − 1).

The equality in the last line is by the definition of αi.

Let h′ = Θ(h) = Θ(log n) be the level of the root. Now, we set s = ln(1 + 1
2h′). We prove

inductively the following lemma:

Lemma 5.5. For every i ∈ [0, h′], we have αi ≤ 1 + 1
2h′−i .

Proof. By definition, α0 = es = 1 + 1
2h′ and thus the statement holds for i = 0. Let i ∈ [1, h′] and

assume the statement holds for i− 1. Then, we have

αi = eαi−1−1 ≤ e
1+ 1

2h′−i+1 ≤ 1 +
1

2h′ − i+ 1
+

(
1

2h′ − i+ 1

)2

= 1 +
2h′ − i+ 2

(2h′ − i+ 1)2
≤ 1 +

1

2h′ − i
.

The first inequality used the induction hypothesis and the second one used that for every θ ∈ [0, 1],
we have eθ ≤ 1 + θ + θ2.

So, by Lemma 5.4 and 5.5, we have E[esmr] ≤ α1
h′ ≤ 1 + 1

h′ = 1 + O
(

1
logn

)
. This finishes the

proof of Property (2.4c) in Theorem 2.4.

6 Bicriteria-Approximation Algorithm for Degree-Bounded Group
Steiner Tree on Trees

In this section, we prove Theorem 1.2, which is repeated here.

Theorem 1.2. There is a randomized
(
O(log n log k), O(log n)

)
-bicriteria approximation for the

degree-bounded group Steiner tree problem on trees.

We first set up some notations for the theorem. Recall that T ◦ is the input tree, V ◦ denotes
the set of vertices of T ◦, and r denotes the root of T ◦. For simplicity, we assume the costs are on
the vertices instead of edges: Every vertex u ∈ V ◦ has a cost cu ≥ 0. Notice that this does not
change the problem. We have k groups indexed by [k]. For each group t ∈ [k], we are given a set

14

Ot ⊆ V ◦ of leaves in T ◦. W.l.o.g, we assume all Ot’s are disjoint. Every vertex v ∈ V is given
a degree bound Dv. The goal of the problem is then to output the smallest cost subtree T of T ◦

that satisfies the degree constraints and contains the root r and one vertex from each Ot, t ∈ [k].
Since now we only have one tree T ◦, we use the following notations for children and descendants:
For every vertex u ∈ V ◦, let Λu denote the set of children of u in T ◦, and Λ∗u to denote the set of
descendants of u in T ◦ (including u itself).

Now we describe the LP relaxation we use for our problem. For every vertex u ∈ T ◦, we use
xu to indicate whether u is chosen or not (in the correspondent integer program). LP (7) is a valid
LP relaxation for the DB-GST-T problem:

min
∑
u∈V ◦

cuxu s.t. (7)

xv ≤ xu ∀u ∈ V ◦, v ∈ Λu (8)∑
o∈Ot

xo = 1 ∀t ∈ [k] (9)

∑
o∈Ot∩Λ∗u

xo ≤ xu ∀t ∈ [k], ∀u ∈ V ◦ (10)

∑
v∈Λu

xv ≤ du · xu ∀u ∈ V ◦ (11)

xu ∈ [0, 1] ∀u ∈ V ◦ (12)

In the correspondent integer program, the objective we try to minimize is
∑

u∈V ◦ cuxu, i.e, the
total cost of all verticies we choose. Constraint (8) says that if we choose a vertex v then we must
choose its parent u. Constraint (9) requires for every group t, exactly one vertex in Ot is added
to the tree. Constraint (10) holds since if u is chosen, at most one vertex in Λ∗u ∩ Ot is chosen for
every group t. Constraint (11) is the degree constraint. In the LP relaxation, we require each xu
to take value in [0, 1] (Constraint (12)). Notice that (9) and (10) for the root r imply that xr = 1.

Modifying the LP solutions. Solving LP (7), we can obtain the optimum LP solution (xu)u∈V ◦ .
In our rounding algorithm, it would be convenient if every xu is a (non-positive) integer power of 2
that is not too small. So, we shall modify the LP solution using the following operations, which may
violate many of the LP constraints slightly. For every v ∈ V ◦ with xv <

1
2n , we change xv to 0. This

can only decrease the cost of the solution. It is easy to see that Constraints (8), (10) and (11) will
not be violated. Constraint (9) may not hold any more, but we still have

∑
v∈Ot xv ≥ 1−n× 1

2n ≥
1
2

for every t ∈ [k]. We can remove all vertices v with xv = 0 from the instance and thus assume
xv ≥ 1

2n for every v ∈ V ◦. Next, we increase each xv to the smallest (non-positive) integer power
of 2 that is greater than or equal to xv. This will violate many constraints in the LP by a factor of
2. We list the properties that our new vector (xu)u∈V ◦ has:

(P1) For every u ∈ V ◦, xu is an integer power of 2 between 1
2n and 1.

(P2) The x values along any root-to-leaf path in T ◦ is non-increasing.

(P3)
∑

o∈Ot xo ∈ [1
2 , 2] for every group t ∈ [k].

(P4)
∑

o∈Ot∩Λ∗u
xo ≤ 2xu for every t ∈ [k] and u ∈ V ◦.

(P5)
∑

v∈Λu
xv ≤ 2duxu for every u ∈ V ◦.

(P6)
∑

u∈V ◦ cuxu ≤ 2 · opt, where opt is the cost of the optimum integer solution.

15

6.1 The rounding algorithm

We now describe our rounding algorithm. We define two important global parameters: L :=
dlog(2n)e and γ := blogLc − 2. We say an edge (u, v) with v ∈ Λu has “hop value” 1 if xu < xv
and 0 if xu = xv. For every vertex u ∈ V ◦, we define `u to be the sum of hop values over all edges
in the path from the root to u in T ◦. Thus, for every u ∈ V ◦ and v ∈ Λu, we have `v − `u ∈ {0, 1},
and `v = `u if and only if xv = xu. By Properties (P1) and (P2), we have that `v ∈ [0, L] for every
v ∈ V ◦.

Our rounding algorithm is applied on some scaled solution x′, which is defined as follows:

x′u = 2min{`u,γ}xu, for every u ∈ V ◦.

As we mentioned in the introduction, this change will increase the probability of choosing v condi-
tioned on choosing u by a factor of 2, for some u ∈ V ◦, v ∈ Λu with `u < `v ≤ γ.

We prove one important property for x′, which is necessary for us to run the recursive rounding
algorithm.

Claim 6.1. For every u ∈ V ◦ and v ∈ Λu, we have x′v ≤ x′u.

Proof. If xv = xu then we have (u, v) has hop value 0 and thus `v = `u. In this case we have
x′v = x′u as well. Otherwise, we have xv ≤ xu/2 and hv = hu + 1. So, min {hv, γ} ≤ min {hu, γ}+ 1
and therefore x′v ≤ x′u.

Notice that x′r = 1 and every x′v is an integer power of 2 between 2−L and 1. Our recursive
rounding algorithm is run over x′. In the procedure recursive-rounding(u), we add u to our output
tree and do the following: for every v ∈ Λu, with probability x′v/x

′
u independent of all other choices,

we call recursive-rounding(v). In the root recursion, we shall call recursive-rounding(r).
Our final algorithm will repeat the recursive procedure M times independently, for a large

enough M = O(log k). Let T1, T2, · · · , TM be the M trees we obtained from the M repetitions.
Our final tree T will be the union of the M trees.

We first analyze the expected cost of T . First focus on the tree T1. It is easy to see that the
probability u is chosen by T1 is exactly x′u ≤ 2γxu = O(L)xu. Therefore, the expected cost of
T1 is at most O(L) · opt by Property (P6). Therefore, the expected cost of the tree T is at most
O (ML) · opt = O(L log k) · opt = O(log n log k) · opt.

We then analyze the degree constraints on T . Given that u is selected by T1, the probability that

we select a child of v of u is x′v
x′u
≤ 2xv

xu
. By Property (P5), we have

∑
v∈Λu

x′v
x′u
≤
∑

v∈Λu
2xv
xu
≤ 4du.

Consider all the M trees T1, T2, · · · , TM . Even if we condition on the event that u appears in all
the M trees, the degree of u is the summation of many independent random {0, 1}-variables. The
expectation of the summation is at most 4Mdu = O(log k) · du. Using Chernoff bound, one can
show that the probability that the degree of u is more than O(log n) · du is at most 1

10n , for some
large enough O(log n) factor. Therefore, with probability at least 0.9, every node u in T has degree
at most O(log n) · du. Therefore, we proved that the degree violation factor of our algorithm is
O(log n), as claimed in Theorem 1.2.

6.2 Analysis of connectivity probability

It remains to show that with high probability, the tree T contains a vertex from every group. This
is the goal of this section. Till the end of the section, we focus on the tree T1 and a fixed group t.

16

For every vertex u ∈ V ◦, we define Eu to be the event that u is chosen by T1. Our goal is to give a
lower bound on Pr[

∨
o∈Ot Eo], i.e, the probability that some vertex in Ot is chosen by the tree T1.

Notice that when two adjacent nodes in T ◦ have the same x′ value, then the child is chosen
whenever the parent is. Thus, we can w.l.o.g contract any sub-tree of nodes in T ◦ with the same
x′ value into one single super-vertex, without changing the rounding algorithm. Notice that if two
adjacent vertices u ∈ V ◦, v ∈ Λu have `u = `v then we have xu = xv and thus x′u = x′v. So, we
contract every maximal sub-tree of vertices in T ◦ with the same ` value. After this operation, for
every u ∈ V ◦, `u is exactly the level of u in the tree T ◦. So, for every u ∈ V ◦ and v ∈ Λv we
have `v = `u + 1. A super-vertex is in Ot if one of its vertices before contracting is in Ot. If an
internal super-vertex is in Ot, we can remove all its descendants without changing the analysis in
this section. So, again we have that Ot only contains leaves.

For every vertex u, we define

zu =
∑

o∈Ot∩Λ∗u

xo.

Notice that zu ≤ 2xu by Property (P4).

In the following, we shall bound Pr
[∨

o∈Ot∩Λ∗u
Eo

∣∣Eu

]
for every u ∈ V ◦ from bottom to top.

This is done in two stages due to the threshold γ we used when we define x′ variables. First we
consider the case when `u ≥ γ and then we focus on the case when `u < γ. The two stages are
captured by Lemmas 6.2 and 6.3 respectively.

Lemma 6.2. For a vertex u with `u ≥ γ, we have Pr
[∨

o∈Ot∩Λ∗u
Eo

∣∣Eu

]
≥ 1

2(L+1−`u)
zu
xu

.

Similar lemmas have been proved multiple times in many previous results. Since our parameters
are slightly different, we provide the complete proof here. There are two different approaches to
prove the lemma, one based on bounding the conditional second moment of the random variable
for the number of chosen vertices in Ot ∩ Λ∗u, and the other based on the mathematical induction
on `u, which is the one we use here.

Proof of Lemma 6.2. Suppose u is a leaf. Then zu/xu = 1 if u ∈ Ot and zu/xu = 0 otherwise. So,

we have Pr
[∨

o∈Ot∩Λ∗u
Eo

∣∣Eu

]
= zu

xu
and the lemma clearly holds since we have `u ≤ L.

Then, we prove the lemma by induction on `u. If `u = L then u must be a leaf and thus the
lemma holds. We assume the lemma holds for every u with `u = ` + 1, for some ` ∈ [γ, L − 1].
Then we prove the lemma for u with `u = `. If u is a leaf the lemma holds and thus we assume u
is not a leaf.

Pr
[∨
o∈Ot∩Λ∗u

Eo

∣∣Eu

]
≥ 1−

∏
v∈Λu

(
1− x′v

x′u
· 1

2(L− `)
zv
xv

)
= 1−

∏
v∈Λu

(
1− xv

xu
· 1

2(L− `)
· zv
xv

)

≥ 1−
∏
v∈Λu

exp

(
− 1

2(L− `)
· zv
xu

)
= 1− exp

(
− 1

2(L− `)
· zu
xu

)

≥ 1

2(L− `)
· zu
xu
− 1

2

(
1

2(L− `)
· zu
xu

)2

≥ 1

2(L− `)
· zu
xu
−
(

1

2(L− `)

)2 zu
xu

=

(
2(L− `)− 1

(2(L− `))2

)
zu
xu
≥ 1

2(L+ 1− `)
· zu
xu
.

17

The inequality in the first line used the induction hypothesis: x′v
x′u

is the probability that we choose

v in T1 conditioned on that we choose u, and 1
2(L−`)

zv
xv

is the lower bound on the probability that

we choose some vertex in Ot ∩ Λ∗v conditioned on that v is chosen. The equality in the line used
that x′u = 2γxu and x′v = 2γxv. The inequality in the second line used that 1 − θ ≤ e−θ for every

real number θ. The first inequality in the third line used that e−θ ≤ 1 − θ + θ2

2 for every θ ≥ 0.
The second inequality in the line used Property (P4), which says zu

xu
≤ 2. The last inequality used

that (2(L− `)− 1) · 2(L− `+ 1) ≥ 4(L− `)2 since L− ` ≥ 1.

The lemma implies that for every u with `u ≥ γ, we have Pr
[∨

o∈Ot∩Λ∗u
Eo

∣∣Eu

]
≥ 1

2L ·
zu
xu

.

Now we analyze the probability for u with `u ≤ γ. Recall that γ = blogLc − 2 and thus we
have 2γ ∈ (L/8, L/4]. Let αγ = 1

2L and for every ` ∈ [0, γ − 1], define α` = 2α`+1 − 4α2
`+1. It is

easy to see that for every ` ∈ [0, γ], we have α` ≤ 2γ−`

2L . Then, we have for every ` ∈ [0, γ − 1],

α` = 2α`+1 − 4α2
`+1 = 2α`+1(1− 2α`+1) ≥ 2α`+1

(
1− 2× 2γ−`−1

2L

)
= 2α`+1

(
1− 2γ−`−1

L

)
.

Therefore, we have

α0 ≥ 2γ
γ∏
`=1

(
1− 2γ−`−1

L

)
αγ ≥

2γ

2L

γ∏
`=1

e−2γ−`/L ≥ 2γ

2L
e−2γ/L = Ω(1).

The second inequality used that 1 − θ ≥ e−2θ for every θ ∈ (0, 1/2). The last equality used that
γ = blogLc − 2 and thus 2γ = Θ(L).

With the α values defined, we prove the following lemma via mathematical induction:

Lemma 6.3. For every vertex `u = ` ≤ γ, we have Pr
[∨

o∈Ot∩Λ∗u
Eo

∣∣Eu

]
≥ α` zuxu .

Proof. The lemma holds if ` = γ as we mentioned. So, we assume ` < γ and the lemma holds with

` replaced by `+ 1. If u is a leaf, then we have Pr
[∨

o∈Ot∩Λ∗u
Eo

∣∣Eu

]
= zu

xu
and the lemma holds.

So again we assume u is not a leaf. Then,

Pr
[∨
o∈Ot∩Λ∗u

Eo

∣∣Eu

]
≥ 1−

∏
v∈Λu

(
1− x′v

x′u
α`+1

zv
xv

)
= 1−

∏
v∈Λu

(
1− 2xv

xu
α`+1

zv
xv

)

≥ 1−
∏
v∈Λu

exp

(
−2α`+1

zv
xu

)
= 1− exp

(
−2α`+1

zu
xu

)

≥ 2α`+1
zu
xu
− 1

2

(
2α`+1

zu
xu

)2

≥ 2α`+1
zu
xu
− (2α`+1)2 zu

xu
= α`

zu
xu
.

To see the equality in the first line, we notice that x′u = 2`xu and x′v = 2`+1xv for every v ∈ Λu.
Many other inequalities used the same arguments as in Lemma 6.2.

Applying the lemma for the root r of T ◦, we have that Pr
[∨

o∈Ot Eo

]
≥ α0 · zrxr ≥ α0 · 1

2 = Ω(1).
Now we consider all the M trees T1, T2, · · · , TM together. The probability that Ot is not chosen

by any of the M trees is at most (1− Ω(1))M ≤ 1
10k , if our M = O(log k) is big enough. Thus the

probability that T , the union of all trees T1, T2, · · · , TM , contains an r-to-Ot path for every t, is at
least 0.9.

18

Acknowledgement X. Guo, S. Li and J. Xian are partially supported by NSF grants CCF-
1566356, CCF- 1717134, CCF-1844890. B. Laekhanukit is partially supported by Science and Tech-
nology Innovation 2030 –“New Generation of Artificial Intelligence” Major Project No.(2018AAA0100903),
NSFC grant 61932002, Program for Innovative Research Team of Shanghai University of Finance
and Economics (IRTSHUFE) and the Fundamental Research Funds for the Central Universities
and by the 1000-talent award by the Chinese Government. Daniel Vaz has been supported by the
Alexander von Humboldt Foundation with funds from the German Federal Ministry of Education
and Research (BMBF).

References

[1] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 184–193, 1996.

[2] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and
Ming Li. Approximation algorithms for directed steiner problems. J. Algorithms, 33(1):73–91,
1999.

[3] Sina Dehghani, Soheil Ehsani, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Harald Räcke,
and Saeed Seddighin. Online weighted degree-bounded steiner networks via novel online mixed
packing/covering. In 43rd International Colloquium on Automata, Languages, and Program-
ming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 42:1–42:14, 2016.

[4] Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Online
degree-bounded steiner network design. In Proceedings of the Twenty-seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’16, pages 164–175, Philadelphia, PA, USA,
2016. Society for Industrial and Applied Mathematics.

[5] Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed Sed-
dighin. Greedy algorithms for online survivable network design. In 45th International Col-
loquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, pages 152:1–152:14, 2018.

[6] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[7] Zachary Friggstad, Jochen Könemann, Young Kun-Ko, Anand Louis, Mohammad Shadravan,
and Madhur Tulsiani. Linear programming hierarchies suffice for directed steiner tree. In
Integer Programming and Combinatorial Optimization - 17th International Conference, IPCO
2014, Bonn, Germany, June 23-25, 2014. Proceedings, pages 285–296, 2014.

[8] Martin Fürer and Balaji Raghavachari. Approximating the minimum-degree steiner tree to
within one of optimal. J. Algorithms, 17(3):409–423, 1994.

[9] Naveen Garg, Goran Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for
the group steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

19

[10] Rohan Ghuge and Viswanath Nagarajan. A quasi-polynomial algorithm for submodular tree
orienteering in directed graphs. CoRR, abs/1812.01768, 2018.

[11] Michel X. Goemans. Minimum bounded degree spanning trees. In Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’06, pages 273–282,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log2 k / log log k)-approximation
algorithm for directed steiner tree: a tight quasi-polynomial-time algorithm. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pages 253–264, 2019.

[13] Mohammad Taghi Hajiaghayi. Open problems on bounded-degree network design from 8-th
workshop on flexible network design, amsterdam, 2016. Announcement, 2016.

[14] Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Lawrence L.
Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 585–594. ACM, 2003.

[15] Jochen Könemann and R. Ravi. A matter of degree: Improved approximation algorithms for
degree-bounded minimum spanning trees. SIAM J. Comput., 31(6):1783–1793, 2002.

[16] Jochen Könemann and R. Ravi. Quasi-polynomial time approximation algorithm for low-
degree minimum-cost steiner trees. In FST TCS 2003: Foundations of Software Technology
and Theoretical Computer Science, 23rd Conference, Mumbai, India, December 15-17, 2003,
Proceedings, pages 289–301, 2003.

[17] Jochen Könemann and R. Ravi. Primal-dual meets local search: Approximating msts with
nonuniform degree bounds. SIAM J. Comput., 34(3):763–773, 2005.

[18] Guy Kortsarz and Zeev Nutov. Bounded degree group steiner tree problems. In IWOCA’20,
to appear, 2020.

[19] Lap Chi Lau, Joseph Naor, Mohammad R. Salavatipour, and Mohit Singh. Survivable network
design with degree or order constraints. SIAM J. Comput., 39(3):1062–1087, 2009.

[20] Lap Chi Lau and Mohit Singh. Additive approximation for bounded degree survivable network
design. SIAM J. Comput., 42(6):2217–2242, 2013.

[21] R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, and Harry B. Hunt III. Many
birds with one stone: multi-objective approximation algorithms. In Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 438–447, 1993.

[22] Thomas Rothvoß. Directed steiner tree and the lasserre hierarchy. CoRR, abs/1111.5473,
2011.

[23] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. J. ACM, 62(1):1:1–1:19, 2015.

[24] Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner
tree problem. Algorithmica, 18(1):99–110, 1997.

20

A Omitted Proofs

Proof of Lemma 2.1. We assume n ≥ 4; otherwise, if n = 3, then we have 2n/3 + 1 = 3, and
root(T) satisfies the condition. Our goal is to find a vertex u with n/3 < |Λ∗(u)| ≤ 2n/3 + 1. Start
from u = root(T) in the tree, and thus, we have Λ∗(u) > 2n/3 + 1. Let v be the child of u with
the biggest |Λ∗(v)|. So, |Λ∗(v)| ≥ (|Λ∗(u)| − 1)/2 > n/3. We then replace u with v. So |λ∗(u)| has
decreased but the condition |Λ∗(u)| > n/3 is maintained. Thus, if we repeat the process, we will
eventually find a u with n/3 < |Λ∗(u)| ≤ 2n/3 + 1.

21

