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ABSTRACT

Current Additive Manufacturing (AM) technologies are typically limited by the minimum feature sizes of the
parts they can produce. This issue is addressed by the microscale selective laser sintering system (u-SLS),
which is capable of building parts with single micrometer resolutions. Despite the resolution of the system,
the minimum feature sizes producible using the u-SLS tool are limited by unwanted heat dissipation through
the particle bed during the sintering process. To address this unwanted heat flow, a particle scale thermal
model is needed to characterize the thermal conductivity of the nanoparticle bed during sintering and
facilitate the prediction of heat affected zones (HAZ). This would allow for the optimization of process
parameters and a reduction in error for the final part. This paper presents a method for the determination
of the effective thermal conductivity of copper nanoparticle beds in a u-SLS system using finite element
simulations performed in ANSYS. A Phase Field Model (PFM) is used to track the geometric evolution of the
particle groups within the particle bed during sintering. CAD models are extracted from the PFM output data
at various timesteps, and steady state thermal simulations are performed on each particle group. The full
simulation developed in this work is scalable to particle groups with variable sizes and geometric
arrangements. The particle thermal model results from this work are used to calculate the thermal

conductivity of the copper nanoparticles as a function of the density of the particle group.

INTRODUCTION
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Commercially available Additive Manufacturing (AM) systems are typically
capable of producing parts with feature sizes on the order of hundreds of micrometers
[1,2]. Although these manufacturing processes are versatile, this size limitation prevents
their effective use in the microelectronics industry, where parts require manufacturing
resolutions on the order of a few micrometers. The leading process used to manufacture
two and a half dimensional microelectronics structure consists of a mixture of
lithography, etching and chemical deposition steps, which often require intricate setups
and suffer from size limitations. The development of a microscale selective laser sintering
(u-SLS) system addresses the need for a more robust, flexible, and easy to use process,
while targeting a minimum feature size on the order of a single micrometer [3-6].

Selective Laser Sintering (SLS) is an AM process that directly applies laser energy
to a deposited powder bed. The laser energy increases the temperature within the bed in
the areas of laser application which facilitates the fusion of the powder particles into a
solid part. This sintering process is repeated for each subsequently deposited layer until
a full part is formed [7]. One of the major advantages of SLS over other commercial AM
systems is its ability to build true 3D parts, such as overhanging structures, due to support
provided by the unsintered material adjacent to the sintered part. The u-SLS system
functions similarly to traditional SLS processes in that laser irradiation is applied to a
particle bed and the process is repeated layer-by-layer. The primary difference between
the two processes is the use of nanoparticles as the powdered material in the p-SLS

system, which facilitates the production of parts with single micrometer features. Given
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the scale of these particles and the required feature sizes, accurate characterization of
the nanoparticle beds is needed to optimize the p-SLS process.

Existing simulation work for SLS systems provide insight into the general process
of heat transfer in powdered systems [8-10], although they focus on larger particles and
typically model a melting and solidification process, as opposed to the solid-state
sintering process experienced by the nanoparticles used in the u-SLS system. These
particles are on the order of 10-100 nanometers in diameter. The nanoparticles remain
solid as they sinter, with grain boundary and surface diffusion dominating the underlying
solid-state sintering mechanisms [11]. The effective thermal conductivity of metal
nanoparticles within a powder bed system is found to be dominated by the evolving
geometries of the nanoparticles as they diffuse into one another, and the grain boundary
thermal contact resistance at the interfaces between adjacent nanoparticles [12]. The
work presented in this paper focuses on these two dominating factors, while also
considering the conductivities of the individual copper nanoparticles and the surrounding

air medium.

BACKGROUND

The modeling and simulation of the heat transfer characteristics and material
properties of particle systems has been actively researched for years. Two-particle models
have been developed to predict heat transfer between adjacent particles in thermal
contact using analytical and computational methods. The two-particle model developed

by Bachelor and O’Brien [13] was used to determine the effective conductivity of a
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granular material experiencing steady state heat transfer conditions. The model assumes
heterogeneous media which allows it to capture the stochastic nature of particle
packings. Sun and Chen [14] developed a particle conduction model that uses Hertzian
contact theory to estimate the contact area between two adjacent particles. The model
makes a critical assumption that the bodies in contact behave as semi-infinite solids,
where changes in temperature due to the contacts between particles are confined to a
small region surrounding the contact area. Although it reduces the computational
complexity of the model, the semi-infinite solid approximation reduces the accuracy of
Sun and Chen’s model for larger Fourier numbers. Zhou, Yu and Horio [15] worked to
improve the work by Sun and Chen by developing a finite element simulation of a particle-
particle collision system to provide a correction factor for large Fourier numbers.
Similarly, Shimizu [16] developed a particle conduction model where heat is transferred
between adjacent particles through a thermal pipe with a cross sectional area equal to
the expected contact area between the two particles. Two particle conduction models
like those developed by Bachelor and O’Brien, Sung and Chen and Shimizu can be
expanded to particle systems with more than 2 particles given the assumed independence
of particle-particle contacts. However, this typically requires extensive computational
resources, and fails to account for time-varying, non-spherical geometries and the use of

nanoparticles in the models.

Models capable of estimating the effective material properties and heat transfer

characteristics of aerogels consisting of packed nanoparticles have recently been
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developed. Zhao et al. [17] developed a diffusion-limited colloidal aggregation model to
determine particle packing structures in silica aerogels and determine the effective
thermal conductivity of the structure using a 3D finite volume numerical model. This work
considers the effects of the random particle packing structures, the solid-gas coupling,
conduction within solid particles, and the area of contact between adjacent particles to
calculate the conductivity values. Guo and Tang [18] built a theoretical model that focused
on the relative effects of particle-particle conduction in the solid particle chains, particle-
air-particle conduction along the particle chains, and heat conduction from the particle
chains to the surrounding pore gas. Although these conductivity models provide insight
on relevant heat transfer parameters in nanoparticle systems, they analyze insulative
materials and packing structures unlike those found in p-SLS systems. They also do not
consider the geometric evolution of the nanoparticles that occurs during a temperature

driven solid state diffusion process.

Work has also been developed that considers the varying sizes and packing
structures of nanoparticles of various materials. These research efforts determine the
relationship between the porosity of the nanoparticle structure and its effective thermal
conductivity. Wu and Huang [19] prepared SiC nanoparticle beds and measured the
thermal conductivity of the system. They also developed a thermal model that accounted
for thermal contact resistance between particles and the thermal contact resistance
between nanoparticles and the surrounding air. Using this model and corresponding

experimental data, Wu and Huang developed a relationship between the particle packing
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density (represented as porosity) and the effective thermal conductivity of the SiC
nanoparticles to quantify SiC capabilities as an insulator. Lin et al. [20] used the transient
hot-wire method to measure the thermal conductivity changes of copper and nickel
nanoparticle packed beds as a function of the changing porosity during sintering at
various temperature. They also analyzed the effects of the tableting pressure in
enhancing the conductivity of these structures. Qin et al. [21] also investigated the
relationship between porosity and thermal conductivity for groups of metal
nanoparticles. Specifically, they investigated the effective thermal conductivity for silver
nanoparticles undergoing sintering using multiple analytical methods that factored in the
relative conductivities of silver and the surrounding pore media. Although these research
efforts developed relationships between particle packing porosity and effective thermal
conductivity, they focus on porosity values that are much smaller than those experienced
by the nanoparticles in the p-SLS process. These porosity-thermal conductivity
relationships also lack a full representation of the geometric evolution of particle
geometries during the early sintering and neck formation stage, where porosities are high
and effective thermal conductivities continue to be dominated by particle-particle

contact resistances.

Expanding upon more general conduction models, particle heat transfer
simulations for SLS systems have been developed for error minimization and part
prediction. Ganeriwala and Zohdi [22] developed a coupled finite difference — discrete

element method (DEM) model to predict thermal behavior SLS systems. Particles were
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assumed to be discrete spheres of various sizes, and the substrate was discretized for a
finite difference solution. The model analyzes a subsection of a larger particle bed and
provides information from the particle scale model to a larger continuum part scale
model. Similarly, Moser et al. developed a DEM model to estimate the effective thermal
conductivity of particle packings in an SLS powder bed [23,24]. Moser’s model assumes
all particles in the system are uniform temperature bodies. The primary heat transfer
modes considered by this model are particle-particle conduction, particle-gas-particle
conduction and radiation when determining the steady state temperature distribution in
the particle system. The output temperature values were used to calculate the effective
thermal conductivity of the randomly generated group of particles. Although these SLS
models effectively simulating the heat transfer process within powder beads for the initial
spherical arrangement of particles, they model a particle melting and solidification
process. In the p-SLS system, sintering is a solid-state diffusion process, where the
particles do not undergo phase transformations. Therefore, as the particles diffuse into
each other, the resulting geometries of the particle groups change significantly despite
the lack of a phase change. This work builds upon previous research efforts and expands
their scope to incorporate the complex geometric changes experienced by the
nanoparticle powders undergoing laser sintering and estimates the effective thermal

conductivity of these particle packings as a function of sintering duration.

MODELING METHODS
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A Finite Element Model (FEM) was developed in this work to determine the
effective thermal conductivity of copper nanoparticles as a function of densification in a
U-SLS system. A steady state heat transfer simulation was performed in ANSYS Mechanical
to obtain temperature information within a heated nanoparticle packing. The Finite
Element method was selected due to its proven accuracy, setup simplicity and its
widespread use in Additive Manufacturing (AM) applications [25,26]. Nanoparticle
packings, composed of approximately 20-30 nanoparticles (each on the order of 10-100
nanometers in diameter), are analyzed as they transition from discrete spherical particles
to a coalesced, sintered unit [27]. Computer aided design (CAD) models are used to
represent the packed nanoparticle geometries during the finite element analysis. Surface
and grain boundary diffusion is simulated using a Phase Field Model (PFM) to track the
morphological evolution of the particles and obtain accurate solid models of the
nanoparticles throughout the sintering process [28]. The PFM tracks the evolution of a
fixed number of equally spaced points within a defined bounding box. The initial number
of particles, the radii of each particle, and the dimensions of the bounding box are variable
inputs to the model. For a given particle set, the PFM simulates the entire sintering
process and records snapshots of the phase field variables at several timesteps. The
captured snapshots provide data files containing a set of phase field variables for each
point within the model’s bounding box. The data files provide information regarding the
particle density, p, of the region corresponding to the point in space, as well as a number
of n variables equal to the total number of initial particles in the system. Each n variable

provides information regarding the contribution each point in the PFM makes to the
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corresponding particle in the system. Both variables range from 0 to 1 and have cutoffs
that determine the geometric arrangement of the nanoparticles. The p cutoff determines
the threshold between the solid and vapor phases (0 representing vapor, and 1
representing solid), and the n variable cutoff determines which points within the
bounding box correspond to which particles in the system (0 representing no
contribution, and 1 representing full contribution to a specific particle). This dataset is the

basis for the subsequent conversion and FEM processes discussed in this paper.

Conversion from PFM Data to CAD Models

Although the PFM data files provide a comprehensive description of the particle
geometries throughout the sintering process, the raw data is not a usable geometric input
for a finite element solver. FEMs accept solid models and surface bodies in several forms.
To use the PFM data in a Finite Element simulation, a conversion process must be
established to transform the PFM output data files into usable solid models for FEM input.
To accomplish this, a 3-step conversion process is developed. To maintain the accuracy of
the PFM output data, this conversion process must provide input CAD files that match the
original PFM particle detail. The conversion process must also work for all possible initial
particle arrangements, variable particle numbers, and the different geometries that occur

as particles diffuse into one another. The steps of the conversion process are as follows.

The first step of the conversion process converts raw PFM data into cartesian point
clouds. The PFM output data is filtered using the p cutoff to determine the solid phase,

and the n variable cutoffs are used to divide the domain into individual particles. The

9
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resulting collection of filtered points is then run through a surface extraction algorithm to
isolate the exterior points and convert the data into a point cloud format. The algorithm
evaluates each solid point to see if any of the surrounding points are in the vapor phase
and writes a new data file with the filtered surface set. An example of a resulting point

cloud is shown in Fig 1a.

The second conversion step takes the point cloud coordinate files as input and
outputs reconstructed surface meshes for each nanoparticle. These surface meshes are
hollow shells composed of small surface triangles and are constructed based on the
arrangement of points in the input point cloud. This step in the conversion process is
performed in Meshlab, an open-source 3D meshing and reconstruction software, where
parameters are adjusted to optimize a tradeoff between surface mesh accuracy and the
number and quality of the resulting triangle surface meshes. The major sub steps
performed in Meshlab include computation of surface normals, surface reconstruction,
surface decimation (a reduction in the number of node points that make up the triangular
surface mesh), mesh repair and mesh smoothing. This surface meshing step is often the
most critical, as it determines the usability, complexity and surface quality of the
downstream solid parts and subsequent finite element meshes. An example of the

resulting surface mesh is shown in Fig 1b.

The third step of the conversion process takes triangular surface meshes as input,
and outputs solid CAD models with defined grain boundaries between adjacent particles.

Particle surface meshes are first filled out to form solid CAD models in FreeCAD, an open-

10
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source CAD software. The particle models are then checked for holes that result from
initial flaws in the surface mesh reconstruction process. Once the particle models are free
of defects, a Python script is executed to detect intersections between adjacent
nanoparticles in the particle set. This script checks to see if any two particles have
overlapping points in their original cartesian point cloud. The information for each pair of
overlapping particles is added to an intersection matrix for further processing. The
intersection matrix controls a separate Python script with FreeCAD integration that
performs particle-particle Boolean cuts. If a small and large particle overlap, the overlap
region is removed from the smaller particle to simulate the process of smaller particles
diffusing into larger particles. This occurs for each set of intersecting particles recorded in
the intersection matrix. These Boolean cuts ensure that the grain boundaries between
adjacent nanoparticles in the particle set are correctly modeled, and that the interface
between any set of two particles in contact is a perfect fit. This step is critical, as the
thermal contact resistance between adjacent nanoparticles in a particle set is one of the
most important input parameters in subsequent finite element simulations. This step
concludes with two additional operations using FreeCAD Python commands. First, a
rectangular block of air with dimensions equal to the PFM bounding box is inserted into
the modeling space. This block represents the air surrounding the nanoparticles and is
included to allow the FEM to correctly model particle-air-particle conduction. This model
neglects natural convection effects due to the extremely small Raleigh numbers, and
correspondingly small heat transfer coefficients present in this nanoscale system. In the

absence of external forced convection, the surrounding air can be modeled as a solid,
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thermally conductive medium that remains stationary for the duration of the simulation.
To ensure perfect contact between the solid air block and the nanoparticle CAD models,
another Python script is used to subtract each particle in the set from the surrounding air
block. This forms a hollowed-out block that perfectly envelops the nanoparticle packing.
Finally, a second block is inserted beneath the nanoparticles to model the glass substrate.

Examples of the completed CAD models are shown in Fig 1.
Conversion from PFM Data to CAD Models

The purpose of converting the PFM output data files to solid CAD models is to
prepare the nanoparticle models for FEM. With proper setup, the FEM will solve for a 3D
temperature distribution within the nanoparticle models and the surrounding air block,
which will be subsequently used to extract the effective thermal conductivity of the
particle set. The FEM solver used in this work is configured to solve the heat conduction

equation
aT nr
PCp 5 = V- (kVT) + Q (1)

where k, p, ¢, and Q" represent the thermal conductivity, the density, the specific heat
capacity at constant pressure, and the internal volumetric heat generation of a given solid
object. The terms on the right-hand side of Eq. 1 describe the second order spatial
temperature gradient in the object summed with the heat generation occurring within
that object, Q"”’. The term on the left-hand side of Eq. 1 represents the transient thermal

response of the object given its material properties. To solve this second-order partial
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differential equation for the spatial temperature distribution within an object, the
nanoparticle CAD models must first be transferred to the finite element workspace,
where the finite element meshing algorithm will divide each of the bodies into discrete
elements and nodes on which an approximate solution can be solved. Then, heat transfer
boundary conditions must be specified. Finally, values for the thermal contact
conductance between adjacent nanoparticles and at particle-air interfaces are
determined and set. Mesh discretization, boundary condition application and thermal

contact conductance determination were the key focuses of the finite element setup.

Mesh Generation

Once the nanoparticle models, the enveloping air block and the glass substrate
are brought into the finite element workspace, a multistep meshing procedure is
implemented. Due to the nature of the conversion process, the resulting particle models
have surface profiles that match their corresponding triangular surface meshes. These
profiles are composed of many small triangular faces of varying sizes, adding complexity
to the geometry of each nanoparticle. The surrounding air block envelops these particles
with matching faces at the contact points, and thus has a similar level of geometric
complexity. To account for this, heavily refined meshes are generated both within solid
volumes and on planar surfaces. The surface and body meshes are generated separately
with unique values to ensure an optimal mesh. Within the particle models and the
surrounding air block, a fine tetrahedral mesh is applied. This mesh is restricted to a

region of influence near the contact surfaces between the particle models and the solid
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air block. Hollow spheres of influence are generated and imported into the model to
accomplish this volumetric meshing procedure. Each of the hollow spheres of influence
encompasses the surface of one of the nanoparticles in the particle set. Both the air and
particle models are meshed with this method, allowing for a fine mesh near contact
regions, and a coarser mesh near the particle centers. This reduces mesh complexity and
reduces overall computational time while emphasizing the regions with fine geometric
detail. Additionally, a fine surface mesh is applied to all particle- air contact surfaces. This
allows the meshing algorithm to handle the large number of small triangular faces present
in the model. Finally, the global mesh is instructed to automatically refine the mesh
further in tight spaces to improve the success rate of the meshing algorithm and facilitate

subsequent Finite Element modeling.

Boundary Condition Application

After the mesh settings are finalized for all surfaces and solid bodies, boundary
conditions representing heat transfer processes are applied to the particle model. Prior
to importing the solid models into ANSYS, the edges of the nanoparticle group are
removed by a vertical cutting plane to allow for the consistent application of boundary
conditions to smooth, vertical faces irrespective of initial conditions or timesteps. The
locations of the vertical cuts are chosen such that the fraction of the resulting flat surface
area that contains particle faces approximates the volume fraction of the nanoparticles
with respect to the bounding box. This boundary modification helps maintain a uniform

heat flow across different particle geometries. A coordinate direction is chosen, and a
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constant temperature of 22 °C is applied to the flat particle faces corresponding the
minimum value of this coordinate direction. A constant heat flux of 10* 1‘11—‘2/ is then applied

to the flat particle faces corresponding to the maximum value of the chosen coordinate
direction. All remaining boundary faces in the model are insulated to simulate 1-
dimensional heat flow through the nanoparticle set. Radiation was neglected in the
model, as it has been found to be negligible compared to particle-particle conduction and
particle-air-particle conduction. This is largely due to the relatively low average sintering
temperature of roughly 700 K [29]. Applied boundary conditions are depicted in Fig 2c

and Fig 2d.
Thermal Contact Conductance

The thermal contact conductance values used in the simulation determine the
temperature jumps at the interfaces between adjacent bodies in particle-particle contact

and in particle- air contact. The thermal contact conductance for particle-air contact is set

MW
m2K

to 10° to accurately model perfect wetting of the particle surfaces by the surrounding

air. The resulting temperature jump at these interfaces should be close to zero to
approximate ideal contact between an object and a surrounding fluid. The thermal
contact conductance for particle-particle contact is more difficult to estimate. Multiple
thermal contacts occur from one end of the nanoparticle packing to the other along the

specified coordinate axis. This is especially true for earlier timesteps, where more particle-

w

M
-— was chosen
m<K

particle contacts exist along the primary axis of heat flow. A value of 20

for the particle-particle thermal contact conductance based on estimations from [29] and

15
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[30]. The former used DEM to compare relevant heat flows between spherical metal
nanoparticles and selected the value of thermal contact conductance that corresponded
to the transition point at which the temperature gradients within individual particles
became negligible compared to the temperature drop across particle-particle contacts.
The latter measured the thermal contact conductance between deposited metal films (Al,

Ag, Sn, Zn, and In) and an underlying copper film using transient thermo-reflectance

MW

—— for the set of tested
m-K

methods. The values determined from [30] ranged from 8 to 95

MW
m2K

metals. The value obtained from [29], 20 was determined for the same nanoparticle

sintering system as covered in this work. Therefore, the value from [29] was used in this

paper for consistency.

RESULTS AND DISCUSSION

The densification of 10 one-by-one micrometer beds consisting of anywhere
between 21 and 43 particles was simulated using the PFM setup described earlier. The
simulation boxes containing the particle sets were 104 by 104 pixels in the x-y plane and
ranged from 56 to 86 pixels along the z-axis. PFM output data files representing
nanoparticle geometries for each of the 10 sintered beds were saved at 35 timesteps
along the sintering timeline. Each output file was converted into a set of particle CAD
models with well-defined contact regions. Each of these particle sets was then imported
into an ANSYS Mechanical FEM workspace where mesh generation and boundary
condition application were performed before ultimately solving each model for the

resulting steady-state temperature distribution within the nanoparticle system.
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Upon completion of the FEM simulation for each timestep, the temperature distributions
were analyzed to calculate the effective conductivity of the particle set. To calculate the
effective thermal conductivity of a particle set, the steady state, 1-dimensional
approximation to Fourier’s law of heat conduction was rearranged and solved for the
thermal conductivity parameter. This rearranged thermal conduction equation is shown

in Eq. 2

L 12}
kerr = 57174 (2)

Where k,¢s is the effective thermal conductivity, T, and T; are two independent
temperature values located at different locations along the chosen axis, L is the distance
between T, and T; along the same axis, and q'’ is the heat flux magnitude at the
boundary. The temperature distributions produced by the FEM solver provide
temperature data corresponding to every node on every element within the finite
element model. To apply Eq. 2 across the full particle set and obtain an effective thermal
conductivity value for the given set, the output temperature information must be
reduced. The temperature distributions were first filtered to only include the external
faces corresponding to the minimum and maximum values of the x coordinates. The
temperature datasets were again filtered to only include temperature data from particle
nodes. This filtration only included particle faces corresponding to non-insulative
boundary conditions and allowed for a more accurate temperature difference calculation
across the set of particles. Finally, the filtered temperature data was averaged at both the

maximum and minimum x-coordinate locations to obtain a single representative
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temperature value for each location. These average temperatures correspond to T, and

T, from Eq. 2.

Once the output data was simplified to averaged temperature values, the effective
thermal conductivity of the particle group could be determined. Eq. 2 provides a first-pass
estimate for this value, but it is unable to account for non-uniform surface areas in the
primary direction of heat flow, and thus requires modification. The PFM data input is
inherently stochastic, meaning the nanoparticle geometries present in each particle set
are different. Therefore, the surface areas that are exposed to the constant surface
temperature and the constant heat flux boundary conditions can vary considerably
between beds and between timesteps for a given bed. Additionally, the cross-sectional
area perpendicular to the axis of heat flow changes with location in a unique way for each
bed. A correction factor is added to Eqg. 2 to account for these sources of variation and
provide more comparable values for the effective thermal conductivity of the particle set.

The modified formulation is shown in Eq. 3.

Ay Ly
keff_(z | (3)

V¢ represents the volume fraction of the PFM bounding box taken up by the nanoparticle
models. As represents the surface area corresponding to the constant heat flux boundary

condition. T, and Tjcorrespond to the average temperatures on the filtered external

and L represents the

particle faces, q” represents the applied heat flux of 10* TIZW

2K

distance between T, and T;. The fraction shown in Eq. 3 corrects for differences between
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the surface area where the heat flux and temperature boundary conditions were applied
and the average surface area along the axis of heat flow through the particle set. The full
calculation was performed on 10 beds for 35 sampled timesteps each. In addition to the
thermal conductivity calculation, the density of each nanoparticle packing was calculated
using a Python script. This script samples each bed and calculates the ratio of particle
volume to the volume of a bounding box. Given the small number of nanoparticles, the
bounding box used to determine the total volume was chosen to be a subset of the full
PFM bounding box. This reduces the impact of boundary effects on the densification
results by focusing on the interior particles that better represent the majority of particles
ina much larger bed. The results of the simulations for the 10 randomly generated particle

beds were aggregated into a single dataset, shown in Fig. 3.

Fig. 3 includes the output data from the thermal simulations and density
calculations along with a linear best fit line and prediction bounds. All simulations were
run for a fixed number of timesteps, although each bed reached a different density value
by the end of the PFM simulation. Many of these density values were substantially larger
than the density values achievable during laser sintering (this does not include the

annealing process that occurs post-sintering). Therefore, thermal conductivity data points
. . . k .
were excluded if their density values exceeded 5000 m—gs, as this is a reasonable upper

bound for achievable densification using the u-SLS system without post-process
annealing. The 95% prediction interval provides a confidence band for future predictions

using the linear fit shown in Fig. 3. The large range for prediction results from the
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considerable uncertainty present for single micron particle beds. In smaller particle
systems, boundary effects have considerably more impact on the simulation results. To
reduce this uncertainty, a subsection of a larger particle bed can be used at the cost of a
significant increase in computational expense. The prediction interval in Fig. 3 will be used
to quantify the uncertainty in downstream sintering models that incorporate the results

from this work.

Due to the random nature of the particle bed generation process, beds have
different initial densities. To account for this, the results shown in Fig. 3 are plotted as a
function of densification percentage in Fig. 4. Densification percentage refers to the
percent increase in density from the density value calculated before the onset of

sintering.

It is noted that these results describe early necking and initial sintering, but do not
include the initial thermal conductivity of the nanoparticle packing before sintering
occurs. The values for the initial packing condition were recorded separately. This allows
for future simulations to have access to a thermal conductivity value for unsintered
copper nanoparticles, in addition to a range of thermal conductivity values for copper
nanoparticles as they sinter. The difference in average effective conductivities and

densities just before and just after the onset of sintering, along with the associated

uncertainties, are 9.42 % (798.35% change from initial thermal conductivity) and 1.28

m—g3 (.035% change from initial density) respectively. Despite a small average increase in

the density during initial sintering, the thermal conductivity increases nearly by a factor
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of 10. This is the result of the early neck formation that occurs when adjacent
nanoparticles surpass the sintering threshold. During this initial necking phase, the
contact regions between nanoparticles grow considerably, opening larger paths for heat
to conduct between the particles. At the onset of this process, the formation of these
heat pathways results in a very small change in the overall geometry, and therefore the

density, of the packing.

The thermal conductivity results presented in this paper were compared with
literature results for silver nanoparticles during densification. Fig. 5 shows three separate
estimations for the effective thermal conductivity of silver nanoparticles [21] in addition

to the data obtained in this work.

The results developed in this work differ considerably from those derived from
literature. This is to be expected, since the literature results focus more on densification
values close to the bulk material value and lack a comprehensive overview of the early
necking process that occurs in the pu-SLS system. The laser sintering that occurs during the
U-SLS process is heavily impacted by the initial necking phase, so it is critical that the rapid
increase in thermal conductivity during this phase is accurately captured. A summary of

the complete FEA process is shown in Fig. 6.

FUTURE WORK
The results developed in this work describe the relationship between copper
nanoparticle densification and the corresponding increase in the thermal conductivity of

a nanoparticle group. This relationship has been integrated into a preliminary part-scale,
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transient finite element model capable of predicting the thermal evolution of a powder
bed during sintering. Each copper element of the part-scale model has its thermal
conductivity updated at a series of timesteps based on the temperature history of the
element. Moving forward, this part-scale model will be validated against experimental
results using a combination of IR camera images, profilometer profiles, and
experimentally measured electrical properties. Additionally, this multi-scale modeling
effort will be used to input laser parameters and predict the resulting sintered part
shapes. This predictive capability will allow for model-based control of laser parameters
to achieve optimized part shapes with minimized heat affected zones. Additionally, larger,
2 micrometer by 2 micrometer beds can be used to reduce the uncertainty of the resulting
linear fit line by reducing the impact of boundary effects on the results. By expanding the
size of the bed, the thermal model can take a subsection from the larger bed and run the

heat transfer analysis on an interior subsection, avoiding the particles along the edges.

CONCLUSION

In this paper, a Finite Element Model (FEM) and a fully scalable data conversion
smalls sets of copper nanoparticles. This will facilitate the prediction of heat affected
zones (HAZ) during microscale selective laser sintering (u-SLS). Phase Field Modeling
(PFM) data was converted into solid particle CAD models, and an automated steady-state
heat transfer simulation was used to calculate temperature profiles and effective thermal
conductivities of nanoparticle packings. A steady state, 1D thermal conduction

approximation was used alongside an area/volume fraction correction factor to extract
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thermal conductivity information out of resulting temperature data. The results show a
rapid increase in the thermal conductivity during early particle necking, and a reduced
rate of change for later timesteps. The results also show that there is significant
uncertainty in the thermal conductivity of the beds due to the variances in nanoparticle
configurations throughout the bed but that there is a clear trend that as be particle bed
starts to sinter together and densify, the thermal conductivity of the bed increases.
Overall, the thermal conductivity of the bed almost doubles from initial sintering to the

maximum densification that is typically achieved in the u-SLS process.
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488  NOMENCLATURE

489
p variables should appear in first column with the description in second
column, m
n all variables should appear in italics
c, two-letter abbreviations should appear in italics
Q' three-letter abbreviations should not appear in italics
K Reynolds number and similar abbreviations do not use italics
p use the “Tab” key to add more rows to this table
kegs Effective thermal conductivity of the nanoparticle packing
L Distance between locations corresponding to T, and T,
T, Average temperature on the filtered external particle face
Ty Average temperatures on the opposite side particle faces
q Heat flux magnitude at the boundary
As Surface area corresponding to the constant heat flux boundary condition
Ve Volume fraction of the PFM bounding box taken up by the nanoparticle
models
490
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Figure Captions List

The Full Conversion Process. a). Nanoparticles represented by point
clouds; b). Nanoparticles represented by a triangular surface mesh derived
from point clouds; ¢). Nanoparticles represented by solid models derived
from triangular surface meshes; d). Nanoparticle solid models resting on a
glass substrate; e). Hollowed out air block; f). Full assembly of particles,
air, and glass

3-Dimensional Finalized Solid Models (Note the 180-degree rotation about
the z-axis between images ¢ and d). a). Model with enveloping air block;
b). Model without air block; c). Constant surface heat flux boundary
condition shown in red; d). Constant surface temperature boundary
condition shown in blue

Thermal conductivity vs density with linear fit line and 95% prediction

bounds

Thermal conductivity vs densification percentage with linear fit line and

95% prediction bounds
Thermal Conductivity vs Density Comparison: This work vs Qin Et. Al [21]

Summary of Finite Element Setup and Sample Results
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Table Caption List

Table 1 Capitalize the first word in the caption
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
30 Thermal Conductivity vs Densification Percentage
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Fig. 5
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Fig. 6
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