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ABSTRACT 10 

 11 

Current Additive Manufacturing (AM) technologies are typically limited by the minimum feature sizes of the 12 

parts they can produce. This issue is addressed by the microscale selective laser sintering system (μ-SLS), 13 

which is capable of building parts with single micrometer resolutions. Despite the resolution of the system, 14 

the minimum feature sizes producible using the μ-SLS tool are limited by unwanted heat dissipation through 15 

the particle bed during the sintering process. To address this unwanted heat flow, a particle scale thermal 16 

model is needed to characterize the thermal conductivity of the nanoparticle bed during sintering and 17 

facilitate the prediction of heat affected zones (HAZ). This would allow for the optimization of process 18 

parameters and a reduction in error for the final part. This paper presents a method for the determination 19 

of the effective thermal conductivity of copper nanoparticle beds in a μ-SLS system using finite element 20 

simulations performed in ANSYS. A Phase Field Model (PFM) is used to track the geometric evolution of the 21 

particle groups within the particle bed during sintering. CAD models are extracted from the PFM output data 22 

at various timesteps, and steady state thermal simulations are performed on each particle group. The full 23 

simulation developed in this work is scalable to particle groups with variable sizes and geometric 24 

arrangements. The particle thermal model results from this work are used to calculate the thermal 25 

conductivity of the copper nanoparticles as a function of the density of the particle group. 26 

 27 

INTRODUCTION 28 
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 Commercially available Additive Manufacturing (AM) systems are typically 29 

capable of producing parts with feature sizes on the order of hundreds of micrometers 30 

[1,2]. Although these manufacturing processes are versatile, this size limitation prevents 31 

their effective use in the microelectronics industry, where parts require manufacturing 32 

resolutions on the order of a few micrometers. The leading process used to manufacture 33 

two and a half dimensional microelectronics structure consists of a mixture of 34 

lithography, etching and chemical deposition steps, which often require intricate setups 35 

and suffer from size limitations. The development of a microscale selective laser sintering 36 

(μ-SLS) system addresses the need for a more robust, flexible, and easy to use process, 37 

while targeting a minimum feature size on the order of a single micrometer [3-6]. 38 

 Selective Laser Sintering (SLS) is an AM process that directly applies laser energy 39 

to a deposited powder bed. The laser energy increases the temperature within the bed in 40 

the areas of laser application which facilitates the fusion of the powder particles into a 41 

solid part. This sintering process is repeated for each subsequently deposited layer until 42 

a full part is formed [7]. One of the major advantages of SLS over other commercial AM 43 

systems is its ability to build true 3D parts, such as overhanging structures, due to support 44 

provided by the unsintered material adjacent to the sintered part. The μ-SLS system 45 

functions similarly to traditional SLS processes in that laser irradiation is applied to a 46 

particle bed and the process is repeated layer-by-layer. The primary difference between 47 

the two processes is the use of nanoparticles as the powdered material in the μ-SLS 48 

system, which facilitates the production of parts with single micrometer features. Given 49 



Insert ASME Journal Title in the Header Here 

 

3 

 

the scale of these particles and the required feature sizes, accurate characterization of 50 

the nanoparticle beds is needed to optimize the μ-SLS process. 51 

 Existing simulation work for SLS systems provide insight into the general process 52 

of heat transfer in powdered systems [8-10], although they focus on larger particles and 53 

typically model a melting and solidification process, as opposed to the solid-state 54 

sintering process experienced by the nanoparticles used in the μ-SLS system. These 55 

particles are on the order of 10-100 nanometers in diameter. The nanoparticles remain 56 

solid as they sinter, with grain boundary and surface diffusion dominating the underlying 57 

solid-state sintering mechanisms [11]. The effective thermal conductivity of metal 58 

nanoparticles within a powder bed system is found to be dominated by the evolving 59 

geometries of the nanoparticles as they diffuse into one another, and the grain boundary 60 

thermal contact resistance at the interfaces between adjacent nanoparticles [12]. The 61 

work presented in this paper focuses on these two dominating factors, while also 62 

considering the conductivities of the individual copper nanoparticles and the surrounding 63 

air medium. 64 

 65 

BACKGROUND 66 

The modeling and simulation of the heat transfer characteristics and material 67 

properties of particle systems has been actively researched for years. Two-particle models 68 

have been developed to predict heat transfer between adjacent particles in thermal 69 

contact using analytical and computational methods. The two-particle model developed 70 

by Bachelor and O’Brien [13] was used to determine the effective conductivity of a 71 
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granular material experiencing steady state heat transfer conditions. The model assumes 72 

heterogeneous media which allows it to capture the stochastic nature of particle 73 

packings. Sun and Chen [14] developed a particle conduction model that uses Hertzian 74 

contact theory to estimate the contact area between two adjacent particles. The model 75 

makes a critical assumption that the bodies in contact behave as semi-infinite solids, 76 

where changes in temperature due to the contacts between particles are confined to a 77 

small region surrounding the contact area. Although it reduces the computational 78 

complexity of the model, the semi-infinite solid approximation reduces the accuracy of 79 

Sun and Chen’s model for larger Fourier numbers. Zhou, Yu and Horio [15] worked to 80 

improve the work by Sun and Chen by developing a finite element simulation of a particle-81 

particle collision system to provide a correction factor for large Fourier numbers. 82 

Similarly, Shimizu [16] developed a particle conduction model where heat is transferred 83 

between adjacent particles through a thermal pipe with a cross sectional area equal to 84 

the expected contact area between the two particles. Two particle conduction models 85 

like those developed by Bachelor and O’Brien, Sung and Chen and Shimizu can be 86 

expanded to particle systems with more than 2 particles given the assumed independence 87 

of particle-particle contacts. However, this typically requires extensive computational 88 

resources, and fails to account for time-varying, non-spherical geometries and the use of 89 

nanoparticles in the models. 90 

 91 

Models capable of estimating the effective material properties and heat transfer 92 

characteristics of aerogels consisting of packed nanoparticles have recently been 93 
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developed. Zhao et al. [17] developed a diffusion-limited colloidal aggregation model to 94 

determine particle packing structures in silica aerogels and determine the effective 95 

thermal conductivity of the structure using a 3D finite volume numerical model. This work 96 

considers the effects of the random particle packing structures, the solid-gas coupling, 97 

conduction within solid particles, and the area of contact between adjacent particles to 98 

calculate the conductivity values. Guo and Tang [18] built a theoretical model that focused 99 

on the relative effects of particle-particle conduction in the solid particle chains, particle-100 

air-particle conduction along the particle chains, and heat conduction from the particle 101 

chains to the surrounding pore gas. Although these conductivity models provide insight 102 

on relevant heat transfer parameters in nanoparticle systems, they analyze insulative 103 

materials and packing structures unlike those found in μ-SLS systems. They also do not 104 

consider the geometric evolution of the nanoparticles that occurs during a temperature 105 

driven solid state diffusion process. 106 

 107 

Work has also been developed that considers the varying sizes and packing 108 

structures of nanoparticles of various materials. These research efforts determine the 109 

relationship between the porosity of the nanoparticle structure and its effective thermal 110 

conductivity. Wu and Huang [19] prepared SiC nanoparticle beds and measured the 111 

thermal conductivity of the system. They also developed a thermal model that accounted 112 

for thermal contact resistance between particles and the thermal contact resistance 113 

between nanoparticles and the surrounding air. Using this model and corresponding 114 

experimental data, Wu and Huang developed a relationship between the particle packing 115 
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density (represented as porosity) and the effective thermal conductivity of the SiC 116 

nanoparticles to quantify SiC capabilities as an insulator. Lin et al. [20] used the transient 117 

hot-wire method to measure the thermal conductivity changes of copper and nickel 118 

nanoparticle packed beds as a function of the changing porosity during sintering at 119 

various temperature. They also analyzed the effects of the tableting pressure in 120 

enhancing the conductivity of these structures. Qin et al. [21] also investigated the 121 

relationship between porosity and thermal conductivity for groups of metal 122 

nanoparticles. Specifically, they investigated the effective thermal conductivity for silver 123 

nanoparticles undergoing sintering using multiple analytical methods that factored in the 124 

relative conductivities of silver and the surrounding pore media. Although these research 125 

efforts developed relationships between particle packing porosity and effective thermal 126 

conductivity, they focus on porosity values that are much smaller than those experienced 127 

by the nanoparticles in the μ-SLS process. These porosity-thermal conductivity 128 

relationships also lack a full representation of the geometric evolution of particle 129 

geometries during the early sintering and neck formation stage, where porosities are high 130 

and effective thermal conductivities continue to be dominated by particle-particle 131 

contact resistances. 132 

 133 

Expanding upon more general conduction models, particle heat transfer 134 

simulations for SLS systems have been developed for error minimization and part 135 

prediction. Ganeriwala and Zohdi [22] developed a coupled finite difference – discrete 136 

element method (DEM) model to predict thermal behavior SLS systems. Particles were 137 
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assumed to be discrete spheres of various sizes, and the substrate was discretized for a 138 

finite difference solution. The model analyzes a subsection of a larger particle bed and 139 

provides information from the particle scale model to a larger continuum part scale 140 

model. Similarly, Moser et al. developed a DEM model to estimate the effective thermal 141 

conductivity of particle packings in an SLS powder bed [23,24]. Moser’s model assumes 142 

all particles in the system are uniform temperature bodies. The primary heat transfer 143 

modes considered by this model are particle-particle conduction, particle-gas-particle 144 

conduction and radiation when determining the steady state temperature distribution in 145 

the particle system. The output temperature values were used to calculate the effective 146 

thermal conductivity of the randomly generated group of particles. Although these SLS 147 

models effectively simulating the heat transfer process within powder beads for the initial 148 

spherical arrangement of particles, they model a particle melting and solidification 149 

process. In the μ-SLS system, sintering is a solid-state diffusion process, where the 150 

particles do not undergo phase transformations. Therefore, as the particles diffuse into 151 

each other, the resulting geometries of the particle groups change significantly despite 152 

the lack of a phase change. This work builds upon previous research efforts and expands 153 

their scope to incorporate the complex geometric changes experienced by the 154 

nanoparticle powders undergoing laser sintering and estimates the effective thermal 155 

conductivity of these particle packings as a function of sintering duration. 156 

 157 

MODELING METHODS 158 
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A Finite Element Model (FEM) was developed in this work to determine the 159 

effective thermal conductivity of copper nanoparticles as a function of densification in a 160 

μ-SLS system. A steady state heat transfer simulation was performed in ANSYS Mechanical 161 

to obtain temperature information within a heated nanoparticle packing. The Finite 162 

Element method was selected due to its proven accuracy, setup simplicity and its 163 

widespread use in Additive Manufacturing (AM) applications [25,26]. Nanoparticle 164 

packings, composed of approximately 20-30 nanoparticles (each on the order of 10-100 165 

nanometers in diameter), are analyzed as they transition from discrete spherical particles 166 

to a coalesced, sintered unit [27]. Computer aided design (CAD) models are used to 167 

represent the packed nanoparticle geometries during the finite element analysis. Surface 168 

and grain boundary diffusion is simulated using a Phase Field Model (PFM) to track the 169 

morphological evolution of the particles and obtain accurate solid models of the 170 

nanoparticles throughout the sintering process [28]. The PFM tracks the evolution of a 171 

fixed number of equally spaced points within a defined bounding box. The initial number 172 

of particles, the radii of each particle, and the dimensions of the bounding box are variable 173 

inputs to the model. For a given particle set, the PFM simulates the entire sintering 174 

process and records snapshots of the phase field variables at several timesteps. The 175 

captured snapshots provide data files containing a set of phase field variables for each 176 

point within the model’s bounding box. The data files provide information regarding the 177 

particle density, 𝜌, of the region corresponding to the point in space, as well as a number 178 

of η variables equal to the total number of initial particles in the system. Each η variable 179 

provides information regarding the contribution each point in the PFM makes to the 180 
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corresponding particle in the system. Both variables range from 0 to 1 and have cutoffs 181 

that determine the geometric arrangement of the nanoparticles. The 𝜌 cutoff determines 182 

the threshold between the solid and vapor phases (0 representing vapor, and 1 183 

representing solid), and the η variable cutoff determines which points within the 184 

bounding box correspond to which particles in the system (0 representing no 185 

contribution, and 1 representing full contribution to a specific particle). This dataset is the 186 

basis for the subsequent conversion and FEM processes discussed in this paper.  187 

Conversion from PFM Data to CAD Models  188 

Although the PFM data files provide a comprehensive description of the particle 189 

geometries throughout the sintering process, the raw data is not a usable geometric input 190 

for a finite element solver. FEMs accept solid models and surface bodies in several forms. 191 

To use the PFM data in a Finite Element simulation, a conversion process must be 192 

established to transform the PFM output data files into usable solid models for FEM input. 193 

To accomplish this, a 3-step conversion process is developed. To maintain the accuracy of 194 

the PFM output data, this conversion process must provide input CAD files that match the 195 

original PFM particle detail. The conversion process must also work for all possible initial 196 

particle arrangements, variable particle numbers, and the different geometries that occur 197 

as particles diffuse into one another. The steps of the conversion process are as follows. 198 

The first step of the conversion process converts raw PFM data into cartesian point 199 

clouds. The PFM output data is filtered using the 𝜌 cutoff to determine the solid phase, 200 

and the η variable cutoffs are used to divide the domain into individual particles. The 201 
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resulting collection of filtered points is then run through a surface extraction algorithm to 202 

isolate the exterior points and convert the data into a point cloud format. The algorithm 203 

evaluates each solid point to see if any of the surrounding points are in the vapor phase 204 

and writes a new data file with the filtered surface set. An example of a resulting point 205 

cloud is shown in Fig 1a.  206 

The second conversion step takes the point cloud coordinate files as input and 207 

outputs reconstructed surface meshes for each nanoparticle. These surface meshes are 208 

hollow shells composed of small surface triangles and are constructed based on the 209 

arrangement of points in the input point cloud. This step in the conversion process is 210 

performed in Meshlab, an open-source 3D meshing and reconstruction software, where 211 

parameters are adjusted to optimize a tradeoff between surface mesh accuracy and the 212 

number and quality of the resulting triangle surface meshes. The major sub steps 213 

performed in Meshlab include computation of surface normals, surface reconstruction, 214 

surface decimation (a reduction in the number of node points that make up the triangular 215 

surface mesh), mesh repair and mesh smoothing. This surface meshing step is often the 216 

most critical, as it determines the usability, complexity and surface quality of the 217 

downstream solid parts and subsequent finite element meshes. An example of the 218 

resulting surface mesh is shown in Fig 1b.  219 

The third step of the conversion process takes triangular surface meshes as input, 220 

and outputs solid CAD models with defined grain boundaries between adjacent particles. 221 

Particle surface meshes are first filled out to form solid CAD models in FreeCAD, an open-222 
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source CAD software. The particle models are then checked for holes that result from 223 

initial flaws in the surface mesh reconstruction process. Once the particle models are free 224 

of defects, a Python script is executed to detect intersections between adjacent 225 

nanoparticles in the particle set. This script checks to see if any two particles have 226 

overlapping points in their original cartesian point cloud. The information for each pair of 227 

overlapping particles is added to an intersection matrix for further processing. The 228 

intersection matrix controls a separate Python script with FreeCAD integration that 229 

performs particle-particle Boolean cuts. If a small and large particle overlap, the overlap 230 

region is removed from the smaller particle to simulate the process of smaller particles 231 

diffusing into larger particles. This occurs for each set of intersecting particles recorded in 232 

the intersection matrix. These Boolean cuts ensure that the grain boundaries between 233 

adjacent nanoparticles in the particle set are correctly modeled, and that the interface 234 

between any set of two particles in contact is a perfect fit. This step is critical, as the 235 

thermal contact resistance between adjacent nanoparticles in a particle set is one of the 236 

most important input parameters in subsequent finite element simulations. This step 237 

concludes with two additional operations using FreeCAD Python commands. First, a 238 

rectangular block of air with dimensions equal to the PFM bounding box is inserted into 239 

the modeling space. This block represents the air surrounding the nanoparticles and is 240 

included to allow the FEM to correctly model particle-air-particle conduction. This model 241 

neglects natural convection effects due to the extremely small Raleigh numbers, and 242 

correspondingly small heat transfer coefficients present in this nanoscale system. In the 243 

absence of external forced convection, the surrounding air can be modeled as a solid, 244 
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thermally conductive medium that remains stationary for the duration of the simulation. 245 

To ensure perfect contact between the solid air block and the nanoparticle CAD models, 246 

another Python script is used to subtract each particle in the set from the surrounding air 247 

block. This forms a hollowed-out block that perfectly envelops the nanoparticle packing. 248 

Finally, a second block is inserted beneath the nanoparticles to model the glass substrate. 249 

Examples of the completed CAD models are shown in Fig 1.  250 

Conversion from PFM Data to CAD Models  251 

The purpose of converting the PFM output data files to solid CAD models is to 252 

prepare the nanoparticle models for FEM. With proper setup, the FEM will solve for a 3D 253 

temperature distribution within the nanoparticle models and the surrounding air block, 254 

which will be subsequently used to extract the effective thermal conductivity of the 255 

particle set. The FEM solver used in this work is configured to solve the heat conduction 256 

equation 257 

ρ𝑐𝑝 𝜕𝑇𝜕𝑡 =  ∇ ∙ (𝑘∇T) + 𝑄′′′ (1) 258 

where k, 𝜌, 𝑐𝑝, and Q’’’ represent the thermal conductivity, the density, the specific heat 259 

capacity at constant pressure, and the internal volumetric heat generation of a given solid 260 

object. The terms on the right-hand side of Eq. 1 describe the second order spatial 261 

temperature gradient in the object summed with the heat generation occurring within 262 

that object, Q’’’. The term on the left-hand side of Eq. 1 represents the transient thermal 263 

response of the object given its material properties. To solve this second-order partial 264 
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differential equation for the spatial temperature distribution within an object, the 265 

nanoparticle CAD models must first be transferred to the finite element workspace, 266 

where the finite element meshing algorithm will divide each of the bodies into discrete 267 

elements and nodes on which an approximate solution can be solved. Then, heat transfer 268 

boundary conditions must be specified. Finally, values for the thermal contact 269 

conductance between adjacent nanoparticles and at particle-air interfaces are 270 

determined and set. Mesh discretization, boundary condition application and thermal 271 

contact conductance determination were the key focuses of the finite element setup.  272 

Mesh Generation 273 

Once the nanoparticle models, the enveloping air block and the glass substrate 274 

are brought into the finite element workspace, a multistep meshing procedure is 275 

implemented. Due to the nature of the conversion process, the resulting particle models 276 

have surface profiles that match their corresponding triangular surface meshes. These 277 

profiles are composed of many small triangular faces of varying sizes, adding complexity 278 

to the geometry of each nanoparticle. The surrounding air block envelops these particles 279 

with matching faces at the contact points, and thus has a similar level of geometric 280 

complexity. To account for this, heavily refined meshes are generated both within solid 281 

volumes and on planar surfaces. The surface and body meshes are generated separately 282 

with unique values to ensure an optimal mesh. Within the particle models and the 283 

surrounding air block, a fine tetrahedral mesh is applied. This mesh is restricted to a 284 

region of influence near the contact surfaces between the particle models and the solid 285 
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air block. Hollow spheres of influence are generated and imported into the model to 286 

accomplish this volumetric meshing procedure. Each of the hollow spheres of influence 287 

encompasses the surface of one of the nanoparticles in the particle set. Both the air and 288 

particle models are meshed with this method, allowing for a fine mesh near contact 289 

regions, and a coarser mesh near the particle centers. This reduces mesh complexity and 290 

reduces overall computational time while emphasizing the regions with fine geometric 291 

detail. Additionally, a fine surface mesh is applied to all particle- air contact surfaces. This 292 

allows the meshing algorithm to handle the large number of small triangular faces present 293 

in the model. Finally, the global mesh is instructed to automatically refine the mesh 294 

further in tight spaces to improve the success rate of the meshing algorithm and facilitate 295 

subsequent Finite Element modeling.  296 

Boundary Condition Application 297 

After the mesh settings are finalized for all surfaces and solid bodies, boundary 298 

conditions representing heat transfer processes are applied to the particle model. Prior 299 

to importing the solid models into ANSYS, the edges of the nanoparticle group are 300 

removed by a vertical cutting plane to allow for the consistent application of boundary 301 

conditions to smooth, vertical faces irrespective of initial conditions or timesteps. The 302 

locations of the vertical cuts are chosen such that the fraction of the resulting flat surface 303 

area that contains particle faces approximates the volume fraction of the nanoparticles 304 

with respect to the bounding box. This boundary modification helps maintain a uniform 305 

heat flow across different particle geometries. A coordinate direction is chosen, and a 306 
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constant temperature of 22 °C is applied to the flat particle faces corresponding the 307 

minimum value of this coordinate direction. A constant heat flux of 104 
𝑀𝑊𝑚2  is then applied 308 

to the flat particle faces corresponding to the maximum value of the chosen coordinate 309 

direction. All remaining boundary faces in the model are insulated to simulate 1-310 

dimensional heat flow through the nanoparticle set. Radiation was neglected in the 311 

model, as it has been found to be negligible compared to particle-particle conduction and 312 

particle-air-particle conduction. This is largely due to the relatively low average sintering 313 

temperature of roughly 700 K [29]. Applied boundary conditions are depicted in Fig 2c 314 

and Fig 2d.  315 

Thermal Contact Conductance 316 

The thermal contact conductance values used in the simulation determine the 317 

temperature jumps at the interfaces between adjacent bodies in particle-particle contact 318 

and in particle- air contact. The thermal contact conductance for particle-air contact is set 319 

to 105 
𝑀𝑊𝑚2𝐾 to accurately model perfect wetting of the particle surfaces by the surrounding 320 

air. The resulting temperature jump at these interfaces should be close to zero to 321 

approximate ideal contact between an object and a surrounding fluid. The thermal 322 

contact conductance for particle-particle contact is more difficult to estimate. Multiple 323 

thermal contacts occur from one end of the nanoparticle packing to the other along the 324 

specified coordinate axis. This is especially true for earlier timesteps, where more particle-325 

particle contacts exist along the primary axis of heat flow. A value of 20 
𝑀𝑊𝑚2𝐾  was chosen 326 

for the particle-particle thermal contact conductance based on estimations from [29] and 327 
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[30]. The former used DEM to compare relevant heat flows between spherical metal 328 

nanoparticles and selected the value of thermal contact conductance that corresponded 329 

to the transition point at which the temperature gradients within individual particles 330 

became negligible compared to the temperature drop across particle-particle contacts. 331 

The latter measured the thermal contact conductance between deposited metal films (Al, 332 

Ag, Sn, Zn, and In) and an underlying copper film using transient thermo-reflectance 333 

methods. The values determined from [30] ranged from  8 to 95 
𝑀𝑊𝑚2𝐾 for the set of tested 334 

metals. The value obtained from [29], 20 
𝑀𝑊𝑚2𝐾  was determined for the same nanoparticle 335 

sintering system as covered in this work. Therefore, the value from [29] was used in this 336 

paper for consistency. 337 

RESULTS AND DISCUSSION 338 

The densification of 10 one-by-one micrometer beds consisting of anywhere 339 

between 21 and 43 particles was simulated using the PFM setup described earlier. The 340 

simulation boxes containing the particle sets were 104 by 104 pixels in the x-y plane and 341 

ranged from 56 to 86 pixels along the z-axis. PFM output data files representing 342 

nanoparticle geometries for each of the 10 sintered beds were saved at 35 timesteps 343 

along the sintering timeline. Each output file was converted into a set of particle CAD 344 

models with well-defined contact regions. Each of these particle sets was then imported 345 

into an ANSYS Mechanical FEM workspace where mesh generation and boundary 346 

condition application were performed before ultimately solving each model for the 347 

resulting steady-state temperature distribution within the nanoparticle system.  348 
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Upon completion of the FEM simulation for each timestep, the temperature distributions 349 

were analyzed to calculate the effective conductivity of the particle set. To calculate the 350 

effective thermal conductivity of a particle set, the steady state, 1-dimensional 351 

approximation to Fourier’s law of heat conduction was rearranged and solved for the 352 

thermal conductivity parameter. This rearranged thermal conduction equation is shown 353 

in Eq. 2 354 

𝑘𝑒𝑓𝑓 =  𝐿𝑇2− 𝑇1 ∙ 𝑞′′ (2) 355 

Where 𝑘𝑒𝑓𝑓 is the effective thermal conductivity, 𝑇2  and 𝑇1 are two independent 356 

temperature values located at different locations along the chosen axis, L is the distance 357 

between 𝑇2 and 𝑇1 along the same axis, and 𝑞′′ is the heat flux magnitude at the 358 

boundary. The temperature distributions produced by the FEM solver provide 359 

temperature data corresponding to every node on every element within the finite 360 

element model. To apply Eq. 2 across the full particle set and obtain an effective thermal 361 

conductivity value for the given set, the output temperature information must be 362 

reduced. The temperature distributions were first filtered to only include the external 363 

faces corresponding to the minimum and maximum values of the x coordinates. The 364 

temperature datasets were again filtered to only include temperature data from particle 365 

nodes. This filtration only included particle faces corresponding to non-insulative 366 

boundary conditions and allowed for a more accurate temperature difference calculation 367 

across the set of particles. Finally, the filtered temperature data was averaged at both the 368 

maximum and minimum x-coordinate locations to obtain a single representative 369 
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temperature value for each location. These average temperatures correspond to  𝑇2  and 370 𝑇1 from Eq. 2.  371 

Once the output data was simplified to averaged temperature values, the effective 372 

thermal conductivity of the particle group could be determined. Eq. 2 provides a first-pass 373 

estimate for this value, but it is unable to account for non-uniform surface areas in the 374 

primary direction of heat flow, and thus requires modification. The PFM data input is 375 

inherently stochastic, meaning the nanoparticle geometries present in each particle set 376 

are different. Therefore, the surface areas that are exposed to the constant surface 377 

temperature and the constant heat flux boundary conditions can vary considerably 378 

between beds and between timesteps for a given bed. Additionally, the cross-sectional 379 

area perpendicular to the axis of heat flow changes with location in a unique way for each 380 

bed. A correction factor is added to Eq. 2 to account for these sources of variation and 381 

provide more comparable values for the effective thermal conductivity of the particle set. 382 

The modified formulation is shown in Eq. 3.  383 

𝑘𝑒𝑓𝑓 = (𝐴𝑠𝑉𝑓) ∙ 𝐿𝑇2− 𝑇1 ∙ 𝑞′′ (3) 384 

𝑉𝑓 represents the volume fraction of the PFM bounding box taken up by the nanoparticle 385 

models. 𝐴𝑠 represents the surface area corresponding to the constant heat flux boundary 386 

condition. 𝑇2 and 𝑇1correspond to the average temperatures on the filtered external 387 

particle faces, q’’ represents the applied heat flux of 104 
𝑀𝑊𝑚2𝐾 and L represents the 388 

distance between 𝑇2  and 𝑇1. The fraction shown in Eq. 3 corrects for differences between 389 
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the surface area where the heat flux and temperature boundary conditions were applied 390 

and the average surface area along the axis of heat flow through the particle set. The full 391 

calculation was performed on 10 beds for 35 sampled timesteps each. In addition to the 392 

thermal conductivity calculation, the density of each nanoparticle packing was calculated 393 

using a Python script. This script samples each bed and calculates the ratio of particle 394 

volume to the volume of a bounding box. Given the small number of nanoparticles, the 395 

bounding box used to determine the total volume was chosen to be a subset of the full 396 

PFM bounding box. This reduces the impact of boundary effects on the densification 397 

results by focusing on the interior particles that better represent the majority of particles 398 

in a much larger bed. The results of the simulations for the 10 randomly generated particle 399 

beds were aggregated into a single dataset, shown in Fig. 3.  400 

Fig. 3 includes the output data from the thermal simulations and density 401 

calculations along with a linear best fit line and prediction bounds. All simulations were 402 

run for a fixed number of timesteps, although each bed reached a different density value 403 

by the end of the PFM simulation. Many of these density values were substantially larger 404 

than the density values achievable during laser sintering (this does not include the 405 

annealing process that occurs post-sintering). Therefore, thermal conductivity data points 406 

were excluded if their density values exceeded 5000 
𝑘𝑔𝑚3, as this is a reasonable upper 407 

bound for achievable densification using the μ-SLS system without post-process 408 

annealing. The 95% prediction interval provides a confidence band for future predictions 409 

using the linear fit shown in Fig. 3. The large range for prediction results from the 410 
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considerable uncertainty present for single micron particle beds. In smaller particle 411 

systems, boundary effects have considerably more impact on the simulation results. To 412 

reduce this uncertainty, a subsection of a larger particle bed can be used at the cost of a 413 

significant increase in computational expense. The prediction interval in Fig. 3 will be used 414 

to quantify the uncertainty in downstream sintering models that incorporate the results 415 

from this work. 416 

Due to the random nature of the particle bed generation process, beds have 417 

different initial densities. To account for this, the results shown in Fig. 3 are plotted as a 418 

function of densification percentage in Fig. 4. Densification percentage refers to the 419 

percent increase in density from the density value calculated before the onset of 420 

sintering.  421 

It is noted that these results describe early necking and initial sintering, but do not 422 

include the initial thermal conductivity of the nanoparticle packing before sintering 423 

occurs. The values for the initial packing condition were recorded separately. This allows 424 

for future simulations to have access to a thermal conductivity value for unsintered 425 

copper nanoparticles, in addition to a range of thermal conductivity values for copper 426 

nanoparticles as they sinter. The difference in average effective conductivities and 427 

densities just before and just after the onset of sintering, along with the associated 428 

uncertainties, are 9.42 
𝑊𝑚∗𝐾 (798.35% change from initial thermal conductivity) and 1.28 429 

𝑘𝑔𝑚3  (.035% change from initial density) respectively. Despite a small average increase in 430 

the density during initial sintering, the thermal conductivity increases nearly by a factor 431 
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of 10. This is the result of the early neck formation that occurs when adjacent 432 

nanoparticles surpass the sintering threshold. During this initial necking phase, the 433 

contact regions between nanoparticles grow considerably, opening larger paths for heat 434 

to conduct between the particles. At the onset of this process, the formation of these 435 

heat pathways results in a very small change in the overall geometry, and therefore the 436 

density, of the packing. 437 

The thermal conductivity results presented in this paper were compared with 438 

literature results for silver nanoparticles during densification. Fig. 5 shows three separate 439 

estimations for the effective thermal conductivity of silver nanoparticles [21] in addition 440 

to the data obtained in this work.  441 

The results developed in this work differ considerably from those derived from 442 

literature. This is to be expected, since the literature results focus more on densification 443 

values close to the bulk material value and lack a comprehensive overview of the early 444 

necking process that occurs in the μ-SLS system. The laser sintering that occurs during the 445 

μ-SLS process is heavily impacted by the initial necking phase, so it is critical that the rapid 446 

increase in thermal conductivity during this phase is accurately captured. A summary of 447 

the complete FEA process is shown in Fig. 6. 448 

FUTURE WORK 449 

The results developed in this work describe the relationship between copper 450 

nanoparticle densification and the corresponding increase in the thermal conductivity of 451 

a nanoparticle group. This relationship has been integrated into a preliminary part-scale, 452 
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transient finite element model capable of predicting the thermal evolution of a powder 453 

bed during sintering. Each copper element of the part-scale model has its thermal 454 

conductivity updated at a series of timesteps based on the temperature history of the 455 

element. Moving forward, this part-scale model will be validated against experimental 456 

results using a combination of IR camera images, profilometer profiles, and 457 

experimentally measured electrical properties. Additionally, this multi-scale modeling 458 

effort will be used to input laser parameters and predict the resulting sintered part 459 

shapes. This predictive capability will allow for model-based control of laser parameters 460 

to achieve optimized part shapes with minimized heat affected zones. Additionally, larger, 461 

2 micrometer by 2 micrometer beds can be used to reduce the uncertainty of the resulting 462 

linear fit line by reducing the impact of boundary effects on the results. By expanding the 463 

size of the bed, the thermal model can take a subsection from the larger bed and run the 464 

heat transfer analysis on an interior subsection, avoiding the particles along the edges. 465 

 466 

CONCLUSION 467 

In this paper, a Finite Element Model (FEM) and a fully scalable data conversion 468 

smalls sets of copper nanoparticles. This will facilitate the prediction of heat affected 469 

zones (HAZ) during microscale selective laser sintering (μ-SLS). Phase Field Modeling 470 

(PFM) data was converted into solid particle CAD models, and an automated steady-state 471 

heat transfer simulation was used to calculate temperature profiles and effective thermal 472 

conductivities of nanoparticle packings. A steady state, 1D thermal conduction 473 

approximation was used alongside an area/volume fraction correction factor to extract 474 
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thermal conductivity information out of resulting temperature data. The results show a 475 

rapid increase in the thermal conductivity during early particle necking, and a reduced 476 

rate of change for later timesteps. The results also show that there is significant 477 

uncertainty in the thermal conductivity of the beds due to the variances in nanoparticle 478 

configurations throughout the bed but that there is a clear trend that as be particle bed 479 

starts to sinter together and densify, the thermal conductivity of the bed increases. 480 

Overall, the thermal conductivity of the bed almost doubles from initial sintering to the 481 

maximum densification that is typically achieved in the µ-SLS process. 482 
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NOMENCLATURE 488 

 489 𝜌 variables should appear in first column with the description in second 

column, m 

η all variables should appear in italics 

𝑐𝑝  two-letter abbreviations should appear in italics 

Q’’’ three-letter abbreviations should not appear in italics 

K Reynolds number and similar abbreviations do not use italics 

𝜌 

𝑘𝑒𝑓𝑓 

L 

𝑇2 

𝑇1 

𝑞′′
 

𝐴𝑠 

𝑉𝑓 

use the “Tab” key to add more rows to this table 

Effective thermal conductivity of the nanoparticle packing 

Distance between locations corresponding to 𝑇2 and 𝑇1 

Average temperature on the filtered external particle face 

Average temperatures on the opposite side particle faces 

Heat flux magnitude at the boundary 

Surface area corresponding to the constant heat flux boundary condition 

Volume fraction of the PFM bounding box taken up by the nanoparticle 

models 

  490 
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Figure Captions List 573 

 574 

 575 

Fig. 1 The Full Conversion Process. a). Nanoparticles represented by point 

clouds; b). Nanoparticles represented by a triangular surface mesh derived 

from point clouds; c). Nanoparticles represented by solid models derived 

from triangular surface meshes; d). Nanoparticle solid models resting on a 

glass substrate; e). Hollowed out air block; f). Full assembly of particles, 

air, and glass 

Fig. 2 3-Dimensional Finalized Solid Models (Note the 180-degree rotation about 

the z-axis between images c and d). a). Model with enveloping air block; 

b). Model without air block; c). Constant surface heat flux boundary 

condition shown in red; d). Constant surface temperature boundary 

condition shown in blue 

Fig. 3 Thermal conductivity vs density with linear fit line and 95% prediction 

bounds 

Fig. 4 Thermal conductivity vs densification percentage with linear fit line and 

95% prediction bounds 

Fig. 5 Thermal Conductivity vs Density Comparison: This work vs Qin Et. Al [21] 

Fig. 6 Summary of Finite Element Setup and Sample Results 

 

576 
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Table Caption List 577 

 578 

Table 1 Capitalize the first word in the caption 

  579 
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Fig. 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Insert ASME Journal Title in the Header Here 

 

31 

 

Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 

 


