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Abstract

The DB-GST problem is given an undirected graph G(V, E), and a collec-
tion of groups S = {S;}_,, S; C V, find a tree that contains at least one
vertex from every group S;, so that the maximum degree is minimal. This
problem was motivated by On-Line algorithms [8], and has applications in
VLSI design and fast Broadcasting. In the WDB-GST problem, every vertex
v has individual degree bound d,,, and every e € E has a cost c(e) > 0.
The goal is, to find a tree that contains at least one terminal from every
group, so that for every v, degr(v) < d,, and among such trees, find the one
with minimum cost. We give the first approximation for this problem, an
(O(log®n), O(log® n)) bicriteria approximation ratio the WDB-GST problem
on trees inputs. This implies an O(log®n) approximation for DB-GST on
tree inputs. The previously best known ratio for the WDB-GST problem on
trees was a bicriteria (O(log?n), O(log®n)) (the approximation for the de-
grees is O(log® n)) ratio which is folklore. Getting O(log®n) approximation
requires careful case analysis and was not known.

Our result for WDB-GST generalizes the classic result of [5] that approx-
imated the cost within O(log2 n), but did not approximate the degree.

Our main result is an O(log® n) approximation for BD-GST on Bounded
Treewidth graphs.

The DB-Steiner k-tree problem is given an undirected graph G(V, E), a
collection of terminals S C V| and a number k, find a tree T'(V’, E’) that
contains at least k terminals, of minimum maximum degree. We prove that
if the DB-GST problem admits a p ratio approximation, then the DB-Steiner
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k-tree problem, admits an O(log? k-p) expected approximation. We also show
that if there are k groups, there exists an algorithm that is able to coverk/4
of the groups with minimum maximal degree, then there is a deterministic
O(logn - p) approximation for DB-Steiner k-tree problem. Using the work of
[7] we derive an an O(log” n) approximation for DB-Steiner k-tree problem
on general graphs, that runs in quasi-polynomial time.

1. Introduction

1.1. Degree Bounded Network Design

Degree Bounded Network design problems are central to combinatorial
optimization and computer science. In [11], the authors present a very gen-
eral algorithm for Degree Bounded Network Design problems, based on the
iterative rounding techniques [10]. See the book [12] that contains many such
results.

1.2. Our problems and results

In [8], namely in the 8'th Workshop on Flexible Network Design, M. Ha-
jlaghayi presented the following open question: Can we approzimate the Min
Cost Group Steiner (MC-GST) problem with Degree Bounds? The problem
is open even on Bounded Treewidth Graphs and even if edges have cost 0.

We formalize the open problem of [8]. The WDB-GST problem is:
Input: A graph G(V, E) and a collection of groups S = {5;}, so that S; C V,
degree bound d,, for every v, and cost c(e) for every e € E.
Required: A tree T'(V’, E’) containing at least one vertex of every group,
so that deg(v) < d, for every v, and among all such trees, find the one of
minimum cost.

The DB-GST problem is a special case with edges of zero cost and uniform
bound on the degrees:
Input: A graph G(V, E) and a collection of groups S = {S;}, so that S; C V.
Required: A tree T(V’, E’) containing at least one vertex of every group
with minimum maximal degree.

The DB-Steiner k-tree problem is:
Input: A graph G(V, E) and a collection of terminals S C V', and a number
k.
Required: A tree T(V, E’) that containing at least k& terminals with mini-
mum maximal degree.

Our main theorem is:



Theorem 1.1. The DB-GST problem on Bounded Treewidth Graphs admits
a polynomial time O(log®n) approzimation.

This is the only known open question posed by M. Hajiaghayi that is
known to have a polynomial time polylog approximation.

The MC-GST is a classic problem which does not have degree bounds but
edges have costs. The goal is to find a tree T" that contains at least one vertex
from every group, with minimum cost. In the elegant paper [5], the authors
give an O(log® n) ratio approximation for this problem on tree inputs.

We give the first generalization of [5]. We study the WDB-GST problem
on tree inputs.

Theorem 1.2. There exists a bicriteria (O(log® n), O(log®n)) approzimation
algorithm for the WDB-GS'T problem on tree inputs. Namely the cost is at
most O(log®n) times the optimum cost for degree bounds {d,}, so that for
every v, degr(v) < O(log®n) - d,,.

An (O(log®n), O(log® n)) bicriteria ratio, namely deg(v) < O(log®n) - d,,
was known (folklore). Improving the ratio for the degrees requires careful
case analysis and was not known.

The DB-Steiner k-tree problem is defined as follows:

Input: A graph G(V, E) and a collection S of terminals and an integer k.
Required: A tree T'(V’, E’) containing at least k vertices of S with minimum
maximal degree.

We prove the following lemma:

Lemma 1.3. If the DB-GST problem admits a p approximation, the DB-
Steiner k-tree problem admits an O(log®n) - p expected approzimation. If
there is p ratio algorithm for the problem of covering k/4 of the groups with
minimum mazimum degree, then there is a deterministic O(logn - p) approz-
imation for DB-Steiner k-tree problem.

Building on the work of [7] we obtain the following theorem:

Theorem 1.4. The DB-Steiner k-tree problem admits an O(log®n) approz-
imation that runs in quasi-polynomaial time.

1.8. Related work

In [7], the authors give a bicriteria polylogn approximation for the WDB-
GST problem, however, the algorithm runs in quasi-polynomial time namely
in time nPoWlos(),



Theorem 1.5. [7] The WDB-GST problem admits an (O(log®n), O(log®n))
ratio approximation algorithm that runs in quasi-polynomial time.

In [9] it is proven that unless P = Quasi(P) the MC-GST problem on
trees cannot be approximated within Q(log® “n) for any constant e. Hence
the ratio for GST on tree inputs [5] is almost optimal.

Since we do not know how to approximate WDB-GST even on Bounded
Treewidth Graphs, one might consider either removing the costs (as we did)
or remove the degree bounds. In [1], the authors study the MC-GST problem
on Bounded Treewidth Graphs (namely they remove the degree bounds).
They use a novel approach without a reduction to a tree [4], but nevertheless
give an O(log” n) ratio for MC-GST on Bounded Treewidth graphs. We too
give an O(log®n) ratio for DB-GST without using [4]. Our algorithm is
combinatorial and reduces the graph into a tree in a novel way.

1.4. Motivation for problems with no cost but with degree bounds

The motivation of Hajiaghayi was solving the WDB-GST problem in the
On-Line setting. Dehghani et al. [1] gave a negative result for WDB-GST:
There exists an input demand sequence that forces any On-Line algorithms
to pay a factor of {2(n) either in the cost or in the degree violation. Hence,
in On-Line algorithm you cannot deal with both costs and degree bounds.
To date, there are no non-trivial approximation algorithm for WDB-GST
either in the online or offline setting, even on Bounded Treewidth Graphs,
and even when all the edges have zero-cost. The zero cost case is very similar
to DB-GST.

The main motivation for the MC-GST problem comes from VLSI design
[5], The goal is to connect a collection S C V' of terminals to a designated
root r. Any terminal has multiple ports it can be placed at. The collection of
different ports in which a terminal may be placed at, is called a group. The
different possible location may be due to, say, rotating or mirroring or both.
Note that the ports of two different terminals may intersect. In the classic
MC-GST problem [5], each link has a cost. The goal is to find a minimum
cost subtree, which contains at least one vertex of any group. While low
cost is highly desirable, the cost is payed once, and later the VLSI circuit is
applied constantly. Low degrees are crucial in VLSI design. Each circuit has
several input wires. Low degree implies that the computation of the value
of the circuit can be done fast. In [19], a natural VLSI problem is reduced
to DB-Steiner k-Tree. This paper iteratively builds trees with low degrees



in order to bound from above the latency of the VLSI computation. Low
degree are also important for efficient layout of the VLSI circuit (see [14]).
It seems to the authors, that for VLSI design, the DB-GST problem is not
less important than the MC-GST problem.

The motivation for the DB-Steiner k-tree problem came from the Tele-
phone k-Multicast problem. We are given an unweighted graph G(V, F) a
collection S of terminals and a number k < |S|. Say that a vertex r knows
a message and the goal is to send the message in the Telephone Model to k
vertices of S. In the Telephone Model at each round a matching between
the vertices P which know the message, and the vertices of S — P is chosen.
After a round, the vertices in S — P which participated in the matching, join
P. The process stops after k£ terminals know the message, and the goal is to
minimize the number of rounds. Note that every multicast scheme defines a
tree. The parent of vertex v is the (unique) vertex which sent the message
to v. Conversely, given the optimal tree, the best multicast scheme can be
found by dynamic programming [18].

Say that we use a tree with maximum degree A containing k terminals.
The parameter A bounds from below the number of rounds required for the
multicast. Using trees with low maximum degrees can be a good heuristic
for the Telephone k-Multicast problem.

The DB-Steiner k-tree problem is the Minimum Degree variant of two
classical problems. The k-MST and k-Steiner tree problems (see [6]). As the
above problems are important, so are their minimum degree variants.

In Multicommodity Facility Location problem under Group Steiner Ac-
cess [15], facilities need serve clients. Each facility belongs to a Group Steiner
Tree. Short service times require that the Group Steiner trees have low de-
grees.

Problems that require to cover all terminals with connectivity constraint
usually admits a constant ratio [12]. But the DB-Steiner k-tree problem
requires to cover k terminals out of many. The authors of [12] explicitly
state that the iterative rounding techniques do not work for selecting only &
terminals out of many.

1.5. What makes the DB-GST difficult to approximate?

In the approximation algorithm for MC-GST, the first step is reducing
the graph into a tree [4]. Unfortunately, this reduction may considerably
increases the degrees. Similarly, the reduction of graphs to a random trees,



that keeps the expected size of all cuts by at most O(logn) factor [16], does
not preserve the degrees.

1.6. Two trivial observations

The DB-GST problem is (1 — €) Inn inapproximable on stars unless P =
NP [2]. A star can model the Set Cover (or Hitting Set) problem (see [2]),
since a leaf may belong to many groups. We add a universal vertex r that is
connected to every leaf. The chosen edges of r must give a Set Cover of the
groups. It is known that the Set Cover problem does not admit a (1—¢)-Inn
approximation, for any constant € > 0, unless P = NP [2]. This implies the
same inapproximability for the DB-GST even on stars.

The DB-Steiner k-tree problem admits an exact polynomial solution for
the Bounded Treewidth Graphs by the standard dynamic programming al-
gorithm.

Implication for the Covering Group Steiner problem with min-
imum degree: In the Covering Steiner problem each group has a number
d; and it is required to select at least d; terminals of group 7. In [3], a reduc-
tion is given, from the Covering Steiner Problem to Group Steiner problem
with the goal of covering only 1/2 of the groups. This gives an immediate
approximation (with the same ratio as for Group Steiner) for the Covering
Steiner Problem with degree bounds. Thus our algorithm can give the same
approximation for the Covering Group Steiner problem with degree bounds
and costs on trees. And an O(log® n) ratio for Covering Group Steiner with
minimum maximal degree problem on Bounded Treewidth Graphs.

2. Preliminaries

2.1. Notation

Let E(v) be the edges of v. Let t be a tree rooted at r r, which contains
a vertex v. We denote by T), the subtree of T" rooted at v. We denote the
parent edge of v, by e,.

Definition 2.1. Let Gr(v) be all the groups v belongs to.

Throughout, we ignore the fact that some numbers are not integral. Cor-
recting the claims by rounding up or down is elementary. When we write
log n, unless stated otherwise, we mean log, n.



2.2. Bounded Treewidth Graphs, definition

A graph G(V, E') has Treewidth k if there is a tree of sets { X} with each
set X; C V and so that the following holds

L. UXi=V

2. The size of every X; is at most k + 1.

3. For every edge e = (u,v) there is an X; so that u € X; and v € X;

4. For any vertex v the set {X,} that contain v are a connected subtree.

2.3. The algorithm of [5]

The algorithm of [5] uses the natural LP for the Minimum Cost Group
Steiner problem, which is described below. Let 6(.S), for S C V be all the
edges with exactly one endpoint in S.

Minimize ),z - c.
Such that

2665(5)376 >1 VS; €S,5 CV, such that r € Sand SNS; =0
e >0 Ve

The LP sets fractional capacities on edges, so that every group can send
a unit of flow to the root.

A normal randomized rounding process will fail to cover the groups. The
authors give a special rounding method. Recall that e, is the parent edge
entering into v.

We assume that the root has a parent edge with capacity 1. For every
edge e € E(v) the edge is added to the solution with probability

Le

Ze,

Definition 2.2. We say that a vertexr reaches the root in such rounding, if
all the edges from the vertex to the root were selected into the solution. We
say that a group reaches the root if a vertex that belongs to the group reaches
the root.



We think of the root as having a parent edge with value 1. The probability
that an edge e reaches the root is

Te  Te

This is a telescopic multiplication that equals x.. Thus, the expected cost
of the solution is ) x. - c(e) = opty with opt; the value of the fractional
optimum.

The main lemma of [5] is:

Theorem 2.1. The probability one of the vertices of a group reaches the root
1/(c-logn) for some constant c.

Thus, the expected number of iterations required to cover all groups is
O(log®n) and therefore, this is the expected ratio.

3. A simple reduction from DB-Steiner k-tree to DB-GST

3.1. Preliminaries

We show that if the DB-GST problem admits a p ratio, then the DB-
Steiner k-tree problem admits an O(log k- p) ratio. In this section we present
a short and simple a O(log2 n) - p expected approximation ratio for the Mini-
mum Degree k-Tree problem. In the next section we present a more complex
algorithm that approximated the maximum degree in the BD-Steiner k-tree
within O(logk - p). This follows under a slightly stronger assumption.

3.2. A simple randomized reduction

Theorem 3.1. If BD-GST admits a p approzimation, then the BD-Steiner
k-tree admits an O(log® k - p) expected approzimation.

Proof. We use the following Chernoff inequality (see [13]).

Pr(p < (1=0)p) < exp(—6°u/2).
Create k/(5logk) empty bins. Throw uniformly at random, each terminal
to a bin. Group S; are the elements that arrived to bin i.

Notation 3.2. Let T* be the optimum solution for our BDS k-tree instance,
and let d* be its maximum degree.



Definition 3.1. A terminal is called a true terminal if it one of the k which
belong to T*. We say that a group is full if it contains a true terminal.

Claim 3.3. With probability at least 1 — 1/k, each group is full

Proof. The number of true terminals that arrive to a group (bin) is a binomial
variable with probability 5log k/k and k trials. Thus the expected number
of true terminals per group is p = 5log k. By the Chernoff bound (see [13])

Pr(p < (1—0)p) < exp(—6°u/2).

We plug in the § so that (1 —§)u < 1. This gives § very close to 1. By the
Chernoff bound the probability that a bin is not full is at most 1/k*. By the
union bound we get that with probability 1 — 1/k each bin is full. O]

We now relate the value d*, the max degree in the optimum for the DB-
GST problem to the max degree required for covering all k/(5log k) groups.

Claim 3.4. If the k/(5logk) of the bins are full, the mazimum degree for
covering all k/(5logk) of the groups is at most d*

Proof. Let T be the subtree of T induced by the k/(5log k) true terminals
of the full bins. Tree T” has degree no larger than d*. We can use T’ as a
solution for covering k/(5logk) groups with maximum degree d* since the
true terminals belong to k/(5logk) different groups. Hence the maximum
degree for covering at least k/(5log k) groups is at most d*. These may not be
true terminals but since every terminal will do, this makes no difference. [J

With probability at least 1 —1/k, every group is full. By the assumption
in Claim 3.4 there is a solution for covering all the k/(5 - log k) groups with
maximum degree d*. Hence we apply the assumed p approximation for the
DB-GST. After O(log2 k) applications of this approximation we get with high
probability a tree with & terminals, and maximum degree O(log®k - p - d*) is
derived. This proves the theorem. O]

4. A deterministic reduction under a slightly stronger assumption

4.1. The new assumption

In this section we need to assume a slightly stronger assumption. That
there is a p approximation algorithm that finds the best k/4 groups to cover,
of all the k groups, so that the maximum degree is minimal. Note that
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the maximum degree for the best k/4 groups may be much smaller than
the degree for covering all groups, but you need to choose which groups to
include, wisely. While the assumption seems stronger it is highly likely that
an algorithm that cover all groups, can be used for covering the best k/4
groups, with essentially the same ratio. For example if the algorithm for
covering all groups uses LP methods, and has ratio p, is is immediate to see
that the maximum degree for covering k/4 groups admits 4- p approximation.
For example for tree inputs, we can cover the best k/4 groups with minimum
maximum degree with the same ratio, up to constants. Also the algorithm
of [7] is LP based, and easily adapted to cover k/4 terminals with the same
ratio up to constants.

4.2. A deterministic algorithm

In this section we assume the following slightly stronger assumption.

Theorem 4.1. If there exists a p ratio polynomial time approximation algo-
rithm to cover the best k/4 out of k groups, with minimum mazimal degree,
then there is a deterministic algorithm with ratio O(p-logn) for covering the
BD Steiner k-tree problem.

Proof. Let T* be the optimum tree for the D B-Steiner k-tree instance. There
may be many terminals, but only £ of them are true terminals, namely belong
to T™.

For simplicity, we denote the true terminals by {0,1,...,k — 1}. Our
method does not depend on which numbers are used in the representation.
We use the bins 0,1,...,k — 1. Group i is defined by the terminals which
arrive to bin i.

We build k& groups, Sp, S1,...,S:_1. We use the well known two point
based sampling (see [13]). This method is also used in designing universal and
perfect hash functions (see [13]). Let p be a prime, such that 8k < p < 16k.

1. Choose a number a, at random, from 1,2,...,p — 1.
2. Choose a number b, at random, from 0,1,...,p — 1.
3. Terminal 0 < ¢ < k — 1 is assigned to bin ((ai + b) mod p) mod k.

Fix a group S; for 0 < j < k—1. Group S; contains the vertices that reach
bin j. Any terminal (and thus any true terminal) is first matched to a random
numberin 0,1, ..., p—1. Fix a true terminal 7. Let P;; be the event that a true
terminal ¢ belongs to S; (namely, reaches bin j). The valuesin {0,1,...,p—1}

10



which will cause item ¢ to reach bin j are j, j+k, ..., j+a-k, for the maximum
integer « such that j+a-k < p—1. The worst j possible is k — 1. Thus, the
question is how large is «v in the inequality (k — 1)+« -k < p—1. Choosing
a = (p — k)/k achieves the desired bound. Since « is integral, we get that
p/k—2 < a < p/k. Dividing by p, we get that bounded from below and from

above by:

1 2

E_Z_)SPT<1D1‘J'>§ : (1)

Thus, the probability that a true terminal belongs to .S}, is bounded by
Inequality (1).

By pairwise independence, if j # i, Pr(P; N P,;) < 1/k* We bound
from below the probability that S; contains a true terminal. Our bound uses
Inequality (1) and the first two terms of the inclusion exclusion formula:

| =

1 1
2 4

Pr(S; contains a true terminal) > k - (l — g) — @ > 3
J - k- p k2 — 4
We used p > 8k and (’;)/k’2 =1/2 —-1/(2k) < 1/2. For every group, the
probability that it contains a true terminal is at least 1/4, and the expected
number of groups containing a true terminal is at least k/4. at least k/4
group with with a true terminal.
Hence we proved:

Corollary 4.2. The expected number of full bins is at least k/4

Claim 4.3. There is a deterministic algorithm, that covers the maximum
degree within ratio O(p - logn) that covers all groups

Proof. We now use the fact that our sample space has small size. Namely
that the number of a,b is O(k?) which is polynomial in the input since k is
at most the number of terminals and thus at most the number n of vertices.
We go over all a, b possible (this can be done in polynomial time). Since the
maximum is at least the average, by Claim 4.2, with probability 1, for some
pair a,b, k/4 of the bins are full. By the Assumption in Theorem 4.1, the
algorithm that returns a tree with at least k/4 covered groups and so at least
k/4 terminals with maximum degree p-d*. Since we cover k/4 terminals and
not k, we need to apply this algorithm O(log k) times to cover all terminals.
The ratio O(p - logn) follows. O

This proves Theorem 4.1. ]
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5. An (O(log®n),O(log®n)) bicriteria approximation for WDB-
GST on tree inputs

In this section we generalize the main theorem of [5]. We present an
(O(log®n), O(log* n)) bicriteria approximation algorithm for WDB-GST on
trees. Recall that in this problem each vertex has its own degree bound d,,
and edges have costs {c(e)}. It is required to to find a solution that obeys the
degree bounds and contains at least one vertex of every group, and among
such solutions find the one with minimum cost.

5.1. Adding degree bounds

We note that in the analysis of [5] every terminal must be a leaf. Oth-
erwise, a vertex of S; may be a descendant of another vertex of S; which
complicates the proof. Hence, if v is a non leaf that belongs to several
groups, for every ¢ so that v € S; we attach a leaf x; to v, that belongs to 5;
(v does not belong to S; after the change). The capacity of (v, z;) is the same
as the capacity of (p(v),v) between v and its parent. This ensures that all
the (v, z;) edges are chosen. The bound on the degree of v in the LP does not
contain the edges (v, x;). If v reaches the root, the edges (z;,v) are removed
and do not contribute to the degree of v. We note that the analysis of [5]
changes the x. values if the x values are 1 over a power. This step can be
done in our algorithm as well. The . do not grow, and thus the degrees do
not grow. In [5] the authors did the natural step of contracting paths with
the same z. values. We cannot do it here since contracting paths increases
the degrees. We now explain why it does not matter. Let p(e) be the parent
edge of e. In [5] they add the edge to the solution with probability z./z().
If the two values are the same this does not change the probability that a
group is connected to the root. The main lemma of [5] claims that their
rounding covers Q(/1/log N) groups. This still hold and does not need the
height reduction.

If e has parent edge p(e) and . = xp() then x. is taken to the solution
with probability 1, not changing the probability that a group will be covered.

Minimize >, z.-ce
Such that

12



Do Te >1 VS C S,isuch that r € Sand SNS; =0

ZBEE(”L)) Te < Le, * dy Vo
Te >0 Ve

Lemma 5.1. ZQGE(U) Te < e, - dy 18 a valid inequality

Proof. It ., = 0 non of the edges touching v belong to the solution. The
second case is z., = 1. We get: ZeeE(v) Te < dy -z, = d,. Hence, all
inequalities added are valid inequalities.

O

Corollary 5.2. For every vertex v

Yy <,

T
ecE(w) =%

Definition 5.1. Let .

My =

e,
e€E(v) =

We use the same rounding as [5]. We note that the degree constrains do
not change the analysis of the algorithm of [5]. Thus, the expected number
of iterations is still O(log2 n) and so is the expected approximation ratio for
the cost. We have to analyze the expected degrees separately.

We use the Chernoff bound [13]. If X is a sum of n independent Bernoulli
variables, with mean p, then:

66 a
Pr(X>140u) < (W) . (2)

The expected degree of v is 7, = O(log?n) - . In each round we have a
Bernoulli sum, of all the children of v that did not reach the root yet. The
difficulty here is that the random Bernoulli variables are dependent. Children
that reached the root should not appear in the sum.

For simplicity of analysis, we bound the degree by O(log®n) independent
Bernoulli sums, which contain all children of v in every round. This is an
upper bound on our random variable, because a children that reaches the
root can contribute more than 1 to the degree. Hence, this random variable
bound the degree from above. However, our random process gives a sum
of independent Bernoulli variable which makes the analysis simpler. For a

13



vertex v, we have a sum of deg(v) - O(log® n) independent Bernoulli variables.
The expected degree is 7, (see above).
We now bound the expectation of 7, by three claims.

Claim 5.3. If 1, > c-logn for a large enough constant ¢ then with probability
1 —1/n?, deg(v) = O(log®n) - d,,.

Proof.
1

n2

e

clogn
Pr(deg(v) > 271,) < <Z> ¢ < - d,

The last inequality holds for large enough c¢. Note that this implies that with
probability 1 — 1/n?, deg(v) = O(log>n). The last inequality, uses the valid
inequality s, < d, from the LP. The O(log®n) expected ratio follows,.  [J

We now deal with vertices for which 1 < 7, < ¢ - logn for some constant
c.

Claim 5.4. In this case, with probability at least 1—1/n?, deg(v) < O(log®n).
Since d, > 1 the expected ratio is O(log®n).

Proof. We know that 7, < clogn. Set (1 +0) = logn.

First we note that if we prove that Pr(deg(v) > (1 + 0)7,) < 1/n?, then
since § = logn and 7, = O(logn) we get that with probability 1 — 1/n? that
deg(v) = O(log®n). Since d, > 1 this gives expected ratio O(log®n). We
now prove the required inequality.

Using the Chernoff bound we get:

Pr(deg(v) > (1+0)7,) < (W) :

Since 7, > 1 we get that

logn

Pr(deg(v) > (1 +6)7,) < (log )"

For large enough n this probability is at most 1/n?2. O]
The last case is 7, < 1.

Claim 5.5. In case 7, < 1 with probability 1 — 1/n?, deg(v) = O(logn) - d,.

14



Proof. We set (1 + §) = logn/7,. Note that if deg(v) < (1 + 6) - 7, then
deg(v) = O(logn). As d, > 1 the expected ratio is O(logn). We now bound

Pr(deg(v) > (146)-7,)
The above is bounded by
6logn/T T
(warere)

Canceling the 7, we get a bound:

elogn
Pr(degiv) <(1+d)1,) < ——m———
( g( ) ( ) ) (log n/Tv)logn
Since 7, < 1 we get an upper bound of
elogn
(log n)logn ’

and the above term is bounded by 1/n? for large enough n. O
We got that with probability 1 — 1/n?, for a given v. deg(v) = O(logn).
By the union bound with probability 1 —1/n for every v, deg(v) < O(logn).

Since d, > 1 the expected ratio is O(logn).
We now deal with bounded treewidth graphs. Let d* denote the minimum
maximal degree in the instance.

6. An O(log® n) approximation for BD-GST on bounded treewidth
graphs

Notation 6.1. Let d* be the minimum mazimum degree for the Bounded
Treewidth instance at hand.

Definition 6.1. A set X is called a separator if after the removal of X,
every connected component in G — X contains at most c-n vertices for some
universal constant ¢ < 1.

There are many lemmas for Bounded Treewidth Graphs separators. The
following is proved in [17].
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Lemma 6.2. There is a linear time algorithm that finds a size k separator,
so that every connected component resulting after the separator is removed is
at most 4n /5.

Definition 6.2. Let H be a subgraph and let S be its separators. LetTh, ..., T,
be the connected components in H — S. The extended separator of T; s it’s
separator S in addition to a verter v; that has a neighbor u in S, namely
(u,v;) € E. This makes sure that S has an edge to every one of its children
separators in the tree. The extended separator is denoted by Sg(T;). It’s size
s k+ 1.

We now formally present the decomposition of GG into a tree of separators
with backward edges. Denote the parent separator of S by p(.5).
Separator-Tree G(V, E)

1. Set C + {G}, S+ 0
2. While there is a connected component H € C with at least & + 1
vertices do

(a) Choose an arbitrary connected component H € C so that |H| > k.
(b) Compute an extended separator Sg(H) of H and add it to S.
/* S will contain the set of separators of the tree */
(c) Delete H from C and add all the connected components of H — Sy
into C.
3. Return(S)

Definition 6.3. We say that two separators S and S’ are neighbors if there is
a vertexx € S and a vertex y € S’ that are neighbors in input graph G(V, E).
Define the children separators of Sg(H) as all the extended separators of
every connected component in H — Sg(H). The edge xy are called extended
edges.

Definition 6.4. The separator graph G(S, E) is defined as follows.

1. The vertices of@ are the extended separators in S.

2. There is an edge in E between S’, S” if there is are two vertices u € S’
and v € 8" so that (u,v) € E.

Definition 6.5. A backward edge is an edge from a descendant separator S’
to an ancestor separator S”.

The following is by construction.
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Corollary 6.3. FEvery edge in G(S, &), that does not belong to T is a back-
ward edge.

The graph G(S) is the graph with S as vertices and with edges, both of its
endpoints belonging to S. Note that the graph G(S) may not be connected.

6.1. An overview of our algorithm

1. Build the graph G and the tree 7.

2. Add to the solution a collection of edges Sg, for every S € G, so
that G(S) + S¢ becomes connected. The penalty on the degrees is an
additive O(logn) term. The maximum degree in the optimum is now
d* + O(logn).

3. Contract every S € G into a vertex s. This is possible because every
separator is connected. Let the resulting graph be G’ with a DFS
spanning tree 7". The vertex s belongs to the groups J,.q G7(v).

4. Prove that if we replace any edge of (u,v) € (G' —T")NOPT (namely
every backward edge in the optimum) by the the unique path between
u and v in 7", the solution remains feasible and the the penalty on the
degree of every vertex is an additive O(logn) - d*, and so the maximum
degree in the optimum is now O(logn)-d*+ (d*+O(logn)) = O(logn)-
d*.

5. Run our approximation for DB-GST on 7" as input and return the

resulting subtree. Because of the O(log®n) ratio for the degrees the
final degree is O(log® n) - d*.

7. Connecting all the non-leaf separators with additive O(logn)
ratio

Definition 7.1. Denote by Ts, the tree of separators rooted by S. containing
all descendants of S in T'.

Let H be the connected graph that S separated. Hence Tg = H. The
difference is that Ts is posed as a tree of separators. As T = H is connected,
there is a path in Ts between any two vertices of S. We note that leaves sets
may not be connected. But their parents are. The leaves contain at most k
vertices.

The way we make G(S) connected for every S is:
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Definition 7.2. Choose an arbitrary vertex uw € S, and add all the shortest
paths from S —wu to u in Ts. These edges are added to our solution.

Note, that only vertices of Tg are used to connect S. In particular, vertices
of ancestors of S are not used.
The edges used to connect S are denoted by Sc.

Lemma 7.1. |JgSc increases the degree of every vertex, by an additive
O(k -logn) = O(logn) factor.

Proof. Because of the DFS structure of T, the degree of a vertex can be
affected by at most one separator S per level in T. We add |S| —1 = k paths
to connect S, and the paths belong to Tg, the tree that S roots. Each path
increases the degree of any vertex by at most 2. Since |S| =k + 1 = O(1),
the number of paths per S is O(1). Since a vertex is affected by at most
one separator per level, the degree added to every vertex v O(k - logn) =
O(logn) O

Remark: The fact that connecting a separator S uses only edges in Ty
is important. Indeed level ¢ may contain many separators. If all of them, use
edges of the root separator set, Sg, the degree in Sy may be large.

8. An existential theorem

Theorem 8.1. Fiz an optimum OPT. Since we do not know OPT, we
make an existential claim. Consider the following actions: We remove all
backward edges used by the optimum and replace each backward edge from
some vertex s to a vertex s’ by the unique path between s and s’ in T'. The
number of edges added to a vertex is at most O(logn)-d*. Hence the optimum
has mazimum degree of O(logn) - d* + (d* + O(logn) = O(logn) - d*.

Proof. The solution is clearly feasible because if we removed a backward edge
(s,s") we added the path between s and s’ in the tree 7. Such path exists
because the separators are connected and we took extended separators and
so we can cross any edge of the tree. Hence we get the same connectivity
as in the optimum. Therefore, the new solution is feasible. We show that
the number of edges added per vertex is O(logn - d*). At every level, a
vertex is influenced by only one separator S. The size of each separator S is
k+1 = O(1). Each one of the O(1) vertices inside a separator, is touched
by at most d* edges. Thus, a unique separator S of a vertex v in Ts may

18



add 2-O(d*) = O(d*) edges to v. Since the number of levels is O(logn), the
change in the degree of of the vertices may increase by an additive O(logn)-d*
factor. This proves the existence of a feasible solution which is a subtree of
T, with maximum degree O(logn) - d* + (d* + O(logn)) = O(logn)d*. O

The above claim implies that we can use 7" as an input. We use the
approximation for DB-GST on trees. This adds an O(log” n) multiplicative
ratio on the degrees. Thus the ratio is O(log® n). This proves our main claim.

8.1. An application

In [7] the authors give a quasi-polynomial (O(log?n), O(log®n)) approx-
imation for degree bounded Directed Steiner tree on general graph inputs.
The DB-GST problem is a special case of the Directed Steiner tree prob-
lem. Covering k/4 of the groups is easily dealt with, since the solution of [7]
is LP based. Using the O(log”n) approximation for k/4-DB-GST on gen-
eral graphs and the approximation of [7], implies a deterministic O(log®n)
approximation for DB-Steiner k-tree, which runs in quasi-polynomial time.

9. Recent advance

In [7] the authors designed a polynomial time O(logn) approximation
ratio algorithm, for the DB-GST problem one trees. Note that this ratio is
optimal, even on stars. This algorithm can easily handle covering k/4 of the
groups.

10. Open problems

Is there a polylog(n) ratio approximation, polynomial time algorithm,
for WDB-GST on Bounded Treewidth Graphs? Is there a polylog(n) ratio
polynomial time algorithm for DB-Steiner k-tree on planar graphs? The DB-
Steiner k-tree problem on Planar graphs is NP-hard as the Hamiltonian Path
problem is NP-hard on planar graphs.
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