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—— Abstract

What approximation ratio can we achieve for the FACILITY LOCATION problem if whenever a client
u connects to a facility v, the opening cost of v is at most 0 times the service cost of u? We
show that this and many other problems are a particular case of the ACTIVATION EDGE-COVER
problem. Here we are given a multigraph G = (V, E), a set R C V of terminals, and thresholds
{t5,,t5} for each uv-edge e € E. The goal is to find an assignment a = {a, : v € V} to the nodes
minimizing ZvGV ay, such that the edge set Ea = {€ = uv : ay > t5,a, > t;} activated by a
covers R. We obtain ratio 1 + w(f) =~ Inf — Inln for the problem, where w(f) is the root of the
equation z + 1 = In(6/z) and 6 is a problem parameter. This result is based on a simple generic
algorithm for the problem of minimizing a sum of a decreasing and a sub-additive set functions,
which is of independent interest. As an application, we get that the above variant of FACILITY
LocATION admits ratio 1 4+ w(h); if for each facility all service costs are identical then we show a
Hi—1

better ratio 1 + I)??i( m7 where H), = Zle 1/i. For the MIN-POWER EDGE-COVER problem

we improve the ratio 1.406 of [3] (achieved by iterative randomized rounding) to 1 4+ w(1) < 1.2785.

For unit thresholds we improve the ratio 73/60 ~ 1.217 of [3] to 1232 ~ 1.155.
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1 Introduction

Let G = (V, E) be an undirected multigraph where each edge e € E has an activating
function f¢ from some range L¢ C Ri to {0,1}. Given a non-negative assignment
a = {a, : v € V} to the nodes, we say that a uv-edge e € E is activated by a if
fe(ay,a,) = 1. Let Eq = {e € E : f¢(ay,a,) = 1} denote the set of edges activated by
a. The value of an assignment a is a(V) = >, .y, @,. In ACTIVATION NETWORK DESIGN
problems the goal is to find an assignment a of minimum value, such that the edge set F,
activated by a satisfies a prescribed property. We refer the reader to a paper of Panigrahi [16)
and a recent survey [15] on activation problems, where also the following two assumptions
are justified.
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Monotonicity Assumption. For every e € E, f¢ is monotone non-decreasing, namely,
fe(xuamv) =1 implies fe(yuayv) =1ify, >z and Yy > T,.

Polynomial Domain Assumption. Every v € V' has a polynomial size in n = |V| set L,
of “levels” and L = L, x L, for every uv-edge e € E.

Given a set R C V of terminals we say that an edge set J is an R-cover or that J
covers R if every v € R has some edge in J incident to it. In the EDGE-COVER problem
we seek an R-cover of minimum value. The min-cost version of this problem can be solved
in polynomial time [7], and it is one of the most fundamental problems in Combinatorial
Optimization, cf. [19].

We consider the ACTIVATION EDGE-COVER problem. Since we consider multigraphs,
e = uv means that e is a uv-edge, namely, that u, v are the endnodes of e; e = uv € F means
that e € F is a uv-edge. Under the two assumptions above, the problem can be can be
formulated without activating functions. For this, replace each edge e = uv by a set of at
most |Ly| - |Ly| uv-edges {e(ty,ty) : (tu,tv) € Ly X Ly, f€(tu,ty) = 1}. Then for any J C E
the optimal assignment a activating J is given by a,, = max{t¢ : e € J is incident to u};
here and everywhere a maximum or a minimum taken over an empty set is assumed to be
zero. Consequently, the problem can be restated as follows.

AcTivATION EDGE-COVER

Input: A graph G = (V, E), a set of terminals R C V, and thresholds {t¢,¢¢} for each
uv-edge e € E.

Output: An assignment a of minimum value a(V') = ) a,, such that the edge set
E,={e=wv € FE:a, >t a, > 15} activated by a covers R.

As we will explain later, ACTIVATION EDGE-COVER problems are among the most
fundamental problems in network design, that include NP-hard problems such as SET-
COVER, FACILITY LOCATION, covering problems that arise in wireless networks (node
weighted /min-power/installation problems), and many other problems.

To state our main result we define assignments q and ¢, where ¢, = ¢, =0ifv e V\ R
and for u € R:

° g, = minEtZ is the minimum threshold at u of an edge in F incident to u.
e=uve
e ¢, = e:rgzi}réE(ti +t5) — qu, S0 ¢y + @y is the minimum value of an edge in F incident to w.

The quantity max,cr ¢,/q, is called the slope of the instance. We say that an ACTIVATION
EDGE-COVER instance is 6-bounded if the instance slope is at most 6, namely if ¢, < fq,,
for all u € R; moreover, we assume by default that § = max,cg ¢, /g, is the instance slope.
For each u € R let e, be some minimum value edge covering u. Then {e, : u € R} is an
R-cover of value at most (c 4+ q)(R). From this and the definition of 6 we get

0 < opt — q(R) < ¢(R) < fq(R) < fopt

In particular, (c + q)(R) < (6 + 1)opt. Using this, it is possible to design a greedy algorithm
with ratio 1+ In(6 + 1). We will show how to obtain a better ratio (the difference is quite
significant when 6 < 10* — see Table 1), as follows.

The Lambert W-Function (a.k.a. ProductLog Function) W(z) is the inverse function
of f(W) = WeW. It is known that for any # > 0, w(f) = W(6/e) equals to the (unique) real
root of the equation = + 1 = In(f/x), and that limg_, o[l + w(d) — (Inf —Inlnd)] = 0. Our
main result is:
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23:3

0 1 2 3 4 5 10 100 1000 10000 1000000

1+ w(h) 1.2785 | 1.4631 | 1.6036 | 1.7179 | 1.8146 | 2.1569 | 3.6360 | 5.4214 | 7.3603 11.4673
1+ @(0) 1.2167 | 1.3667 | 1.4834 | 1.5800 | 1.6637 | 1.9645 | 3.3428 | 5.0808 | 6.9967 11.0820
Inf —Inln 6 - 1.0597 | 1.0046 | 1.0597 | 1.1336 | 1.4686 | 3.0780 | 4.9752 | 6.9901 11.1898
1+In(0+1) | 1.6932 | 2.0987 | 2.3863 | 2.6095 | 2.7918 | 3.3979 | 5.6152 | 7.9088 | 10.2105 | 14.8156

Table 1 Some numerical bounds on 1+ w(f), 1 + @(0), In6 —Inlnf, and 1 + In(0 + 1).

» Theorem 1. ACTIVATION EDGE-COVER admits ratio 1 + w(f) for 0-bounded instances.
The problem also admits ratio 1 +1In(A + 1), and ratio 1 +In A if R is an independent set in
G, where A is the mazimum number of terminal neighbors of a node in G.

This result is based on a generic simple approximation algorithm for the problem of
minimizing a sum of a decreasing and a sub-additive set functions, which is of independent
interest; it is described in the next section. This result is inspired by the so called “Loss
Contraction Algorithm” of Robins & Zelikovsky [18] for the STEINER TREE problem, and
the analysis in [10] of this algorithm.

Let us say that v € V is a steady node if the thresholds t¢ of the edges e incident to
v are all equal the same number w,, which we call the weight of v. Note that we may
assume that all non-terminals are steady, by replacing each v € V'\ R by L, new nodes; see
the so called “Levels Reduction” in [15]. This implies that we may also assume that no two
parallel edges are incident to the same non-terminal. Clearly, we may assume that R\ V is
an independent set in G. Let BIPARTITE ACTIVATION EDGE-COVER be the restriction of
AcTIVATION EDGE-COVER to instances when also R is an independent set, namely, when G is
bipartite with sides R, V'\ R. Note that in this case G is a simple graph and all non-terminals
are steady.

We now mention some particular threshold types in ACTIVATION EDGE-COVER problems,
some known problems arising from these types, and some implications of Theorem 1 for these
problems.

WEIGHTED SET-COVER

This is a particular case of BIPARTITE ACTIVATION EDGE-COVER when all nodes are steady
and nodes in R have weight 0. Note that in this case 6 is infinite, and we can only deduce
from Theorem 1 the known ratio 1 +In A. Consider a modification of the problem, which we
call 9-BOUNDED WEIGHTED SET-COVER: when we pick a set v € V' \ R, we need to pay
w, /60 for each element in R covered by v. Then the corresponding ACTIVATION EDGE-COVER
instance is #-bounded.

FACILITY LOCATION

Here we are given a bipartite graph with sides R (clients) and V' \ R (facilities), weights
(opening costs) w = {w, : v € V \ R}, and distances (service costs) d = {dy, : u €
R,v € V'\ R}. We need to choose S C V'\ R with w(S) + >_ . d(u,S) minimal, where
d(u, S) = min,cg dy, is the minimal distance from u to S. This is equivalent to BIPARTITE
AcTIvATION EDGE-COVER. Note however that if for some constant  we have w, < 6d,,
for all uv € E with u € R and v € V' \ R, then the corresponding BIPARTITE ACTIVATION
EDGE-COVER instance is -bounded, and achieves a low constant ratio even for large values
of 6.

INSTALLATION EDGE-COVER
Suppose that the installation cost of a wireless network is proportional to the total height of
the towers for mounting antennas. An edge uv is activated if the towers at v and v are tall

CVIT 2016
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enough to overcome obstructions and establish line of sight between the antennas. This is
modeled as each pair u,v € V has a height demand ~A*" and constants vy, Yuu, such that
a uv-edge is activated by a if the scaled heights Yy @y, You@y sum to at least A*?. In the
INSTALLATION EDGE-COVER problem, we need to assign heights to the antennas such that
each terminal can communicate with some other node, while minimizing the total sum of the
heights. The problem is SET-COVER hard even for 0,1 thresholds and bipartite G [16]. But
in a practical scenario, the quotient of the maximum tower height over the minimum tower
height is usually bounded by a constant; say, if possible tower heights are 5,15, 20, then the
slope is 6 = 4.

MIN-POWER EDGE-COVER

This problem is a particular case of ACTIVATION EDGE-COVER when t§ = t$ for every edge
e = uv € F; note that § = 1 in this case (in fact, the case # = 1 is much more general). The
motivation is to assign energy levels to the nodes of a wireless network while minimizing the
total energy consumption, and enabling communication for every terminal. The MIN-POWER
EDGE-COVER problem is NP-hard even if R =V, or if R is an independent set in the input
graph G and unit thresholds [11]. The problem admits ratio 2 by a trivial reduction to the
min-cost case. This was improved to 1.5 in [13], and then to 1.406 in [3], where is also given
ratio 73/60 for the bipartite case and for unit thresholds.

From Theorem 1 and the discussion above we get:

» Corollary 2. MIN-POWER EDGE-COVER admits ratio 1+w(1) < 1.2785, and the 8-bounded
versions of each one of the problems WEIGHTED SET-COVER, FACILITY LOCATION, and
INSTALLATION EDGE-COVER, admits ratio 1+ w(6).

Let us illustrate this result on the FACILITY LOCATION problem. One might expect a
constant ratio for any 6 > 0, but our ratio 1 4+ w(6) is surprisingly low. Even if § = 100
(service costs are at least 1% of opening costs) then we get a small ratio 1 + w(100) < 3.636.
Even for § = 10* we still get a reasonable ratio 1 + w(10*) < 7.3603. All previous results for
the problem are usually summarized by just two observations: the problem is SET-COVER
hard (so has a logarithmic approximation threshold by [17, 8]), and that it admits a matching
logarithmic ratio 1 + In |R| [5]; see surveys on FACILITY LOCATION problems by Vygen [22]
and Shmoys [20]. Due to this, all work focused on the more tractable METRIC FACILITY
LocATioN problem. Our Theorem 1 implies that many practical non-metric FACILITY
LocCATION instances admit a reasonable small constant ratio.

For the case of “locally uniform” thresholds — when for each non-terminal (facility) all
thresholds (service costs) are identical, we show a better ratio, see also Table 1. In what
follows, let Hj, denote the k-th harmonic number.

» Theorem 3. BIPARTITE ACTIVATION EDGE-COVER with locally uniform thresholds admits

. ) _ Hy, — 1
ratio 1+ w(0), where w(0) = r/??i( TR

We do not have a convenient formula for w(f), but in Section 4 we observe that the
maximum is attained for the smallest integer kg such that Hy > 2 + Z—;. We will show
that w(0) < w(f) for all #, and that limg_, o [w(f) — w(0)] = 0, so both w(f) and w(d) are
close to In €@ — InIn @ for large values of 8, although the convergence is very slow; see also
Table 1. We note that Slavik [21] proved that the greedy algorithm for SET-COVER achieves
ratio Inn — Inlnn 4+ ©(1), while our ratio for ACTIVATION EDGE-COVER is asymptotically
Inf —Inlnd + ©(1); but we do not see an immediate relation between the two results.
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We will also show that w(1) = 73/60. Note that our Theorem 1 ratio 1.2785 for 6§ = 1
significantly improves the previous best ratio 1.406 of [3] for MIN-POWER EDGE-COVER on
general graphs achieved by iterative randomized rounding; we do not match the ratio 73/60
of [3] for the bipartite case, but note that the case § = 1 is much more general than the
min-power case considered in [3].

In addition, we consider unit thresholds, and using some ideas from [3] improve the
previous best ratio 73/60 of [3] as follows.

» Theorem 4. ACTIVATION EDCGE-COVER with unit thresholds admits ratio 1352

We note that our main contribution is not technical, although some proofs are non-
trivial (the reader may observe that proofs of many seemingly complicated results were
substantially simplified with years, by additional effort). Our main contribution is giving a
unified algorithm for a large class of problems that we identify — -BOUNDED ACTIVATION
EDGE-COVER problems, either substantially improving known ratios, or showing that many
seemingly SET-COVER hard problems may be tractable in practice. Let us also point out that
our main result is more general than the applications listed in Corollary 2. The generalization
to 6-bounded ACTIVATION EDGE-COVER problems is different from earlier results; besides
finding a unifying algorithmic idea generalizing and improving previous results, we are also
able to find tractable special cases in a new direction.

The rest of this paper is organized as follows. In Section 2 we define the GENERALIZED
MIN-COVERING problem and analyze a greedy algorithm for it, see Theorem 5. In Section 3
we use Theorem 5 to prove Theorem 1. Theorems 3 and 4 are proved using a modified
method in Sections 4 and 5, respectively.

2 The GENERALIZED MIN-COVERING problem

A set function f is increasing if f(A) < f(B) whenever A C B; f is decreasing if —f is
increasing, and f is sub-additive if f(AU B) < f(A) + f(B) for any subsets A, B of the
ground-set. Let us consider the following algorithmic problem:

GENERALIZED MIN-COVERING

Input: Non-negative set functions v, 7 on subsets of a ground-set U such that v is
decreasing, 7 is sub-additive, and 7(f)) = 0.

Output: A C U such that v(A) + 7(A) is minimal.

The “ordinary” MIN-COVERING problem is min{7(A) : v(A) = 0}; it is a particular case
of the GENERALIZED MIN-COVERING problem when we seek to minimize Mv(A) + 7(A) for
a large enough constant M. Under certain assumptions, the MIN-COVERING problem admits
ratio 1 + Inv(() [12]. Various generic covering problems are considered in the literature,
among them the SUBMODULAR COVERING problem [23], and several other types, cf. [4].
The variant we consider is inspired by the algorithms of Robins & Zelikovsky [18] for the
STEINER TREE problem, and the analysis in [10] of this algorithm; but, to the best of our
knowledge, the explicit formulation of the GENERALIZED MIN-COVERING problem given
here is new. Interestingly, our ratio for MIN-POWER EDGE-COVER is the same as that of
[18] for STEINER TREE in quasi-bipartite graphs.

We call v the potential and 7 the payment. The idea behind this interpretation and
the subsequent greedy algorithm is as follows. Given an optimization problem, the potential
v(A) is the value of some “simple” augmenting feasible solution for A. We start with an
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empty set solution, and iteratively try to decrease the potential by adding a set B C U \ A
of minimum “density” — the price paid for a unit of the potential. The algorithm terminates
when the price > 1, since then we gain nothing from adding B to A. The ratio of such an
algorithm is bounded by 1 + In 4%

opt
set can be found in polynomial time). So essentially the greedy algorithm converts ratio
v(0)
“opt
payment functions may lead to a smaller ratio.

(assuming that during each iteration a minimum density

a= into ratio 1 + In . However, sometimes a tricky definition of the potential and the
Let opt be the optimal solution value of a problem instance at hand. Fix an optimal
solution A*. Let v* = v(A*), 7" = 7(A*), so opt = 7* + v*. The quantity m is
called the density of B (w.r.t. A); this is the price paid by B for a unit of potential. The
GREEDY ALGORITHM (a.k.a. Relative Greedy Heuristic) for the problem starts with A = ()
and while v(A) > v* repeatedly adds to A a non-empty augmenting set B that satisfies the
following condition, while such B exists:
7(B) . ™
< 1, ———— ».
v(A) —v(AUB) — mln{ "v(A) —v* }
Note that since v is decreasing v(A) — v(AU A*) > v(A) — v(A*) = v(A) — v*; hence if
v(A) > v*, then u(A)z(:zA)UA*) < V(AT)*_V* and there exists an augmenting set B that satisfies

the condition u(A)z(ﬁ,)aqu) < U(AT;V“ e.g., B= A*. Thus if B is a minimum density set and

7(B)
v(A)—v(AUB)

Density Condition:

< 1, then B satisfies the Density Condition; otherwise, no such B exists.

» Theorem 5. The GREEDY ALGORITHM achieves approximation ratio

* g% * — opt
TR Sl A .m(lwp).
opt T* opt T*

Proof. Let ¢ be the number of iterations. Let Ay = ) and for ¢ = 1,...,¢ let A; be the
intermediate solution at the end of iteration ¢ and B; = A;\ A;—1. Let v; = v(4;),i=0,...,~.

Then: B .

Vi1 =V

Since v is decreasing

1 if v < 7% 4 v*
This is the lower Darboux sum of the function f(v) = { o ifz > :* iZ* in the

interval [vg, o] w.r.t. the partition vy < vp_1 < --- < 1y. We claim that 7% + v* > 1. For
this, note that m > 1, thus since v is decreasing 7(A4*) > v(A) —v(AU A*) >

v(A) — v(A*). Consequently, Zle 7(B;) is bounded by

Vo T Vo * ok
/ f(y)dy:/ 1d1/+/ T dV:T*—i—y*—z/g—i—T*anO *V
Vyp Uy T

apye V—UF T

Let A= Ule B; be the set computed by the algorithm. Since 7 is sub-additive

*

7(4) <Y r(B) <7 v —v(A) + I
i=1 T
Thus the approximation ratio is bounded by TAFA) < 4 Ty ot <

opt opt T
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3  Algorithm for general thresholds (Theorem 1)

Given an instance G = (V, E), t, R of ACTIVATION EDGE-COVER the corresponding GENER-
ALIZED MIN-COVERING instance U, T, v is defined as follows. We put at each node u € V' a
large set of “assignment units”, and let U be the union of these sets of “assignment units”.
Note that to every A C U naturally corresponds the assignment a where a,, is the number of
units in A put at u. It would be more convenient to define v and 7 in terms of assignments,
by considering instead of a set A C U the corresponding assignment a.

To define v and 7, let us recall the assignments q and ¢ from the Introduction. We have
v =qy,=0ifveV\Rand for u € R:

e ¢, = min_tJ is the minimum threshold at u of an edge in E incident to u.
e=uve
e ¢, = e:riliréE(tZ + 1) — Gu, S0 ¢y + ¢y is the minimum value of an edge in F incident to wu.

We let Q = q(V) = q(R) and C = ¢(R). Note that c(R') < 0q(R’) for any R’ C R; in
particular, C' < Q). For an assignment a that “augments” q let Rq;a denote the set of
terminals covered by Eqya. A natural definition of the potential and the payment functions
would be 7(a) = a(V) and v(a) = (c+ q)(R \ Rq+a) but this will enable to prove only ratio
1+ 1n(0 + 1). We show a better ratio by adding to the potential in advance the “fixed” part
Q. We define

@) =a(V)  v(a) = Q+c(R\ Rqra)

It is easy to see that v is decreasing, 7 is sub-additive, and 7(0) = 0.
The next lemma shows that the obtained GENERALIZED MIN-COVERING instance is
equivalent to the original ACTIVATION EDGE-COVER instance.

» Lemma 6. If q+a is a feasible solution for ACTIVATION EDGE-COVER then 7(a)+v(a) =
Q + a(V). If a is a feasible solution for GENERALIZED MIN-COVERING then one can
construct in polynomial time a feasible solution for ACTIVATION EDGE-COVER of value at
most T(a)+v(a). In particular, both problems have the same optimal value, and GENERALIZED
MIN-COVERING has an optimal solution a* such that v(a*) = Q and thus opt = 7(a*) + Q.

Proof. If q + a is a feasible ACTIVATION EDGE-COVER solution then Rq+a = R and thus
v(a) = Q. Consequently, 7(a) +v(a) = a(V) + Q.

Let now a be a GENERALIZED MIN-COVERING solution. The assignment q + a has value
@ + a(V) and activates the edge set Eqia that covers Rqia. To cover R\ Rqia, pick for
every u € R\ Rqta an edge uv with ¢V 4+ t%¥ minimum. Let b be an assignment defined by
b, = ¢y if u € R\ Rqta and b, = 0 otherwise. The set of picked edges can be activated by
an assignment q + b that has value Q + c(R \ Rq+a). The assignment q + a + b activates
both edge sets and has value Q +a(V) + c¢(R\ Rqta) = 7(a) + v(a), as required. <

For the obtained GENERALIZED MIN-COVERING instance, let us fix an optimal solution
a* as in Lemma 6, so v* = @Q and opt = 7* + Q. Denote vy = v(0) = @ + ¢(R), and note
that ¢(R) < 6Q. To apply Theorem 5 we need several bounds given in the next lemma.
opt 1

t _ *
» Lemma 7. — > 1+ —, @§(9+1)<0L—1>,and Yo~V < A+1.
T* 0 T T* T*

Proof. Note that
TF+Q=o0pt<yy<(0+1)Q .

In particular, @ > 7*/6, and this implies the first bound of the lemma

t
> =1+%z1+

1
;-
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The second bound of the lemma holds since vy < (6 +1)Q = (0 + 1)(opt — 7*).
The last bound of the lemma is equivalent to the bound ¢(R) < 7*(A +1). Let J be an
inclusion minimal edge cover of R activated by q + a*. Then J is a collection S of node

disjoint rooted stars with leaves in R. Let S € S. By the definition of ¢, a*(S) > max_cCu,
ue RN

thus ¢(RNS) < |[RN Sla*(S) < (A + 1)a*(S). Consequently, c(R) = Z c(RNS) <
Ses
(A+1)Y a*(s) < (A+1)a*(V). <
Ses

We will show later that the GREEDY ALGORITHM can be implemented in polynomial
time; now we focus on showing that it achieves the approximation ratios stated in Theorem 1.

Substituting Lemma 7 second bound in Theorem 5 second bound and denoting x = c;pf -1,
we get that > 1/60 and that the ratio is bounded by

In(0z)
z+1

* t
T -1n(1+@—°i)§1+
opt T*

1+ "
.

=1+ f()

Consequently, the the ratio is bounded by 1+max{f(x) : z > 1/6}. We now derive a formula
for the maximum. We have lim f(x) =0 (this can be shown using L’Hospital’s Rule), and
r—00
f(1/6) = 0. Also:
1 1 1

f'(x) = —mln(ex) + P

Hence f/(x) = 0 if and only if I—L In(fz) = %, namely, x + 1 = xzIn(fx). For the analysis,
we substitute x < 1/x, and get the equation 1+ 2 = In(6/x), where 0 < z < 6. Since
the function x + 1 is strictly increasing and the function In(6/x) is strictly decreasing, this
equation has at most one root; we claim that this root exists and is in the interval (0, 8]. To
see this consider the function h(x) = x + 1 —In(f/x), and note that h is continuous and that
h(f) =6+ 1> 0 while h(e) = e+ 1 —1In(8/¢) < 0 for € > 0 small enough.

From this we get that the ratio is bounded by 1 + w(f), where w() is the root of the
equation z + 1 = In(6/x).

Substituting Lemma 7 third bound in Theorem 5 first bound and observing that 7% < opt
we get that the ratio is bounded by 1 + In(A + 1). In the case when R is an independent set

Vg — V¥

in G, it is easy to see that Lemma 7 third bound improves to < A, and we get ratio

1+ In A in this case.

Finally, we show that the GREEDY ALGORITHM algorithm can be implemented in
polynomial time. As was mentioned in Section 2 before Theorem 5, we just need to perform
in polynomial time the following two operations for any assignment a: to check the condition
v(a) > v*, and to find an augmenting assignment b of minimum density.

It is is easy to see that assignments q and ¢ can be computed in polynomial time, and thus
the potential v(a) = Q + ¢(R \ Rq+a) can be computed in polynomial time, for any a. Let
a* be an optimal solution as in Lemma 6, and denote 7* = 7(a*) and v* = v(a*) = Q. Then
the condition v(A) > v* is equivalent to v(a) > @ and thus can be checked in polynomial
time.

Now we show how to find an augmenting assignment b of minimum density. Note that
the density of an assignment b w.r.t. a is

7(b) b(V) b(V)

v(a) —v(a+b)  c(R\Rgta) — ¢(R\ Rgtatb)  c(Rqtatb \ Rota)
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» Lemma 8. There exists a polynomial time algorithm that given an instance of ACTIVATION
EDGE-COVER and an assignment a finds an assignment b of minimum density.

Proof. A star is a rooted tree S = (Vg, Eg) with at least one edge such that only its root
s may have degree > 2. We say that a star S is a proper star if all the leaves of S are
terminals. We denote the terminals in S by Rg = RN Vg.

Since q,a are given assignments, we may simplify the notation by assuming that R <
R\ Rg+a is our set of terminals, and that a <— q+a is our given assignment. Then the density
of b is just c(%:?b). Let b* be an assignment of minimum density, and let J* C F, p+ be
an inclusion minimal R yp+-cover. Then J* decomposes into a collection S of node disjoint
proper stars that collectively cover Raip-. For S € S let b® be the optimal assignment such

that a + b activates S. Since the stars in S are node disjoint

> bS(V)<b*(V) and Y c(Rs) =c(Ratb) -
Ses SeSs

By an averaging argument

, b2 (V) < b'(V) _ holds for some S € S, and since b* is a
c(Rs) c(Ratb)
bS(V) _ b (V

minimum density assignment, so is b®, and o(fis) = o(& +b)*) holds. Consequently, it is

sufficient to show how to find in polynomial time an assignment b such that a + b activates
b(V)
c(Rs)

We may assume that we know the root v and the value w = b,, of an optimal density pair
S, b; there are at most |V||E| choices and we can try all and return the best outcome. Let

R, = {u € R : there is a uv-edge e with t¢ < a,, + w}. For u € Ry, let b, be the minimal

is minimal.

a proper star S and

non-negative number for which there is a uv-edge e with a, + w > t$ and a, + b, > tS.

Then our problem is equivalent to finding Rg C R,, with o(Rg) = %(f)s)

problem can be solved in polynomial time, by starting with Rg = () and while there is
u € Ry, \ Rg with 0(Rg +u) < 0(Rs), adding u € R,, \ Rg to Rg with b, /¢, minimum. <

minimum. This

The proof of Theorem 1 is complete.

4  Locally uniform thresholds (Theorem 3)

Here we consider the BIPARTITE ACTIVATION EDGE-COVER problem with locally uniform
thresholds. This means that each non-terminal v € V'\ R has weight w, and all edges incident
to v have the same threshold ¢V; in the #-bounded version w, < 0t”. We consider a natural
greedy algorithm that repeatedly picks a star S that minimizes the average price paid for
each terminal (the quotient of the optimal activation value of S over |Rg|), and then removes
Rgs. Each time we choose a star S we distribute its activation value uniformly among its
terminals, paying in the computed solution the average price for each terminal of S.

We now apply a standard “set-cover” analysis, cf. [24]. In some optimal solution fix an
inclusion maximal star S* with center v and terminals Rg« covered by the algorithm in the
order ry,Tk_1,...,71, where 1 is covered first and r; last; we bound the algorithm payment
for covering Rg+. Note that 1 < k < A. Denote w = w, and let ¢t be the threshold of the
terminals in S*. Let S} be the substar of S* with leaves r;, ..., ;. At the start of the iteration
in which the algorithm covers r;, the terminals of S; are uncovered. Thus the algorithm
pays for covering r; at most the average price paid by S}, namely (w +it)/i = w/i+t. Over
all iterations, the algorithm pays for covering Rg+ at most wHy, + kt, while the optimum
pays w + kt. Thus the quotient between them is bounded by

wHy + kt w/tH + k OHy + k O(H — 1) H, -1
— < = <14+ max ———— .
w + kt w/t+k 0+k 0+k 1<k<A 1+ k/6
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17 =
o’ 0

-0

Figure 1 Tight example of ratio Z—g for unit thresholds.

Since any optimal solution decomposes into node disjoint stars, the last term bounds the
approximation ratio, concluding the proof of Theorem 3. We make some observations about

this bound. Let g(k) = e(gizl). We have

glk+1) = g(k) = (k+9)(:+1+9) (2_H’“+9_1>

Thus g(k+1) > g(k) if and only if 2 — Hj, + % > 0. Hence if kg is the smallest integer such

that Hy, > 2 + Z;Jr% then max g(k) = g(min{kg, A}). We do not have a more convenient

formula of maxy>1 g(k) for grl;itrary 0, but we can bound it using the inequality Hy —1 < In k.
Then we have:

max O(Hy — 1) < max blnz _ max f(x)
1<k<A k+6 T z>1 x40 z>1 ’

Using fundamental calculus one can see that the maximum is attained when = + 6 = xInz,

and substituting this in f(z) we get that max,;>1 f(z) = g where « is the solution to the

equation z + 6 = xInxz. We have a = ﬁ/e) = ﬁ. Thus the ratio is bounded by 1 + w(#),

a bound that we got before in Theorem 1.

If 6 = 1 then kg = 4, since H3 = 11/6 < 2 and Hy = 25/12 > 2. We have g(4) = £3, so
for 0 =1 we get ratio 1 + g(4) = %. The ratio % is tight for unit thresholds, as shows the
example in Fig. 1. The instance has 48 terminals (in black), and two sets of covering nodes:
the upper 12 nodes that form an optimal cover, and the bottom 13 nodes. The bottom nodes
have 3 nodes of degree 4, 4 of degree 3, and 6 of degree 2. The algorithm may start taking
all bottom nodes, and only then add the upper ones, thus creating a solution of value 73,

instead of the optimum 60.

5  Unit thresholds (Theorem 4)

Here we consider the case of unit thresholds when ¢ = t$ = 1 for every uv-edge e. By
a reduction from [3], we may assume that the instance is bipartite. Specifically, for any
optimal assignment a we have a, = 1 for all v € R, hence we can consider the residual
instance obtained by removing the terminals covered by edges with both ends in R; in the
new obtained instance R is an independent set, and recall that we may assume that V' \ R is
an independent set.

One can observe that in the obtained bipartite instance, a is an optimal solution if and
only if a, € {0,1} forallv e V, a, =1 for allv € R, and theset C ={v e V\R:qa, =1}
covers R, meaning that R is the set of neighbors of C'. Namely, our problem is equivalent
to min{|C| + |R| : C CV \ R,C covers R}. On the other hand the problem min{|C|: C C
V' \ R, C covers R} is essentially the (unweighted) SET-COVER problem, and C' is a feasible
solution to this SET-COVER instance if and only if C'U R is the characteristic set of a
feasible assignment for the ACTIVATION EDGE-COVER instance. Note that both problems
are equivalent w.r.t. their optimal solutions but may differ w.r.t. approximation ratios, since

if C* is an optimal SET-COVER solution then I‘C(‘j*ll—ﬂllgl may be much smaller than ||g*‘|.
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Recall that a standard greedy algorithm for SET-COVER repeatedly picks the center
of a largest star and removes the star from the graph. This algorithm has ratio Hy for
k-SET-COVER, where k = A is the maximum degree of a non-terminal (the maximum size
of a set). However, the same algorithm achieves a much smaller ratio 7—?6 for ACTIVATION
EDGE-COVER with unit thresholds; the ratio Z—g was established in [3], and it also follows
from the case 6 = 1 in Theorem 3. In what follows we denote by «ay, the best known ratio for
k-SET-COVER. We have a3 = ag = 1 (k = 2 is the EDGE-COVER problem) and a3 = 4/3 [6].
The current best ratios for k& > 4 are due to [9] (see also [14, 1]). We summarize the current
values of ay, for k < 7 in the following table.

o1 (e D) a3 oy Qs Qg a7
1 1 4 73 26 28 212
3 48 15 15 105

Table 2 Current values of ay, for k < 7.

We now show how these ratios for k-SET-COVER can be used to approximate the
AcCTIVATION EDGE-COVER problem with unit costs. We start by describing a simple

algorithm with ratio 1.8% < 73 that uses only the k = 2 case.

360 607

Algorithm 1: ratio 1-8%

360
A0
while there exists a star with at least 3 terminals do

add to A and remove from G the node-set of a maximum size star
add to A an optimal solution of the residual instance

W N ==

We claim that the above algorithm achieves approximation ratio 1% for ACTIVATION
EDGE-COVER (a similar analysis implies ratio Hy, — % for SET-COVER). In some optimal
solution fix a star S* with terminals covered in the order ry,7x_1,...,71, Where 7y is covered
first and r; last; we bound the algorithm payment to cover these terminals. Let S} be the
substar of S* with leaves r;,...,7r1. At the start of the iteration when r; is covered, the
terminals of S} are uncovered. Thus the algorithm pays for covering r; at most the density
of S, namely, (i +1)i = 14 1/i. Over all iterations, the algorithm pays for covering Rg
at most k + Hj, while the optimum pays k + 1. If £ = 1 then the algorithm pays at most
the amount of the optimum. We claim that if £ > 2 then in fact the payment is at most
k+ Hy —1/6. If k = 2 then the payment is at most 3 < 3+ H3z — 1/6 (we pay 3 if the star
“survives” all the iterations before the last). For k > 3, the pay for the last 3 terminals is
either: 4/3 for each of for r3, 5 and 2 for r; (a total of 14/3), or 4/3 for r3 and 3 for ro,7r; (a
total of 13/3). The maximum is 14/3 = 3+ Hs — 1/6. Consequently, the ratio is bounded by

k+ H,—1/6 Hy—7/6
P R 1 IR L)
By fundamental computations we have g(k + 1) — g(k) = %. Thus g(k) is increasing

iff H;, < % Since Hy = % < %3 and Hy = 137 > %3, we get that maxy>2 g(k) = g(5) = ST

p ~ 60 360’
so we have ratio 1555.
We now show ratio % < % < %. As in the greedy algorithm for SET-COVER, we

repeatedly remove an inclusion maximal set of disjoint stars with maximum number of leaves
and pick the set of roots of these stars. The difference is that each time stars with more
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than k leaves are exhausted, we compute an ag-approximate solution Ay for the remaining
k-SET-COVER instance; we let Ag = (). This gives many SET-COVER solutions, each is a
union of the centers of stars picked and Aj; we choose the smallest one, and together with R
this gives a feasible ACTIVATION EDGE-COVER solution. Formally, the algorithm is:
Algorithm 2: ratio p = % < 1.1545

1 for k < A downto 0 do

2 remove from G a maximal collection of node disjoint (k + 1)-stars

let Cr41 be the set of the roots of the stars removed so far
3 compute an ag-approximate k-SET-COVER solution Ay in G
4 return the smallest set Cry1 U Ag, k € {A,...,0}

Since we claim ratio % < %, at iterations when k > 7 step 3 can be skipped, since then
we can apply a standard “local ratio” analysis [2]. Indeed, when a star with k£ > 7 terminals
is removed, the partial solution value increases by k + 1 while the optimum decreases by at
least k. Hence for k > 7 it is a % < % local ratio step. Consequently, we may assume that
A < 6, provided that we do not claim ratio better than 8/7.

Let r = |R|. Let 7 be the optimal value to the initial SET-COVER instance. At iteration
k the algorithm computes a solution of value at most ax7 + r 4+ |Ck41|. Thus we get ratio p

if p(r +7) > axT + 7+ |Clr41] holds for some k < 6. Otherwise,

p(r+7) < agT+r

plr+71) < asT+7r+]|Csl

p(r+7) < aut+71+|C5

plr+71) < asT+7r+]|C4

plr+7) < aor+7+]|Cs

p(r+7) < a7+7r+|Cs

plr+71) < r+ |Ci|
Denote o = a1 + -+ 4+ a5 = 28, Note that [C1] + --- + |Cg| = r, since in this sum the
number of stars with k leaves is summed exactly k times, k = 1,...,6. The first inequality,

and the inequality obtained as the sum of the other six inequalities gives the following two
inequalities:
plr+7) < agT+r
6p(r+71) < or+Tr
Dividing both inequalities by 7 and denoting x = r/7 gives:
plea+1) < asg+z
6p(x +1) < o+Tx
Since p > 1 and 7 > 6p this is equivalent to:

bp—o a —p
P
7—6p p—1

6p—0c as—p

7—6p —  p—1
 Tag—o -1, 208 155
P S —o+1 Gag—o+1 1347 1347

This concludes the proof of Theorem 4.

We obtain a contradiction if p is the solution of the equation

, hamely
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