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Abstract—Observational learning models seek to understand
how distributed agents learn from observing the actions of
others. In the basic model, agents seek to choose between two
alternatives, where the underlying value of each alternative is
the same for each agent. Agents do not know this value but only
observe a noisy signal of the value and make their decision based
on this signal and observations of other agents’ actions. Here,
instead we consider a scenario in which the choices faced by an
agent exhibit a negative externality so that value of a choice may
decrease depending on the history of other agents selecting that
choice. We study the learning behavior of Bayesian agents with
such an externality and show that this can lead to very different
outcomes compared to models without such an externality.

I. INTRODUCTION

There is a long history of work studying models for “obser-
vational learning," in which Bayesian agents make decisions
based in part on their observations of other agents. Early
papers in this area include [1]-[3] that studied models where
homogeneous agents sequentially make a decision between
two alternatives such as buying or not buying a given service.
This service has a common quality (say “good” or “bad”)
that is unknown to each agent. Agents receive a noisy private
signal indicating this quality and make decisions based on
their signal and their observations of other agents’ actions. A
key results for such models is the emergence of information
cascades, i.e., scenarios in which at some point agents ignore
their private signal and simply follow the action of all previous
agents. Many variations of such a model have been studied
including [4]-[14]." In this prior work, the value an agent
obtains from a given action does not depend on the action
of any prior agent. Here, we instead consider a model that
exhibits negative externalities meaning that the value of a
given service may decrease depending if other agents choose
the same service. We show that such externalities can lead to
very different learning behavior compared to models without
externalities.

In our model agents sequentially choose between two ser-
vices, A and B. The value they obtain from a service decreases
in the number of other agents choosing that service within a
given time window, where this window can model the time
an agent spends using the service. The two services differ
in the degree of this externality so that in one high (H)
quality service the externality is lower than in the other low
(L) quality service. Again agents do not know a service’s
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I'This line of work also has ties to work on distributed inference, e.g. [15], [16].

quality but only receive a noisy signal indicating this and then
choose a service based on their signal and their observations
of earlier agents. For example, this could model a setting
where wireless devices (agents) have to choose between two
frequency channels (services) accounting for the fact that
a more crowded channel would yield a poorer quality of
service [17], [18]. Another example might be drivers selecting
between two parking garages, where the number of other
vehicles in a garage could lead to a dis-utility due to more time
spent finding parking [19], [20]. To see how this externality
can impact learning note that even if an agent believes that
service A is the better service, it may decide to choose
service B because it has a lower externality. Our main result
shows that, unlike in previously studied models, there exist
parameters, wherein the “right” cascade does not correspond
to the optimal action sequence had the agents known the
true state of the world. We also show that the probability
with which the “right” cascade occurs is not monotonically
increasing in the quality of agents’ private signals.”

II. MODEL

We consider a model similar to [1] in which there is a
countable sequence of agents, indexed ¢ = 1,2, ... where the
index represents both the time and the order of actions. Each
agent ¢ takes an action U; € U = {A, B} of choosing to
occupy one of the two available services A and B. After
choosing a service, each agent ¢ remains in that service
over the next m time slots, ¢ + 1,7 + 2,...7 + m. Here, m
represents the service-time for any agent, and is the same
for both services. While it is common knowledge that one
of the services provides a higher Quality of Service (QoS)
than the other, the identity of the better (or the poorer) service
is not known to the agents a priori. These true qualities are
denoted by the pair (Va,Vg) € V ={(H, L), (L, H)}, where
(Va,Vp) = (H, L) implies that service A is better than service
B; (Va,Ve) = (L, H) implies the opposite. For simplicity,
both possibilities of (V4, Vi) are assumed to be equally likely.

The difference in service qualities is reflected in the agent’s
cost structure, which depends on its action (choice of service),
the true quality (V4, V), and the number of other users of the
service in the following manner. For the n™ agent, let the his-
tory of past actions be denoted by H,,_1 = {U1,Us, ..., Un_1}.
Given this history, at time n before agent n acts, let services A

2This is similar in spirit to results in [8], [11] where noise in the observa-
tions causes this non-monotonic behavior, while here this occurs without any
observation noise.
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and B have m 4 and mp respective occupants. Note that due
to the finite service-time m, ma and m B are determined by
only the m most recent actions H AUy Un 1},
and m4 +mp =m. The cost mcurred by agent n, ¢, :
VYV xU x H,_1 — R is then defined as:

e = mu,, +1,
") (mw,, + DK,

if Vi, = H,

1
if Vo, =L, M

where k& > 1 denotes the quality-factor by which one service
is poorer (costlier) than the other. Here, H,,_; denotes the set
of all possible action histories H,,_; observed by agent n.

Every agent i receives a private signal S; € {A, B}. This
signal reflects the agent’s private beliefs and partially reveals
the true service qualities through a binary symmetric channel
(BSC) with crossover probability 1—p, where 1/2 < p < 1 (see
Fig. 1). Each agent ¢ takes a rational action U; that depends
on its private signal S; and the past actions H,,_i. Private
signals are assumed to be conditionally independent across
agents, given (V4, Vp).

(H,L) vp A
(Va, V) 3 Si
(L, H) A B
Fig. 1: The BSC through which agents receive private signals.

III. OPTIMAL DECISION AND CASCADES

For the n'" agent, the history of past actions H,,_; and its
private signal S,, forms its information set {.S,,, H,,_1 }. As the
first agent does not have any observation history, he always
follows his private signal, i.e., he chooses service A if and
only if the signal is A. For agent n > 2, the Bayes’ optimal
action, U,, is chosen such that it incurs the least expected cost
given the information set {S,,, H,_1}. Let 7,(Sp, Hy—1) =
P((H, L)|Sy, H,—1) denote the posterior probability that A
is better than B, i.e., (V4,Vp) = (H, L). The expected cost
E,, that agent n incurs by taking action U,, € {A, B}, given
{Sn, Hp—1} is then expressed by:

EUn = Cn((H7 L)7 Un, anl)’)/n

2
teal(LH),Un Ha )0 —70). @
The Bayes’ optimal decision rule is then:
A, if Ea < Eg,
U, =1{ B, if Exo> Ep, 3)
follows Sy, if B4 = EB.

When E4 = E'p, an agent is indifferent between the actions.
Similar to [8], our decision rule in this case follows the private
signal S,,, unlike [1] where random tie-breaking is used.
Definition 1: An information cascade is said to occur when
an agent’s decision becomes independent of its private signal.
It follows from (3) that, agent n cascades to service A (B)
if and only if E4 < Ep (E4 > Ep) for all S, € {A, B}.
The other case being 4 < Ep for S, = A and E4 > Ep
for S,, = B; in which case, agent n follows S,,. To better
understand the above cascade conditions, we encapsulate the
information contained in the history H,,_; observed by agent

n in the term Gn— 1(Hn-1) 2 (Awm/Ag,z)ln-1(Hn-1),
where I,,_1(-) = P(-|(L, H)) /P(:|(H, L)) is the likelihood ratio
function of the action history H,, . Further Ay, ,v;) denotes
the difference between the costs incurred for actions A and B
given the true qualities (V4, Vg) and is given by:

A, my(Hn-1) =
A(H, L)(H'n—l) =

C”L((Lv H): Ba anl) - Cn((L7
CTL((H7 L)7 A7 Hn—l) - Cn((H

H)7A7Hn71)7
L)vaHn—l)~

For a history H,_1, where services A and B have m4 and
mp occupants, A, gy(Hn,-1) = (mp+1)—k(ma+1) and
A, 1y (Hn-1) = (ma +1) — k(mp + 1). A more intuitive way
to characterize an information cascade is given next.
Lemma 1: Given a history H,, 1 such that A g, L (Hp-1) >
0 (< 0); agent n cascades to service A if gn 1 > 1= (gn 1 <
17) cascades to service B if g,_1 < =2 (gn 1> )
and otherwise follows its private signal S
To prove Lemma 1, define 5(-) £ P(-|(L, H))/P(-|(H, L)) as
the likelhood ratio of the private signal .S,,, where 5(A) = (1—
p)/p and ﬁ( ) = p/(1 — p). Applying Bayes’ formula gives
Yn = m Now, using the expressions for £4 and Ep
from (2) given {S,,, H,_1}, the inequality F4 > Ep can be
simplified to the form g,,_1(Hp,_1) > (or <) 1/5(S,,). Agent
n cascades to a service only if the above inequality holds for
both S, = A and B. This gives bounds on g,,_1(H,—1) for a
cascade to occur which completes the proof. Here, recall that
the term g,—1 has a denominator A( H,L) which if negative
will flip the sign of the inequality. This in turn swaps the
conditions for agent n to cascade to services A and B as
stated in Lemma 1. Next, the evolution of the likelihood ratio
process {l,} is characterized by Lemma 2, and is a common
property of cascade models studied so far, such as [1]-[4], [8].
Lemma 2: Given a history H,, with I C {1,2,... n}
denoting the set of past agents who have followed their
private signals, the likelihood ratio [,,(H,) depends only on
the difference between the number of A’s (denoted by n4)
and B’s (denoted by np) in the set F,, = {U; : i € I}.
Specifically, I, = <1%p>hn,
The proof follows by noting that for any agent i ¢ I, the
action U; does not provide any additional information about
the true qualities (V4,Vpg) to the successors beyond what is
contained in H;_q. As a result, [; = [;_1. On the other hand,
if agent 7 does not cascade (i € I), then Lemma 1 implies that
it follows its private signals .S;, which means U; = S;. Now,
as S; is conditionally independent of the history H;_; given
(Va, Vi), li = (5)i1 if U; = A, else l; = (1£5)Li-1 if Us = B.

B
Thus, I, = (T”) for h,, as defined in the lemma.

Note that in models such as [1]-[4], [8], [11], the condition
for agent n to cascade, solely depends on the likelihood ratio:
lp—1(Hp—1). Thus, if agent n cascades, Lemma 2 implies that
l; = lp—q for all j > n. Therefore once a cascade occurs, it
lasts forever with subsequent agents herding to the cascading
action. In our model, however, a cascade at time n does not
necessarily imply g, = gn—1. So a cascade may not cause
subsequent agents to cascade or herd to a fixed action.

where h,, = n4 — npg.
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A sufficient statistic of an agent’s observation history

In prior models such as [1]-[3], [8], [11], the likelihood ratio
ln,—1 is a sufficient statistic for agent n’s past observations,
which facilitates analyzing these models. Here, the analogous
quantity is g,—1. However, it follows from Lemma 1 that this
is not a sufficient statistic of the history H,,_;. To see this,
consider the following example with m = 2 and k € (1, 3).
At time n, let H,_; and H,/lf1 be two different histories
such that H™), = {4, A}, H."™ = {B, B} and h,_, = 2,
h;ﬁl = —2. Now, there exists a value of k, given by ky =
(3a® +1)/(3 + a?), where o := 3£, for which g,_1 = g1
However, it follows from Lemma 1 that given H,,_;, agent n
cascades to B, whereas given H;l_l it cascades to A. This is
because the two histories have dissimilar service occupancies
such that while Ay 1y(Hn—1) >0, A(H,L)(H;hl) < 0. Note
that Ay 1y and A, gy only depend on Hfﬁ)l, whereas [,,_1
is fully represented by h,,—; (Lemma 2). Hence, it follows that
(Hr(:f)l, hn,l) is a sufficient statistic of the history H,_.

Next, we explore how H™ and h,, influence the (n+1)®
agent’s choice. First, consider the following scenario. At time
n+ 1, let service A have more occupants than service B, i.e.,
ma > mp and let h,, € {0,1,2,...}, i.e., given the history
of past actions H,,, it is more (or equally) likely that A is of
a higher quality than B. Here, the question arises: should the
agent choose B as it is less congested? Or should it choose
A as it has a higher probability of being the better service?
Or should it use its private signal S, 1 to resolve this issue?
It turns out that the answer to these questions depends on the
value of k, as per the following lemma.

Lemma 3: Consider the Markov state (H,(lm), hy) such that
h, € {0,1,2,...} and ms > mp. Define n = (ma +
1)/(mp+1)and a =p/(1 —p). Forr =0,1,...,(|hs]| +1)
define the increasing sequence of thresholds {k,}, given as:

5 oy ([hn | +1=7) _ -1
mao —1 N S
= - 7 T TH1=7)
kr = { A= — g, o P> ( * 1) @)

0, 0.W.

Agent n+1 cascades to B if the quality factor k£ < ko, follows
its private signal S, 1 if k € [ko, k2] and cascades to A if k >
ko. The same thresholds {k,} exist for the opposite Markov
state (Hr(Lm), hn) where h,, € {0,—1,-2,...}, ma <mp and
m=(mp+1)/(ma+1).

Remark 1: For any private signal quality p, the thresholds
{k.} defined in Lemma 3 satisfy 17 < k, for all r. Further,
k, for any r decreases with p.

Next, consider the scenario where service A has more
occupants than B, i.e., my > mp but h,, € {-1,-2,...}
i.e., given the history H,, it is more likely that service B is of
a higher quality than A. In this case, both H,(Lm) and h,, favor
the choice of B, hence the agent will choose B regardless of
the value of k. We state this in the next lemma.

Lemma 4.: Consider the Markov state (H,(lm), hy) such that
hn, € {—1,-2,...} and m4 > mp. For all values of k, agent
n + 1 always cascades to B. Likewise, for h, € {1,2,...}
and m4 < mp, agent n + 1 always cascades to A.

Lemma 5: Consider the Markov state (H,(lm), hy,) such that
ma = mp. Then, the (n + 1)™ agent’s action solely depends
on the value of h,, € Z. It cascades to service A (B) if hy, > 1
(< —1) and otherwise follows its private signal S, 1.

Next we consider: what would the agents’ optimal actions
be if everyone knew the the true qualities?

Definition 2: The optimal action sequence refers to the

repeating pattern of agents’ actions if all agents know the true
quality (V4, Vp) a priori.
For example, consider (V4,Vp) = (H,L) and m = 2. The
optimal action sequence for £k = 1.5 is found to be AAB,
whereas for any k > 3, it is AAA. Similarly, for any general
m, the following holds:

Remark 2: For any quality factor £ > m + 1, the optimal
action sequence given the qualities (H, L) is AAA, and for
(L,H) is BBB.

IV. MARKOVIAN ANALYSIS OF CASCADES FOR m = 2

In this section, we consider the service time m = 2.
Let p; = P(S,, = A|(Va,Vp)) denote the probability that
an agent observes private signal A. Depending on the true
qualities, py = p for (V4,Vp) = (H, L) whereas py =1 —p
for (Va,Vp) = (L, H). It follows from the previous section
that the process {(Hr(Lm), hy)} is a discrete-time 2-D Markov
process (m.p.) where h,, takes integer values. For m = 2,
7™ =,  BH™ € {{A},{B}} and at any time n > 2,

) {{A, A}, {A, B}, {B, A}, {B, B}}. Figure 2 depicts
this 2-D Markov chain for quality factor & < min(¢g, ko),
where ty and k(o are thresholds defined shortly. To begin,
Hom) = {} and hy = 0 since the first agent has no observation
history. Hence the m.p. starts at state ({},0). In this starting
state, go = 0 and so the 1% agent follows its private signal Sy.
Therefore, w.p. ps the next state is ({A},1), and otherwise
is ({B},—1). Attime n =1, H™ € {{A},{B}}. Suppose
that at n = 1, the m.p. is in state ({A},1). At this point, the
transition to the next state at time n = 2 depends on the quality
factor k. Applying Lemma 3 to state ({A}, 1) gives thresholds
{t,}?_, where ta = oo. It follows that for k € (1,t9), the
m.p. transitions from ({A},1) to ({4, B},1) w.p. 1 (shown
in Figure 2). On the other hand for k € [tg,00), the m.p.
transitions from ({4}, 1) to ({4, A},2) w.p. py and otherwise
to ({A, B},0). Next, for all states where m 4 = mp, namely:
({4, B}, hy,) and ({B, A}, hy,) for any h,; the behaviour
of agents is dictated solely by h,, as stated in Lemma 5.
Lastly, for the remaining states, namely: ({4, A}, h,) and
({B, B}, hy,), once again the value of k determines whether
an agent chooses to cascade to A, or B or follow its private
signal (as per Lemma 3). Let thresholds {k,}2_, be defined
as per (4) for the state ({4, A},2). Then specifically for
k < ko, it follows from Lemma 3 that agents in states
({4, A}, hy), hyn € {0,1,2} cascade to B, whereas agents in
states ({ B, B}, hn), hn € {0, —1, —2} cascade to A (see Fig. 2).

We highlight the following salient features of the 2-
D m.p. in Fig. 2. First, any state transition that cor-
responds to a cascade occurs w.p. 1 and only trans-
lates along the vertical axis. This is due to Lemma 2,
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Fig. 2: Transition diagram of the 2-D m.p. for service time m = 2.
Here, quality factor k < min(to, ko).

which implies that h, = h,_; if a cascade occurs at
time n. Secondly, the m.p. has two classes of recurrent
states, namely: C; = {({A, A},2),{B,A4},2),({4,B},2)}
and Co> = {({B, B}, —2),({B, A},-2), ({A, B}, —2)}. It can
be shown that the m.p. eventually gets absorbed into one of
these classes w.p. 1. Once absorbed into class C; (C2), all
subsequent agents cascade resulting in an infinite sequence of
actions AABAAB ... (BBABBA...). Later, we show that for
other values of k, herding to a fixed action could also occur.

Property 1: The m.p. {(H}{"L)7hn)}, for any k> 1, gets

absorbed almost surely in either C; or C5. Once absorbed,
a cascade lasts forever, but may not result in agents herding
to a fixed action.
Now, if (V4,Vg) = (H, L), then the average cost (per agent)
for agents absorbed into C; is (2+ 2+ k)/3 and for agents
absorbed into C5 is (2k + 2k + 1)/3. Thus, clearly absorption
to Cy causes average costs to be lower than for Co when
(Va,Vp) = (H, L).

Property 2: Consider (V4,Vp) = (H,L) and any k£ > 1,
then the cascade to C4 incurs a lower average cost per
agent compared to a Co. We hence refer to C; (C3) as the
Right (Wrong) cascade when (V4,Vg) = (H, L). Vice-versa if
(VA7 VB) = (LvH)'

Lastly, note that a cascade to Cy (C3) occurs if and only
if h, =2 (—2). Now, let T}, i € Z denote the group of all
states which have h, =i. Then, any transition from 7; to
T;, i # j, occurs with the same probability for all s € T;. The
2-D m.p. is thereby said to be lumpable with respect to the
partition {T;};cz, and the lumped chain is a 1-D m.p. as in
Fig. 3, with M =2 (see Thm. 6.3.2 in [21]). As a result,
the probability of absorption of the 2-D m.p. to a C (or C3)
cascade starting from state ({},0) is equal to the probability of
absorption to M (or — M) starting from state 0 of the 1-D m.p.

pr pr pr

Se@ogos
—Pf — Dy — Dy — Py

Fig. 3: Transition diagram of a 1-D r.w. with absorption states: =M.

with M = 2. Now, for the 2-D m.p., let PZ.(VA’VB) denote the
absorption probability to C;, given (Vy4, Vp). It follows from
symmetry of the 2-D m.p. that Pr.cas :Pl(H’L) :PéL’H) =
pM /[p™ + (1 — p)M]. Here, Pr.as refers to the unconditional

probability of absorption to the Right cascade.
A. Changes in the absorption states as k increases

Interestingly, at k = ko an agent in state ({4, A}, 2) instead
of cascading to B follows its private signal. As a result, more
informative states, i.e., states with |h,| = 3,4,5 are also pos-
sible. In particular, when an agent enters the state ({A, A}, 5),
it chooses to cascade to A, resulting in absorption to the state
itself. Similarly, ({B,B},—5) also becomes an absorption
state. Therefore, in contrast to the earlier case of k < kg, here
the m.p. gets absorbed w.p. 1 into one of the two recurrent
classes: C1 = {({4,A},5)} and C; = {({B,B},—5)}.
Absorption into C7 (C3) corresponds to the infinite sequence
of cascading actions AAA ... (BBB...). Further, the cascade
probabilities can be obtained from the 1-D m.p. in Fig. 3,
with M = 5. Similarly, it can be shown that for values of &
in (ko, k1], (k1, k2] and (k2, 00), the corresponding absorption
states £/ for the equivalent 1-D m.p. are £4, £3 and +£2,
respectively (see Table I).

The above discussion outlines how for a fixed p, the
absorption states =M vary with k. Alternatively, consider a
fixed k, say k, and varying p. Note that for any p, thresholds
{ky}2_o. which are defined for state ({4, A},2) are always
greater than 3 (Remark 1). Thus, if k < 3, then the absorption
states =M for the equivalent 1-D m.p. are £2 (see Table I)
for all values of p. On the other hand, if k> 3, then there
exist an increasing sequence of thresholds {p,}?_, such that
when p = p,, k. = k. Here p, := (6ﬁ +1) ', where
§=(3k—1)/(k —3) and r € {0,1,2}. This implies that for
values of p in (0.5, po), po, (po, p1], (p1, p2], (P2, 1), the values
for =M are £2, +5, 4, £3 and £2, respectively. This is
depicted in Fig. 4, where Pr.,s is plotted as a function of
p for two cases: kK < 3 and for a fixed value of kE = 10.
Note the discontinuities in Pr.cas at {p,}2_, corresponding to
abrupt changes in £M.

B. Learning the cost-optimal sequence of actions

Consider the realization (V4,Vp) = (H,L). If all agents
knew the true quality a priori, then for £ < 3 it can
be shown that their optimal actions would result in the
sequence AABAAB .... Whereas, for k£ > 3, the optimal
action sequence would be AAA ... (Remark 2). When agents
sequentially learn, if absorption to class C gives the above
mentioned optimal action sequence, then in this respect, class
C7 is not only the “Right” cascade but more importantly,
it is the Optimal cascade. This is indeed the case for all &
except k € (3,ko), as shown in Table I. For k& € (3, ko),
the sequentially arriving agents never learn the optimal action
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sequence. Whereas, for all k ¢ (3,kg), agents learn the
optimal sequence w.p. Pr.cas. Alternatively, for a fixed k = k
and varying p, if k < 3 then learning happens (W.p. Pr-cas) for
any p. However, if k > 3, then for p € (0.5,p9) agents never
learn the optimal sequence. This is indicated in red in Fig. 4
for the case k = 10.

Cascade Optimal sequence if
pattern (Va, V) known apriori
k +M | Class | Class Va,VB) (Va,Vg)
Cy Cs =(H,L) =(L,H)
(1,3] +2 | AAB | BBA AAB BBA
(3,ko) | £2 | AAB|BBA | AAA | T BBB |
ko | £5 | AAA | BBB| AAA | BBB |
(ko, k1] | £4 | AAA | BBB AAA BBB
(k1,k2] | £3 | AAA | BBB AAA BBB
(k2,00) | £2 | AAA | BBB AAA BBB

TABLE I: Comparing cascade pattern with optimal action sequence
Jfor different values of quality factor k. Thresholds [ko, k1, k2] defined
for state ({A, A},2) as per (4). Here, 3 < ko < k1 < kz (Remark 1).

/
0.9 : -7
7
7
7
208 -
g s
~ //
A 0.7 /
f” — — —forany k<3
06 / —— k=10
f/’ o k=10, at p=po,p1,p:
05 L : ‘ ‘ ‘
0.5 0.6 0.7 0.8 0.9 1
P

Fig. 4: Probability of Right cascade versus private signal quality
for the indicated values of k. For any k > 3, when p € (0.5,p0)
(indicated in red for k = 10), the Right cascade is not optimal.

V. GENERALIZATION TO EVEN VALUES OF m

In this section, we consider the service times m to be
an even integer value. Recall from Section III the 2-D m.p.
{(H,(lm),hn)}, where h,, is defined as per Lemma 2 and

H,(Lm) is the history of the m most recent actions till time n.
Let S = {A, B}™ denote the space of all possible m-length
histories H. ,(Lm). Histories of length less than m occur only over
the first m —1 time slots and are transient states. As in the case
of m = 2, these transient states do not affect the probability
of absorption and hence will be ignored for the following
discussion. Now, for any s € S, let ma(s) and mp(s)
denote the prior occupants in service A and B, respectively.
Let S be partitioned into sets S4, Sp and S4p defined as:
Sa:={s:ma(s) >mp(s)}, Sp:={s: ma(s) <mp(s)}
and Sap := {s : ma(s) = mp(s)}. Consider the m.p.
{(Sn;hn)} with the initial state (so,0) such that sg € Sa
(so € Sp). Then, it can be shown using Lemma 3 that if
the m.p. does not exit the h = 0 axis, then the successive
sequence of states {(sp,0)} will have an increasing number
of B’s (A’s). Thus, given that the m.p. starts in state ({},0),
at some point, it either transitions from h = 0 axis to h =1
(h = —1) axis w.p. ps (1 —py) or remains on the h = 0 axis
and eventually enters a state (s,0) where s € Syp. Now in

this state, the agent always follows its private signal (Lemma
5) based on which the m.p. shifts to either the h = 1 or
h = —1 axis. Thus, on the whole, the m.p.transitions from the
h =0 axis to the axes h =1 and h = —1 w.p. py and 1 —py
respectively. Similar arguments show that this is in fact true
for all axes h < |M — 1|, for a certain M defined in Property
4. However, this is not true if m is odd valued, as the set Sz,
in this case, is empty. For odd values of m, recurrent classes
may exist (absorption may occur) along the h = 0, 1, —1 axes.
As a result, the effect of service congestion dominates and
thereby hinders the process of agents’ learning of (Vy4, Vg).
For even m, the m.p. exhibits Properties 1 and 2 where the
two recurrent classes C'y and Cs exist along the h = M and
h = —M axis respectively. From above arguments, it follows
that for even m, the 2-D m.p. is lumpable with respect to the
partiton {7} };cz as defined in Section IV.

Property 3: For any even-valued service time m, the
probability of absorption of the 2-D m.p. to a C; (or Cb)
cascade starting from state ({},0) is equal to the probability
of absorption to M (or —M) starting from state O of the 1-D
m.p. (Fig. 3), where M > 2.

The absorption states =M are characterized by following
property, whose proof is omitted due to space considerations.

Property 4: The value of M referring to the absorption states
+M equals the smallest positive integer h such that for all
states (s, h), s € Sa, the agent cascades (to A or B).

Now, recall that for £ > m -+ 1, the optimal action sequence
when (Va,Vp) = (H,L) is AAA... (Remark 2). Then, for
the 2-D m.p. considered here, it follows that the Right cascade
(learnt w.p. Pr.cas) is optimal only if for every state (s, M),
s € 84, the agent cascades to A (and never to B). From
simulations we observe that there exists a threshold k;;, such
that for k € (m+ 1, kyp,), the above condition is not satisfied,
i.e., agents never learn the optimal sequence. Whereas, for
k > kyp, agents learn the optimal sequence w.p. Pr.cas. Figure
5 depicts this for m = 10, where we find &y, = 30.7.
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Fig. 5: Absorption state index M versus quality factor k for m = 10
and p = 0.6. For k € (11, ky,) (indicated in red), the Right cascade

is not optimal.

VI. CONCLUSIONS

We considered a simple model for observational learning
with negative externalities and showed that such externalities
can lead to very different learning behavior compared to
models without externalities. In particular, there are cases in
which the optimal sequence of actions is never learned and
better signal quality may result in worse learning outcomes.
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