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Abstract—Observational learning models seek to understand
how distributed agents learn from observing the actions of
others. In the basic model, agents seek to choose between two
alternatives, where the underlying value of each alternative is
the same for each agent. Agents do not know this value but only
observe a noisy signal of the value and make their decision based
on this signal and observations of other agents’ actions. Here,
instead we consider a scenario in which the choices faced by an
agent exhibit a negative externality so that value of a choice may
decrease depending on the history of other agents selecting that
choice. We study the learning behavior of Bayesian agents with
such an externality and show that this can lead to very different
outcomes compared to models without such an externality.

I. INTRODUCTION

There is a long history of work studying models for “obser-

vational learning," in which Bayesian agents make decisions

based in part on their observations of other agents. Early

papers in this area include [1]–[3] that studied models where

homogeneous agents sequentially make a decision between

two alternatives such as buying or not buying a given service.

This service has a common quality (say “good” or “bad”)

that is unknown to each agent. Agents receive a noisy private

signal indicating this quality and make decisions based on

their signal and their observations of other agents’ actions. A

key results for such models is the emergence of information

cascades, i.e., scenarios in which at some point agents ignore

their private signal and simply follow the action of all previous

agents. Many variations of such a model have been studied

including [4]–[14].1 In this prior work, the value an agent

obtains from a given action does not depend on the action

of any prior agent. Here, we instead consider a model that

exhibits negative externalities meaning that the value of a

given service may decrease depending if other agents choose

the same service. We show that such externalities can lead to

very different learning behavior compared to models without

externalities.

In our model agents sequentially choose between two ser-

vices, A and B. The value they obtain from a service decreases

in the number of other agents choosing that service within a

given time window, where this window can model the time

an agent spends using the service. The two services differ

in the degree of this externality so that in one high (H)

quality service the externality is lower than in the other low

(L) quality service. Again agents do not know a service’s

This work was supported in part by the NSF under grants CNS-1908807
and CCF-1934931/001.

1This line of work also has ties to work on distributed inference, e.g. [15], [16].

quality but only receive a noisy signal indicating this and then

choose a service based on their signal and their observations

of earlier agents. For example, this could model a setting

where wireless devices (agents) have to choose between two

frequency channels (services) accounting for the fact that

a more crowded channel would yield a poorer quality of

service [17], [18]. Another example might be drivers selecting

between two parking garages, where the number of other

vehicles in a garage could lead to a dis-utility due to more time

spent finding parking [19], [20]. To see how this externality

can impact learning note that even if an agent believes that

service A is the better service, it may decide to choose

service B because it has a lower externality. Our main result

shows that, unlike in previously studied models, there exist

parameters, wherein the “right” cascade does not correspond

to the optimal action sequence had the agents known the

true state of the world. We also show that the probability

with which the “right” cascade occurs is not monotonically

increasing in the quality of agents’ private signals.2

II. MODEL

We consider a model similar to [1] in which there is a

countable sequence of agents, indexed i = 1, 2, . . . where the

index represents both the time and the order of actions. Each

agent i takes an action Ui ∈ U = {A,B} of choosing to

occupy one of the two available services A and B. After

choosing a service, each agent i remains in that service

over the next m time slots, i + 1, i + 2, . . . i + m. Here, m
represents the service-time for any agent, and is the same

for both services. While it is common knowledge that one

of the services provides a higher Quality of Service (QoS)

than the other, the identity of the better (or the poorer) service

is not known to the agents a priori. These true qualities are

denoted by the pair (VA, VB) ∈ V = {(H,L), (L,H)}, where

(VA, VB) = (H,L) implies that service A is better than service

B; (VA, VB) = (L,H) implies the opposite. For simplicity,

both possibilities of (VA, VB) are assumed to be equally likely.

The difference in service qualities is reflected in the agent’s

cost structure, which depends on its action (choice of service),

the true quality (VA, VB), and the number of other users of the

service in the following manner. For the nth agent, let the his-

tory of past actions be denoted by Hn−1 = {U1, U2, . . . , Un−1}.

Given this history, at time n before agent n acts, let services A

2This is similar in spirit to results in [8], [11] where noise in the observa-
tions causes this non-monotonic behavior, while here this occurs without any
observation noise.
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and B have mA and mB respective occupants. Note that due

to the finite service-time m, mA and mB are determined by

only the m most recent actions H
(m)
n−1 , {Un−m, . . . , Un−1},

and mA +mB = m. The cost incurred by agent n, cn :
V × U ×Hn−1 → R is then defined as:

cn =

{

mUn
+ 1, if VUn

= H,

(mUn
+ 1)k, if VUn

= L,
(1)

where k > 1 denotes the quality-factor by which one service

is poorer (costlier) than the other. Here, Hn−1 denotes the set

of all possible action histories Hn−1 observed by agent n.

Every agent i receives a private signal Si ∈ {A,B}. This

signal reflects the agent’s private beliefs and partially reveals

the true service qualities through a binary symmetric channel

(BSC) with crossover probability 1−p, where 1/2 < p < 1 (see

Fig. 1). Each agent i takes a rational action Ui that depends

on its private signal Si and the past actions Hn−1. Private

signals are assumed to be conditionally independent across

agents, given (VA, VB).

A

B

(H,L)

(L,H)

(VA, VB) Si

p

p

1−
p

1−
p

Fig. 1: The BSC through which agents receive private signals.

III. OPTIMAL DECISION AND CASCADES

For the nth agent, the history of past actions Hn−1 and its

private signal Sn forms its information set {Sn, Hn−1}. As the

first agent does not have any observation history, he always

follows his private signal, i.e., he chooses service A if and

only if the signal is A. For agent n ≥ 2, the Bayes’ optimal

action, Un is chosen such that it incurs the least expected cost

given the information set {Sn, Hn−1}. Let γn(Sn, Hn−1) ,

P((H,L)|Sn, Hn−1) denote the posterior probability that A
is better than B, i.e., (VA, VB) = (H,L). The expected cost

EUn
that agent n incurs by taking action Un ∈ {A,B}, given

{Sn, Hn−1} is then expressed by:

EUn
= cn((H,L), Un,Hn−1)γn

+ cn((L,H), Un,Hn−1)(1− γn).
(2)

The Bayes’ optimal decision rule is then:

Un =











A, if EA < EB,

B, if EA > EB,

follows Sn, if EA = EB.

(3)

When EA = EB , an agent is indifferent between the actions.

Similar to [8], our decision rule in this case follows the private

signal Sn, unlike [1] where random tie-breaking is used.

Definition 1: An information cascade is said to occur when

an agent’s decision becomes independent of its private signal.

It follows from (3) that, agent n cascades to service A (B)
if and only if EA < EB (EA > EB) for all Sn ∈ {A,B}.

The other case being EA ≤ EB for Sn = A and EA ≥ EB

for Sn = B; in which case, agent n follows Sn. To better

understand the above cascade conditions, we encapsulate the

information contained in the history Hn−1 observed by agent

n in the term gn−1(Hn−1) , (∆(L,H)/∆(H,L))ln−1(Hn−1),

where ln−1(·) , P(·|(L,H))/P(·|(H,L)) is the likelihood ratio

function of the action history Hn−1. Further ∆(VA,VB) denotes

the difference between the costs incurred for actions A and B
given the true qualities (VA, VB) and is given by:

∆(L,H)(Hn−1) = cn((L,H), B,Hn−1)− cn((L,H), A,Hn−1),

∆(H,L)(Hn−1) = cn((H,L), A,Hn−1)− cn((H,L), B,Hn−1).

For a history Hn−1, where services A and B have mA and

mB occupants, ∆(L,H)(Hn−1) = (mB + 1)− k(mA + 1) and

∆(H,L)(Hn−1) = (mA + 1)− k(mB + 1). A more intuitive way

to characterize an information cascade is given next.

Lemma 1: Given a history Hn−1 such that ∆(H,L)(Hn−1) >
0 (< 0); agent n cascades to service A if gn−1 > p

1−p

(

gn−1 <
1−p
p

)

, cascades to service B if gn−1 < 1−p
p

(

gn−1 > p
1−p

)

,

and otherwise follows its private signal Sn.

To prove Lemma 1, define β(·) , P(·|(L,H))/P(·|(H,L)) as

the likelhood ratio of the private signal Sn, where β(A) = (1−
p)/p and β(B) = p/(1 − p). Applying Bayes’ formula gives

γn = 1
1+βnln−1

. Now, using the expressions for EA and EB

from (2) given {Sn, Hn−1}, the inequality EA > EB can be

simplified to the form gn−1(Hn−1) > (or <) 1/β(Sn). Agent

n cascades to a service only if the above inequality holds for

both Sn = A and B. This gives bounds on gn−1(Hn−1) for a

cascade to occur which completes the proof. Here, recall that

the term gn−1 has a denominator ∆(H,L), which if negative

will flip the sign of the inequality. This in turn swaps the

conditions for agent n to cascade to services A and B as

stated in Lemma 1. Next, the evolution of the likelihood ratio

process {ln} is characterized by Lemma 2, and is a common

property of cascade models studied so far, such as [1]–[4], [8].

Lemma 2: Given a history Hn, with I ⊆ {1, 2, . . . , n}
denoting the set of past agents who have followed their

private signals, the likelihood ratio ln(Hn) depends only on

the difference between the number of A’s (denoted by nA)

and B’s (denoted by nB) in the set Fn = {Ui : i ∈ I}.

Specifically, ln =
(

1−p
p

)hn

, where hn = nA − nB .

The proof follows by noting that for any agent i /∈ I , the

action Ui does not provide any additional information about

the true qualities (VA, VB) to the successors beyond what is

contained in Hi−1. As a result, li = li−1. On the other hand,

if agent i does not cascade (i ∈ I), then Lemma 1 implies that

it follows its private signals Si, which means Ui = Si. Now,

as Si is conditionally independent of the history Hi−1 given

(VA, VB), li = (1−p
p

)li−1 if Ui = A, else li = ( p
1−p

)li−1 if Ui = B.

Thus, ln =
(

1−p
p

)hn

for hn as defined in the lemma.

Note that in models such as [1]–[4], [8], [11], the condition

for agent n to cascade, solely depends on the likelihood ratio:

ln−1(Hn−1). Thus, if agent n cascades, Lemma 2 implies that

lj = ln−1 for all j ≥ n. Therefore once a cascade occurs, it

lasts forever with subsequent agents herding to the cascading

action. In our model, however, a cascade at time n does not

necessarily imply gn = gn−1. So a cascade may not cause

subsequent agents to cascade or herd to a fixed action.
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A sufficient statistic of an agent’s observation history

In prior models such as [1]–[3], [8], [11], the likelihood ratio

ln−1 is a sufficient statistic for agent n’s past observations,

which facilitates analyzing these models. Here, the analogous

quantity is gn−1. However, it follows from Lemma 1 that this

is not a sufficient statistic of the history Hn−1. To see this,

consider the following example with m = 2 and k ∈ (1, 3).
At time n, let Hn−1 and H

′

n−1 be two different histories

such that H
(m)
n−1 = {A,A}, H

′(m)
n−1 = {B,B} and hn−1 = 2,

h
′

n−1 = −2. Now, there exists a value of k, given by k0 =

(3α2 + 1)/(3 + α2), where α := p
1−p

, for which gn−1 = g
′

n−1.

However, it follows from Lemma 1 that given Hn−1, agent n
cascades to B, whereas given H

′

n−1 it cascades to A. This is

because the two histories have dissimilar service occupancies

such that while ∆(H,L)(Hn−1) > 0, ∆(H,L)(H
′

n−1) < 0. Note

that ∆(H,L) and ∆(L,H) only depend on H
(m)
n−1; whereas ln−1

is fully represented by hn−1 (Lemma 2). Hence, it follows that
(

H
(m)
n−1, hn−1

)

is a sufficient statistic of the history Hn−1.

Next, we explore how H
(m)
n and hn influence the (n+1)th

agent’s choice. First, consider the following scenario. At time

n+1, let service A have more occupants than service B, i.e.,

mA > mB and let hn ∈ {0, 1, 2, . . .}, i.e., given the history

of past actions Hn, it is more (or equally) likely that A is of

a higher quality than B. Here, the question arises: should the

agent choose B as it is less congested? Or should it choose

A as it has a higher probability of being the better service?

Or should it use its private signal Sn+1 to resolve this issue?

It turns out that the answer to these questions depends on the

value of k, as per the following lemma.

Lemma 3: Consider the Markov state
(

H
(m)
n , hn

)

such that

hn ∈ {0, 1, 2, . . .} and mA > mB . Define m̂ = (mA +
1)/(mB +1) and α = p/(1− p). For r = 0, 1, . . . , (|hn|+1)
define the increasing sequence of thresholds {kr}, given as:

kr =







m̂α(|hn|+1−r) − 1

α(|hn|+1−r) − m̂
, for p >

(

m̂
−1

(|hn|+1−r) + 1
)−1

∞, o.w.

(4)

Agent n+1 cascades to B if the quality factor k < k0, follows

its private signal Sn+1 if k ∈ [k0, k2] and cascades to A if k >
k2. The same thresholds {kr} exist for the opposite Markov

state
(

H
(m)
n , hn

)

where hn ∈ {0,−1,−2, . . .}, mA < mB and

m̂ = (mB + 1)/(mA + 1).

Remark 1: For any private signal quality p, the thresholds

{kr} defined in Lemma 3 satisfy m̂ < kr for all r. Further,

kr for any r decreases with p.

Next, consider the scenario where service A has more

occupants than B, i.e., mA > mB but hn ∈ {−1,−2, . . .}
i.e., given the history Hn, it is more likely that service B is of

a higher quality than A. In this case, both H
(m)
n and hn favor

the choice of B, hence the agent will choose B regardless of

the value of k. We state this in the next lemma.

Lemma 4: Consider the Markov state
(

H
(m)
n , hn

)

such that

hn ∈ {−1,−2, . . .} and mA > mB . For all values of k, agent

n + 1 always cascades to B. Likewise, for hn ∈ {1, 2, . . .}
and mA < mB , agent n+ 1 always cascades to A.

Lemma 5: Consider the Markov state
(

H
(m)
n , hn

)

such that

mA = mB . Then, the (n+ 1)th agent’s action solely depends

on the value of hn ∈ Z. It cascades to service A (B) if hn > 1
(< −1) and otherwise follows its private signal Sn+1.

Next we consider: what would the agents’ optimal actions

be if everyone knew the the true qualities?

Definition 2: The optimal action sequence refers to the

repeating pattern of agents’ actions if all agents know the true

quality (VA, VB) a priori.

For example, consider (VA, VB) = (H,L) and m = 2. The

optimal action sequence for k = 1.5 is found to be AAB,

whereas for any k > 3, it is AAA. Similarly, for any general

m, the following holds:

Remark 2: For any quality factor k > m + 1, the optimal

action sequence given the qualities (H,L) is AAA, and for

(L,H) is BBB.

IV. MARKOVIAN ANALYSIS OF CASCADES FOR m = 2

In this section, we consider the service time m = 2.

Let pf , P(Sn = A|(VA, VB)) denote the probability that

an agent observes private signal A. Depending on the true

qualities, pf = p for (VA, VB) = (H,L) whereas pf = 1 − p
for (VA, VB) = (L,H). It follows from the previous section

that the process
{

(H
(m)
n , hn)

}

is a discrete-time 2-D Markov

process (m.p.) where hn takes integer values. For m = 2,

H
(m)
0 = {}, H

(m)
1 ∈

{

{A}, {B}
}

and at any time n ≥ 2,

H
(m)
n ∈

{

{A,A}, {A,B}, {B,A}, {B,B}
}

. Figure 2 depicts

this 2-D Markov chain for quality factor k < min(t0, k0),
where t0 and k0 are thresholds defined shortly. To begin,

H
(m)
0 = {} and h0 = 0 since the first agent has no observation

history. Hence the m.p. starts at state ({}, 0). In this starting

state, g0 = 0 and so the 1st agent follows its private signal S1.

Therefore, w.p. pf the next state is ({A}, 1), and otherwise

is ({B},−1). At time n = 1, H
(m)
1 ∈

{

{A}, {B}
}

. Suppose

that at n = 1, the m.p. is in state ({A}, 1). At this point, the

transition to the next state at time n = 2 depends on the quality

factor k. Applying Lemma 3 to state ({A}, 1) gives thresholds

{tr}
2
r=0 where t2 = ∞. It follows that for k ∈ (1, t0), the

m.p. transitions from ({A}, 1) to ({A,B}, 1) w.p. 1 (shown

in Figure 2). On the other hand for k ∈ [t0,∞), the m.p.

transitions from ({A}, 1) to ({A,A}, 2) w.p. pf and otherwise

to ({A,B}, 0). Next, for all states where mA = mB , namely:
(

{A,B}, hn

)

and
(

{B,A}, hn

)

for any hn; the behaviour

of agents is dictated solely by hn, as stated in Lemma 5.

Lastly, for the remaining states, namely:
(

{A,A}, hn

)

and
(

{B,B}, hn

)

, once again the value of k determines whether

an agent chooses to cascade to A, or B or follow its private

signal (as per Lemma 3). Let thresholds {kr}
3
r=0 be defined

as per (4) for the state
(

{A,A}, 2
)

. Then specifically for

k < k0, it follows from Lemma 3 that agents in states
(

{A,A}, hn

)

, hn ∈ {0, 1, 2} cascade to B, whereas agents in

states
(

{B,B}, hn

)

, hn ∈ {0,−1,−2} cascade to A (see Fig. 2).

We highlight the following salient features of the 2-

D m.p. in Fig. 2. First, any state transition that cor-

responds to a cascade occurs w.p. 1 and only trans-

lates along the vertical axis. This is due to Lemma 2,
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H
(2)
n

1 20−1−2
{}

{A}

{B,B}

{A,B}

{B,A}

{A,A}

{B}

p f

1
−
p f

p f

1
−
p f

p f

1
−
p f

A

B

A

p f

1
−
p f

p f

1
−
p f

p f

1
−
p f

p f

1
−
p f

A

B

B

Fig. 2: Transition diagram of the 2 -D m.p. for service time m = 2.
Here, quality factor k < min(t0, k0).

which implies that hn = hn−1 if a cascade occurs at

time n. Secondly, the m.p. has two classes of recurrent

states, namely: C1 =
{

({A,A}, 2), ({B,A}, 2), ({A,B}, 2)
}

and C2 =
{

({B,B},−2), ({B,A},−2), ({A,B},−2)
}

. It can

be shown that the m.p. eventually gets absorbed into one of

these classes w.p. 1. Once absorbed into class C1 (C2), all

subsequent agents cascade resulting in an infinite sequence of

actions AABAAB . . . (BBABBA . . .). Later, we show that for

other values of k, herding to a fixed action could also occur.

Property 1: The m.p.
{

(H
(m)
n , hn)

}

, for any k > 1, gets

absorbed almost surely in either C1 or C2. Once absorbed,

a cascade lasts forever, but may not result in agents herding

to a fixed action.

Now, if (VA, VB) = (H,L), then the average cost (per agent)

for agents absorbed into C1 is (2 + 2 + k)/3 and for agents

absorbed into C2 is (2k + 2k + 1)/3. Thus, clearly absorption

to C1 causes average costs to be lower than for C2 when

(VA, VB) = (H,L).

Property 2: Consider (VA, VB) = (H,L) and any k > 1,

then the cascade to C1 incurs a lower average cost per

agent compared to a C2. We hence refer to C1 (C2) as the

Right (Wrong) cascade when (VA, VB) = (H,L). Vice-versa if

(VA, VB) = (L,H).

Lastly, note that a cascade to C1 (C2) occurs if and only

if hn = 2 (−2). Now, let Ti, i ∈ Z denote the group of all

states which have hn = i. Then, any transition from Ti to

Tj , i 6= j, occurs with the same probability for all s ∈ Ti. The

2-D m.p. is thereby said to be lumpable with respect to the

partition {Ti}i∈Z, and the lumped chain is a 1-D m.p. as in

Fig. 3, with M = 2 (see Thm. 6.3.2 in [21]). As a result,

the probability of absorption of the 2-D m.p. to a C1 (or C2)

cascade starting from state
(

{}, 0
)

is equal to the probability of

absorption to M (or −M ) starting from state 0 of the 1-D m.p.

0 1−1−M M

pf pfpf pf

1− pf1− pf1− pf1− pf

. . . . . . . . . . . . . . . . . .

Fig. 3: Transition diagram of a 1 -D r.w. with absorption states: ±M .

with M = 2. Now, for the 2-D m.p., let P
(VA,VB)
i denote the

absorption probability to Ci, given (VA, VB). It follows from

symmetry of the 2-D m.p. that PR-cas = P
(H,L)
1 = P

(L,H)
2 =

pM/[pM + (1− p)M ]. Here, PR-cas refers to the unconditional

probability of absorption to the Right cascade.

A. Changes in the absorption states as k increases

Interestingly, at k = k0 an agent in state
(

{A,A}, 2
)

instead

of cascading to B follows its private signal. As a result, more

informative states, i.e., states with |hn| = 3, 4, 5 are also pos-

sible. In particular, when an agent enters the state
(

{A,A}, 5
)

,

it chooses to cascade to A, resulting in absorption to the state

itself. Similarly,
(

{B,B},−5
)

also becomes an absorption

state. Therefore, in contrast to the earlier case of k < k0, here

the m.p. gets absorbed w.p. 1 into one of the two recurrent

classes: C1 =
{

({A,A}, 5)
}

and C2 =
{

({B,B},−5)
}

.

Absorption into C1 (C2) corresponds to the infinite sequence

of cascading actions AAA . . . (BBB . . .). Further, the cascade

probabilities can be obtained from the 1-D m.p. in Fig. 3,

with M = 5. Similarly, it can be shown that for values of k
in (k0, k1], (k1, k2] and (k2,∞), the corresponding absorption

states ±M for the equivalent 1-D m.p. are ±4, ±3 and ±2,

respectively (see Table I).

The above discussion outlines how for a fixed p, the

absorption states ±M vary with k. Alternatively, consider a

fixed k, say k̂, and varying p. Note that for any p, thresholds

{kr}
2
r=0, which are defined for state

(

{A,A}, 2
)

are always

greater than 3 (Remark 1). Thus, if k̂ ≤ 3, then the absorption

states ±M for the equivalent 1-D m.p. are ±2 (see Table I)

for all values of p. On the other hand, if k̂ > 3, then there

exist an increasing sequence of thresholds {pr}
2
r=0 such that

when p = pr, kr = k̂. Here pr :=
(

δ
−1

(3−r) + 1
)−1

, where

δ = (3k̂ − 1)/(k̂ − 3) and r ∈ {0, 1, 2}. This implies that for

values of p in (0.5, p0), p0, (p0, p1], (p1, p2], (p2, 1), the values

for ±M are ±2, ±5, ±4, ±3 and ±2, respectively. This is

depicted in Fig. 4, where PR-cas is plotted as a function of

p for two cases: k ≤ 3 and for a fixed value of k̂ = 10.

Note the discontinuities in PR-cas at {pr}
2
r=0 corresponding to

abrupt changes in ±M .

B. Learning the cost-optimal sequence of actions

Consider the realization (VA, VB) = (H,L). If all agents

knew the true quality a priori, then for k ≤ 3 it can

be shown that their optimal actions would result in the

sequence AABAAB . . .. Whereas, for k > 3, the optimal

action sequence would be AAA . . . (Remark 2). When agents

sequentially learn, if absorption to class C1 gives the above

mentioned optimal action sequence, then in this respect, class

C1 is not only the “Right” cascade but more importantly,

it is the Optimal cascade. This is indeed the case for all k
except k ∈ (3, k0), as shown in Table I. For k ∈ (3, k0),
the sequentially arriving agents never learn the optimal action
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sequence. Whereas, for all k /∈ (3, k0), agents learn the

optimal sequence w.p. PR-cas. Alternatively, for a fixed k = k̂
and varying p, if k̂ ≤ 3 then learning happens (w.p. PR-cas) for

any p. However, if k̂ > 3, then for p ∈ (0.5, p0) agents never

learn the optimal sequence. This is indicated in red in Fig. 4

for the case k̂ = 10.

Cascade Optimal sequence if

pattern (VA, VB) known apriori

k ±M Class Class (VA, VB) (VA, VB)

C1 C2 = (H,L) = (L,H)

(1, 3] ±2 AAB BBA AAB BBA
(3, k0) ±2 AAB BBA AAA BBB
k0 ±5 AAA BBB AAA BBB

(k0, k1] ±4 AAA BBB AAA BBB
(k1, k2] ±3 AAA BBB AAA BBB
(k2,∞) ±2 AAA BBB AAA BBB

TABLE I: Comparing cascade pattern with optimal action sequence
for different values of quality factor k. Thresholds [k0, k1, k2] defined
for state

(

{A,A}, 2
)

as per (4). Here, 3 < k0 < k1 < k2 (Remark 1).

0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Fig. 4: Probability of Right cascade versus private signal quality
for the indicated values of k. For any k > 3, when p ∈ (0.5, p0)
(indicated in red for k = 10), the Right cascade is not optimal.

V. GENERALIZATION TO EVEN VALUES OF m

In this section, we consider the service times m to be

an even integer value. Recall from Section III the 2-D m.p.
{

(H
(m)
n , hn)

}

, where hn is defined as per Lemma 2 and

H
(m)
n is the history of the m most recent actions till time n.

Let S = {A,B}m denote the space of all possible m-length

histories H
(m)
n . Histories of length less than m occur only over

the first m−1 time slots and are transient states. As in the case

of m = 2, these transient states do not affect the probability

of absorption and hence will be ignored for the following

discussion. Now, for any s ∈ S, let mA(s) and mB(s)
denote the prior occupants in service A and B, respectively.

Let S be partitioned into sets SA, SB and SAB defined as:

SA := {s : mA(s) > mB(s)}, SB := {s : mA(s) < mB(s)}
and SAB := {s : mA(s) = mB(s)}. Consider the m.p.

{(sn, hn)} with the initial state (s0, 0) such that s0 ∈ SA

(s0 ∈ SB). Then, it can be shown using Lemma 3 that if

the m.p. does not exit the h = 0 axis, then the successive

sequence of states {(sn, 0)} will have an increasing number

of B’s (A’s). Thus, given that the m.p. starts in state
(

{}, 0
)

,

at some point, it either transitions from h = 0 axis to h = 1
(h = −1) axis w.p. pf (1− pf ) or remains on the h = 0 axis

and eventually enters a state (s, 0) where s ∈ SAB . Now in

this state, the agent always follows its private signal (Lemma

5) based on which the m.p. shifts to either the h = 1 or

h = −1 axis. Thus, on the whole, the m.p.transitions from the

h = 0 axis to the axes h = 1 and h = −1 w.p. pf and 1− pf
respectively. Similar arguments show that this is in fact true

for all axes h ≤ |M − 1|, for a certain M defined in Property

4. However, this is not true if m is odd valued, as the set SAB ,

in this case, is empty. For odd values of m, recurrent classes

may exist (absorption may occur) along the h = 0, 1,−1 axes.

As a result, the effect of service congestion dominates and

thereby hinders the process of agents’ learning of (VA, VB).

For even m, the m.p. exhibits Properties 1 and 2 where the

two recurrent classes C1 and C2 exist along the h = M and

h = −M axis respectively. From above arguments, it follows

that for even m, the 2-D m.p. is lumpable with respect to the

partiton {Ti}i∈Z as defined in Section IV.

Property 3: For any even-valued service time m, the

probability of absorption of the 2-D m.p. to a C1 (or C2)

cascade starting from state
(

{}, 0
)

is equal to the probability

of absorption to M (or −M ) starting from state 0 of the 1-D

m.p. (Fig. 3), where M ≥ 2.

The absorption states ±M are characterized by following

property, whose proof is omitted due to space considerations.

Property 4: The value of M referring to the absorption states

±M equals the smallest positive integer h such that for all

states (s, h), s ∈ SA, the agent cascades (to A or B).

Now, recall that for k > m+1, the optimal action sequence

when (VA, VB) = (H,L) is AAA . . . (Remark 2). Then, for

the 2-D m.p. considered here, it follows that the Right cascade

(learnt w.p. PR-cas) is optimal only if for every state (s,M),
s ∈ SA, the agent cascades to A (and never to B). From

simulations we observe that there exists a threshold kth such

that for k ∈ (m+1, kth), the above condition is not satisfied,

i.e., agents never learn the optimal sequence. Whereas, for

k ≥ kth agents learn the optimal sequence w.p. PR-cas. Figure

5 depicts this for m = 10, where we find kth = 30.7.

Fig. 5: Absorption state index M versus quality factor k for m = 10
and p = 0.6. For k ∈ (11, kth) (indicated in red), the Right cascade
is not optimal.

VI. CONCLUSIONS

We considered a simple model for observational learning

with negative externalities and showed that such externalities

can lead to very different learning behavior compared to

models without externalities. In particular, there are cases in

which the optimal sequence of actions is never learned and

better signal quality may result in worse learning outcomes.
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