Exact Torque and Force Model of Bearingless
Electric Machines

Anvar Khamitov
Department of ECE
University of Wiconsin-Madison
Madison, WI 53706, USA
khamitov@wisc.edu

Abstract—This paper proposes and develops a new and exact
analytic electric machine model that has several potential advan-
tages. The model can be used to address levitation performance
requirements by developing exact force/torque regulation meth-
ods to precisely calculate commands to current regulators. This
allows relaxing constraints during the design stage and has the
potential to enable consideration of higher performance bearing-
less machines. Furthermore, analogous to torque enhancement in
conventional electric machines, the proposed model can be used to
identify options for suspension force enhancement by controlling
multiple magnetic field harmonics. This paper provides a detailed
derivation of the model and shows how it can be used to improve
force regulation accuracy and enhance force density.

Index Terms—Bearingless drive, bearingless motor, generalized
Clarke transformation, multiphase winding, self-bearing motor

I. INTRODUCTION

Bearingless motors have the potential to replace conven-
tional motors with contact bearings and provide contact-free
and lubricant-free support of the motor shaft [1]. However,
their usage has been significantly limited by issues of low
power density, efficiency, and high cost. Most bearingless
motor prototypes reported in literature have been designed
for low power ratings and relatively few machines have
experimentally tested efficiencies of above 90%. Furthermore,
they are not achieving the high speed-power capabilities that
high performance conventional motors have [2]. All these lim-
itations are because the design space of bearingless machines
is significantly more constrained than conventional machines
due to stringent levitation performance requirements. State-
of-the-art models and force regulation algorithms are based
on the assumption of a linear force/torque-current relationship
that ignores the effects of magnetic field harmonics, saturation,
or armature reaction. As a result, potentially high perfor-
mance designs that do not fall under these simplified model
assumptions can be excluded from consideration during design
studies. Furthermore, the possibility of increasing force density
using unmodeled airgap magnetic field harmonics is ignored.

This paper addresses the problem by proposing and devel-
oping an “exact” electric machine model that provides a new
way of understanding force and torque creation. The proposed
model is based on current space vectors to allow identification
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of current sequence components that excite specific magnetic
field harmonics to increase force density. The paper shows how
the exact model enables the creation of force/torque regulation
techniques that can precisely actuate the shaft even when mul-
tiple airgap field harmonics are present. This allows relaxing
the force vector error requirement during the design stage and
addressing it during the control stage. As a result, this makes
the design space less constrained and enables consideration of
potentially higher performance designs. Only two studies, [3]
and [4], have investigated techniques that can be referred to as
exact force vector regulation. They demonstrated significant
performance improvement for an active magnetic bearing
(AMB) and a bearingless motor. However, the techniques they
developed only work for specific machine examples and no
generalized analytic model was presented.

The main contribution of this paper is to propose and
develop a new and exact electric machine model that encom-
passes both force and torque creation, incorporating multiple
airgap harmonics and stator winding interactions. Section II
reviews airgap field theory that will be used in the model
derivation. Sections III and IV review the textbook bearingless
machine model typically used in literature, propose the exact
model, and provide a detailed derivation from first principles
using winding function theory, current sequences, and the
Maxwell Stress Tensor. Section V compares the proposed
model to the prior exact models in [3] and [4]. Sections VI
and VII demonstrate benefits of using the proposed model for
force ripple minimization and force enhancement.

II. REVIEW OF AIRGAP FIELD THEORY

This section reviews the airgap field creation in bearingless
electric machines as a special case of a more generalized multi-
harmonic winding design study presented in [5]. The results
summarized in (11)-(14) and (18) are used in Section IV to
develop the exact model proposed by this paper. Sections II-A
and II-B review magnetic field space harmonics using winding
function theory and the relation to the current sequence
components. Section II-C shows how to use the airgap fields
to calculate the forces and torque using a reformulated form
of the Maxwell Stress Tensor.



A. Harmonic Airgap Fields

This subsection reviews airgap magnetic field harmonics
created by rotor magnets and stator winding currents. Winding
function theory and circumferential current density are used to
determine expressions for the winding fields.

The normal and tangential components of the airgap mag-
netic field (see Fig. 1b) are given by

Bn = B6 + BI‘I,W7 Btan = Blan,w (1)

where B; is the rotor magnetic field, and B, ,, and By are
the winding’s magnetic field components. The rotor magnetic
field at harmonic & can be expressed in terms of the airgap
angle « and the rotor angular position 6 (defined in Fig. 1b):

Bsh = B&,h cos (hla — 0]) 2
where Bg,h:p = By is the magnetic loading. An example plot
of Bs ), along the airgap is illustrated in Fig. lc.

The winding magnetic field depends on the winding layout
and the phase currents. At space harmonic h:

m
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where dgfr is the effective airgap length, iy, is the phase current
in phase k, Ny, 5 () is the winding function [6] harmonic A of
phase k, and A, 5(c) is the circumferential current density
per ampere of current. The winding function describes the
distribution of the per ampere magnetomotive force:

Ny n(a) = Ny cos (ha — oo, p — [k — 1hophw) — (4)
where N, h = %
amplitude and phase shift at harmonic h. N}, is determined
by the number of turns per coil zg, coils per phase z., and
the winding factor l%w,h. The angle aphw = Wf—;ro is the
mechanical phase separation between adjacent phases, where
Se is introduced in [5] to develop a generalized winding design
theory to independently create multiple airgap harmonics. The
value of sg can be any common divisor (CD) of the space
harmonic orders {h1, ho, ...} that the winding needs to create
[5]. In separated windings, the value of sg is typically p and
ps for torque and suspension windings, respectively. However,
in combined windings, sg = CD(p, ps) = 1.

Using the winding function, the per ampere circumferential
current density A, () at harmonic h can be calculated:

2QZckw,n and oy, are the winding function

Acn(a) = —‘W’Cd’ig(a) Al ph, S0 (ha — awo,n — [k — I]h%’;)
5)
where A, = hNj = 2 2q%ckuw,p,. Substituting (4) and (5)

into (3), the winding magnetic field components become:

N, & 27
Bown(a) = % sz cos (ha — awo,n — [k — 1]h/—>
i —— m (6)
hN;, & L 2
Bunw,n (@) = _y sz sin (h,a —awon — [k — l]hﬁ)

k=1

The phase currents i in (6) determine the behavior of the
winding magnetic field at harmonic » when summed over all
phases, resulting in counterclockwise (CCW) rotating, clock-
wise (CW) rotating, oscillating, or zero field. The following
subsection provides more details about this relationship.

B. Field Relation to Sequence Currents

This subsection reviews the relation between the airgap
fields and the phase currents. Current sequence components
are defined and used to determine the field harmonics that
they create in the airgap.

. . . . 9T

Any set of multiphase currents ¢ = [iy iz ... imy] can
be decomposed into current sequence components as

t=1%0+1%+...+%s+ ...+ 15, 7

and the current at sequence s and phase order k is defined as
. 2
igp = I, cos (¢>s - 1]5”) ®)
m

where each sequence s has an amplitude I, a phase angle ¢,
and a phase separation s . The values of s can be

+m=L for odd
s=0,%1,...,sn, where s, = {m g oroddm 9)

= for even m

The value of s is constrained between —s,, and s, because
any other integer values outside this range result in the same
phase separation angle s% due to the periodicity of 27 rad.
The current sequences can be decoupled from each other
by applying the GCT [7], [8]. As a result, each sequence
component has an independent space vector representation.
Space vectors for the sequences s = 0 and s = m/2 have
1-DOF (only real part) and a form of fs =1 s cos ¢s. All other
sequences have 2-DOF (real and imaginary parts) and a form
of iy = I,e*i%: with + for s > 0 (positive sequence) and —
for s < 0 (negative sequence). This space vector representation
of each sequence can be conveniently used to describe the
magnetic field and force/torque creation.

Substituting (8) into (6) allows determining the magnetic
field harmonics that are created due to a current sequence s
(assuming that a winding factor lAcwyh # 0 at each harmonic).
The terms inside the summation in (6) have the form of
cos (¢s — [k — 1]s2%) cos (ha — [k — 1]h2Z). For any values
of s, h, and m, the summation in (6) is non-zero only if the

2 2m .
phase separation angles <™ and s<% are equal:

2
h——i i+27rb

(10)
where 27b (b is an integer) indicates periodicity. Simplifying
this equation shows that the sequence s can create the follow-
ing airgap field harmonics:

s+ mb

h— , for CCW rotating fields
]l -s+ mb,

. (1)
for CW rotating fields



and the total magnetic field expression at these harmonics is
Bn,w,h(a) = Bn,w,h COs (hOt — Qiw0,h + ¢s)
Btan,w,h(a) - _Btan,w,h sin (hOé — Qw0,h T+ ¢s) (12)

where — and + signs indicate CCW or CW rotation. For
example, a sequence s = 2 in m = 5 can create harmonics

at h = 2,7,12, ... rotating CCW and h = 3,8, 13, ... rotating
CW. The magnetic field amplitudes in (12) are
. Nul, NI,
B = TH L Ml N L3y
’ 2 (Seff ’ 2 r

When s = 0 or s = m/2, the magnetic field harmonics
have an oscillating behavior (no rotation):

Byw,h = 2anw,h [cos (haw — awon — @s) + cos (ha — awon + ¢5)]

Blan,w,h = 72Blan,w,h [Sill (ha — Qwo,h — qbe) + sin (}LCY — Qlw0,h + ¢9)]
(14

Equations (11)-(13) show that the current sequence s (/; and
¢s) can be used to control the amplitude and angular location
of the airgap magnetic field at harmonic h. Analogously, in-
jecting multiple current sequences as in (7) allows controlling
multiple airgap field harmonics. These results are used in the
following section to develop the bearingless machine model.

C. Reformulation of the Maxwell Stress Tensor

Force and torque creation in electric machines directly
depend on the airgap magnetic fields and can be described
by the Maxwell Stress Tensor. This paper reformulates the
standard Maxwell Stress Tensor formula in vector form as
(15), which facilitates the derivation of the exact model:

F= gL [*7 i [By+ jBua) da, 7= "L [ B, Buda
15)
where F = F,+jF, is the force vector and 7 is the torque, as
shown in Fig. 1a. The parameters r and L are the rotor radius
and axial length, B, and By, are the normal and tangential
components of the airgap magnetic field, and « is the airgap
angle (see Fig. 1b). The airgap magnetic field consists of
multiple space harmonics along «, each harmonic h having
the form By cos(ha=¢s), where ¢; is the angular location.
This can be rewritten as 0.5 By [e? 10E®2) 4 e =i (hadé:)] and

used to solve (15) to identify harmonics that create force.

It is well-known that torque is created from the interaction
between field harmonics of the same order h, while forces
are created from the interaction between adjacent harmonics
h and h £ 1 [1]. This can be shown using (15). Suppose that
the airgap field consists of two harmonics h; and he > hq:

B, = Bn,hl cos(hia — g, ) + Bn,;w cos(hoa — ¢g,)
Bun = —Buann, sin(hia — ¢4,) — Banp, sin(hoa — 6.,
where ¢5, and ¢, are the angular locations of these har-
monics. By substituting these field expressions into the force

equation in (15), it can be shown that the terms that result in
non-zero integration have the form of (17) with s = hy + 1:

(16)

27
/ej” cos (hya — aq) cos (haar — ag)dar = gej((’rm) (17)
0

where o7 and a4 are the angles expressed in terms of ¢, and
¢s,. This result is used multiple times when solving (15).
Solving (15) results in the following force expression:

F)llllz - Q‘Jﬁ (Bn,hl - Btan,}n) (Bﬂ,hz + Btan,h2> ‘3j(¢52_¢sl>
(13)
Note that (18) is a general expression for force created by
field harmonics hy and hs. These fields can be from windings,
magnets, or saliency. This result is used in the following
sections to derive the textbook and exact models.

III. TEXTBOOK MODEL

This section provides an overview of the textbook model
used in literature [1]. The derivation of the textbook model
force/torque equations will be provided using the field cal-
culations presented in Section II and its impact on machine
design will be discussed.

A. Forceftorque calculations

The textbook model assumes that the airgap field consists
of only p and p, pole pairs. Considering the fields from the
magnets (2) and the windings (3), the total airgap magnetic
field components have the form (the phase shift angle g p/p,
is omitted for simplicity):

B, =Bj cos (pla — 0])+
Bn,w,p COS(pCY - ¢t) + Bn,w,ps COS(psa - ¢s) (19)
Bin = — Btan,w,p Sin(pa - ¢t) - Blan,w,ps Sin(Psa - (bs)

where the subscripts ¢ and s denote the torque and suspension
current sequences used to excite p and ps pole pairs.

The force vector expression can be derived using (18). When
h} = p or hy = p is created by the magnets, Bn.,hl/hz = B,
Banhy /hy = 0, @s,/bs, = 0. = pb, and (18) simplifies to:

Vréﬁ

2/~L0T
A

T = — BsBunw,p sin(¢; — 0.)
Ho

F=

( Bawp, + an’wyps) oTi(s—0e)
(20)

where the + signs correspond to ps; = p £ 1. Note that the
textbook model ignores the interaction between the stator p
and p, fields. Substituting (13) into (20), the force/torque
expressions can be expressed in terms of the suspension and
torque current space vectors as

F=ksis, T =k 1)
where the flux weakening component 7y is included in T =
Ty + j7. While fs and Zt are calculated with the conventional
CT for separated windings, [9] shows how this concept can
be extended to multiphase (MP) and dual-purpose no voltage
(DPNV) combined windings with the GCT. Parameters k ¢ and
k; are the per ampere force and torque

k= BsVemps Ny, < 1

1 0 7. _ BsVempN, _jg
i T + ;) eFif kb = b i

2r
(22)
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Fig. 1. (a) Force vector F and torque 7, (b) magnetic field components and an
at h = 1 for different 0, and (d) force/torque regulation block diagram.
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B. Discussion

The textbook model (21) is based on the dg control theory.
The motor and suspension operation can be controlled in two
independent space vector frames [8], [10] using the GCT and
Park transformations. Desired phase currents are calculated by
inverting the model (see Fig. 1d).

This model assumes perfectly sinusoidal airgap fields and its
solution results in sinusoidal phase currents. The unmodeled
magnetic field harmonics, armature reaction, and nonlinearities
can cause large force vector error [1], [11]. This is shown in
Fig. 2a where an example motor (described later in Fig. 3d)
is commanded to create a z-axis force. However, the actual
force obtained when phase currents are calculated using the
textbook model has a large variation in the force vector
magnitude and angle. This problem is typically solved in
bearingless motor design studies by imposing the maximum
error limits as constraints when sinusoidal phase currents
are applied [12], [13]. However, this approach narrows the
design space. Higher performance designs can be obtained if a
more accurate machine model is used to determine the phase
currents. Data from [2, Section III-E] has been replotted in
Fig. 2b for permanent magnet (PM) and induction machines
(IM) to demonstrate that 30% or more increase in torque
density along with efficiency improvements up to 98% are
possible when the force ripple constraint is removed.

IV. PROPOSED EXACT MODEL

This section proposes the exact electric machine model,
which is the main contribution of this paper. The model

gles (o and 6), (c) an example plot of the rotor magnetic field along the airgap

is applicable to all motor types, including PM, IM, and
reluctance type motors. Section IV-A provides additional force
calculations that are not considered in the textbook model (21).
Based on this, Sections IV-B proposes the generalized exact
model for bearingless machines, discusses its properties, and
provides examples for different number of phases.

A. Additional terms in force calculation

As was previously mentioned, the suspension forces are
created from the interaction between adjacent magnetic field
space harmonics h and h=£1. Based on this fact and (11)-(12),
this paper identifies two additional force creation mechanisms
that are not considered in the textbook model:

1) Forces from two adjacent current sequences. This can
include the interaction between torque and suspension
current sequences (armature reaction) or between other
additional sequences that can be injected.

2) Forces from a single current sequence sy, (only occurs
in machines with an odd number of phases m).

These two force creation mechanisms are now discussed.
Analogous to the derivation in Section III-A, the force vector
expression derived in (18) is used.

1) Force from two adjacent current sequences: Force can
be created by applying two adjacent current sequences s; and
s9 = 51+ 1, as (11) shows that this creates pairs of adjacent
harmonics h; and hy = h; + 1 which rotate in the same
direction (CCW or CW). The resulting airgap field and force
are given by (16) and (18). Using (13), (18) can be expressed
in terms of the current sequence components:

= - 22 i(ben—ba) T 2 7

Fiyhy = ko Lo, Ty €02 7000 = oy, 05 i, (23)
1 — “OVTmQNth’Lz r hihz 1 J (w0, hy —Qwo,hy )
khlhz_T E_T—‘r@ e 2 1

2) Force from a single current sequence: Force can be
created by injecting the highest current sequence s, = 2L in
odd phase windings. Equation (11) shows that this creates pairs
of adjacent harmonics that rotate in opposite directions: for
every integer value of ¢ > 0, harmonics exist at h; = s, +mc
and hy = —sym +m(c+1):

hys = —sm+m(c+1)=—sp+mec+m-—-1+1

—Smt+tmc+2sy+1=hy+1 24)



The created pairs of harmonics are (Sy, Sm+1), (Sm+m, Sm+
m+1), (sm+2m, sm +2m + 1),

Similar to Section IV-Al, the total airgap magnetic field
and the force vector due to these adjacent harmonics can be
described by (16) and (18). However, since these harmonics
rotate in opposite directions and are created by the same se-
quence Sp, their angular locations are ¢5, = ¢s,,, ¢s, = —Ps,
and their amplitudes depend on fsm, described by (13). This
results in the following equation:

o T2 g2 _ T Tx2
Fping = knyno 12 e7720m =k, 052 (25)

This equation shows that the single sequence s;, can be used
to control the force vector magnitude FJ,,n, = ki, h, Ifm and
angle ¢ = —29,,.

The quadratic force vector component in (25) is not consid-
ered in other bearingless motor literature publications which
is surprising given that this force also appears in bearingless
machines with three-phase windings. This includes all three-
phase combined windings where s = 0 creates torque and
s = 1 creates force, and all three-phase separated windings
with sg = 1 (always true when p = 1 or p; = 1). If
these quadratic terms are not accounted for, conventional
design processes attempt to minimize these terms (presumably
through the use of large effective airgap lengths) as they create
force vector error. Instead, if these new terms are handled
in the force regulator, designers can enhance these terms to
increase the suspension force capability.

B. Generalized exact force model

The total force acting on the rotor due to all harmonics
is now summarized in a single model. This is calculated as
the vector sum of the force due to each pair of adjacent field
harmonics h; and h; = h; + 1: F = > ﬁhihj, where each
force vector component ﬁhi n; is described by (18). Based on
the force/torque derivations in Sections III-A and IV-A, three
types of force components ﬁhi n; are identified that differ by
their dependence on current space vectors:

o Textbook model: force from stator-rotor harmonic inter-
actions. This term has a linear dependence on the current
space vector and is summarized in (21).

e New term 1: force from stator-stator harmonic interac-
tions where each harmonic is created by a unique current
sequence. This term depends on the product of two
current space vectors, see (23).

e New term 2: force from stator-stator harmonic interac-
tions where both harmonics are created by the same
current sequence. This term depends on the square of
a single current space vector (25).

This paper proposes an exact force model that compiles the
force terms created by all current space vectors that can be
injected into the m-phase winding.

1) Matrix representation: The proposed model is written
in matrix form as

F=iTTgi+Tpi+ Feo (26)

where 7 is an m x 1 array of the current space vectors and their
conjugates calculated from the GCT matrix C,,, as 1 = Cy,t:

-k

i=lio 0 @ .. 1 ©"

27
and TQ and Ty, are m x m and 1 x m complex matrices that
model the quadratic and linear dependencies of the force on
the current space vectors, and ﬁc is the cogging force.

Every entry of TQ is determined by (23) and represents the
force per ampere squared created due to two current space
vectors. This includes the forces due to two adjacent current
space vectors as in (23) (f’{;g, 5’2‘53, ...) and due to the space
vector sy, as in (25) (Zﬁf) Every entry of Ty, is a force per
ampere given in (22), which shows an interaction between
adjacent rotor-stator field harmonics created by one current
space vector (zl, 22, ...). Note that the zt and 75 space vectors
of the textbook model (21) are present in (27), but indicated
as a sequence number; i.e. ft = 51 and Z‘,. = 52

The proposed exact model in (26) can incorporate multiple
harmonics by modifying TQ and Ty, matrix entries. Every
entry of TQ is a sum of the terms in (23) as Ksl, s; =53 khih,j
for all adjacent airgap harmonics h; and h; created by the
sequences s; and s; = s; + 1 or the sequence sy in odd
phase machines. Similarly, every entry of Tp is the sum
of the terms in (22) as K5, = >_ kyp,n, for all adjacent
harmonics h; and h, created by the sequence s; and the rotor
magnets. Depending on the relative rotation direction of these
harmonics, some harmonic interactions result in a force ripple
(having the e/*2% term) or a constant force.

2) Space vector representation: Since only specific entries
of TQ are non-zero, the proposed model (26) can be rewritten
using (21), (23), and (25) for even phase machines as:

§ ssJS

and for odd phase machines as,

Sm—1

;+ Z (Ksllz'i_K ly )

i=1

(28)

ﬁ _-Smém Sm + Z K.slsj SLZS_] + im: (KSLZ‘SL + K *Z )
(29)

where FC is omitted to save space. Note that odd phase
machines have an additional term that depends on the space
vector s, due to (25). The term I_(Sﬁji is a force ripple term
from interaction between adjacent magnet and winding field
harmonics that rotate in opposite directions. Depending on the
desired model accuracy, the coefficients in (28) and (29) can
be modified to include the desired number of space harmonics.

3) Examples: To demonstrate the use of the proposed
model, a force vector equation for an example nine-phase
machine is now provided by expanding (29) (assuming that

the rotor magnetic field is purely sinusoidal):
(30)

= 3 %9 | 7 27 - 27 - 27 -
F9-ph = kh4h57fz + kh3h41§7‘4 + khzhx"’zl?) + khthZTZQ + kuS

This machine has four independent rotating current space
vectors. Here, ki, is the force from stator-rotor interaction



and 7, can be any space vector between i1 and i depending
on p,. Coefficients khl B khth, kh3h4, k'h4h5 are the entries
of Tg and are calculated using (23). Differing from the
textbook model (21), (30) shows that the proposed exact model
has multiple quadratic terms. Accounting for these terms
in a bearingless machine design study can potentially yield
bearingless machine designs with enhanced force capability.

The proposed model (26) can be used to find the exact force
vector expression for any m. As further examples, consider
five- and six- phase machlnes Wthh have two rotating space
vectors ;1 and 75. When 21 = zt and 12 = zs, force vector
expressions can be obtained analogous to (30):

F;S—ph = ];qz:Q + Eft;:zs + ];:fzsa ﬁﬁ—ph = lgft;:{; + ];fae (31)

where k, and ky; are the entries of T matrix in (26). As
in (30), these equations have new quadratic terms due to two
adjacent space vectors zt is and the highest space vector 1*2
for m = 5. The 2*5‘2 term also appears in bearingless machines
with three phases, as was discussed in Section IV-A2. To avoid
force vector error created by these quadratic terms, (31) can be
used to implement exact force vector regulation by analytically
solving for phase current commands that eliminate force vector
error, as demonstrated in Fig. 2a for a five-phase machine.

V. COMPARISON TO PRIOR EXACT MODELS

This section makes a comparison between the exact model
developed in Section IV and the two studies [3] and [4] that
developed the exact model for AMBs and bearingless motors,
respectively. It will be shown that the models developed in
these studies can be viewed as special cases of the exact model
presented in Section IV.

A. Exact AMB Model

Study [3] developed the exact force vector model for a three-
pole (m = 3) AMB, as shown in Fig. 3a, where the radial
forces are created due to bias and control fields. Using this
model, [3] proposed an analytic framework to find the de-
sired coil currents (equivalent to solving a quartic polynomial
equation) and experimentally demonstrated the performance
improvement using the proposed exact force vector regulator
compared to the conventional regulation approaches.

The exact force vector model in [3, eq. (19)-(20)] can be
rewritten using the notation in this paper as

. 1/ N2 . )
Fas = ok <2 (Buwae™") +2Bg,an,w,1eﬂ¢l> (32)

where Bso is a homopolar magnetizing field, BH,WJ is the
amplitude of a rotating two-pole field described by (12), and
k1 is a constant that represents the force-field relationship.
The rotating field is created by three-phase currents (s = 1)
represented by i; = I;e7%1. When the constants are combined
together, (32) can be rewritten as

Famp = kgit2 + kpin (33)
which shows the force vector has both quadratic and linear
dependencies on the currents. The newly proposed exact model

(26) can be simplified to (33) for this machine (three-phase
winding, s = sy, = 1 creates force, s = 0 could create torque).

B. Exact Bearingless Flux-Switching Motor Model

Study [4] presented the exact force/torque motor model for
bearingless machines. The model considers the linear (stator-
rotor interactions) and quadratic (stator-stator interactions) de-
pendence of the force/torque on the phase currents. Although
the model in [4] was shown to improve force vector regulation
accuracy, [4] assumed that the force components from the
phase-to-phase interactions (¢1%s, %2%3, ...) are negligible. This
assumption limits the use of the model to a specific motor
topology such as the flux-switching motor with flux barriers
that was used for the case study in [4] (see Fig. 3b). Further-
more, the model is FEA-based and no analytic expressions
were developed, which makes it difficult to understand the
actual physics of the machine and its system properties.

Unlike the exact model (26) developed in this paper, the
model in [4, eq. (1)] is based on phase current quantities:

F = iTTg wyi + T wyi + Toy

T = TL,Ti =+ TC,T (34)

where 1 = [il 19 im]T is an array of the phase
currents. Tg.zy = TQ,o + jTQ,y is m X m matrix that
represents quadratic dependence; TL,my =Tr o+ jTL,y and
Ty, are 1 x m matrices that represent linear dependence;
T(;’Iy = Tc,e + jo,y and T, are the terms that represent
cogging forces/torque (no dependence on currents). Since
phase-to-phase interactions were ignored, [4] set the non-
diagonal entries of TQ zy t0 zero and rewrote the quadratic
term as 17T oyt = diag (TQ,zy) (2 © i). Here, i 0 i =
[z% i3 z?,JT is the Hadamard product.

The exact model proposed by this paper includes all phase
current interactions through space vector currents. Therefore,
the model in [4] is a special case of the exact model in (26).
Using the space vector transformation i = Cpni, the relation-
ship between the matrices in (26) and (34) is determined:

=CTToCm, Trmy=TiCm (35)

VI. FORCE RIPPLE MINIMIZATION

TQamy

This section shows how the proposed exact model can be
used to minimize force ripple. Simulation results using two
example five-phase machines are presented.

The force ripple in literature is typically characterized by
force magnitude error F,, and force angle error E, [14]. This
is illustrated in Fig. 3c, where the desired force F* is along
x-axis, while the actual force F can have both F, and F,
components at any rotor angular position. These two metrics
are calculated as F,, = F‘““;,m 2 and E, = tan—! (% s
which show the maximum deviation from the desired force
magnitude and angle. Study [1] reported large force angle
error (> 17°) can cause instability in suspension regulation
and [15] suggested to keep force angle error below < 5°.

The two examples used to demonstrate the benefits of the
proposed exact model are a five-phase SPM (Fig. 3d) and



TABLE 1
EXAMPLE MOTOR PARAMETERS
SPM ™ SPM__ M
ky (NJA)  6.46e=77 0 Outer radius (mm) 200
ki (N/A?) 2.84 10.6 Rated speed (kRPM) 30
kg /A% —0.58  —1.92  Rated Pou (kW) 9.8

IM (Fig. 3e) machine that have the same stator. The key
parameters are given in Table I, including the quadratic force
coefficients of (31). Figure 2a compares the error in force
vector magnitude and angle for the SPM example when the
textbook (21) and the exact (31) models are used to solve
for the phase currents to create a force F,, = 20 N. For the
exact model, solving (31) for the phase currents is equivalent
to solving a fourth order polynomial equation, which has up
to four real solutions. The solution with the lowest ohmic
losses >,_, i} is selected (Euclidean L? norm). Cogging
force is not included and linear iron material is used. Figure 2a
shows that the exact model can significantly improve force
actuation accuracy. Figure 3f shows the polar plot of force
vector components in (31) for the IM example when the rated
suspension current space vector iy is applied and rotated over
360 degrees. This plot shows the significance of the quadratic
k, term on the total force created on a shaft.

The proposed exact model can also be used to minimize the
force ripple during the design stage. If the designer desires
to eliminate the effects of the quadratic term I%quz, it can
be shown using (23) that this can happen when the machine
design parameters are selected to have the relation pges = 7.
This can be advantageous for machines with a small rotor
radius or a high number of pole pairs.

VII. FORCE ENHANCEMENT

This section demonstrates the benefits of using the proposed
model to analyze different phase windings and force enhance-
ment options. Three bearingless machines with m = 5, 6, and
8 are compared over a range of magnetizing field Bs. All
examples have p = 1, the same motor dimensions, and the
same total number of turns mzgz. to allow a comparison in
per-unit [p.u.] quantities. The force vector models for five and
six phases are given in (31) and the force vector model for
eight phases is similar to (30), but without the Eh4h5512 term.

First, the machines are compared in terms of their rated
force capabilities without exceeding a maximum allowable
airgap field max(|B(«)|) < Bmax = 1 p.u. The rated force is
obtained by generating the maximum force profile, as shown in
Fig. 4a, and drawing the inner contour (shown as an inscribed
red dashed circle for Bg = 0.5 p.u.). Based on this, the rated
force vs. By is obtained and plotted in Fig. 4b (top subplot).
Figure 4a illustrates that, unlike m = 6 and 8, the m = 5
machine has non-convex maximum force profiles for a range
of 35 values. This results in Fi4eq being a non-convex function
of Bg, as shown in Fig. 4b (two maxima at Bg =0 and 0.7
p-u.). This is due to the quadratic term in (31), which also
appears in certain three-phase separated windings and three-
pole AMBs [3], as described in Section V-A.

Figure 4b also compares the current rating and the average
ohmic losses per unit of the rated force (subplots 1 and 2).
These results show that the eight-phase machine can create
the largest force for all values of Bj because of being able
to independently create three rotating harmonics that create
forces. At B5 < 0.2 pu,, m = 5 and 8 have more desirable
performance than m = 6 in all metrics. This is particularly true
for m = 5 at Bs = 0 because 0.9 p-u. of force can be created
with the quadratic term in (31), resulting in the lowest current
rating and ohmic losses. At 0.3 < Bs <0.7 p.u.,, m = 6 and
8 machines have a similar and favorable performance which
exceeds the m = 5 machine. At Bg > 0.7 p.u, the m = 8
machine has the highest force, albeit with the largest current
and losses.

The machines are also compared in terms of their torque
capabilities. In this comparison, the motor creates a constant
force (equal to the rotor weight W, or its multiple) and the
torque that the motor can create at any force angle without
exceeding the maximum airgap field limit is determined.
Figure 4c shows that the torque performance in m = 6 and 8
is the same in all cases, with a peak torque at B(s =1/ /2. The
torque performance of the m = 5 machine is poorer, which is
especially noticeable at high force values.

The results in this section show that the motor’s magnetizing
field has a strong influence on which number of phases is most
desirable. For machines with low Bs (low torque), windings
having quadratic forces (25) can be more advantageous, as
was demonstrated for m = 5. For machines with larger Bs or
variable Bjs values, machines with larger m may be the best
option due to the ability to create additional force components.

VIII. CONCLUSION

This paper proposes an exact force/torque model for bear-
ingless electric machines using current space vector/sequence
components and their relationship to airgap magnetic field
space harmonics. It is found that previous attempts at devel-
oping the exact models for magnetic bearings and bearingless
motors can be viewed as special cases of the generalized model
developed in this paper. Furthermore, the paper finds that all
three-phase combined windings and some three-phase sepa-
rated windings have quadratic force vector components, which
have been neglected in previous literature. The paper finds that
when these terms are ignored in the force model, substantial
force vector error can result; however, when properly handled,
these additional forces can increase the machine’s force rating,
particularly at low magnetizing field values.

The proposed model is applicable to all motor types, is
analytic-based, and captures the underlying physics of the
machine accurately. These features equip the machine and con-
trols designers with tools to increase the torque and levitation
system performance. The paper finds that the developed model
can be used to eliminate the force vector error by selecting
a certain combination of machine design parameters during
the design stage or by having the control system analytically
solve the exact model during runtime to determine phase
currents as the sum of multiple current sequences. The paper
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Fig. 3. (a) and (b) electric machine cross-sections used in the development of the exact models for three-pole AMB in [3] and bearingless flux-switching
motor in [4], rexpectively, (c) illustration of force magnitude and angle error. SPM and IM examples with the same stator @ = 5 and m = 5: (d) SPM
example cross-section, (e) IM example rotor cross-section, and (f) polar plot of force vector components for the IM example.
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Fig. 4. Comparison between m = 5-, 6-, and 7-phase bearingless machines.
All dimensions are in p.u.: (a) maximum force profiles shown for different
magnetizing fields, (b) force rating, current rating, and average ohmic losses
vs. B, and (c) torque rating vs. By for different force magnitudes.

finds that increasing the number of phases can enhance force
creation over a wide range of magnetizing field values, while
maintaining favorable current ratings and ohmic losses.

In conclusion, the findings of this paper provide motivation

kg term

() (e) ®

to rethink the design approach of bearingless machines to
include additional force creation mechanisms and to develop
regulation techniques that use the proposed exact model. These
developments have potential to make the design space of bear-
ingless machines less constrained and enable consideration of
higher performance designs.
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