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Neurons of the ventral tegmental area of the brain contain single axon
terminals that release excitatory and inhibitory neurotransmitters, creating
reconfigurable synaptic behaviour. Artificial synaptic transistors that
exhibit similar excitatory and inhibitory behaviour—and hence synaptic
function reconfiguration—could provide diverse functionality and efficient
computinginvarious applications. However, some of these applications,
such as soft robotics and wearable electronics, require synaptic devices
that are mechanically soft and deformable. Here we report an elastic and
reconfigurable synaptic transistor that exhibits inhibitory and excitatory
characteristics even under mechanical strain. The synaptic device

uses a top-gated configuration and is made using a stretchable bilayer
semiconductor and an encapsulating elastomer as the gate dielectric. The
device exhibits memory characteristics when operating with a presynaptic
pulse of only 80 mV, resulting in a low specific energy consumption. When
applied to amodel artificial neural network for dual-directional image
recognition of the Modified National Institute of Standards and Technology
dataset, arecognition accuracy of over 90% is achieved even when the
transistors are stretched by 50%.

The single axon terminal in neurons of the ventral tegmental area dis-
play reconfigurable and bilingual (that is, excitatory and inhibitory)
synaptic behaviour by releasing excitatory and inhibitory neurotrans-
mitters'. Amechanically stretchable, artificial synaptic device that can
exhibit similar excitatory and inhibitory synaptic behaviours could
be of use for a range of applications, including soft robots? wearable
health monitors® and abiotic prosthetics*. Although deformable and

stretchable synaptic transistors have been developed, they typically
exhibit monosynaptic behaviours>®. These synaptic transistors are
primarily constructed from p-type organic semiconductors with ion
gel dielectrics™”®, whose operational mechanism is associated with
transient charge transport and dynamics, which makes it difficult to
realize both excitatory and inhibitory synaptic behaviour. In addi-
tion, the operation of an ion-gel-based gated device involves the
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Fig.1| Overview of the stretchable reconfigurable synaptic transistor. a,
Schematic of asynapse present in the ventral tegmental area and its synaptic
transmission process inabilingual synapse. b, Stretchable reconfigurable
synaptic transistor emulates the behaviours of a bilingual synapse. ¢, Working
mechanism of the device depending on the applied bias voltage. d, Schematic of

the transfer curves of the transistor with corresponding excitatory and inhibitory
synaptic behaviours. e, Set of optical images of the stretchable reconfigurable
synaptic transistor before and after uniaxial stretching by 10%, 30% and 50%
along the channellength direction.S, source; D, drain; G, gate.

electrochemical doping of the bulk semiconductor layer, which leads
toinevitable device degradation over time’.

In this Article, we report a stretchable and reconfigurable syn-
aptic transistor created using a stretchable bilayer semiconductor.
The bilayer semiconductor channel consists of a thin layer of poly[(
N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-
2,6-diyl)-alt-5,5'(2,2’-bithiophene)] (P(NDI20D-T2) or N2200) filmona

network of semiconducting single-walled carbon nanotubes (s-CNTs);
apolyurethane (PU) elastomer isused as the gate dielectric, instead of
aniongel dielectric. Polar functional groupsinthe PU dielectric allow
charge trapping, which results in the synaptic characteristics of the
transistor'’. The stretchable synaptic transistor exhibits both excita-
tory and inhibitory characteristics and allows the synaptic functions
toswitchfromonetothe other. Its performanceis retained even after
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Fig.2| Thin, stretchable N2200 n-type semiconductor film. a, Optical images
of PDMS/N2200/PU without strain (left) and with 50% strain (right). b, Effect of
strain on the structure of PDMS/N2200/PU. ¢, Effect of strain on the structure of
PDMS/N2200. d, Schematic of the N2200-thin-film-based transistor.
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e, Frequency-dependent capacitance of the PU gate dielectric per unit area.

f, Transfer curves of the transistor under mechanical strains of 0%,10%, 30% and
50%.g, Values of i and ON currents under different mechanical strains of 0%,
10%,30% and 50% along the channel length direction.

being stretched by 50%. Additionally, the device possesses memory
characteristics with alow-amplitude presynaptic pulse of 80 mV and
the lowest specific energy consumption compared with other organic
synaptictransistors" . The architecture of the bilayer semiconductor
with elastomer dielectric encapsulation also enhances device stability,
with function retained for more than 90 days. Dual-directionalimage
recognition of the Modified National Institute of Standards and Tech-
nology (MNIST) dataset of handwritten digits simulated in an artificial
neural network (ANN) of our artificial synaptic devices shows arecogni-
tionaccuracy of over 90%, even when stretched by 50%.

Overview of astretchable reconfigurable synaptic
transistor

Figure 1a shows the schematic of a bilingual synapse that co-releases
excitatory and inhibitory neurotransmitters*'*. The bilingual synapse
acts as both excitatory and inhibitory synapses, showing both excita-
tory postsynaptic potentials (EPSPs) and inhibitory postsynaptic poten-
tials (IPSPs), respectively. The capability to emulate such behaviours
of the bilingual synapse could offer critical benefits in soft intelligent
systems that can simultaneously achieve diverse functions, simplified
circuit design and efficient computing. The stretchable reconfigurable
synaptic transistor was constructed by using stretchable bilayer semi-
conductors (Fig. 1b). Specifically, the device was fabricated by using the
stacked channel of N2200 and s-CNT networks, PU, silver nanowires
in polydimethylsiloxane (AgNWs/PDMS) and eutectic liquid metal
alloy of gallium-indium as the bilayer semiconductor, gate dielectric,
source/drainelectrode and gate electrode, respectively. The dielectric

encapsulationrestricts the formation and propagation of microcracks
within the semiconductor thin film onapplying large levels of mechani-
calstrain, whichlead to improvement in device stability, especially for
then-type semiconductor'®. The detailed fabrication procedure of the
devicesis describedin Methods. The postsynaptic current (PSC) of the
device canbe tuned depending onboth applied drain and gate voltages,
and thus, the device generates both excitatory postsynaptic current
(EPSC) and inhibitory postsynaptic current (IPSC) from presynaptic
pulses. Figure Icillustrates the working mechanism of the reconfigur-
able synaptic transistor. Depending on the applied drain voltage and
gatevoltage, different charge carriers (electrons and holes) and charge
transport direction would determine the synaptic behaviour. Figure 1d
illustrates the schematic of the transfer curves of the transistor with the
corresponding excitatory and inhibitory synaptic behaviours, which
further explainsits characteristics on different operation conditions.
Figure le exhibits aset of opticalimages of the stretchable reconfigur-
able synaptic transistor before and after uniaxial stretching by 10%,
30% and 50% along the channel length direction.

Stretchable synaptic transistor based on N2200
thinfilm

To study the stretchable reconfigurable synaptic transistor, we first
investigated the stretchable synaptic transistors based on asingle-layer
n-type or p-type semiconductor with excitatory characteristics.
Figure 2a shows the optical images of an ~100-nm-thick N2200 film
on a PDMS substrate covered with a PU layer, without strain and with
uniaxial stretching (¢ = 50%). The N2200 film was prepared by spin
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Fig.3|Stretchable synaptic transistor based on the N2200 thin film.

a, Schematic of a biological synapse and its synaptic transmission process.

b, Schematic of the device structure and operation of the synaptic transistor.

¢, EPSCresults of the synaptic transistor in the ambient environment over

90 days. d, Representative single-pulse-induced EPSC for the device without
strain and with 50% strain. e, EPSC peaks with respect to the pulse widths for
the device without strain and with 50% strain. f, Representative EPSC results
triggered by two successive pulses without strain and with 50% strain. g, PPF
index results with respect to At for the device without strainand with 50%
strain. h, EPSC results of the stretchable synaptic transistor with the application

of ten successive presynaptic pulses without strain and with 50% strain. i,
Results of memory characteristics with respect to the different pulse widths for
the device without strain and with 50% strain. j, Values of AW/W, with respect
to different pulse widths for the device without strain and with 50% strain. k,
Representative EPSC results of the device without strain and with 50% strain on
the application of ten successive presynaptic pulses (+10 V, 50 ms). 1, Results

of filtering characteristics with respect to different pulse frequencies. m,
Calculated gain of EPSCs (A,y/A,) with respect to different pulse frequencies for
the device without strain and with 50% strain.

coating an N2200 solution in mesitylene (S mg ml™) at 1,000 rpm for
60 s on top of a PDMS substrate, followed by baking at 90 °Cfor1h
in N,. Next, the PU solution in tetrahydrofuran (75 mg ml™) was spin
coated at 1,000 rpm for 60 s, followed by baking at 100 °C for 1 h to
solidify the film. Note that the N2200 film with PU encapsulation (that
is, PU/N2200/PDMS) can be uniaxially stretched up to 50% without

fracture failure or a notable amount of cracks (Fig. 2b). In contrast,
abare N2200 film on a PDMS substrate (that is, N2200/PDMS) pre-
pared with the same procedures presented many microcracks when
stretched (Fig.2c). Supplementary Fig.1shows the detailed morpholo-
gies of the N2200 films without PU (Supplementary Fig. 1a) and with PU
(Supplementary Fig.1b) encapsulation after stretching by 50% and then
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Fig. 4| Stretchable synaptic transistor based on the s-CNT network.

a, Schematic of the device structure of the stretchable synaptic transistor based
onthep-types-CNT network. b, Transfer curves of the device without strain
and with 50% strain. ¢, Representative single-pulse-induced EPSC results.

d-g, EPSC triggered by two successive pulses (-10 V) with different At,,,. values

of1s(d),2s(e),4s(f)and 10 s (g) applied to the gate with V;, of -10 V.

h, Summarized PPF index with respect to different At,,. values without strain and
with 50% strain. i-k, EPSCs with variable pulse frequencies of 0.25 Hz (i), 0.50 Hz
() and 1.00 Hz (k).

releasing to 0% strain. Note that the datain Supplementary Fig.1b are
obtained after the chemical removal of PU by immersing the samplein
dimethylformamide. Since N2200 is anintrinsically non-stretchy mate-
rial, on stretching, microcracks form and propagate, which has been
reported elsewhere”. However, PU encapsulation leads to restriction on
the microcracks with much lower crack density, owing to the compet-
ing shear stress applied on the bottom and top surfaces of the N2200
film'® from the PDMS substrate and PU encapsulation, respectively.
Figure 2d shows a schematic of the thin stretchable
N2200-thin-film-based transistor with aPU gate dielectric. The detailed
fabrication procedure and steps are shown in Methods and Supple-
mentary Fig. 2, respectively. Note that Kapton shadow masks were
used to pattern the materials in a layer-by-layer fashion. The specific

capacitance per unit area of the PU gate dielectric is 0.662 nF cm™
at 20 Hz and 0.474 nF cm™ at 300 kHz (Fig. 2e). Figure 2f shows the
transfer curves of the transistor under mechanical strains of 0%, 10%,
30% and 50% along the channel length direction. All of them exhibit
current-voltage hysteresis, whichis essential for emulating a biologi-
cal synapse®®. Note that a similar trend of degradation was observed
when the device was under mechanical strains of 0%,10%, 30% and 50%
perpendicular tothe channellength direction (Supplementary Fig. 3).
The maximum drain currents (thatis, ON current) and the calculated
field-effect mobility (u;;) of the stretchable n-type transistor under
different strains are summarized in Fig. 2g. Note that we calculated
the u;; value on the basis of the linear regime of these transfer curves
(Supplementary Information). When stretched along the
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channel length direction by 50%, the y; value decreases from 0.18 to
0.07 cm?V's™. Theseresults indicate that the device retains reasonable
transport properties under large strain.

The excitatory synaptic behaviour of the device was systematically
investigated. Figure 3a shows the schematic of a biological synapse
and its synaptic transmission process. A presynaptic signal from the
presynaptic terminalis transferred to the postsynaptic membrane by
neurotransmitter migration through the synaptic cleft, whichinduces
postsynaptic signals. In the synaptic transistor, a positive presynaptic
pulse delivered to the gate electrode results in electron accumula-
tion at the interface with the PU gate dielectric, leading to an EPSC
(Fig. 3b)". In addition, the synaptic transistor exhibited a very sta-
ble EPSC output over time due to PU encapsulation. We investigated
single-pulse-induced EPSCs in the ambient environment for up to
90 days. The presynaptic pulse (+10 V, 500 ms) was applied to the
gate with adrainvoltage (V) of +10 V. Although several n-type organic
semiconductors are typically unstable under ambient conditions'®, our
deviceretained-70% of the EPSC even after~90 days (Fig. 3¢). Tofurther
characterize the single-pulse-induced EPSC response of the device,
we chose pulses with different widths ranging from 20 to 1,000 ms.
Figure 3d shows the representative EPSC results of the stretchable
synaptic transistor without strain and with 50% strain, demonstrat-
ing excellent operation under mechanical deformation. The EPSC
increased with the pulse width because the number of electrons at
the interface between the N2200 semiconductor and PU gate dielec-
tricincreased. The EPSC peaks as a function of the pulse duration for
devices without strain and with 50% strain are summarized in Fig. 3e
and Supplementary Figs. 4 and 5. Similarly, the EPSC peaks increased
whenthe amplitude of the presynaptic pulseincreased (Supplementary
Figs. 6 and 7). Two successive presynaptic pulses (+10 V) with a pulse
interval (At,,.) ranging from 50 to 2,000 ms were also applied to the
gate with V,, of +10V, and the representative EPSC results are shown
inFig. 3f. The EPSC results for different At,,. values without strain and
with 50% strain are shownin Supplementary Figs. 8 and 9, respectively.
Thesecond EPSC peak (A,) is higher than the first EPSC peak (A;) when
At decreases, whichresultsinanincreased paired-pulse facilitation
(PPF) index, defined as the ratio between the amplitude of the second
EPSC peak (A,) and that of the first EPSC peak (A,), that is, A,/A,. This
phenomenonis observed because some of theinduced electronsinthe
first pulse remain at the interface between the PU gate dielectric and
N2200 semiconductor whenthe second pulseis applied. The PPFindex
decreased from177%to116% when At,,.increased from 50 t0 2,000 ms.
Note that the original value of the PPF index was retained after uniaxial
stretching at 50% along the channel length direction (Fig. 3g).

We further studied the short-term memory (STM) to long-term
memory (LTM) transition of the stretchable synaptic transistor. Two
sets of ten successive presynaptic pulses were applied to the gate®. The
application of ten successive presynaptic pulses (+10 V,50 ms) and the
corresponding EPSC results (without strain and with the device under
50% strain) are shown in Fig. 3h. The results show the emulation of
the typical transition from STM to LTM of the human brain during the
repetitive learning process” >, which has no substantial change even
after 50% strain. The results of memory characteristics with different
pulse widths from 10 to 90 ms (step of 10 ms) are presented in Fig. 3i.
Asthe pulse widthincreases, the amplitude of the EPSC increases and
slowly decreases back to the initial state. The governing mechanism
is the same as that of the PPF index described previously. The results
of the memory characteristics with the device under 50% strain are
shown in Supplementary Fig. 10. The long-term weight change, that
is, the relative synaptic weight change, is calculated as AW/W,, where
W, and AW denote the initial current (before the presynaptic pulse)
and current change (after the presynaptic pulse), respectively. As the
pulse width increases, AW/W, increases (Fig. 3j). These results show
that the stretchable synaptic transistors still retain their synaptic char-
acteristics even after being uniaxially stretched by 50%. The memory

characteristics of ten successive presynaptic pulses (+10 V, 50 ms) with
variable frequencies from1to 15 Hz (without strainand with 50% strain)
are shown in Supplementary Fig. 11. The trend of AW/W, is similar to
that of the aforementioned results, which has a clear dependence on
pulse frequency (Supplementary Fig.12).

The high-pass filtering characteristic was also studied by applying
presynaptic pulses (+10 V) with different frequencies ranging from 1
t020 Hz (V,,=+10 V). The duty cycle was fixed at 50%. Figure 3k shows
therepresentative EPSC results without strain and with 50% strain after
the application of ten successive presynaptic pulses (+10 V, 50 ms).
Note that the last EPSC peak (A,) is higher than the first EPSC peak
(A,). The EPSC results with variable frequencies from1to 20 Hz are
summarized in Fig. 31, which clearly exhibit the high-pass filtering
characteristic. The results obtained from the device under 50% strain
arepresented in Supplementary Fig.13. The gain of the EPSCis defined
as A,o/A, and is used for the estimation of the filtering characteristic.
Figure 3m summarizes the calculated gain with respect to different
frequencies. The gainincreased from1.30 to 6.18 when the frequency
increased from1to 20 Hz. The gain was still retained when the device
was stretched by 50% strain.

Stretchable synaptic transistor based ons-CNT
network

The p-type-semiconductor-based stretchable synaptic transistors were
also constructed and their excitatory characteristics were studied. Spe-
cifically, the s-CNT network was chosen as a p-type semiconductor. Scan-
ningelectron microscopy images of the s-CNT network revealed that no
obvious cracks were observed under mechanical strain (Supplementary
Fig.14). The synaptic transistor has a top-gated configuration with the
s-CNT network and PU gate dielectric. The detailed device fabrication
procedures are described in Methods. Figure 4a shows a schematic of
the exploded view of the stretchable synaptic transistor. In the transfer
curves (Fig. 4b), the transistor also showed hysteresis***. Figure 4c
showsthe representative single-pulse-induced EPSC results after apply-
ing a presynaptic pulse (-10 V (thatis, =10 to -20 V); 2,000 ms) to the
gate with V;,0f—10 V. The EPSC results for the device with 50% strain are
presentedin Supplementary Fig. 15. Two successive presynaptic pulses
with different At,,. values, ranging from1to 10 s, to the gate with V, of
-10 V were also applied (Fig. 4d-g). The second EPSC peak is higher
than thefirst EPSC peak. The summarized PPF index with different A¢,,
values without strainand with 50% strainis presentedin Fig. 4h. The PPF
index decreased from 141% to 115% when At,,. increased from1to10s,
yet it was maintained when the device was stretched by 50% along the
channellengthdirection. The detailed EPSCresults with different At,,
values for the device under 50% strain are shownin Supplementary Fig.
16. We further tested the EPSCs by applying ten successive presynaptic
pulseswith anamplitude of —10 V; duty cycle of 50%; and variable pulse
frequencies ranging from 0.25, 0.50 and 1.00 Hz (Fig. 4i-k). The STM
toLTM transition clearly exists. The LTM characteristic during alonger
time is presented in Supplementary Fig. 17.

Stretchable reconfigurable synaptic transistor

Finally, the stretchable reconfigurable synaptic transistor was con-
structed by using stretchable bilayer semiconductors (Fig. 5a,b). The
device fabrication processes are detailed in Methods. The transfer
characteristics and hysteresis behaviours of the device depending on
different operational voltages are showninFig. 5c,d, respectively. The
minimum operational voltage (V,,) was confirmed as +1 V (n-type opera-
tion) or -1V (p-type operation), which ensures low energy consump-
tion, as described later. The synaptic characteristics of the stretchable
n-type and p-type transistors serve as the foundation for understanding
the stretchable reconfigurable synaptic transistors with both excita-
tory and inhibitory postsynaptic features. The EPSC is defined as the
case when the PSC increases on the application of positive pulses or
when the PSC decreases on the application of negative pulses. On
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Fig. 5| Stretchable reconfigurable synaptic transistor based on bilayer
semiconductors. a, Schematic of the exploded view of the reconfigurable
synaptic transistor. b, Schematic of stretchable bilayer semiconductors.

¢, Transfer characteristics of the device depending on different operational
voltages. d, Hysteresis behaviours of the device at +1 V (n-type operation) and
-1V (p-type operation), respectively. e, EPSC results triggered by five successive
pulses for the device without strain and with 50% strain, that is, operationin
region (i), Fig. 1c. f, IPSC results triggered by five successive pulses for the device
without strain and with 50% strain, that is, operation in region (ii), Fig. 1c.

g, IPSCresults triggered by five successive pulses for the device without strain
and with 50% strain, that is, operation in region (iii), Fig. 1c. h, EPSC results

Pulse duration (ms)

triggered by five successive pulses for the device without strain and with 50%
strain, that is, operationin region (iv), Fig. 1c. i, Single-pulse-induced EPSC
results, corresponding to presynaptic pulses (-80 mV, 250 ms) with V; of -1V.j,
EPSC results of the reconfigurable synaptic transistor with the application of ten
successive presynaptic pulses (-80 mV, 250 ms) with V,,of -1 V. k, EPSC result

of the reconfigurable synaptic transistor with the application of ten successive
presynaptic pulses (+80 mV,100 ms) with V,, of 1 V.1, Single-pulse-induced EPSCs
of the reconfigurable synaptic transistor. m, Peak currents of EPSCs and energy
consumption with respect to different pulse durations. n, Summarized specific
energy consumption of currently reported organic synaptic transistors.
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Fig. 6 | Dual-directional image recognition. a, Schematic of ANNs forimage
recognition. b, Schematic of a deformable crossbar array, considered as part of
a‘neural core’. c-e, Backpropagation training results using 8 x 8 pixel images
(small) (c), 28 x 28 pixel images (large) (d) and Sandia file classification dataset
(e) using experimentally measured linear potentiation and depression (V4 < 0).
f-h, Backpropagation training results using 8 x 8 pixel images (small) (f),

28 x 28 pixel images (large) (g) and Sandia file classification dataset (h) using

calculated.

experimentally measured linear potentiation and depression without strain and

with 50% strain (V4 > 0). i, Schematic of the exploded view of the stretchable
reconfigurable synaptic transistor array. The inset on the leftimage shows the
device’s top view. j, Optical images of the stretchable reconfigurable synaptic
transistor array at the initial (left) and stretchable (right) states. kI, Linear
potentiation and depression of 25 devices in both p-type operation (k; V,, < 0)
and n-type operation (I; V,, > 0), using which the device-to-device variations are
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the other hand, the IPSC is defined as the case where positive pulses
resultin a decrease in the PSC or negative pulses result in an increase
in the PSC*.

The PSCs were characterized with the application of five succes-
sive presynaptic pulses for each operational region (Fig. 1c). Excitatory
synapse in p-type operation: a presynaptic pulse (5V (from-5to-10 V);
250 ms) was applied to the gate with V,, of -1V (Fig. 1c(i)). Inhibitory
synapsein p-type operation:apresynaptic pulse (10 V(from+5to-5V);
250 ms) was applied to the gate with V,, of -1V (Fig. 1c(ii)). Inhibitory
synapseinn-type operation: apresynaptic pulse (10 V (from-7to +3 V);
250 ms) was applied to the gate with V,, of +1V (Fig. 1c(iii)). Excitatory
synapse inn-type operation: a presynaptic pulse (7 V (from+3to +10 V);
250 ms) was applied to the gate with V,, of +1V (Fig. 1c(iv)). Inregion
(i), for the device without strain and with 50% strain, the PSCincreased
when five successive negative pulses were applied to the gate (that s,
EPSC) (Fig. 5e), which confirms the excitatory synaptic behaviour. In
region (ii), the PSC decreased when five successive negative pulses
were applied to the gate (that is, IPSC) (Fig. 5f), which indicates that
the reconfigurable synaptic transistor can also act as an inhibitory
synapse” %, Onstretching by 50%, the IPSC decreased, yet the synaptic
behaviour remained. Similarly, in regions (iii) and (iv), the stretch-
ablereconfigurable synaptic transistor shows EPSC (Fig. 5g) and IPSC
(Fig. 5h), respectively. Note that the overall PSC was retained with-
out notable performance degradation even when the device is
stretched by 50%.

Figure 5ishows the single-pulse-induced EPSC results fromavery
low-amplitude presynaptic pulse (-80 mV, 250 ms) applied to the
gate with V;, of -1 V. An EPSC of ~1.67 nA was generated per pulse and
decreasedback to theinitial state within1.3 s. On the application of ten
successive presynaptic pulses, the EPSCincreased due to the accumu-
lation of electrons at the interface of the PU gate dielectric and semi-
conductor (Fig. 5j). Figure 5k demonstrates a similar characteristic,
correspondingto presynaptic pulses (+80 mV,100 ms) applied to the
gatewith V, of +1 V. These characteristics mean that it might be possible
todirectly interface the device with biological neurons.

The energy consumption of a synaptic device, defined as
IPSC x V,, x t,isacritical measure, particularly for neuromorphic com-
puting systems®. Figure 51 shows the single-pulse-induced EPSC results
when presynaptic pulses (from+3 to+10 V) with variable pulse durations
ranging from 50 to 1,000 ms were applied to the gate with V, of +10 V.
The EPSCincreased as the pulse durationincreased. The peak currents
of the EPSCs and energy consumption with respect to different pulse
durationsare presented in Fig. 5m. The energy consumptionincreases
from 400 to 2,600 pJ when the pulse duration increases from 50 to
1,000 ms. Similarly, the single-pulse-induced EPSC results are shown
inSupplementary Fig.18a, when presynaptic pulses (from-5to-10 V)
with variable pulse durations ranging from 50to 1,000 ms were applied
to the gate with V,, of -10 V. As the pulse duration increases, the EPSC
and energy consumptionincrease accordingly. The peak current of the
EPSC and energy consumption with respect to pulse duration are sum-
marized in Supplementary Fig. 18b,c, respectively. The lowest energy
consumption of the reconfigurable synaptic transistor is calculated
to be 40 pJ (V= +1V), which is much lower than that of conventional
complementary-metal-oxide-semiconductor-based synapse (-900 pJ
per peak)™. The specific energy consumption, that is, the energy con-
sumption per unit channel area, was calculated tobe 0.11 p] per 10~ m>.
Figure 5n shows the summarized specific energy consumption of cur-
rently reported organic synaptic transistors™*'"*, Our reconfigurable
synaptic transistor has alower specific energy consumption than previ-
ously reported organic synaptic transistors" ™, whichis acritical feature
inthe development of neuromorphic computing.

Dual-directional image recognition
The bilingual synaptic weight updates enable the device to accomplish
both single-directional®® and dual-directional®”> learning processes

inneuromorphic computing. Based on the measured binary synaptic
weight updates of our reconfigurable synaptic transistor, we simulated
athree-layer network (one hidden layer) for training with backpropa-
gation based on its experimentally measured linear potentiation and
depression®**, The schematic of the ANNs for image recognition is
shownin Fig. 6a. The circles and arrows represent the artificial neu-
rons and connections between the input and output artificial neurons,
respectively. The input neurons transmit the electrical signals to the
next neurons regarding the conductance status. All the neurons are con-
nected toeach other through the artificial synapses. For network simu-
lation, three different datasets were used as input patterns: 8 x 8 pixel
images (smallimages) of handwritten digits from MNIST, 28 x 28 pixel
images (large images) of handwritten digits and the Sandia file classifi-
cation dataset®**~*!, Figure 6b presents the schematic of a stretchable
crossbar array, which is a part of a ‘neural core’ to implement vector—
matrix multiplication and outer-product update operations?>*¢4042,
Atotal of 40 cycles for the ANNsin bothideal numerical and our artifi-
cialsynapticdevice were simulated. The trained reconfigurable synap-
tictransistor exhibited anaccuracy of 96.26% for small digits, 94.81% for
large digits and 93.00% for file types (Fig. 6¢-¢), respectively. Figure 6¢,
inset, shows the experimentally measured linear potentiation and
depressionin p-type operation (excitatory synapse, V4 < 0). The eight
write (-6 'V, 500 ms) and eight erase (6 V, 500 ms) presynaptic pulses
were applied with V,, of -1V. Linear potentiation and depression dur-
ing 40 cycles are shownin Supplementary Fig.19. The same simulation
was also carried out in n-type operation (excitatory synapse, V,, > 0)
by taking advantage of binary synaptic weight update. Experimentally
measured linear potentiation and depression without strain and with
50% strain are presented in Fig. 6f, inset. The eight write (7 V, 500 ms)
andeighterase (-7 V, 500 ms) presynaptic pulses were applied with V
of1V.Successive linear potentiation and depression during 40 cycles
without strainand with 50% strain are shown in Supplementary Fig. 20.
Thetrained reconfigurable synaptic transistor showed an accuracy of
~93.59% for small digits, ~95.00% for large digits and ~91.00% for file
types (Fig. 6f-h, respectively). Even when stretched by 50%, the device
showed similar image recognition accuracy (Fig. 6h).

To demonstrate the device-to-device variation, we fabricated a
stretchable reconfigurable synaptic transistor array. The schematic
of the exploded view of the synaptic transistor array is shown in
Fig. 6i. The fabricated synaptic transistor array operation was achieved
by applying respective voltages through individual data and gate
nodes, whereas the source nodes were grounded (Fig. 6i, inset).
Figure 6j shows the opticalimages of the synaptic transistor array at the
initial (left) and stretchable (right) states. The synaptic transistor array
could endure uniaxial deformation due to the stretchable nature of all
the materials used to fabricate the device. As described above, 25 syn-
aptictransistors were characterized by measuring linear potentiation
and depressionunder the same condition. The linear potentiation and
depression measurements showed that device-to-device variations
are approximately <7% (V,, < 0) and <6% (V,, > 0) (Fig. 6k,, respec-
tively), which shows good device-to-device uniformity of our devices.
High image recognition accuracy and low device-to-device variation
results even under 50% mechanical strain collectively indicate that the
stretchable reconfigurable synaptic transistor could be used in soft
neuromorphic computing.

Conclusions

We have reported an elastic, reconfigurable synaptic transistor that
can exhibit inhibitory and excitatory synaptic characteristics. The
synaptic functionality was achieved using a top-gated transistor with
astretchable bilayer semiconductor—consisting of a polymer film
on s-CNT networks—as the channel and PU as the gate dielectric. The
rubber dielectric encapsulation on the semiconductor thin film sup-
presses crack formation and propagation of cracks under mechani-
cal stretching, as well as imparting long-term stability by providing
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aphysical barrier between the semiconductor and ambient environ-
ment. Due to all the materials being stretchable, the reconfigurable
synaptic transistor retains its functions even when stretched by 50%.
An ANN simulation using our reconfigurable synaptic transistor for
dual-directional image recognition using the MNIST dataset showed
recognition accuracy over 90% and under 50% strain. The lowest spe-
cific energy consumption of the reconfigurable synaptic transistor
suggests thatitis a promising candidate for neuromorphic computing
in applications where large mechanical deformations are expected.
Neuromorphic computing and recognition systems constructed using
our elastic reconfigurable synaptic transistor could have a notably
reduced number of transistors and simplified circuitry”* compared
with complementary metal-oxide-semiconductor technologies, and
could be of use in applications such as soft neuromorphic computing
systems*®, wearable electronics”, soft robotics*®, neural interfaces®
and human-machine interfaces.

Methods

Preparation of stretchable AgNWs/PDMS conductor

The AgNWs were patterned onto aglass substrate by drop casting the
AgNWs solution (Agnw-120, ACS Material) through a shadow mask
that was prepared by a programmable cutting machine (Silhouette
Cameo), followed by baking at 95 °C for 10 min. The PDMS precursor
(SYLGARD 184; weight ratio of prepolymer:curing agent is 10:1) was
spin coated onthe patterned AgNW electrode at 300 rpm for 60 s; the
sample was then cured in an oven at 95 °C for 2 h. The preparation of
AgNWs/PDMS composite electrodes was completed after the solidified
AgNWs embedded in PDMS were peeled off from the glass substrate.

Preparation of N2200 semiconductor

The N2200 solution (5 mg ml™) was prepared by dissolving N2200
(M,, =49 kDa; polydispersity index, 2.6; Flexterra) in mesitylene (98%,
Sigma-Aldrich). Then, the solution was kept overnight in ambient
conditions to fully dissolve the polymer in the solution. The pre-
pared solution was spin coated on top of the channel region of the
AgNWs/PDMS-composite-based stretchable electrodes through a
Kapton-film-based shadow mask, followed by annealing at 150 °C for
1hunderaN,atmosphere.

Preparation of elastic PU gate dielectric

ThePU (Selectophore grade, Sigma-Aldrich) was dissolved and stirred
intetrahydrofuran (anhydrous, >99.99%, Sigma-Aldrich) with a concen-
tration of 75 mg ml”at 80 °C for 2 hand was coated on top of the N2200
film through spin coating at1,000 rpm for 60 s. Then, the sample was
annealed at100 °C for1h.

N2200-thin-film-based synaptic transistor fabrication

The fabrication process of the stretchable synaptic transistor involved
preparing the AgNWs/PDMS-conductor-based source and drain elec-
trodes and spin coating the N2200 semiconductor and PU gate dielec-
tricin asuccessive manner. Finally, the top gate based on liquid metal
(gallium-indium eutectic, Sigma-Aldrich) was formed on top of the
PU gate dielectric by adoctor-blading process with ashadow mask to
complete the device fabrication.

Synaptic transistor fabrication based ons-CNT network

Thesourceand drainelectrodes were prepared in the same manner as
mentioned above. The channel region was treated by exposingit under
anultraviolet/ozonelamp (BHK Inc.) for 18 min and 1% (3-aminopropyl)
triethoxysilane solution for 10 minto develop the amine groupsonthe
channel region. The s-CNT solution (IsoNanotubes-S, single walled;
mean diameter, 1.4 nm; mean length, -0.5 pm; purity, 98%; Nanolnte-
gris Technologies) with a volume of 10 plwas dropped on the channel
region and then dried at 90 °C for 10 min under ambient conditions.
The formed channel was rinsed with deionized water to remove the

surfactantand heated at 90 °Cfor1h. The PU gate dielectric and liquid
metal were then added on top to complete the fabrication steps.

Stretchable reconfigurable synaptic transistor fabrication

The device fabrication was started by creating a stretchable source and
drainelectrodeas mentioned above. Thes-CNT networks and N2200 film
weresequentially added ontop of the channelregion of the stretchable
electrode through spin-coating and baking processes. Thereafter, the
PU gate dielectric and liquid metal gate were constructed on top of the
stretchablebilayer semiconductors to complete the device fabrication.

Stretchable synaptic transistor array fabrication

The stretchable reconfigurable synaptic transistor array fabrication
started with the preparation of astretchable AgNWs/PDMS electrode
array (Supplementary Fig. 21). To prepare a layer with a stretchable
synaptic transistor array, s-CNT networks/N2200 and PU were pat-
terned onanother AgNWs/PDMS electrode array, as described above.
Then, via holes were formed through a hand puncher for interconnec-
tion between the layers. Finally, the layer with a stretchable synaptic
transistor array (top) was assembled with the stretchable electrode
array (bottom), followed by injecting liquid metal into the via holes
to complete the stretchable reconfigurable synaptic transistor array
fabrication (Supplementary Fig. 22).

Material characterization and device measurements

The frequency-dependent capacitance of the PU was measured by an
impedance analyser (M204, Autolab). The measurement of the synaptic
transistor was carried out using a semiconductor analyser (4200SCS,
Keithley Instruments). A function generator (DG4062, RIGOL Technolo-
gies) was used to apply the presynaptic pulses to the gate electrode,
and the PSC was measured by applying constant V..

Data availability

The data that support the findings of this study or additional data
related to this paper are available from the corresponding author
uponrequest.
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