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Abstract
In this work, we develop energy stable numerical methods to simulate electromagnetic 
waves propagating in optical media where the media responses include the linear Lorentz 
dispersion, the instantaneous nonlinear cubic Kerr response, and the nonlinear delayed 
Raman molecular vibrational response. Unlike the first-order PDE-ODE governing equa-
tions considered previously in Bokil et al. (J Comput Phys 350: 420–452, 2017) and Lyu 
et al. (J Sci Comput 89: 1–42, 2021), a model of mixed-order form is adopted here that 
consists of the first-order PDE part for Maxwell’s equations coupled with the second-
order ODE part (i.e., the auxiliary differential equations) modeling the linear and nonlin-
ear dispersion in the material. The main contribution is a new numerical strategy to treat 
the Kerr and Raman nonlinearities to achieve provable energy stability property within a 
second-order temporal discretization. A nodal discontinuous Galerkin (DG) method is fur-
ther applied in space for efficiently handling nonlinear terms at the algebraic level, while 
preserving the energy stability and achieving high-order accuracy. Indeed with d

E
 as the 

number of the components of the electric field, only a d
E
× d

E
 nonlinear algebraic system 

needs to be solved at each interpolation node, and more importantly, all these small non-
linear systems are completely decoupled over one time step, rendering very high paral-
lel efficiency. We evaluate the proposed schemes by comparing them with the methods in 
Bokil et al. (2017) and Lyu et al. (2021) (implemented in nodal form) regarding the accu-
racy, computational efficiency, and energy stability, by a parallel scalability study, and also 
through the simulations of the soliton-like wave propagation in one dimension, as well as 
the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional 
transverse electric (TE) mode of the equations.
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1  Introduction

In recent decades, there has been growing interest in the studies of the behavior of light 
when it interacts with optical media on the nanometer scale. These studies focus on not 
only the linear responses of the media, but also the nonlinear ones that contribute to phe-
nomena such as high-order harmonic generations and frequency mixing, among others 
[6]. The nonlinear optical responses, though being a rather weak optical process, become 
more important at very high light intensities and arise in various practical applications. For 
example, in the laser industry, second harmonic generation is used to make green 532 nm 
laser from a 1 064 nm source [18]. It is well known that the dynamics of the light-media 
interactions is governed by the classical Maxwell’s equations. The linear and nonlinear 
responses of the media can be described either at a microscopic level through the motion of 
charged particles in the media driven by electromagnetic fields, or at a macroscopic level 
through some phenomenological constitutive relations [1, 6, 15].

In this work, we consider Maxwell’s equations along with a macroscopic description of 
the media responses, defined on a spatial domain Ω ⊂ ℝd (d = 1, 2, 3) over a time interval 
[0, T], 

 supplemented with boundary conditions and compatible initial conditions

Here, E and H are the electric and magnetic fields, respectively. The dielectric parameters 
include the magnetic permeability �0 of free space, the relative electric permittivity �

∞
 in 

the limit of the infinite frequency, and the electric permittivity �0 of free space. The elec-
tric flux density D is related to the electric field through the constitutive law (1c), that 
models the linear and nonlinear optical responses of the media. Particularly, �0�∞E is for 
the instantaneous linear response and �0a(1 − �)|E|2E is for the instantaneous cubic non-
linear Kerr effect, while the delayed dispersive effects include the linear Lorentz response 
�0P and the nonlinear Raman molecular vibrational response �0a�QE , with each further 
modeled through the auxiliary differential equations (1d) and (1e), respectively. More‑ 
over, in (1d), �0 and �p are the resonance and plasma frequencies of the medium, respec-
tively. Additionally, � is a damping constant. In (1e), �v is the resonance frequency of the 

(1a)�0�tH + ∇×E = 0,

(1b)�tD − ∇×H = 0,

(1c)D = �0

(
�
∞
E + P + a(1 − �)|E|2E + a�QE

)
,

(1d)�ttP + ��tP + �2
0
P = �2

p
E,

(1e)�ttQ + �v�tQ + �2
v
Q = �2

v
|E|2

H(x, 0) =H0(x), E(x, 0) = E0(x), P(x, 0) = P0(x),

�tP(x, 0) =J0(x), Q(x, 0) = Q0(x), �tQ(x, 0) = �0(x).
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vibration, and �v is a damping constant. The constants a and � measure the strength and 
relative strength of the Kerr and Raman nonlinearities. One can refer to [1, 4] for more 
discussions of the model.

The model (1) is said to be in the mixed-order form as it consists of the first-order PDE 
part of the Maxwell’s equations (1a)–(1b) and the second-order ODE part of the auxiliary 
differential equations (1d)–(1e) for the linear and nonlinear dispersive responses. For model 
(1), one can derive the following energy relation under periodic boundary conditions:

where the energy E(t) is defined as

If we further assume � ∈ [0,
3

4
] , then

and E(t) ⩾ 0 . The energy relation, therefore, gives an energy stability for the model. 
When the model is damping free with � = �v = 0 , the energy relation leads to energy 
conservation.

In this work, we propose and analyze a family of numerical schemes for the mixed-
order model (1), that is accurate, efficient, and at the same time satisfies a provable discrete 
analogue of the energy relation and stability (2). The methods are second-order accurate in 
time and can be arbitrary order accurate in space. They can be implemented very efficiently 
especially in the parallel setting, as the nonlinear algebraic system to solve per time step is 
completely decoupled into small sub-systems, with each being of size dE × dE at one (inter-
polation) point in space. Here, dE is the number of the components of the electric field that 
often but not always coincides with d. The main ingredients to design the methods are: 
(i) novel temporal treatments of the nonlinear terms (i.e., |E|2E and QE in (1c), |E|2 in 
(1e)) along with the leap-frog time discretization for the PDE part and a central difference 
based two-step time discretization for the ODE part of the model, (ii) nodal discontinu-
ous Galerkin (DG) methods in space with alternating numerical fluxes and with nonlinear 
terms handled in an interpolatory fashion [8, 14]. The methods satisfy a provable energy 
relation with respect to the discrete energy, and the result further gives the energy stability 
under a time step condition in addition to � ∈ [0,

3

4
] as for the continuous model. It is worth 

mentioning that the time step condition is the same for the L2 stability when the methods 
are applied to the model in the absence of the Kerr and Raman nonlinear effects as well 
as the linear Lorentz dispersion. DG methods are chosen due to their many attractive fea-
tures, such as excellent numerical dispersive and dissipative properties in standard wave 
simulations, flexibility in adaptive implementation and high parallelization, and suitability 
for complicated geometry etc., [14]. Moreover, with the adoption of the nodal formulation 
of DG methods, the nonlinearities can be handled very efficiently (see Sect. 2.3 for more 
discussions).

(2)
d

dt
E(t) = −

�0�

�2
p
∫
Ω

|�tP|2dΩ −

�0a��v
2�2

v
∫
Ω

(�tQ)
2
dΩ ⩽ 0,

(3)
E(t) =∫

Ω

(
�
0

2
|H|2 + �

0
�
∞

2
|E|2 + �

0

2�2

p

|�tP|2 +
�
0
�2

0

2�2

p

|P|2

+

�
0
a�

4�2

v

(�tQ)
2
+

�
0
a�

2
Q|E|2 + 3�

0
a(1 − �)

4
|E|4 + �

0
a�

4
Q2

)
dΩ.

�0a�

2
Q|E|2 + 3�0a(1 − �)

4
|E|4 + �0a�

4
Q2

=

�0a�

4

(|E|2 + Q
)2

+

�0a(3 − 4�)

4
|E|4 ⩾ 0,
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There have been extensive research activities in devising finite difference methods, finite 
element methods, and DG methods to simulate Maxwell’s equations in linear or nonlinear 
dispersive optical media (e.g., [9–13]). To our best knowledge, the methods proposed here 
are the first one to satisfy a provable energy relation/stability based on the mixed-order 
form of (1) that model the electromagnetic waves in optical media with the linear Lorentz 
dispersion, and nonlinear Kerr and Raman effects. The work is motivated by the previ-
ous developments of designing numerical methods with provable energy relation/stability 
when the underlying equations are entirely in the first-order form, that is, with (1d)–(1e) 
reformulated into 

Examples of such efforts for the first-order form model (i.e., (1a)–(1c), (4)) include energy 
stable DG schemes in [4] and FDTD schemes in [5] in one dimension, and energy stable 
DG schemes in [17] in higher dimensions. The key for these methods to achieve a prov-
able energy relation lies in the treatments of the nonlinear terms, with the one for the 
Kerr term most nontrivial. Particularly, the strategies in [4, 5, 17] all start with an auxil-
iary vector Y = |E|2E and the discretization is designed based on the differentiated form 
�tY = �t(|E|2E) . When the media responses only contain the nonlinear Kerr effect (i.e., 
without the linear Lorentz response and � = 0 ), the idea above is also applied to an FDTD 
method for the transverse magnetic (TM) mode of Maxwell’s equations in two dimensions 
and extended to a finite element method in three dimensions.

In relation to the work reviewed above, our proposed methods here are closest to those 
in [17], in their use of nodal DG spatial discretizations and the leap-frog method in time 
for the PDE part. The nonlinear Kerr term is handled similarly as in [4, 17] based on 
�tY = �t(|E|2E) , yet with additional adaptation to suit the two-step temporal discretiza-
tion setting. For the nonlinear Raman term QE , unlike the algebraic strategy in [4, 5, 17] 
that works for the first-order form of the model, the model of the mixed-order form in this 
work together with the two-step temporal discretization strategy call for a second auxiliary 
vector W = QE , with the proposed numerical treatment based on the differentiated form 
�tW = �t(QE) . Relatedly, a special discretization is employed to the nonlinear driving term 
|E|2 in (1e). The proposed discretizations for the nonlinear Raman term is one main contri-
bution of this work. As one will see in Sect. 2.3, we will not directly solve and store Y and 
W in actual implementation.

The remainder of the paper is organized as follows. In Sect. 2, we formulate the pro-
posed numerical schemes. Particularly, a second-order temporal discretization is presented 
in Sect.  2.1 with special attention given to the nonlinear terms; in Sect.  2.2, we further 
apply a family of nodal DG methods in space, illustrated using the two-dimensional (2D) 
model with the transverse electric (TE) mode. For both the semi-discrete in time and fully 
discrete schemes, the energy relation and stability are established. In Sect. 2.3, some dis-
cussions are made for implementation. In Sect. 3, the performance of the proposed schemes 
is demonstrated through a comparison with the methods in [4, 17] (implemented in nodal 
form) regarding the accuracy, computational efficiency, and energy stability, through a par-
allel scalability study, and also through simulations of the soliton-like wave propagation in 
one dimension, as well as the spatial-soliton propagation and two-beam interactions in two 
dimensions. Concluding remarks follow in Sect. 4.

(4a)�tP = J, �tJ + �J + �2
0
P = �2

p
E,

(4b)�tQ = �, �t� + �v� + �2
v
Q = �2

v
|E|2.
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2 � Numerical Methods

In this section, we formulate and analyze the proposed numerical schemes for Maxwell’s 
equations in nonlinear optical media in (1). Particularly, a second-order time discretization 
will be presented in Sect. 2.1, with the focus on handling the nonlinear terms to achieve a 
provable energy relation/stability. With nodal DG methods (of any formal accuracy) further 
applied to space, we will come to the fully discrete schemes in Sect. 2.2. Energy stability 
relations will be established for both the semi-discrete in time and fully discrete schemes. 
Some aspects of implementation will be discussed in Sect. 2.3.

2.1 � Time Discretization

We start with some notation. Let 0 = t0 < t1 < ⋯ < tNt = T  be a uniform partition of [0, T] 
with tn = nΔt , Δt = T∕Nt . For a grid function u with un as its value at tn , we define

Our proposed temporal discretization is second-order accurate, and it involves the leap-frog 
method for the PDE part of the first-order form in (1a)–(1b), as well as a central difference 
based two-step method for the ODE part of the second-order form in (1d)–(1e), with spe-
cial attention paid to the nonlinear terms, namely, |E|2E and QE in (1c), |E|2 in (1e), that 
are related to the nonlinear Kerr and Raman effects. Particularly, given un−1, un , we look for 
un+1 , with u = H , E , D , P , and Q, satisfying 

un+1∕2 =
un+1 + un

2
, un =

un+1 + 2un + un−1

4
.

(5a)�0

Hn+1∕2
−Hn

Δt∕2
= −∇×En,

(5b)
Dn+1

− Dn

Δt
= ∇×Hn+1∕2,

(5c)Dn+1
= �0

(
�
∞
En+1

+ Pn+1
+ a(1 − �)Yn+1

+ a�Wn+1
)
,

(5d)
Yn+1

− Yn−1
=

(||||E
n+1∕2

||||
2

+

||||E
n−1∕2

||||
2

− En+1∕2
⋅En−1∕2

)
(En+1

− En−1
)

+ 2

(
En

⋅(En+1
− En−1

)

)
En,

(5e)Wn+1
−Wn−1

= 2
(
Qn+1∕2 En+1∕2

− Qn−1∕2 En−1∕2
)
,

(5f)
Pn+1

− 2Pn
+ Pn−1

(Δt)2
+ �

Pn+1
− Pn−1

2Δt
+ �2

0
Pn

= �2
p
En,
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Here, the nonlinear Kerr term |E|2E is handled in a similar fashion as in [4, 17], with addi-
tional adaptation to the two-step temporal discretization setting. The key is to introduce an 
auxiliary vector Y = |E|2E and to consider its differentiated form

Indeed, (5d) is a second-order discretization for (6), and this can be better seen through the 
following equivalent form of (5d):

For the nonlinear Raman term QE , unlike the algebraic strategy in [4, 17] that works for the 
first-order form of the model, the model of the mixed-order form in this work together with 
the two-step temporal discretization strategy call for a second auxiliary vector W = QE and 
its differentiated form

Again, (5e) is a second-order discretization for (8), and this can be better seen through the 
following equivalent form of (5e):

Relatedly, a special discretization is employed in (5g) to the nonlinear driving term |E|2.
The temporal discretizations are carefully designed for different terms of the model to 

achieve a provable energy relation/stability, a discrete analogue of (2), that is given in the 
next theorem.

Theorem 1  (Semi-discrete in time energy relation/stability) Under the assumption of peri-
odic boundary conditions, the semi-discrete in time scheme in (5) satisfies

(5g)
Qn+1

− 2Qn
+ Qn−1

(Δt)2
+ �v

Qn+1
− Qn−1

2Δt
+ �2

v
Qn = �2

v
En+1∕2

⋅ En−1∕2,

(5h)�0

Hn+1
−Hn+1∕2

Δt∕2
= −∇×En+1.

(6)�tY =

(
3|E|2 − 2|E|2)�tE + 2

(
E⋅�tE

)
E.

(7)

Yn+1∕2
− Yn−1∕2

=

⎛
⎜⎜⎜⎜⎝
3

����E
n+1∕2

����
2

+

����E
n−1∕2

����
2

2
− 2

������
En+1∕2

+ En−1∕2

2

������

2⎞⎟⎟⎟⎟⎠

�
En+1∕2

− En−1∕2
�

+ 2
�
En

⋅(En+1∕2
− En−1∕2

)

�
En.

(8)�tW = Q�tE + (�tQ)E.

(9)
Wn+1∕2

−Wn−1∕2
=

Qn+1∕2 + Qn−1∕2

2

(
En+1∕2

− En−1∕2
)

+

En+1∕2
+ En−1∕2

2

(
Qn+1∕2 − Qn−1∕2

)
.
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with the discrete energy defined as

Here, we write

Proof  The following two relations will be repeatedly used:

Applying two time steps to (5a) and (5h), we have

and hence

Based on (5b), we get

Take the dot product of (16) and En , (15) and Hn , integrate the resulting equations over Ω 
and sum them up, and under the assumption of the periodic boundary conditions, we obtain

For the second term above, we proceed from (5c) and get

(10)

E
n+1∕2

− E
n−1∕2

= −

�0�Δt

�2
p

∫
Ω

|||||
Pn+1

− Pn−1

2Δt

|||||

2

dΩ

−

�0a��vΔt

2�2
v

∫
Ω

(
Qn+1

− Qn−1

2Δt

)2

dΩ ⩽ 0

(11)

E
n−1∕2

= ∫
Ω

(
�
0

2
H

n
⋅H

n−1
+

�
0
�
∞

2

||||E
n−1∕2

||||
2

+

�
0

2�2

p

|||||
P
n
− P

n−1

Δt

|||||

2

+

�
0
�2

0

2�2

p

||||P
n−1∕2

||||
2

+

�
0
a�

4�2

v

(
Qn

− Qn−1

Δt

)2

+

�
0
a�

2
Qn−1∕2

||||E
n−1∕2

||||
2

+

3�
0
a(1 − �)

4

||||E
n−1∕2

||||
4

+

�
0
a�

4

(
Qn−1∕2

)2

)
dΩ.

(12)Hn
=

Hn+1∕2
+Hn−1∕2

2
.

(13)En+1
− En−1

2
= En+1∕2

− En−1∕2, En
=

En+1∕2
+ En−1∕2

2
.

(14)
�0

2

Hn+3∕2
−Hn−1∕2

Δt
= −∇×En+1∕2,

(15)
�0

2

(
Hn+1

−Hn−1
)
= −Δt∇×En.

(16)Dn+1∕2
− Dn−1∕2

= Δt∇×Hn.

(17)
�0

2 ∫
Ω

(
Hn+1

⋅Hn
−Hn

⋅Hn−1
)
dΩ + ∫

Ω

(
Dn+1∕2

− Dn−1∕2
)
⋅EndΩ = 0.
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For the Kerr term in (18), using (5d), we have

For the Lorentz term in (18), using (5f), we have

For the Raman term in (18), using (5e), we have

with the last term above further reformulated based on (5g),

(18)

(
D

n+1∕2
− D

n−1∕2

)
⋅E

n

=

�
0
�
∞

2

||||E
n+1∕2

||||
2

−

�
0
�
∞

2

||||E
n−1∕2

||||
2

+

�
0
a(1 − �)

2
(Y

n+1
− Y

n−1
)⋅E

n

+

�
0

2
(P

n+1
− P

n−1
)⋅E

n
+

�
0
a�

2
(W

n+1
−W

n−1
)⋅E

n
.

(19)

(Y
n+1

− Y
n−1

)⋅E
n

=

(||||E
n+1∕2

||||
2

+

||||E
n−1∕2

||||
2

− E
n+1∕2

⋅E
n−1∕2

)(||||E
n+1∕2

||||
2

−

||||E
n−1∕2

||||
2
)

+
1

2

(||||E
n+1∕2

||||
2

−

||||E
n−1∕2

||||
2
)||||E

n+1∕2
+ E

n−1∕2
||||
2

=
3

2

(||||E
n+1∕2

||||
2

+

||||E
n−1∕2

||||
2
)(||||E

n+1∕2
||||
2

−

||||E
n−1∕2

||||
2
)

=
3

2

||||E
n+1∕2

||||
4

−
3

2

||||E
n−1∕2

||||
4

.

(20)

(P
n+1

− P
n−1

)⋅E
n

=
1

�2

p

(P
n+1

− P
n−1

)⋅

(
P
n+1

− 2P
n
+ P

n−1

(Δt)2
+ �

P
n+1

− P
n−1

2Δt
+ �2

0
P
n

)

=
1

�2

p

|||||
P
n+1

− P
n

Δt

|||||

2

−
1

�2

p

|||||
P
n
− P

n−1

Δt

|||||

2

+
2�Δt

�2

p

|||||
P
n+1

− P
n−1

2Δt

|||||

2

+

�2

0

�2

p

||||P
n+1∕2

||||
2

−

�2

0

�2

p

||||P
n−1∕2

||||
2

.

(21)
(W

n+1
−W

n−1
)⋅E

n
= Qn+1∕2

||||E
n+1∕2

||||
2

− Qn−1∕2
||||E

n−1∕2
||||
2

+
1

2

(
Q

n+1
− Q

n−1
)
E
n+1∕2

⋅E
n−1∕2
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Combining (17)–(22), we will reach the semi-discrete in time energy relation (10) with the 
discrete energy defined in (11).

2.2 � Fully Discrete Schemes

In this subsection, we will further apply a class of nodal DG methods in space to obtain 
fully discrete schemes. We will present the methods in two dimensions for simplicity, and 
the extension to three-dimensional (3D) and one-dimensional (1D) cases is straightfor-
ward. Since the Maxwell’s system (1) in the TM mode has essentially 1D nonlinearity (i.e., 
dE = 1 ), we will consider its TE mode with dE = 2 , namely, 

Here, U = (Ux,Uy) , with U = D,E,P , stand for vectors with two components Ux and Uy in 
the x-y plane.

DG methods of the nodal form, instead of the modal form, are adopted here, due to 
their efficiency to deal with the nonlinearity. To prepare, we will start with some notation. 
Assume the computational domain is Ω = [xa, xb] × [ya, yb] . Let

be a mesh for Ω , that is based on a partition in the x direction: x
a
= x 1

2

< x 3

2

< ⋯ < x
N
x
+

1

2

= x
b
 

and a partition in the y direction: ya = y 1

2

< y 3

2

< ⋯ < y
Ny+

1

2

= yb . For a typical cell 
Kij = Ii × Jj , we denote its center as (xi, yj) . We write Δxi = |Ii| , Δyj = |Jj| , and set 

(22)

(
Q

n+1
− Q

n−1
)
E
n+1∕2

⋅E
n−1∕2

=
1

�2

v

(
Q

n+1
− Q

n−1
)(Q

n+1
− 2Q

n
+ Q

n−1

(Δt)2
+ �

v

Q
n+1

− Q
n−1

2Δt
+ �2

v
Qn

)

=
1

�2

v

(
Q

n+1
− Q

n

Δt

)2

−
1

�2

v

(
Q

n
− Q

n−1

Δt

)2

+

2�
v
Δt

�2

v

(
Q

n+1
− Q

n−1

2Δt

)2

+

(
Qn+1∕2

)2

−

(
Qn−1∕2

)2

.

(23a)�0�tHz + �xEy − �yEx = 0,

(23b)�tDx − �yHz = 0,

(23c)�tDy + �xHz = 0,

(23d)D = �0

(
�
∞
E + P + a(1 − �)|E|2E + a�QE

)
,

(23e)�ttP + ��tP + �2
0
P = �2

p
E,

(23f)�tQ + �v�tQ + �2
v
Q = �2

v
|E|2.

Th =

{
Kij = Ii × Jj, Ii = [x

i−
1

2

, x
i+

1

2

], Jj = [y
j−

1

2

, y
j+

1

2

], 1 ⩽ i ⩽ Nx, 1 ⩽ j ⩽ Ny

}
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h = max
i,j

(Δxi,Δyj) . We further assume the mesh is quasi-uniform, namely, there exists a con-

stant � such that h

min
i,j

(Δxi,Δyj)
< 𝛿 as the mesh is refined.

Associated with Th , we introduce a finite-dimensional discrete space

with Qk
(Kij) being the set of tensor-type Qk polynomials with degree up to k in each variable on 

Kij . Without confusion, we also use Vk
h
 to represent its vector version. Note that each func-

tion v ∈ Vk
h
 is discontinuous at x = x

i+
1

2

 and at y = y
j+

1

2

 . With v(x±
i+

1

2

, y) = lim
�→0±

v(x
i+

1

2

+ �, y) , 

v(x, y
±

j+
1

2

) = lim
�→0±

v(x, y
j+

1

2

+ �) being the one-sided traces, we write the jumps of  v ∈ Vk
h
 

at x = x
i+

1

2

 and at y = y
j+

1

2

 as [v]x
i+

1
2

= v(x+
i+

1

2

, y) − v(x−
i+

1

2

, y) , [v]y
j+

1
2

= v(x, y+
j+

1

2

) − v(x, y−
j+

1

2

) , 

respectively.
For the nodal DG formulation, we introduce the (k + 1)-points Gauss-Legendre quad-

rature points as {�m}km=0 on [−1, 1] with positive weights {ŵm}
k
m=0

 . The corresponding 
quadrature formula is exact for polynomials of degrees up to 2k + 1 (i.e., for functions in 
P2k+1

([−1, 1]) ). Let {ln(�)}kn=0 be the Lagrange basis of Pk
([−1, 1]) , satisfying ln(�m) = �nm . 

Here, �nm is the Kronecker delta. Associated with each element Kij , we define

and set xim = xi +
Δxi

2
�m , yjn = yj +

Δyj

2
�n . It is easy to see that 

{
�
ij
mn(x, y)

}k

m,n=0
 forms an 

orthogonal basis for Vk
h
|Kij

= Qk
(Kij) with respect to the L2 inner product on Kij . Relatedly, 

we introduce a local interpolation operator I
ij

h
:C(Kij) ↦ Qk

(Kij) that satisfies (
I
ij

h
f
)
(xim, yjn) = f (xim, yjn) for all m, n = 0,⋯ , k , and equivalently,

We further define a global interpolation operator Ih:Wh(Ω) ↦ Vk
h
 with Ih|Kij

= I
ij

h
 . Here 

Wh(Ω) =

{
f ∈ L2(Ω), f |Kij

∈ C(Kij), 1 ⩽ i ⩽ Nx, 1 ⩽ j ⩽ Ny

}
 with C(Kij) as the set of con-

tinuous functions on Kij . The next lemma recalls some properties of the operator Ih.

Lemma 1  [17] For any f ∈ Wh(Ω) , there hold 

	 (i)	

 as a special case, ∫
Ω
Ih(�)�dΩ = ∫

Ω
��dΩ for all�,� ∈ Vk

h
;

	 (ii)	 if, additionally, f is nonnegative, then ∫
Ω
Ih(f )dΩ ⩾ 0.

We are now ready to present the fully discrete schemes, that combine the temporal dis-
cretization in the previous section, and nodal spatial DG methods with the discrete space 

(24)Vk
h
=

{
v ∈ L2(Ω) ∶ v|Kij

∈ Qk
(Kij), 1 ⩽ i ⩽ Nx, 1 ⩽ j ⩽ Ny

}

�ij
mn
(x, y) = lm

(
x − xi

Δxi∕2

)
ln

(
y − yj

Δyj∕2

)
,

(25)
(
I
ij

h
f
)
(x, y) =

k∑
m,n=0

f (xim, yjn)�
ij
mn
(x, y), (x, y) ∈ Kij.

∫
Ω

Ih(f )�dΩ = ∫
Ω

Ih(f�)dΩ, ∀� ∈ Vk
h
;
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Vk
h
 ( k = 0, 1, 2,⋯ ). Particularly, given un−1

h
, un

h
∈ Vk

h
 at tn−1 and tn , we look for un+1

h
∈ Vk

h
 at 

tn+1 , with u = Hz , E , D , P , and Q, satisfying 

Here, (⋅, ⋅) is the standard L2 inner product for L2(Ω) , and the bilinear forms BE
h
 , BH

xh
 , and 

B
H
yh

 are defined as 

(26a)�0

(
H

n+1∕2

zh
− Hn

zh

Δt∕2
,�

)
+ B

E
h
(En

h
,�) = 0, ∀� ∈ Vk

h
,

(26b)

(
Dn+1

xh
− Dn

xh

Δt
,�

)
+ B

H
xh
(H

n+1∕2

zh
,�) = 0, ∀� ∈ Vk

h
,

(26c)

(
Dn+1

yh
− Dn

yh

Δt
,�

)
+ B

H
yh
(H

n+1∕2

zh
,�) = 0, ∀� ∈ Vk

h
,

(26d)Dn+1
h

= �0

(
�
∞
En+1
h

+ Pn+1
h

+ a(1 − �)Yn+1
h

+ a�Wn+1
h

)
,

(26e)
Y
n+1

h
− Y

n−1

h
= I

h

((||||E
n+1∕2

h

||||
2

+

||||E
n−1∕2

h

||||
2

− E
n+1∕2

h
⋅E

n−1∕2

h

)
(E

n+1

h
− E

n−1

h
)

)

+ 2I
h

((
E
n

h
⋅(E

n+1

h
− E

n−1

h
)

)
E
n

h

)
,

(26f)Wn+1
h

−Wn−1
h

= 2Ih

(
Q

n+1∕2

h
E
n+1∕2

h
− Q

n−1∕2

h
E
n−1∕2

h

)
,

(26g)
Pn+1
h

− 2Pn
h
+ Pn−1

h

(Δt)2
+ �

Pn+1
h

− Pn−1
h

2Δt
+ �2

0
Pn
h
= �2

p
En
h
,

(26h)
Qn+1

h
− 2Qn

h
+ Qn−1

h

(Δt)2
+ �v

Qn+1
h

− Qn−1
h

2Δt
+ �2

v
Qn

h
= �2

v
Ih

(
E
n+1∕2

h
⋅ E

n−1∕2

h

)
,

(26i)�0

(
Hn+1

zh
− H

n+1∕2

zh

Δt∕2
,�

)
+ B

E
h
(En+1

h
,�) = 0, ∀� ∈ Vk

h
.

(27a)

B
E
h
(Eh,�) =

Ny∑
j=1

∫
xb

xa

̂̂
Exh(x, yj+ 1

2

)[�]y
j+

1
2

dx + (Exh, �y�)

−

Nx∑
i=1

∫
yb

ya

Êyh(xi+ 1

2

, y)[�]x
i+

1
2

dy − (Eyh, �x�),
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with Êyh , 
̂̂
Exh , H̃zh , and ̃̃Hzh as numerical fluxes, a key ingredient of DG methods for both 

numerical stability and accuracy. Specifically, we choose to use alternating fluxes as in 
[17]. Among the four possible choices of alternating numerical fluxes from [17], we con-
sider the following two in this work. The important property the fluxes possess is that Êyh 
and H̃zh take traces from opposite sides of an interface, so do ̂̂Exh and ̃̃Hzh.

Alternating 1:

Alternating 2:

With the nodal form of DG spatial discretizations, nonlinear terms in (26e), (26f), and 
(26h) are handled in an interpolatory fashion [8, 14] through the interpolation operator Ih . 
Indeed, (26f) in its strong form is equivalent to the following weak form, with any � ∈ Vk

h
,

The second equality is due to the definition of the interpolation operator and the exactness 
of the (k + 1)-point Gauss-Legendre quadrature for polynomials of degrees up to 2k + 1 . 
Equalities of this type also facilitate a more precise definition of a discrete energy, with 
respect to which the fully discrete methods have a provable energy stability, see Theo-
rem  2. The nodal form of DG methods leads to great flexibility in practical simulation 
and boost the computational efficiency in solving the nonlinear system, partially illustrated 
through (26f) and its equivalent form

(27b)B
H
xh
(Hzh,�) =

Ny∑
j=1

∫
xb

xa

̃̃
Hzh(x, yj+ 1

2

)[�]y
j+

1
2

dx + (Hzh, �y�),

(27c)B
H
yh
(Hzh,�) = −

Nx∑
i=1

∫
yb

ya

H̃zh(xi+ 1

2

, y)[�]x
i+

1
2

dy − (Hzh, �x�),

(28a)Êyh(xi+ 1

2

, y) = Eyh(x
+

i+
1

2

, y),
̂̂
Exh(x, yj+ 1

2

) = Exh(x, y
+

j+
1

2

),

(28b)H̃zh(xi+ 1

2

, y) = Hzh(x
−

i+
1

2

, y),
̃̃
Hzh(x, yj+ 1

2

) = Hzh(x, y
−

j+
1

2

).

(29a)Êyh(xi+ 1

2

, y) = Eyh(x
+

i+
1

2

, y),
̂̂
Exh(x, yj+ 1

2

) = Exh(x, y
−

j+
1

2

),

(29b)H̃zh(xi+ 1

2

, y) = Hzh(x
−

i+
1

2

, y),
̃̃
Hzh(x, yj+ 1

2

) = Hzh(x, y
+

j+
1

2

).

(30)

∫
Ω

(
Wn+1

h
−Wn−1

h

)
𝜙dxdy

= 2∫
Ω

Ih

(
Q

n+1∕2

h
E
n+1∕2

h
− Q

n−1∕2

h
E
n−1∕2

h

)
𝜙dxdy

= 2

Nx∑
i=1

Ny∑
j=1

Δxi

2

Δyj

2

k∑
m,n=0

𝜔̂m𝜔̂n

((
Q

n+1∕2

h
E
n+1∕2

h
− Q

n−1∕2

h
E
n−1∕2

h

)
𝜙

)
(xim, yjn).
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with m, n = 0,⋯ , k , i = 1,⋯ ,Nx, j = 1,⋯ ,Ny (also see Sect.  2.3), while preserving the 
energy relation (2)–(3) at the fully discrete level. Similar equivalent forms hold for (26e) 
and (26h).

Theorem 2  (Fully discrete energy relation and stability) Under the assumption of periodic 
boundary conditions, the family of the fully discrete schemes in (26)–(27), with the discrete 
space Vk

h
 (k = 0, 1, 2,⋯) and the alternating fluxes in either (28) or (29), satisfy

with the discrete energy En−1∕2
h

 defined as

and with Hn
zh
=

H
n+1∕2

zh
+H

n−1∕2

zh

2
 . Moreover, when � ∈ [0,

3

4
] and under a time step condition,

the discrete energy En−1∕2
h

⩾ 0 , hence (33) gives an energy stability result. Here, C⋆ is a 
constant, dependent of the polynomial degree k and the mesh parameter �.

Proof  Step 1: we will first establish the energy relation in (32). The proof will follow a 
similar flow as that in Theorem 1 for the semi-discrete in time scheme. Again, the relations 
in (13) will be repeatedly used. Applying two time steps to (26a) and (26i), we obtain

and hence,

(31)
(
Wn+1

h
−Wn−1

h

)
(xim, yjn) = 2

(
Q

n+1∕2

h
E
n+1∕2

h
− Q

n−1∕2

h
E
n−1∕2

h

)
(xim, yjn)

(32)

E
n+1∕2

h
− E

n−1∕2

h
= −

�0�Δt

�2
p

∫
Ω

|||||
Pn+1
h

− Pn−1
h

2Δt

|||||

2

dΩ

−

�0a��vΔt

2�2
v

∫
Ω

(
Qn+1

h
− Qn−1

h

2Δt

)2

dΩ ⩽ 0

(33)

E
n−1∕2

h
=∫

Ω

(
�0

2
Hn

zh
Hn−1

zh
+

�0�∞
2

||||E
n−1∕2

h

||||
2

+

�0
2�2

p

|||||
Pn
h
− Pn−1

h

Δt

|||||

2

+

�0�
2
0

2�2
p

||||P
n−1∕2

h

||||
2

+

�0a�

4�2
v

(
Qn

h
− Qn−1

h

Δt

)2

+

�0a�

2
Ih

(
Q

n−1∕2

h

||||E
n−1∕2

h

||||
2
)

+

3�0a(1 − �)

4
Ih

(||||E
n−1∕2

h

||||
4
)
+

�0a�

4

(
Q

n−1∕2

h

)2
)
dΩ,

Δt ⩽
min(𝜇0, 𝜖0𝜖∞)

C⋆

h,

(34)
�0

2

(
H

n+3∕2

zh
− H

n−1∕2

zh
,�

)
+ ΔtBE

h

(
E
n+1∕2

h
,�

)
= 0, ∀� ∈ Vk

h
,
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Based on (26b)–(26c), we have

Taking � = Hn
zh

 in (35), � = En
h
 in (36), summing them up, and using periodic boundary 

conditions, we reach

The terms associated with spatial operators are canceled due to the specific choices of 
alternating fluxes in (28) or (29),

What remained is to analyze the third term in (37). To this end, based on (26d), one has

Here, ‖ ⋅ ‖ is the standard L2 norm. For the Kerr term, using (26e) and the property of the 
interpolation operator Ih in Lemma 1, we have

For the Lorentz term in (38), by virtue of (26g), we have

(35)
�0

2

(
Hn+1

zh
− Hn−1

zh
,�

)
+ ΔtBE

h

(
En
h
,�

)
= 0, ∀� ∈ Vk

h
.

(36)
(
D

n+1∕2

h
− D

n−1∕2

h
,�

)
+ ΔtBH

xh
(Hn

zh
,�) + ΔtBH

yh
(Hn

zh
,�) = 0, ∀� ∈ Vk

h
.

(37)
�0

2

(
Hn+1

zh
,Hn

zh

)
−

�0

2

(
Hn

zh
,Hn−1

zh

)
+

(
D

n+1∕2

h
− D

n−1∕2

h
,En

h

)
= 0.

(38)

(
D

n+1∕2

h
− D

n−1∕2

h
,E

n

h

)

=

�
0
�
∞

2

‖‖‖‖E
n+1∕2

h

‖‖‖‖
2

−

�
0
�
∞

2

‖‖‖‖E
n−1∕2

h

‖‖‖‖
2

+

�
0
a(1 − �)

2

(
Y
n+1

h
− Y

n−1

h
,E

n

h

)

+

�
0

2

(
P
n+1

h
− P

n−1

h
,E

n

h

)
+

�
0
a�

2

(
W

n+1

h
−W

n−1

h
,E

n

h

)
.

(39)

(
Yn+1
h

− Yn−1
h

,En
h

)

=

(
Ih

((||||E
n+1∕2

h

||||
2

+

||||E
n−1∕2

h

||||
2

− E
n+1∕2

h
⋅E

n−1∕2

h

)
(En+1

h
− En−1

h
)

+2En
h
⋅(En+1

h
− En−1

h
)En

h

)
,En

h

)

= ∫
Ω

Ih

((||||E
n+1∕2

h

||||
2

+

||||E
n−1∕2

h

||||
2

− E
n+1∕2

h
⋅E

n−1∕2

h

)(||||E
n+1∕2

h

||||
2

−

||||E
n−1∕2

h

||||
2))

dΩ

+
1

2 ∫
Ω

Ih

((||||E
n+1∕2

h

||||
2

−

||||E
n−1∕2

h

||||
2)||||E

n+1∕2

h
+ E

n−1∕2

h

||||
2
)
dΩ

=
3

2 ∫
Ω

Ih

(||||E
n+1∕2

h

||||
4
)
dΩ −

3

2 ∫
Ω

Ih

(||||E
n−1∕2

h

||||
4
)
dΩ.
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For the Raman term, by (26f) and the property of the interpolation operator Ih in Lemma 1, 
we have

with the last term in (41) further formulated based on (26h),

Combining (37)–(42), we obtain the energy relation (32) with the discrete energy En−1∕2
h

 in 
(33).

Step 2: we will next derive a condition on the time step size, that will ensure the dis-
crete energy En−1∕2

h
 in (33) to be nonnegative, hence the energy relation (32) can lead to the 

energy stability. By (13) and (34), we get for any � ∈ Vk
h

(40)

(
P
n+1
h

− P
n−1
h

,E
n
h

)

=
1

�2

p

(
P
n+1
h

− P
n−1
h

,
P
n+1
h

− 2P
n
h
+ P

n−1
h

(Δt)2
+ �

P
n+1
h

− P
n−1
h

2Δt
+ �2

0
P
n
h

)

=
1

�2

p

‖‖‖‖‖
P
n+1
h

− P
n
h

Δt

‖‖‖‖‖

2

−
1

�2

p

‖‖‖‖‖
P
n
h
− P

n−1
h

Δt

‖‖‖‖‖

2

+
2�Δt

�2

p

‖‖‖‖‖
P
n+1
h

− P
n−1
h

2Δt

‖‖‖‖‖

2

+

�2

0

�2

p

‖‖‖‖P
n+1∕2

h

‖‖‖‖
2

−

�2

0

�2

p

‖‖‖‖P
n−1∕2

h

‖‖‖‖
2

.

(41)

(
W

n+1

h
−W

n−1

h
,E

n

h

)

=

(
I
h

(
Q

n+1∕2

h
E
n+1∕2

h
− Q

n−1∕2

h
E
n−1∕2

h

)
,E

n+1∕2

h
+ E

n−1∕2

h

)

= ∫
Ω

I
h

(
Q

n+1∕2

h

||||E
n+1∕2

h

||||
2
)
dΩ − ∫

Ω

I
h

(
Q

n−1∕2

h

||||E
n−1∕2

h

||||
2
)
dΩ

+
1

2

(
Q

n+1

h
− Q

n−1

h
, I

h

(
E
n+1∕2

h
⋅E

n−1∕2

h

))

(42)

(
Qn+1

h
− Qn−1

h
, Ih

(
E
n+1∕2

h
⋅E

n−1∕2

h

))

=
1

�2
v

(
Qn+1

h
− Qn−1

h
,
Qn+1

h
− 2Qn

h
+ Qn−1

h

(Δt)2
+ �v

Qn+1
h

− Qn−1
h

2Δt
+ �2

v
Qn

h

)

=
1

�2
v

‖‖‖‖‖
Qn+1

h
− Qn

h

Δt

‖‖‖‖‖

2

−
1

�2
v

‖‖‖‖‖
Qn

h
− Qn−1

h

Δt

‖‖‖‖‖

2

+

2�vΔt

�2
v

‖‖‖‖‖
Qn+1

h
− Qn−1

h

2Δt

‖‖‖‖‖

2

+

‖‖‖‖Q
n+1∕2

h

‖‖‖‖
2

−

‖‖‖‖Q
n−1∕2

h

‖‖‖‖
2

.
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Particularly, with � = Hn
zh

 , we have

hence,

To get the last inequality in (44), we have applied some standard inverse inequalities asso-
ciated with the discrete space Vk

h
 , see Lemma A.4 in [17]. The constant C⋆ depends on k 

and the mesh parameter � . With the bound in (45) and the properties of the operator Ih in 
Lemma 1, we will find that if the time step size Δt is restricted by the following:

that is, Δt ⩽ min(𝜇0,𝜖0𝜖∞)

C⋆

h , along with the condition � ∈ [0,
3

4
] as for the continuous model, 

we will have

Remark 1  For the governing equations of the mixed-order form considered here and that 
of the first-order form in [17], the PDE part is in the first-order form, and the time step 
condition for the energy stability of the proposed method here (see Theorem 2) is identical 
as that of the method in [17] (see Theorem 4 therein), with the same constant C⋆ . Indeed, 
the time step condition is the same for the L2 stability when the methods are applied to 
the model in the absence of the Kerr and Raman nonlinear effects and the linear Lorentz 
dispersion.

Remark 2  If we only apply nodal DG discretizations in space, with the time variable con-
tinuous, this will give the semi-discrete in space nodal DG methods. Following a similar 
analysis as in [17], one can establish a prior error estimates under some assumptions on the 

(43)
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strength of the nonlinearity when the exact solutions are sufficiently smooth. More specifi-
cally, the methods can be shown to be optimally accurate of the ( k + 1)th-order accuracy 
in the L2 norm when Vk

h
 is used as the discrete space. The details of the proof are omitted.

Remark 3  In addition to alternating fluxes, other choices of numerical fluxes can be used, 
such as central or upwind type fluxes as in [4]. The resulting schemes still enjoy provable 
energy stability. They are not considered here, as the schemes with central fluxes can lead 
to sub-optimal accuracy, while the schemes with upwind-type fluxes are implicit and the 
associated nonlinear algebraic systems will no longer be local in nature. Interested readers 
can refer to [4] for more information.

2.3 � On Implementation

The fully discrete schemes in (26) evolve the unknowns semi-explicitly. For the PDE part, 
with the leap-frog temporal strategy and the alternating numerical fluxes in space, Hn+1∕2

zh
 

and Dn+1
h

 are updated explicitly, indeed locally in an element by element fashion. This 
renders high parallel efficiency as widely known for explicit DG methods. For the ODE 
part along with the constitutive law, the discretization is implicit. Over each time step, one 
needs to solve a system of nonlinear equations to update En+1

h
 , Pn+1

h
 , and Qn+1

h
 , again locally 

for each element (i.e., Kij when d = 2 ). Moreover, benefited from the nodal treatment of the 
nonlinearities (see, e.g., (31)), the nonlinear system for each element is in fact a decoupled 
(k + 1)dE smaller nonlinear systems, with each associated with one interpolation point (i.e., 
(xim, yjn), m, n = 0,⋯ , k in the TE mode of the problem with d = dE = 2 ). Each of these 
small systems can be further reformulated and reduced to a dE × dE system of nonlinear 
equations, that only involves the unknown values of En+1

h
 at one nodal point, by eliminating 

Pn+1
h

 and Qn+1
h

 using (26g)–(26h). All the algebraic nonlinear systems are cubic in nature 
due to the type of nonlinear effects considered in this work. They are entirely decoupled 
from each other, and can be numerically solved very efficiently in a parallel manner over 
one time step. The local nature of the entire schemes (in both the PDE and ODE discretiza-
tions) will be fully explored in our parallel scalability study in Sect. 3.1.2.

In terms of memory usage, to evolve the numerical solutions from tn−1, tn to tn+1 , we 
store un−1

h
 and un

h
 , with u = E , P , Q, as well as Hn−1∕2

zh
 . We do not directly solve or store the 

auxiliary quantities Yn+1
h

 and Wn+1
h

 , as only their temporal differences are needed. In fact 
from (26d), we have

One can then apply (26e)–(26f) to eliminate Yn+1
h

− Yn−1
h

 and Wn+1
h

−Wn−1
h

 , and only store 
Dn

h
− Dn−1

h
.

Note that the proposed schemes are two-step methods. In addition to the initialization 
at t = 0 through interpolation, the one-step methods in [4, 17] are applied to obtain the 
numerical solution at t = t1 . The flow chart to implement the overall schemes for the TE 
mode of the system is summarized as Algorithm 1.

(46)
Dn+1

h
− Dn−1

h
= �0

(
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∞
(En+1

h
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h
) + (Pn+1

h
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h
)

+ a(1 − �)(Yn+1
h
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h

) + a�(Wn+1
h

−Wn−1
h

)

)
.
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3 � Numerical Experiments

In this section, we will demonstrate the performance of our proposed schemes in terms 
of accuracy, efficiency, and energy preservation through a set of 1D and 2D numerical 
examples. Comparison is made between the schemes proposed here and those in [4] (when 
d = 1 ) and [17] (when d = dE = 2 ), that are based on the first-order form of the under-
lying equations and also satisfy provable energy stability relations. Moreover, a scalabil-
ity study is performed to illustrate the parallel efficiency. All numerical tests are carried 
out using the nondimensionalized model, though some results are presented with physical 
units for better illustration. For each dE × dE nonlinear system F(u) = 0 associated with an 
interpolation point (with dE = 1, 2 ), the classical Newton’s iteration method is applied with 
‖F(us)‖

∞
< Err

tol
 as the stopping criterion. Here Err

tol
 is a given error tolerance. All simu-

lations are performed on uniform meshes in double precision.

3.1 � Accuracy, Energy Conservation, Parallel Scalability

3.1.1 � 1D Kink Shape Solution

In this example, we follow [4, 19] and consider the propagation of a 1D traveling wave of 
kink shape in Ω = [0, 6] , governed by

�tH = �xE, �tD = �xH,

�ttP = −�2
0
P + �2

p
E,

D = �
∞
E + aE3

+ P
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in the absence of the Ramen nonlinear effect as well as the damping in the linear dispersive 
Lorentz effect, i.e., with � = 0, � = 0 . The solution is 6-periodic, with the electric field in 
the form E(x, t) = Θ(x − vt) and satisfying

where

The initial conditions for other quantities can be obtained as in [4].
This example will be used to illustrate the accuracy of the proposed methods and the 

energy conservation. In our simulation, the following two alternating numerical fluxes are 
used.

Alternating 1:

Alternating 2:

The final time is T = 9∕v . To match the (k + 1)th-order accuracy in space, we first set 
dt = Ch

(k+1)∕2 with C = 0.2∕v for k = 1 , C = 1 for k = 2 , and C = 2 for k = 3 . The time step 
size is then taken as Δt = T

[T∕dt]+1
 , to render a uniform temporal mesh. Here [x] represents 

the greatest integer less than or equal to x. The error tolerance in the Newton solve for each 
nonlinear equation is Err

tol
=10−10 . This test is carried out sequentially using Fortran on 

Thinkpad-X1-Extreme with Intel Core i7-8850H CPU 2.70 GHz and 16 GB Memory.
In Tables 1 and 2 (left half), we report the L2 and L∞ errors and convergence orders of E 

computed by the proposed methods with k = 1, 2, 3 and two alternating fluxes (47a)–(47b), 
as well as the CPU time. The results confirm the optimal accuracy of (k + 1) th order espe-
cially under the L2 norm. The difference due to the two sets of fluxes is negligible. As a 
comparison, we also present in Tables 1 and 2 (right half) the results by the method in [4] 
based on the first-order form of the model, implemented in the nodal form. (Note the meth-
ods in [4] were described in their modal form.) Schemes of the same accuracy order from 
both families produce almost the same errors, with the comparable elapsed time. The non-
linear algebraic systems solved at each interpolation node in both families of methods are 
of the same size, with the proposed methods here involving relatively more algebraic eval-
uations to generate the nonlinear systems and hence requiring slightly more elapsed time.

For this example, we can define the discrete energy En+1∕2
h

 as

dΘ

d�
= Φ,

dΦ

d�
=

6av2ΘΦ2
+ (�

∞
�2
0
+ �2

p
− �2

0
∕v2)Θ + a�2

0
Θ

3

1 − �
∞
v2 − 3av2Θ2

,

�
∞
= 2.25, �s = 5.25, �1 = �s − �

∞
, �0 = 93.627 179 982 222 216, �p = �0

√
�1,

a = �
∞
∕3, v = 0.654 5∕

√
�
∞
, E(0) = 0, Φ(0) = 0.249 196 667 778 658 12.

(47a)Êh(xi+ 1

2

) = Eh(x
−

i+
1

2

), H̃h(xi+ 1

2

) = Hh(x
+

i+
1

2

).

(47b)Êh(xi+ 1

2

) = Eh(x
+

i+
1

2

), H̃h(xi+ 1

2

) = Hh(x
−

i+
1

2

).



	 Communications on Applied Mathematics and Computation

1 3

Table 1   1D kink shape solution: numerical errors and convergence rates of E of the proposed method 
(“mixed-order form”) and the method in [4] (“first-order form”), Alternating 1

N
x

Mixed-order form First-order form

L
2 L

∞ Time/s L
2 L

∞ Time/s

k = 1

  100 1.28E−04 – 5.52E−04 – 0.01 1.28E−04 – 5.52E−04 – 0.01
  200 4.19E−05 1.61 1.87E−04 1.56 0.05 4.19E−05 1.61 1.87E−04 1.56 0.04
  400 1.21E−05 1.79 4.36E−05 2.10 0.28 1.21E−05 1.79 4.35E−05 2.10 0.22
  800 3.30E−06 1.87 1.52E−05 1.52 0.63 3.31E−06 1.87 1.52E−05 1.52 0.58
  1 600 7.37E−07 2.16 3.97E−06 1.94 2.30 7.37E−07 2.17 3.96E−06 1.94 1.99
k = 2

  100 3.54E−05 – 1.70E−04 – 0.03 3.53E−05 – 1.70E−04 – 0.02
  200 4.44E−06 3.00 2.24E−05 2.93 0.19 4.43E−06 3.00 2.23E−05 2.93 0.14
  400 5.55E−07 3.00 2.71E−06 3.05 1.50 5.54E−07 3.00 2.70E−06 3.05 1.32
  800 6.90E−08 3.01 3.46E−07 2.97 4.83 6.89E−08 3.01 3.45E−07 2.97 4.14
k = 3

  100 8.37E−06 – 3.48E−05 – 0.07 8.35E−06 – 3.48E−05 – 0.06
  200 5.23E−07 4.00 2.16E−06 4.01 0.59 5.22E−07 4.00 2.15E−06 4.01 0.58
  400 3.25E−08 4.01 1.52E−07 3.83 6.91 3.24E−08 4.01 1.51E−07 3.83 6.04

Table 2   1D kink shape solution: numerical errors and convergence rates of E of the proposed method 
(“mixed-order form") and the method in [4] (“first-order form”), Alternating 2

N
x

Mixed-order form First-order form

L
2 L

∞ Time/s L
2 L

∞ Time/s

k = 1

  100 1.42E−04 – 6.57E−04 – 0.01 1.42E−04 – 6.57E−04 – 0.01
  200 3.79E−05 1.91 1.27E−04 2.38 0.04 3.79E−05 1.90 1.26E−04 2.38 0.03
  400 1.03E−05 1.87 4.10E−05 1.63 0.23 1.03E−05 1.87 4.08E−05 1.63 0.21
  800 3.23E−06 1.68 1.18E−05 1.80 0.59 3.23E−06 1.68 1.18E−05 1.80 0.54
  1 600 9.10E−07 1.83 3.13E−06 1.91 2.13 9.11E−07 1.83 3.12E−06 1.91 1.92
k = 2

  100 3.53E−05 – 1.53E−04 – 0.03 3.52E−05 – 1.53E−04 – 0.02
  200 4.40E−06 3.00 1.93E−05 2.99 0.17 4.39E−06 3.00 1.92E−05 2.99 0.16
  400 5.51E−07 3.00 2.42E−06 3.00 1.43 5.50E−07 3.00 2.41E−06 3.00 1.19
  800 6.90E−08 3.00 3.12E−07 2.95 4.69 6.89E−08 3.00 3.11E−07 2.95 4.18
k = 3

  100 8.36E−06 – 3.44E−05 – 0.07 8.35E−06 – 3.43E−05 – 0.08
  200 5.23E−07 4.00 2.15E−06 4.00 0.56 5.22E−07 4.00 2.15E−06 4.00 0.51
  400 3.25E−08 4.01 1.47E−07 3.87 6.39 3.24E−08 4.01 1.47E−07 3.87 6.04
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Our analysis in Theorem 2 states that the discrete energy is conserved over time, namely, 
E
n+1∕2

h
− E

n−1∕2

h
= 0, for all n , and this is validated by the time history of the energy devia-

tion En+1∕2
h

− E
1∕2

h
 in Fig.  1. One can see that the discrete energy is conserved up to the 

machine accuracy.

3.1.2 � 2D Manufactured Solution

In this section, we illustrate the accuracy, parallel scalability, and the energy conservation 
of the proposed methods in two dimensions.

Accuracy: To demonstrate the accuracy, we consider a manufactured solution

that satisfies the following 2D nondimensionalized system of the TE mode:

with suitable forcing terms fD, fP, fQ added to the constitutive relation and the ODE 
part. The computational domain is Ω = [0, 2π∕(�w)] × [0, 2π∕(�w)] with � = cos(0.3π) , 

E
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h
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⎜⎜⎝
1

2
Hn

h
⋅ Hn−1

h
+

�
∞

2

�
E
n−1∕2

h

�2

+
1
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+
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Ey = − �ecos(w(t+�x+�y)),
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�tHz + �xEy − �yEx = 0,
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Fig. 1   1D kink shape solution: energy deviation En+1∕2
h

− E
1∕2

h
 . Left: k = 1 , middle: k = 2 , right: k = 3 . 

Mesh: Nx = 400
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� = sin(0.3π) , w = 1.0 , and the boundary conditions are periodic. The model parameters 
are set as: �

∞
= 1.0 , �0 = �p = 1.0 , � = 0.05 , a = 1∕3 , � = 0.5 , �v = 1.0 , �v = 0.05 . The 

final time is T = 1.0.
Our numerical schemes (26) are adapted by adding the forcing term fD

n+1 to (26d), fP
n 

to (26g), and f n
Q
 to (26h). To match the (k + 1)th-order accuracy in space, we first set 

dt = Ch(k+1)∕2 , with h =
0.5

(Δx)−1+(Δy)−1
 , C = 0.3 for k = 1 , C = 1 for k = 2 , and C = 2 for 

k = 3 . The time step size is then taken as Δt = T

[T∕dt]+1
 , to render a uniform temporal mesh. 

The error tolerance in the Newton solve for each nonlinear system is Err
tol

= 10−12 . This 
experiment is carried out using MPI Fortran on the cluster LSSC-IV of the State Key Lab-
oratory on Scientific and Engineering Computing, Chinese Academy of Sciences, with 16 
processors.

In Tables 3 and 4 (left half), we report the L2 and L∞ errors and convergence orders of 
Hz computed by the proposed methods with k = 1, 2, 3 and two alternating fluxes (28)–(29), 
as well as the CPU time. The results confirm the optimal accuracy of (k + 1) th order. As a 
comparison, we also present in Tables 3 and 4 (right half) the results by the method in [17] 
based on the first-order form of the model. Schemes of the same accuracy order from both 
families produce almost the same errors, with the slightly more elapsed time used by the 
proposed methods as we have seen in the 1D example with the kink shape solution.

Scalability: It is widely known that the local nature of (explicit) DG methods contrib-
utes to their high parallel efficiency. With the specific treatments of nonlinearity in the 
nodal DG setting (see Sect. 2.3), one can expect that our proposed algorithms will have the 
similar parallel efficiency as the standard DG methods applied to hyperbolic problems [3]. 

Table 3   2D manufactured solution: numerical errors and convergence rates of Hz of the proposed method 
(“mixed-order form") and the method in [17] (“first-order form”), Alternating 1

Mesh Mixed-order form First-order form

L
2 L

∞ Time/s L
2 L

∞ Time/s

k = 1

 20 × 20 1.32E−02 – 9.06E−02 – 0.00 1.32E−02 – 9.08E−02 – 0.00
 40 × 40 3.61E−03 1.87 2.30E−02 1.98 0.02 3.61E−03 1.87 2.30E−02 1.98 0.02
 80 × 80 7.88E−04 2.20 5.56E−03 2.05 0.11 7.86E−04 2.20 5.56E−03 2.05 0.11
 160 × 160 2.08E−04 1.92 1.45E−03 1.94 0.86 2.08E−04 1.92 1.45E−03 1.94 0.85
 320 × 320 5.55E−05 1.91 3.81E−04 1.93 6.79 5.54E-05 1.91 3.77E-04 1.94 6.59
k = 2

 20 × 20 7.48E−04 – 6.43E–03 – 0.01 7.06E–04 – 6.12E−03 – 0.01
 40 × 40 8.97E−05 3.06 6.02E–04 3.42 0.04 8.51E–05 3.05 5.46E−04 3.49 0.05
 80 × 80 9.87E−06 3.18 6.83E–05 3.14 0.48 9.25E–06 3.20 6.52E−05 3.07 0.48
 160 × 160 1.40E−06 2.81 1.36E–05 2.33 5.31 1.32E–06 2.81 1.27E−05 2.36 5.07
 320 × 320 1.69E−07 3.05 1.27E–06 3.42 61.62 1.60E–07 3.05 1.16E−06 3.46 57.90
k = 3

 20 × 20 1.24E−04 – 4.02E–04 – 0.01 8.24E–05 – 3.58E−04 – 0.01
 40 × 40 7.85E−06 3.98 2.54E–05 3.99 0.18 5.15E–06 4.00 2.42E−05 3.89 0.19
 80 × 80 4.96E−07 3.98 1.78E–06 3.83 2.83 3.26E–07 3.98 1.60E−06 3.92 2.74
 160 × 160 3.10E−08 4.00 1.06E–07 4.07 46.60 2.04E–08 3.99 9.56E−08 4.06 43.78
 320 × 320 2.12E−09 3.87 7.14E–09 3.89 737.08 1.77E–09 3.53 6.72E−09 3.83 708.47
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We here will use our method (26) with k = 2 and Alternating 2 flux as an example, applied 
to the 2D manufactured solution in the accuracy test, to illustrate the parallel scalability. To 
this end, we divide the computational domain into Np subdomains, with Np being the num-
ber of processors used in the simulation, and then time-march the methods in each subdo-
main on one processor, with additional communication in a surrounding ghost layer [2].

We first study the strong scalability of our scheme on a fixed mesh Nx = Ny = 320 . In 
Table 5, we show the speed-up and parallel efficiency E

strong
 as the number of processors 

increases. The “speed-up” is the ratio of the computational time with one single processor 
to that with Np processors, and E

strong
=

speed-up

Np

 . As one can see, over 94% efficiency is 
achieved on up to 256 processors. If we further increase the computing resources (e.g., 
Np = 512, 1 024 ), the workload over each processor becomes smaller and smaller, and the 
parallel efficiency will be restricted by the communication between processors.

We further examine the weak scalability of our scheme by increasing the problem size 
and the number of processors Np simultaneously while keeping the workload per proces-
sor a constant. In each simulation, the problem is solved over 200 time steps. As shown in 
Table 6, over 90% efficiency is achieved on up to 1 024 processors, exhibiting good scal-
ability for large scale simulation, similarly to the standard DG methods applied to hyper-
bolic problems [3]. Here E

weak
 is the ratio of the computational time with one single pro-

cessor to that with Np processors.
Energy conservation: To validate the energy conserving property of our schemes in two 

dimensions, we use the same initial and boundary conditions as for the accuracy test in 
this section, while switching off the external sources fD, fP, fQ , and setting the damping 
parameters � = �v = 0 in the simulation. As predicted by Theorem 2, the discrete energy 

Table 4   2D manufactured solution: numerical errors and convergence rates of Hz of the proposed method 
(“mixed-order form") and the method in [17] (“first-order form”), Alternating 2

Mesh Mixed-order form First-order form

L
2 L

∞ Time/s L
2 L

∞ Time/s

k = 1

 20 × 20 1.54E−02 – 9.71E–02 – 0.01 1.54E–02 – 9.65E−02 – 0.01
 40 × 40 3.30E−03 2.22 2.25E–02 2.11 0.02 3.30E–03 2.22 2.26E−02 2.10 0.02
 80 × 80 8.34E−04 1.99 5.13E–03 2.13 0.11 8.32E–04 1.99 5.14E−03 2.13 0.11
 160 × 160 2.18E−04 1.93 1.48E–03 1.79 0.85 2.18E–04 1.93 1.47E−03 1.81 0.85
 320 × 320 5.36E−05 2.02 3.61E–04 2.04 6.77 5.35E–05 2.02 3.58E−04 2.04 6.61
k = 2

 20 × 20 6.59E−04 – 3.91E–03 – 0.01 6.17E–04 – 3.42E−03 – 0.01
 40 × 40 7.43E−05 3.15 3.61E–04 3.44 0.05 6.87E–05 3.17 3.72E−04 3.20 0.04
 80 × 80 9.20E−06 3.01 5.50E–05 2.72 0.52 8.49E–06 3.02 5.65E−05 2.72 0.48
 160 × 160 1.22E−06 2.92 8.82E–06 2.64 5.41 1.13E–06 2.91 7.94E−06 2.83 5.08
 320 × 320 1.46E−07 3.06 9.69E–07 3.19 62.27 1.35E–07 3.06 9.05E−07 3.13 57.80
k = 3

 20 × 20 1.24E−04 – 4.17E–04 – 0.01 8.13E–05 – 3.17E−04 – 0.01
 40 × 40 7.84E−06 3.98 2.51E–05 4.05 0.18 5.10E–06 4.00 1.88E−05 4.08 0.19
 80 × 80 4.94E−07 3.99 1.70E–06 3.88 2.81 3.21E–07 3.99 1.30E−06 3.85 2.74
 160 × 160 3.09E−08 4.00 1.09E–07 3.96 46.01 2.01E–08 4.00 7.64E−08 4.09 43.68
 320 × 320 2.12E−09 3.87 7.66E–09 3.83 734.70 1.75E–09 3.52 5.60E−09 3.77 713.91
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is conserving. In Fig. 2, we plot the time history of energy deviation En+1∕2
h

− E
1∕2

h
 up to 

T = 100 . As it shows, our schemes conserve the discrete energy quite well over long time 
simulation.

3.2 � Physically Relevant Simulations

In this section, we apply our proposed schemes to simulate some physically relevant prob-
lems, including a 1D soliton-like wave propagation, 2D spatial-soliton propagation, as well 
as 2D two-beam interactions. With similarity in the results and to save space, we only pre-
sent the results with Alternating 1 numerical fluxes, i.e., (47a) in one dimension and (28) 
in two dimensions. All 2D simulations are parallelly implemented in our codes. The initial 
configuration of the solutions are zero for all the examples considered in this section.

Table 5   Strong scalability: k = 2 , Alternating 2, Nx = Ny = 320

N
p

Time/s Speed-up E
strong

1 955.774 – –
2 480.076 1.99 99.54%
4 241.309 3.96 99.02%
8 120.725 7.92 98.96%
16 60.631 15.76 98.52%
32 30.369 31.47 98.35%
64 15.221 62.79 98.11%
128 7.628 125.30 97.89%
256 3.959 241.40 94.30%
512 2.122 450.43 87.97%
1 024 2.564 372.77 36.40%

Table 6   Weak scalability: k = 2 , Alternating 2, 200 time steps

N
p

N
x
× N

y
Time/s E

weak

1 200 × 200 44.681 –
2 400 × 200 44.882 99.55%
4 400 × 400 45.014 99.26%
8 800 × 400 45.412 98.39%
16 800 × 800 45.572 98.04%
32 1 600 × 800 46.216 96.68%
64 1 600 × 1 600 46.360 96.38%
128 3 200 × 1 600 47.209 94.65%
256 3 200 × 3 200 47.358 94.61%
512 6 400 × 3 200 49.226 90.77%
1 024 6 400 × 6 400 49.223 90.77%
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3.2.1 � 1D Soliton‑Like Wave Propagation

The propagation of a 1D soliton-like wave in the physical domain Ω = [0, 45] is governed 
by the following nondimensinalized model:

Following [4, 11], the physical coefficients are

On the left boundary x = 0 , an incident wave is injected as

where M physically characterizes the order of solitons. This boundary condition can be 
imposed through numerical flux straightforwardly with the use of Alternating 1 numerical 
flux in (47a). Interested readers can refer to [4] to see how Alternating 2 numerical flux 
in (47b) can be applied at x = 0 , as for this case the magnetic field H(x = 0, t) needs to be 

�tH − �xE = 0,

�tD − �xH = 0,

D = �
∞
E + P + a(1 − �)E3

+ a�QE,

�ttP + ��tP + �2
0
P = �2

p
E,

�ttQ + �v�tQ + �2
v
Q = �2

v
E2.

�
∞
= 2.25, �s = 5.25, �1 = �s − �

∞
, � = 1.168 × 10−5, �v = 29.2∕32,

a = 0.07, � = 0.3, Ω0 = 12.57, �0 = 5.84, �v = 1.28, �p = �0

√
�1.

(48)E(x = 0, t) = f (t) cos(Ω0t), f (t) = Msech(t − 20),
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t
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Fig. 2   2D example: energy deviation En+1∕2
h

− E
1∕2

h
 . Left: k = 1 , middle: k = 2 , right: k = 3 . Mesh: 

Nx = Ny = 80
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Fig. 3   1D soliton-like wave propagation: fundamental soliton with M = 1 . Left: k = 1 , middle: k = 2 , right: 
k = 3
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approximated first. At the right boundary x = 45 , we follow the strategy in [4] and apply 
an approximate absorbing boundary condition by neglecting the nonlinear effects and the 
delayed response. The simulation is up to the final time T = 80 . The mesh size h is equal to 
45∕6 400 with the time step size Δt = 0.1h , and k = 1, 2, 3 . The error tolerance in the New-
ton solve is set as Errtol = 10−10.

In Figs. 3 and 4, we plot the electric fields recorded at t = 40 and t = 80 for the tran-
sient fundamental soliton with M = 1 , and for the second-order soliton with M = 2 , respec-
tively, with k = 1, 2, 3 . The results are comparable with those by the schemes in [4] based 
on the first-order form of the model. In Figs. 5 and 6, we further show the time evolution 
of the discrete energy En+1∕2

h
 and the temporal spectrum of Eh , respectively. The spectrum 

is obtained through the discrete Fourier transform of the electric field Eh(t) recorded at 
x = 0.2 from t = 0 to time Ts = 2π∕Ω0 × 50 over 50 time periods. One can see that the 
total energy decreases after the entire incident wave enters the domain, demonstrating the 
energy stability of the schemes. Moreover, in addition to the main soliton-like pulse with 
the fundamental frequency Ω0 , the third-order and fifth-order harmonic signals are gener-
ated and detected as in Fig. 6. The third-order harmonic signals correspond to the small 
daughter pulses shown in Figs. 3 and 4, while the fifth-order harmonic signals are too weak 
to observe in these plots.

3.2.2 � Spatial‑Soliton Propagation in two Dimensions

In this example, we simulate a 2D spatial-soliton propagation in optical glasses [13]. The 
governing equations are 
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Fig. 4   1D soliton-like wave propagation: second-order soliton with M = 2 . Left: k = 1 , middle: k = 2 , right: 
k = 3

Fig. 5   1D soliton-like wave 
propagation: time history of the 
discrete energy. Left: M = 1 , 
right: M = 2
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 where

The physical domain is Ω0 = [0, 38 μm] × [−3 μm, 3 μm] . On the left boundary x = 0 , the 
following signal is introduced:

where �c = 4.35 × 1015 rad∕s is the carrier frequency. And w, H0 are the width and the 
magnitude of the incident wave, respectively, which will be specified later. The bound-
ary condition at x = 0 can be imposed directly by the Alternating 1 numerical flux (28). 

(49a)�0�tHz + �xEy − �yEx = 0,

(49b)�tDx − �yHz = 0,

(49c)�tDy + �xHz = 0,

(49d)D = �0

(
�
∞
E + b

3∑
s=1

Ps + a(1 − �)|E|2E + a�QE

)
,

(49e)�ttPs + �s�tPs + �2
0s
Ps = �2

ps
E, s = 1, 2, 3,

(49f)�ttQ + �v�tQ + �2
v
Q = �2

v
|E|2,

�01 = 2.753 7 × 1016 rad∕s, �02 = 1.620 5 × 1016 rad∕s, �03 = 1.903 4 × 1014 rad∕s,

�1 = 0.696 17, �2 = 0.407 94, �3 = 0.897 48, �ps =

√
�s�0 s, �s = 0, s = 1, 2, 3,

�
∞
= 1.0, b = 1.0, a = 1.89 × 10−22m2

∕V2, � = 0.3,

�v =
2

�2
, �v =

�����2
1
+ �2

2

�2
1
�2
2

, �1 = 12.2 fs, �2 = 32.0 fs.

(50)Hz(x = 0, y, t) = H0sin(�ct)sech(y∕w),
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Fig. 6   1D soliton-like wave propagation: semi-log plot of the spectrum of Eh . Left: M = 1 , right: M = 2
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On the other three boundaries, approximate absorbing boundary conditions as in [17] 
are applied to suppress the unphysical reflections. These numerical boundary treat-
ments are simple yet rough, and the actual domain used in our simulation is enlarged to 
Ω = [0, 60 μm] × [−4 μm, 4 μm] to compensate the possible insufficiency of the adopted 
strategy to control artificial reflections. We simulate the propagations up to the final time 
T = 300 fs with the time step size Δt = 0.05 h on a uniform spatial mesh with h = 20 nm in 
both the x and y directions. The discrete space Vk

h
 with k = 2 is used. The error tolerance in 

the Newton solve is set as Err
tol

= 10−8.

Fig. 7   2D spatial-soliton propagation: snapshot of |Hz| at T = 300 fs for the fundamental soliton propaga-
tion, with w = 667.0 nm, H

0
= 4.77 × 10

7 A/m, and k = 2

Fig. 8   2D spatial-soliton propagation: snapshot of |Hz| at T = 300 fs for the second-order soliton propa-
gation, with w = r × 667.0 nm, H

0
= 2∕r × 4.77 × 10

7 A/m, and k = 2 . Top: a r = 5.99∕3.99 , middle: b 
r = 3.99∕3.99 , bottom: c r = 3.26∕3.99
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Figure 7 shows the absolute value of the magnetic field |Hzh| at t = T  , when the param-
eters are taken as w = 667.0 nm and H0 = 4.77 × 107 A/m, corresponding to the funda-
mental soliton. As we can see, the shape and the magnitude remain the same as the wave 
propagates in the glass. When we enhance the magnitude of the incident waves properly, a 
second-order soliton is launched. This second-order soliton is the direct consequence of the 
interference between two fundamental solitons, leading to focusing and defocusing effects 
during the propagation, see Fig. 8 and its caption for three sets of parameter choices for � 
and H0.

To showcase the high-order harmonic generation, in Fig. 9 we present the discrete Fou-
rier transform of ey(t) up to 200 time periods Ts = 2π∕�c × 200 with ey(t) being the aver-
age in the y direction of the TE field Ey(x, ⋅, t) at x = 50 nm. All four sets of parameter 
choices considered so far are examined. For all cases, one can clearly see that the third-
order harmonic waves are generated in the interacting process. As the magnitude H0 of the 
incident wave increases and its width � decreases, the strength of the third-order harmonic 
also grows. From Fig. 9, we also observe small humps with magnitudes related to H0 and 
w around the frequency of second-order harmonic waves. These second-order harmonic 
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Fig. 9   2D spatial-soliton propagation: semi-log plot of the spectrum of the average of Eyh in the y direction 
at x = 50 nm and with k = 2 . The top-left is for the fundamental soliton propagation, with w = 667.0 nm, 
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	 Communications on Applied Mathematics and Computation

1 3

waves, however, are not expected for isotropic media we consider here [7]. Based on a 
preliminary study by mesh refinement and domain enlargement, we find that those humps 
still persist even when the mesh is very refined, we hypothesize that the appearance of such 
a second-order harmonic wave is not a numerical artifact, but may be due to the incoming 
wave signal at the boundary.

3.2.3 � Two‑Beam Interactions in two Dimensions

Finally, we want to simulate another interesting example of two-beam interactions in the 
optical glasses [16], for which the same model and media property as in Sect.  3.2.2 are 
used.

The computational domain is Ω = [0, 50 μm] × [−15 μm, 15 μm] . The final time is 
T = 250 fs . The incident wave injected at the left boundary x = 0 is the superposition of 
two beams when � = 1,

The amplitude H0 = 2.0 × 108 A/m, the characteristic width w = 261 nm, and 
�c = 2.35 × 1015 rad/s. � denotes the relative phase between the two beams. y1 and y2 are 
the locations of the peaks of the two beams, and they are taken as y1 = −1.317w × dn and 
y2 = −y1 . Here dn is the normalized separation distance and defined as the ratio of |y1 − y2| 
and the full-width at half-maximum (FWHM). In our simulation, the time step size is 
Δt = 0.05h , and the spatial mesh is uniform with h = 20 nm in both the x and y direc-
tions. The discrete space Vk

h
 with k = 2 is used. The boundary condition at x = 0 is imposed 

through numerical fluxes, while on the rest of the domain boundaries, approximate absorb-
ing boundary conditions as in [17] are applied. The error tolerance in the Newton solve is 
set as Err

tol
= 10−8.

We start with the case of a single beam, i.e., � = 0 , initially located at y1 = 0 . Similar as 
the fundamental soliton examined in Sect. 3.2.2, from Fig. 10 one can observe that the nar-
row soliton preserves its profile quite well during the propagation.

We then consider the interactions between two beams, with � = 1 . We firstly set the 
phase angle as � = 0 , and take different normalized separation distances, namely, 
dn = 3.5, 2.5, 1.5 . As one can see in Fig. 11, the initially separated beams rapidly merge 
into a single beam and exhibit periodic focusing and defocusing effects as the second-order 
spatial soliton shown in Sect. 3.2.2. And the distance when the two beams start to merge 
depends on the initial separation distance. Once two beams merge into one, they never 

(51)

Beam1 = sin(�ct)sech((y − y1)∕w),

Beam2 = sin(�ct + �)sech((y − y2)∕w),

H(0, y, t) = H0

(
Beam1 + � Beam2

)
.

Fig. 10   Single-beam propagation, snapshot of |E| with k = 2 and � = 0
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split again. On the right boundary, unphysical reflection occurs due to the relatively simple 
absorbing boundary conditions applied here.

When the phase angle is changed to � = π , the interactions will be fairly different. Par-
ticularly, from Fig. 12, one can see that the two beams repel each other during the propa-
gation and the onset of the mutual repulsion depend on the initial separation distance. In 
particular, when dn = 1.5 , the two beams begin to repel within a very short propagation 
distance, and stay divergent from each other.

Fig. 11   Two-beam interactions, snapshot of |E| with k = 2 and � = 0 . From top to bottom: dn = 3.5, 2.5, 1.5

Fig. 12   Two-beam interactions, snapshot of |E| with k = 2 and � = π . From top to bottom: dn = 3.5, 2.5, 1.5
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In the last case, we set the phase angle � to be π∕2 . As shown in Fig. 13, the two beams 
also repel each other during the propagation. However, as the initial separation distance 
decreases, one of the two beams gets more energy at the expense of the other beam. All 
results above agree well with those reported in [16]. The magnetic field Hz , though not 
plotted here, shows similar behavior as the electric field E in each test.

4 � Conclusions

In this work, a class of energy stable numerical schemes is proposed to simulate electromag-
netic waves propagating in optical media where the media responses include the linear Lor-
entz dispersion, the instantaneous nonlinear cubic Kerr response, and the nonlinear delayed 
Raman molecular vibrational response. The underlying model is a mixed-order PDE-ODE 
system, and the methods are second-order accurate in time and arbitrary order accurate in 
space, with good efficiency especially in the parallel setting due to the decoupled nature of 
the nonlinear algebraic system over each time step. The main contribution to algorithmic 
development lies in the design of a new discretization of the nonlinear Kerr and Raman 
terms in a two-step temporal framework, to ensure a provable energy relation and stability. 
The methods are illustrated numerically for their accuracy, efficiency, energy stability, and 
parallel scalability through 1D and 2D examples with the scalar and vector-valued electric 
field. Together with the previous work [4, 17], the methods further enrich the energy sta-
ble numerical methods for nonlinear optics based on full Maxwell’s equations. Though the 
mixed-order model consists of fewer unknowns, we observe numerically that the proposed 
methods are computational slightly more expensive than those in [4, 17] (with nodal imple-
mentation). For both types of methods, they solve the PDE part similarly, and the nonlin-
ear algebraic systems solved at each interpolation node are essential of the same size (i.e., 
dE × dE ). The proposed methods here involve relatively more algebraic evaluations to gener-
ate the nonlinear systems. With the ODE part discretized by a two-step temporal method, 
our schemes also do not save in memory usage compared with those in [4, 17].

Fig. 13   Two-beam interactions, snapshot of |E| with k = 2 and � = π∕2 . From top to bottom: 
dn = 3.5, 2.5, 1.5
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There are several future directions we plan to pursue. First, we will consider the model 
in its second-order form, that is, (1c)–(1e) with �0�ttD + ∇×∇×E = 0 . The question is 
whether one can design an energy stable discretization for such model. Second, for (lin-
ear) models that are in first-order, mixed-order, or second-order forms, a detailed compari-
son study on the numerical dispersion relations for the designed schemes is necessary to 
compare their wave resolution properties. Finally, the simple absorbing boundary condi-
tions adopted here from [17] have demonstrated some insufficiency to suppress unphysi-
cal reflections. More systematic investigation is needed for more robust and effective 
numerical boundary treatments in simulating optical phenomena in nonlinear and disper-
sive media. One can also explore the flexibility of DG methods to improve the efficiency 
through adaptive simulations. It remains an open question to design methods of higher than 
second-order temporal accuracy with provable energy stability and of similar local nature, 
hence the associated computational efficiency as our proposed methods.
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