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Abstract

In this work, we develop energy stable numerical methods to simulate electromagnetic
waves propagating in optical media where the media responses include the linear Lorentz
dispersion, the instantaneous nonlinear cubic Kerr response, and the nonlinear delayed
Raman molecular vibrational response. Unlike the first-order PDE-ODE governing equa-
tions considered previously in Bokil et al. (J Comput Phys 350: 420-452, 2017) and Lyu
et al. (J Sci Comput 89: 1-42, 2021), a model of mixed-order form is adopted here that
consists of the first-order PDE part for Maxwell’s equations coupled with the second-
order ODE part (i.e., the auxiliary differential equations) modeling the linear and nonlin-
ear dispersion in the material. The main contribution is a new numerical strategy to treat
the Kerr and Raman nonlinearities to achieve provable energy stability property within a
second-order temporal discretization. A nodal discontinuous Galerkin (DG) method is fur-
ther applied in space for efficiently handling nonlinear terms at the algebraic level, while
preserving the energy stability and achieving high-order accuracy. Indeed with dj as the
number of the components of the electric field, only a dj X d nonlinear algebraic system
needs to be solved at each interpolation node, and more importantly, all these small non-
linear systems are completely decoupled over one time step, rendering very high paral-
lel efficiency. We evaluate the proposed schemes by comparing them with the methods in
Bokil et al. (2017) and Lyu et al. (2021) (implemented in nodal form) regarding the accu-
racy, computational efficiency, and energy stability, by a parallel scalability study, and also
through the simulations of the soliton-like wave propagation in one dimension, as well as
the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional
transverse electric (TE) mode of the equations.
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1 Introduction

In recent decades, there has been growing interest in the studies of the behavior of light
when it interacts with optical media on the nanometer scale. These studies focus on not
only the linear responses of the media, but also the nonlinear ones that contribute to phe-
nomena such as high-order harmonic generations and frequency mixing, among others
[6]. The nonlinear optical responses, though being a rather weak optical process, become
more important at very high light intensities and arise in various practical applications. For
example, in the laser industry, second harmonic generation is used to make green 532 nm
laser from a 1 064 nm source [18]. It is well known that the dynamics of the light-media
interactions is governed by the classical Maxwell’s equations. The linear and nonlinear
responses of the media can be described either at a microscopic level through the motion of
charged particles in the media driven by electromagnetic fields, or at a macroscopic level
through some phenomenological constitutive relations [1, 6, 15].

In this work, we consider Maxwell’s equations along with a macroscopic description of
the media responses, defined on a spatial domain  C R? (d = 1,2,3) over a time interval

[0, 71,

HoOH + VXE = 0, (1a)
0D — VxH =0, (1b)
D=eo<e°oE+P+a(1 —9)|E|2E+a0QE>, (Ic)
9,P +y0,P+ 0P = ’E, (1d)

0,0 +7,0,0+ .0 = W |E] (le)

supplemented with boundary conditions and compatible initial conditions
H(x,0) =H(x), E(x,0) =E(x), P(x,0)=Py(x),
0,P(x,0) =Jyx), 0O(x,0) = Qy(x), 9,0(x,0) = oy(x).

Here, E and H are the electric and magnetic fields, respectively. The dielectric parameters
include the magnetic permeability y, of free space, the relative electric permittivity e in
the limit of the infinite frequency, and the electric permittivity ¢, of free space. The elec-
tric flux density D is related to the electric field through the constitutive law (1c), that
models the linear and nonlinear optical responses of the media. Particularly, eje E is for
the instantaneous linear response and eya(l — 6)|E |2E is for the instantaneous cubic non-
linear Kerr effect, while the delayed dispersive effects include the linear Lorentz response
€,P and the nonlinear Raman molecular vibrational response €,a@QF, with each further
modeled through the auxiliary differential equations (1d) and (le), respectively. More-
over, in (1d), @, and w, are the resonance and plasma frequencies of the medium, respec-
tively. Additionally, y is a damping constant. In (le), w, is the resonance frequency of the
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vibration, and y, is a damping constant. The constants ¢ and 6 measure the strength and
relative strength of the Kerr and Raman nonlinearities. One can refer to [1, 4] for more
discussions of the model.

The model (1) is said to be in the mixed-order form as it consists of the first-order PDE
part of the Maxwell’s equations (1a)—(1b) and the second-order ODE part of the auxiliary
differential equations (1d)—(1e) for the linear and nonlinear dispersive responses. For model
(1), one can derive the following energy relation under periodic boundary conditions:

d €Y €yaty,
&5@) =-— /Q |0,P|*dQ — W /Q (0,0’dQ <0, @)
p v

where the energy £(¢) is defined as

a0 = [ (%HV v %W ol ;:;f) 15
—(a 07 + Y opEp + 360“2 Dyt 4 Q2>dsz ?
If we further assume 6 € [0, %], then
0 i+ Dy W0 = WO ey g7 4 VO e

and &(f) > 0. The energy relation, therefore, gives an energy stability for the model.
When the model is damping free with y =y, =0, the energy relation leads to energy
conservation.

In this work, we propose and analyze a family of numerical schemes for the mixed-
order model (1), that is accurate, efficient, and at the same time satisfies a provable discrete
analogue of the energy relation and stability (2). The methods are second-order accurate in
time and can be arbitrary order accurate in space. They can be implemented very efficiently
especially in the parallel setting, as the nonlinear algebraic system to solve per time step is
completely decoupled into small sub-systems, with each being of size d X dj; at one (inter-
polation) point in space. Here, d is the number of the components of the electric field that
often but not always coincides with d. The main ingredients to design the methods are:
(i) novel temporal treatments of the nonlinear terms (i.e., |[E|?E and QE in (lc), |[E|? in
(1e)) along with the leap-frog time discretization for the PDE part and a central difference
based two-step time discretization for the ODE part of the model, (ii) nodal discontinu-
ous Galerkin (DG) methods in space with alternating numerical fluxes and with nonlinear
terms handled in an interpolatory fashion [8, 14]. The methods satisfy a provable energy
relation with respect to the discrete energy, and the result further gives the energy stability
under a time step condition in addition to 6 € [0, %] as for the continuous model. It is worth
mentioning that the time step condition is the same for the L? stability when the methods
are applied to the model in the absence of the Kerr and Raman nonlinear effects as well
as the linear Lorentz dispersion. DG methods are chosen due to their many attractive fea-
tures, such as excellent numerical dispersive and dissipative properties in standard wave
simulations, flexibility in adaptive implementation and high parallelization, and suitability
for complicated geometry etc., [14]. Moreover, with the adoption of the nodal formulation
of DG methods, the nonlinearities can be handled very efficiently (see Sect. 2.3 for more
discussions).
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There have been extensive research activities in devising finite difference methods, finite
element methods, and DG methods to simulate Maxwell’s equations in linear or nonlinear
dispersive optical media (e.g., [9-13]). To our best knowledge, the methods proposed here
are the first one to satisfy a provable energy relation/stability based on the mixed-order
Jform of (1) that model the electromagnetic waves in optical media with the linear Lorentz
dispersion, and nonlinear Kerr and Raman effects. The work is motivated by the previ-
ous developments of designing numerical methods with provable energy relation/stability
when the underlying equations are entirely in the first-order form, that is, with (1d)—(1e)
reformulated into

oP=1J, 0J+y]+wP=wE, (42)

00=0, 0o+7,0+wQ=aw’|E (4b)

Examples of such efforts for the first-order form model (i.e., (1a)—(1c), (4)) include energy
stable DG schemes in [4] and FDTD schemes in [5] in one dimension, and energy stable
DG schemes in [17] in higher dimensions. The key for these methods to achieve a prov-
able energy relation lies in the treatments of the nonlinear terms, with the one for the
Kerr term most nontrivial. Particularly, the strategies in [4, 5, 17] all start with an auxil-
iary vector Y = |E|?E and the discretization is designed based on the differentiated form
0,Y = 0,(|[E|*E). When the media responses only contain the nonlinear Kerr effect (i.e.,
without the linear Lorentz response and 6 = 0), the idea above is also applied to an FDTD
method for the transverse magnetic (TM) mode of Maxwell’s equations in two dimensions
and extended to a finite element method in three dimensions.

In relation to the work reviewed above, our proposed methods here are closest to those
in [17], in their use of nodal DG spatial discretizations and the leap-frog method in time
for the PDE part. The nonlinear Kerr term is handled similarly as in [4, 17] based on
0,Y = 0,(|[E|*E), yet with additional adaptation to suit the two-step temporal discretiza-
tion setting. For the nonlinear Raman term QE, unlike the algebraic strategy in [4, 5, 17]
that works for the first-order form of the model, the model of the mixed-order form in this
work together with the two-step temporal discretization strategy call for a second auxiliary
vector W = QE, with the proposed numerical treatment based on the differentiated form
0,W = 0,(QE). Relatedly, a special discretization is employed to the nonlinear driving term
|E|? in (le). The proposed discretizations for the nonlinear Raman term is one main contri-
bution of this work. As one will see in Sect. 2.3, we will not directly solve and store ¥ and
W in actual implementation.

The remainder of the paper is organized as follows. In Sect. 2, we formulate the pro-
posed numerical schemes. Particularly, a second-order temporal discretization is presented
in Sect. 2.1 with special attention given to the nonlinear terms; in Sect. 2.2, we further
apply a family of nodal DG methods in space, illustrated using the two-dimensional (2D)
model with the transverse electric (TE) mode. For both the semi-discrete in time and fully
discrete schemes, the energy relation and stability are established. In Sect. 2.3, some dis-
cussions are made for implementation. In Sect. 3, the performance of the proposed schemes
is demonstrated through a comparison with the methods in [4, 17] (implemented in nodal
form) regarding the accuracy, computational efficiency, and energy stability, through a par-
allel scalability study, and also through simulations of the soliton-like wave propagation in
one dimension, as well as the spatial-soliton propagation and two-beam interactions in two
dimensions. Concluding remarks follow in Sect. 4.
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2 Numerical Methods

In this section, we formulate and analyze the proposed numerical schemes for Maxwell’s
equations in nonlinear optical media in (1). Particularly, a second-order time discretization
will be presented in Sect. 2.1, with the focus on handling the nonlinear terms to achieve a
provable energy relation/stability. With nodal DG methods (of any formal accuracy) further
applied to space, we will come to the fully discrete schemes in Sect. 2.2. Energy stability
relations will be established for both the semi-discrete in time and fully discrete schemes.
Some aspects of implementation will be discussed in Sect. 2.3.

2.1 Time Discretization

We start with some notation. Let 0 = 1 < t! < ... <N = T be a uniform partition of [0, T
with * = nAt, At = T/N,. For a grid function u with 1" as its value at #", we define

un+1 +u" B un+1 +2u" +un—1

Py ,
2 4

Our proposed temporal discretization is second-order accurate, and it involves the leap-frog
method for the PDE part of the first-order form in (1a)—(1b), as well as a central difference
based two-step method for the ODE part of the second-order form in (1d)—(1e), with spe-
cial attention paid to the nonlinear terms, namely, |E|>E and QE in (1c), |[E|? in (le), that
are related to the nonlinear Kerr and Raman effects. Particularly, given W' u", we look for
u't, withu = H, E, D, P, and Q, satisfying

Hn+1/2 _H"
Sy oY
Dn+1 _Dn
- VxH™2, (5b)
Dl = €0<€mE"+1 + P a(l - o)yt +a0W"+1>, (5¢)
| 12 2
Yn+l _ Yn—l — < En+1/2 + En—l/Z —En+l/2'En_l/2>(E”+l _En—l)
_ _ (5d)
s

Wit Wt = (@7 B - g BT, (5¢)

pr_opraptt  prioptl = —
arp oA el = ok °
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Qn+1 _ 2Qn + Qn—l Qn+1 _ Qn—l J—

a2 S Gy ek S T A A (52)
Hn+l _Hn+l/2 .
'MOT = —-VXE +1. (Sh)

Here, the nonlinear Kerr term |E|2E is handled in a similar fashion as in [4, 17], with addi-
tional adaptation to the two-step temporal discretization setting. The key is to introduce an
auxiliary vector ¥ = |E|?E and to consider its differentiated form

0,Y = (3|E|* - 2|E|*)0,E + 2(E-0,E)E. (6)
Indeed, (5d) is a second-order discretization for (6), and this can be better seen through the
following equivalent form of (5d):

2
+

| 12

En+l/2 En—1/2 2

EH2 4 gre1/2

Yn+]/2 _ Yn—l/2 =13
2

(En+l/2 _ En—l/Z)
2

+ 2(ﬁ‘(En+l/2 _ En—1/2)>ﬁ.
N

For the nonlinear Raman term QF, unlike the algebraic strategy in [4, 17] that works for the
first-order form of the model, the model of the mixed-order form in this work together with
the two-step temporal discretization strategy call for a second auxiliary vector W = QF and
its differentiated form

o,W = Q0,E + (0,Q)E. (8)

Again, (5e) is a second-order discretization for (8), and this can be better seen through the
following equivalent form of (5e):

Qn+1/2 + Qn—l/2
2

En+l/2 + En—l/2

W2 _ w12 <En+1/2 _En—l/2>

&)

Relatedly, a special discretization is employed in (5g) to the nonlinear driving term |E|%.

The temporal discretizations are carefully designed for different terms of the model to
achieve a provable energy relation/stability, a discrete analogue of (2), that is given in the
next theorem.

Theorem 1 (Semi-discrete in time energy relation/stability) Under the assumption of peri-
odic boundary conditions, the semi-discrete in time scheme in (5) satisfies
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2
dQ

Pn+1 _ Pn—]
2At

/2 _gnm1/2 - EOVN/
Q

@?
P

EOQQYVAI / Qn+1 _ Qn_l ZdQ % (10)
202 Jo 2A1 h
with the discrete energy defined as
7 n—1 2 2
o172 — / Hom g1 4 S0 [pn1/2 : & |P-P 0% | pn-172 :
al\ 2 2 2w? At 2w?
P P
2
+ caf [ Q"= Q" + €oa‘9w E-12 2 + 3epa(l — 0) 12 !
do? At 2 4
2
ﬂ(Qn—l/Z) )dQ.
an
Here, we write
— n+1/2 n—1/2
7 f% (12)
Proof The following two relations will be repeatedly used:
1 -1 — = 1/2 -1/2
E —En _pHA_pin, 7= E™/2 4 gl (13)
2 2
Applying two time steps to (5a) and (5h), we have
n+3/2 _ pgn—1/2 _
%% = —VXE"12, (14)
and hence
Ho n+1 n—1 :n
7(H ~H ) = —AIVXE". (15)
Based on (5b), we get
D2 prl 2 = ArVXH” (16)

Take the dot product of (16) and E" , (15) and I?, integrate the resulting equations over
and sum them up, and under the assumption of the periodic boundary conditions, we obtain

Ho (H"+1~f7—17-H"—1>d9+/
2 Q Q

(D—n+1/2 _ Dn—l/Z).ﬁdg =0. (17

For the second term above, we proceed from (5c) and get
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(Dn+l/2 _Dn—l/2>‘§

60; | _ | +—€°a(12_9)(Y"+'—Y"‘1)-§ (18)

0ad =
+ %(Pn+l Pn )En 2 (WVI+1 anl)‘En.
For the Kerr term in (18), using (5d), we have

(Yn+l _ Ynfl)‘ﬁ

2 12 2 2
— <En+l/2 + En—1/2 _En+1/2.En—1/2> < En+l/2 _ En—1/2 >
1 1/22 | 1/2'2 1/2 1/2'2
n+ n— n+ n—
+ 5( E - |E > E +E (19)
3/ 12 2\ /] 12 2
— §< En+l/2 + En—1/2 ><En+l/2 _ En—l/2 >
_ % E2 ! _3 En—l/2I4
For the Lorentz term in (18), using (5f), we have
(Pn+1 _Pn—l)_E_vn
n+1 -1 +1 -1 —
_L(P"H_pn—l). P 2P+ P _H/P" -r g
12) (Af)? 2At 0
B Pn+l —p" 2 1 P! _Pn—l 2 N 2}/At Pn+1 _Pn—l 2 (20)
w? At w? At w? 2At
P P P
2 2 2 2
+ _(; Pn+l/2 _ _g Pn—1/2
W w
14 p
For the Raman term in (18), using (5¢), we have
_ _ |—2 __ —2
(Wn+l _ Wn_l)'En — Qn+l/2 En+1/2 _ Qn_1/2 En—l/Z
(21

+ %(Qrwl _ Qn—l)En+1/2_En—1/2

with the last term above further reformulated based on (5g),
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(Qn+1 _ Qn—l)En+l/2‘En—l/2

1 ., - Qn+l _ 2Qn + Qn—l Qn+1 _ Qn—l —
=gl ])( (A1) the—a T

1 Qn+1 _ Qn 2 1 Qn _ Qn—l 2 2}/ At Qn+1 _ Qn—l 2 (22)
=a7< At > _E< At > TR ( 241 >
+ (Qn+,/2>2 - (Qn_l/z)?

Combining (17)—(22), we will reach the semi-discrete in time energy relation (10) with the
discrete energy defined in (11).

2.2 Fully Discrete Schemes

In this subsection, we will further apply a class of nodal DG methods in space to obtain
fully discrete schemes. We will present the methods in two dimensions for simplicity, and
the extension to three-dimensional (3D) and one-dimensional (1D) cases is straightfor-
ward. Since the Maxwell’s system (1) in the TM mode has essentially 1D nonlinearity (i.e.,
dy = 1), we will consider its TE mode with d; = 2, namely,

1o H, + 0.E, — 0,E, =0, (23a)
oD, - ,H_ =0, (23b)

D, +0.H_ =0, 230)

D = (e + P+ a(l - O)EPE +a0QF ), (23d)
0P +y0,P+ P = a)f]E, (23e)

0,0 +7,0,0 + 0’0 = o’ |E|. (23f)

Here, U = (U,, Uy), withU = D, E, P, stand for vectors with two components U, and Uy in
the x-y plane.

DG methods of the nodal form, instead of the modal form, are adopted here, due to
their efficiency to deal with the nonlinearity. To prepare, we will start with some notation.
Assume the computational domain is = [x,,x,] X [y,,y,]. Let

7, = {KU =[x 0= B 1 = Dy Ly b TSN, <j<Ny}

be a mesh for €2, that is based on a partition in the x direction: x, = x; < x3; < =+ <xy L1 =X
2 2 x5

and a partition in the y direction: y, =y1 <y; <. <yy, 1= yb.A For a typicail cell
2 2 Yy 2
K;=1;XJ;, we denote its center as (x;,y;). We write Ax; = |[;, Ay;=1J;|, and set
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h = max(Ax;, Ay;). We further assume the mesh is quasi-uniform, namely, there exists a con-
L] '
stant 6 such that —2—— < § as the mesh is refined.
mm(Ax‘,Ay,)
ij
Associated with 7,, we introduce a finite-dimensional discrete space

vk = {v € LXQ) ¢ vly, € QK. 1<iSNL1<)< Ny} (24)

with QK(K ;) being the set of tensor-type O polynomials with degree up to k in each variable on

K;. Without confusion, we also use Vk to represent its vector version. Note that each func-

t10n S Vk is discontinuous at x = x;, ! and aty=y;. ik 1. With v(x+, ,V) = hm v(x,, ! +v,y),
2
v(x, y_+ D)= hm v(x, Y i+l + v) being the one-sided traces, we write the Jumps of v E V"
2

atx = xl.+% andaty = yj+%as [V]XH% = v(xi+%,y) - v(xl:r%,y), [v]y/ ; = v(x,yj:%) - v(x,yj:r%),
respectively.

For the nodal DG formulation, we introduce the (k + 1)-points Gauss-Legendre quad-
rature points as {£,}* meo ON [—1,1] with positive weights {vAvm}fn _o- The corresponding
quadrature formula is exact for polynomials of degrees up to 2k + 1 (i.e., for functions in
PHH([=1,1])). Let {1, (éj)}k be the Lagrange basis of P¥([—1, 1]), satisfying ,(€,,) = .,

Here, 6, is the Kronecker delta Associated with each element Ku’ we define

; _ ; Y=Y
Pn62) =1 <A /2)1"(Ay_,»/2>’

. k
v Ay, . j
and set x;, = x; + ﬂﬁm, Yin =Y+ if It is easy to see that {qﬁfim(x y)} forms an
mn:

orthogonal basis for Vkl K, = = O"(K, ;) with respect to the L? inner product on K, ;- Relatedly,
we introduce a local 1nterp01at10n operator f’ C(K;) — O (K ;) that satisfies

(Z’J)(x,-m,y,-,,) = f(Xypps ¥jn) for allm,n = 0, -+ , k, and equivalently,

k
(7)) = Y, F i)l en), () €K, 25)

m,n=0
We further define a global interpolation operator Z,: W, (£2) — V" with Z, | K, = I‘j . Here

W,(Q) = {f € 2@). flx, € CKy). 1<i<N,1<j< }wnh C(K;) as the set of con-
tinuous functions on K. The next lemma recalls some properties of the operator Z,,.

Lemma1 [17] For any f € W, (Q), there hold

® /Ih(f)WdQ=/Ih(fu/)dQ, Yy € VK
Q o

as a special case, /Q Z(PwdQ = fg Py dQ forall g,y € VK,
(i) if, additionally, f is nonnegative, then fQ Z,(Hd > 0

We are now ready to present the fully discrete schemes, that combine the temporal dis-
cretization in the previous section, and nodal spatial DG methods with the discrete space
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Vf (k=0,1,2,--). Particularly, given u}~',u” € V¥ at /"~ and ", we look for uZ“ € Vkat

!, withu = H_, E, D, P, and Q, satisfying

Hn+1/2 _H"
h h
pm(—z v : ,¢>) +BJ(E},$)=0, VYpeVy, (26a)
Dn+l D"
h h H +1/2 _ k
(#ﬁ) + By H ) =0, VeV, (26b)
Dn+l _nn
yh yh H n+1/2 k
<T"”) +BlHS ) =0, VpeV, 260
DIt = eo<€mEZ+1 +P +a(l -0 + aoWy! > (26d)
2 | 12
— n+1/2 -1/2 1/2 -1/2 7 —
YZH_YZ 1=Ih(<Eh+/ + EZ / _EZ+/ EZ / >(E}:+1_EZ 1)>
_ _ (26e)
+ 2Ih<<E;-(E;+1 —EZ‘1)>EZ>,
W;ll+l _ WZ_] — ZIh< Z+1/2 EZ+1/2 _ 2—1/2 EZ_1/2>7 (26f)
Pn+1 —_op" +Pn—l Pn+l _Pn—l — —
h h h h h 2 _ _2ymn
G VT A Tk = @k (268)
QZH B ZQZ + QZ” QZ+1 - QZ_I = 2 n+1/2  yn—1/2
(A1)? ey el (Eh Fi > a
Hn+1 _ gntl/2
zh zh E n+1 k :
Mo(T/z,¢>+3h(Eh 9)=0, VopeV,. (261)

Here, (-, ) is the standard L? inner product for L*(Q), and the bilinear forms BE, 851, and
Bﬁ; are defined as

Vir

N, X
BEE, ) =Y / Eue.y, DI), | dx + (B 0,
s i (27a)

N,

Yo _
-y [ E 109, 4y = (Eyys 0,

i=1
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N, Xy~
BZI(th’ ¢) = 2 / th(x’ yj+% )[d)]yﬂl dX + (th’ ay¢)7 (27b)
j=1 7% 2
N, Yo
Bt == 3, [ Ey D0l dy = (0,00, @70)
=1 Y 2

with Ify\h Ex\h i]?h and IT,, as numerical fluxes, a key ingredient of DG methods for both
numerical stability and accuracy. Specifically, we choose to use alternating fluxes as in
[17]. Among the four possible choices of alternating numerical fluxes from [17], we con-
sider the following two in this work. The important property Lhe ﬂuxg possess is that £,

and Ifljh take traces from opposite sides of an interface, so do E/“;l and I-};
Alternating 1:

Ey29) = Bl 9 Euly,) = Eulsoy”,) (s0)

Ty = 0,90, Ty(03,00) = Hye7 ). (28b)
Alternating 2:

Ey23) = Bl 9 Euly) = Euly7, ) (292)

T 1o) = Hylo 90, (3,000 = Ho v (29b)

With the nodal form of DG spatial discretizations, nonlinear terms in (26e), (26f), and
(26h) are handled in an interpolatory fashion [8, 14] through the interpolation operator Z,,.

Indeed, (26f) in its strong form is equivalent to the following weak form, with any ¢ € V¥,

[ wrt = wigay
Q

1/2 1/2 —1/2 -1/2
=2 th< I ERN 0 e />¢>dxdy

(30)

x Axi ij k o n+1/2 n+1/2 n—1/2 yn—1/2
= 2 & & TTmJlZZmewn ( h Eh - ¥y Eh )qﬁ)(xlm,yjn)

The second equality is due to the definition of the interpolation operator and the exactness
of the (k + 1)-point Gauss-Legendre quadrature for polynomials of degrees up to 2k + 1.
Equalities of this type also facilitate a more precise definition of a discrete energy, with
respect to which the fully discrete methods have a provable energy stability, see Theo-
rem 2. The nodal form of DG methods leads to great flexibility in practical simulation
and boost the computational efficiency in solving the nonlinear system, partially illustrated
through (26f) and its equivalent form
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with m,n=0,--,k, i=1,---,N,, j=1,-+,N, (also see Sect. 2.3), while preserving the
energy relation (2)—(3) at the fully discrete level. Similar equivalent forms hold for (26e)
and (26h).

Theorem 2 (Fully discrete energy relation and stability) Under the assumption of periodic
boundary conditions, the family of the fully discrete schemes in (26)—(27), with the discrete
space V,’f (k=0,1,2,--) and the alternating fluxes in either (28) or (29), satisfy

2

1 n—1
g2 gnm12 _ €oVAf/ AR 40
h h 6()12) Q ZAt

(32)

2
€paly, At o - o
202 g 24t <0

with the discrete energy 5’;_1/ 2 defined as

-1/2 _ Ho 1, €0€w
82 _A (TH"h H7h +— 2

\ )
P - P

At

_2
g2 €o

h 2602

P

2 v/ —1 _

€00 | =172 2+ ead [ Q) — O, eoaG o 2 12 : 33)

202 [ 402 At 2 Ei
3epa(l — 0) - 1/2 €al (T ?
+—=— 7 +— dQ,
4 g 4 \Zh
. w12 | pn=1/2 3
and with H;‘h = % Moreover, when 0 € [0, Z] and under a time step condition,

min(uy, €y€q,)

Ar <
< C*

h,

the discrete energy S"h_]/z > 0, hence (33) gives an energy stability result. Here, C, is a
constant, dependent of the polynomial degree k and the mesh parameter 6.

Proof Step 1: we will first establish the energy relation in (32). The proof will follow a

similar flow as that in Theorem 1 for the semi-discrete in time scheme. Again, the relations
in (13) will be repeatedly used. Applying two time steps to (26a) and (26i), we obtain

@( 2 g1, ¢) + AtBE< E/? ¢> =0, V¢ e VK, (34)

2 zh zh

and hence,
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. Eo (hyt = Hy T, ) + ABE <1Th ¢> =0, VpeVk (35)
Based on (26b)—(26c¢), we have

(1)2“/2 -p'72, ¢> + ABY(HY,, b) + ABY (T, ¢) =0, VpEVE  (36)
Taking ¢ = H_"h in (35), ¢ = ITZ in (36), summing them up, and using periodic boundary
conditions, we reach

S () = 3 () + (DZ“/Z—DZ‘I’Z,E_Z>=O. 37

The terms associated with spatial operators are canceled due to the specific choices of
alternating fluxes in (28) or (29),
What remained is to analyze the third term in (37). To this end, based on (26d), one has

n+1/2 172 on
(Dh _Dh EZ)

-2 2 R
€0€c0 || on+1/2 €€ n—1/2 €0a(1 —0) +1 -1 n
== E, - E, L Y,;" -Y, . E; (38)
€ = €,a0 =
+ 50 <PZ+1 - PZ‘I,EZ> + —"2 <WZ+1 - W;*,E;).
Here, || - || is the standard L? norm. For the Kerr term, using (26e) and the property of the

interpolation operator 7, in Lemma 1, we have
n+1 n—1 :n
<Y P 6 Eh>
[wi2|
1A
_ (zh(( E’

:n n+1 n—1 :n :n
+2E-(E* — )Eh>,Eh>

- Jon((F

1/2 2
o
+ Eh

_EZH/Z'EZ_I/Z)(EZH _EZ—I)

2 (39

12
n—1/2
+|E,

n+1/2

2
n+1/2 n—1/2 n+1/2
h -E E, >( E,

| n—1/2
h - B,

))dQ

1 n+1/2 2 n—1/2 z n+1/2 n— 1/2
Z/Ih<< A I Rl B | ARy I
3/1 <E”+‘/2 )dQ 3/1 <E -2 )dsz
2 h _E h .

For the Lorentz term in (38), by virtue of (26g), we have
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(pr -y )

Pn+l _ 2Pn +Pn—1 Pn+1 _Pn—l —
=— (P -pt L Lyt WlP;
wg< (A1) "TToA ot
40
1 PZ+1 _ PZ 2 1 PZ _PZ—I 2 ZyAt Pn+l Pn 1 2 ( )
B (7127 At a (17127 At a)g 2A¢
(2) +1/2 . “’3 172 2
.
+ = |IP P
P p

For the Raman term, by (26f) and the property of the interpolation operator Z,, in Lemma 1,

we have
n+1 n—1 :n
<Wh+ _Wh ’Eh>

<Ih< n+1/2 En+l/2 _ QZ_I/Z En_l/2>,E2+l/2 +EZ_1/2>

h h
2
/Ih<Qn+1/2 >dQ—/Ih<Q" 12 )dQ

1 _ FH2 g1/
+§<QZ+ o Ih( E >>

with the last term in (41) further formulated based on (26h),

n+1 +1/2 n—1/2
(o -ora(E775 7))

n+1 n n—1 n+1 n—1
L<Qn+l _ Qn—l Qh ~ 2Qh + Qh Qh ¥
> 5
v

- (41)
n—1/2
h

n+1/2

+ vy + 2:n
(A1)? LYY “’th)

2 (42)

Combining (37)-(42), we obtain the energy relation (32) with the discrete energy SZ “1/2in
(33).
Step 2: we will next derive a condition on the time step size, that will ensure the dis-

crete energy 5"h_l/ *in (33) to be nonnegative, hence the energy relation (32) can lead to the
energy stability. By (13) and (34), we get for any ¢ € V;l‘

n _ n—1
h h

At

112
1
At

1
?
n n—1 |2

+1 Qh 1

2At

w2
v

2y, At

w?
v

12
n+1/2
h

n— 1/2
h

+
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—
P

(H" —thl, +At2/ E"- 1/2[¢] (x, y+1)dx+At< g2 a¢>

43)
_AtZ/ < E" ‘/2[q>]>(x+ ,y)dy — Az( e a¢> =0
Particularly, with ¢p = H_;’h, we have
an 2 n n—1
w5 | = wo (5 157
< [ 7—1\/2 i n—1/2 3 T
=At2 [ £, ]dy+At(Eyh ,6XHZh>
i= a i+5
Ny = (44)
—AtZ/ e[ ax- At( E ()H")
j=1 /%, ! My
2
ArC, [
ST < E,7) ”th :
hence,
— 2
_—— B AIC N\t AIC, o
2 (th’H ) <2 2h |th 2 |[F (45)

To get the last inequality in (44), we have applied some standard inverse inequalities asso-
ciated with the discrete space V¥, see Lemma A.4 in [17]. The constant C, depends on k
and the mesh parameter 6. With the bound in (45) and the properties of the operator 7, in
Lemma 1, we will find that if the time step size At is restricted by the following:

Ho AtC, >0 €€ ArC,

, 20,
2 2n 7 2 2n 7

that is, At < %ﬁoe‘”)h, along with the condition 6 € [0, %] as for the continuous model,
we will have

_ 4
62_1/22(/ eOZHIh<< ‘o 1/2) >+MI}’< >>dQ>O.
Q

Remark 1 For the governing equations of the mixed-order form considered here and that
of the first-order form in [17], the PDE part is in the first-order form, and the time step
condition for the energy stability of the proposed method here (see Theorem 2) is identical
as that of the method in [17] (see Theorem 4 therein), with the same constant C,. Indeed,
the time step condition is the same for the L? stability when the methods are applied to
the model in the absence of the Kerr and Raman nonlinear effects and the linear Lorentz
dispersion.

E" 1/2

n—1/2
Y E

h

Remark 2 If we only apply nodal DG discretizations in space, with the time variable con-
tinuous, this will give the semi-discrete in space nodal DG methods. Following a similar
analysis as in [17], one can establish a prior error estimates under some assumptions on the
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strength of the nonlinearity when the exact solutions are sufficiently smooth. More specifi-
cally, the methods can be shown to be optimally accurate of the (k + 1)th-order accuracy
in the L? norm when Vﬁ is used as the discrete space. The details of the proof are omitted.

Remark 3 In addition to alternating fluxes, other choices of numerical fluxes can be used,
such as central or upwind type fluxes as in [4]. The resulting schemes still enjoy provable
energy stability. They are not considered here, as the schemes with central fluxes can lead
to sub-optimal accuracy, while the schemes with upwind-type fluxes are implicit and the
associated nonlinear algebraic systems will no longer be local in nature. Interested readers
can refer to [4] for more information.

2.3 On Implementation

The fully discrete schemes in (26) evolve the unknowns semi-explicitly. For the PDE part,
with the leap-frog temporal strategy and the alternating numerical fluxes in space, H"H/ 2
and D”Jrl are updated explicitly, indeed locally in an element by element fashion. ThlS
renders high parallel efficiency as widely known for explicit DG methods. For the ODE
part along with the constitutive law, the discretization is implicit. Over each time step, one
needs to solve a system of nonlinear equations to update E"Jrl P"Jrl and Q”Jrl again locally
for each element (i.e., K;; when d = 2). Moreover, beneﬁted from the nodal treatment of the
nonlinearities (see, e.g., (3 1)), the nonlinear system for each element is in fact a decoupled
(k + 1) smaller nonlinear systems, with each associated with one interpolation point (i.e.,
(x,m,yjn) m,n =0, -,k in the TE mode of the problem with d = d; = 2). Each of these
small systems can be further reformulated and reduced to a di X dy system of nonlinear
equations, that only involves the unknown values of E"Jrl at one nodal point, by eliminating
P"+1 and Q”Jr1 using (26g)—(26h). All the algebraic nonlmear systems are cubic in nature
due to the type of nonlinear effects considered in this work. They are entirely decoupled
from each other, and can be numerically solved very efficiently in a parallel manner over
one time step. The local nature of the entire schemes (in both the PDE and ODE discretiza-
tions) will be fully explored in our parallel scalability study in Sect. 3.1.2.

In terms of memory usage, to evolve the numerical solutions from #~!, " to , we
store uh Tand uh, withu = E, P, Q, as well as H ~1/2 We do not directly solve or store the
auxiliary quantities Y”Jrl and W"“ as only thelr temporal differences are needed. In fact
from (26d), we have

["+1

DZ+1 —DZ_I — €0<600(E7l+1 _EZ—I) + (PZ+1 _PZ—I)
(46)
+a(l = O =¥, +a0W - W),

One can then apply (26e)—(26f) to eliminate Y, nH YZ_I and WZ“ — W’;_I, and only store
Dn Dn 1

Note that the proposed schemes are two-step methods. In addition to the initialization
at t = 0 through interpolation, the one-step methods in [4, 17] are applied to obtain the
numerical solution at ¢ = t!. The flow chart to implement the overall schemes for the TE
mode of the system is summarized as Algorithm 1.
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Algorithm 1: The flow chart to implement the proposed schemes for the TE mode
Initialization: Starting with ug, uw=H,, E, P, )P, Q,and 0;Q,

(i) compute H;,/lz at t = At/2 using (26a), and
(ii) compute u}, u=E, P, Q at t = t! using the one-step methods in [17].
Time marching: Forn =1,--- N,
(S.1) update H:’,;rl/2 locally in each element by solving

Hn+1/2 _ anl/Q
Mo(Zh o)+ BE(E],6) =0,

(S.2) update D,’Z’H — Dy, again locally in each element, based on (26b)—(26c).
(8.3)Fori=1,--- Ny, j=1,--- ,Ny, myn=0,--- ,k, in a decoupled fashion,

— compute E,’IL+1 at (Tim, Yjm) by solving a di X dg system of nonlinear equations, and
then
— update P,;”“ and QZ“ at (Tim, Yjm) explicitly based on (26g)—(26h).

3 Numerical Experiments

In this section, we will demonstrate the performance of our proposed schemes in terms
of accuracy, efficiency, and energy preservation through a set of 1D and 2D numerical
examples. Comparison is made between the schemes proposed here and those in [4] (when
d=1) and [17] (when d = d; = 2), that are based on the first-order form of the under-
lying equations and also satisfy provable energy stability relations. Moreover, a scalabil-
ity study is performed to illustrate the parallel efficiency. All numerical tests are carried
out using the nondimensionalized model, though some results are presented with physical
units for better illustration. For each dj; X d; nonlinear system F(u) = 0 associated with an
interpolation point (with d; = 1, 2), the classical Newton’s iteration method is applied with
[|F(u*)||, < Err, as the stopping criterion. Here Err,; is a given error tolerance. All simu-
lations are performed on uniform meshes in double precision.

3.1 Accuracy, Energy Conservation, Parallel Scalability
3.1.1 1D Kink Shape Solution

In this example, we follow [4, 19] and consider the propagation of a 1D traveling wave of
kink shape in © = [0, 6], governed by
0,H=0FE, 0D=0H,
0,P = —co(z)P + a)lsz,
D=¢ E+aE>+P
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in the absence of the Ramen nonlinear effect as well as the damping in the linear dispersive
Lorentz effect, i.e., with & = 0,y = 0. The solution is 6-periodic, with the electric field in
the form E(x, ) = ©(x — v¢) and satisfying

doe

= _ o,

dé

do _ 6av*OdD? + (emw(z) + (0127 - wé/v2)® + awé®3
dé 1 —e 2 — 30202 ’

where

€ =225, €, =525, B = €, — €y, 0y =93.627 179982222216, w, = wy /B,
a=¢ey/3, v="06545/\/c., EQ0) =0, ®0) = 0.249 196 667 778 658 12.

The initial conditions for other quantities can be obtained as in [4].

This example will be used to illustrate the accuracy of the proposed methods and the
energy conservation. In our simulation, the following two alternating numerical fluxes are
used.

Alternating 1:
Eh(xi+%) = Eh(x;%),Hh(xH%) = Hh(x:_%) (47a)

Alternating 2:

ey 1) = Byt ) Hy(xy ) = By ). 7b)
: _

1
The final time is 7 = 9/v. To match the (k + 1)th-order accuracy in space, we first set
dt = Ch**VY/2 with C = 0.2/vfork = 1,C = 1fork = 2, and C = 2 for k = 3. The time step

size is then taken as At = to render a uniform temporal mesh. Here [x] represents

T
the greatest integer less than or equal to x. The error tolerance in the Newton solve for each
nonlinear equation is Err,,,=10710. This test is carried out sequentially using Fortran on
Thinkpad-X1-Extreme with Intel Core i7-8850H CPU 2.70 GHz and 16 GB Memory.

In Tables 1 and 2 (left half), we report the L2 and L™ errors and convergence orders of E
computed by the proposed methods with k = 1,2, 3 and two alternating fluxes (47a)—(47b),
as well as the CPU time. The results confirm the optimal accuracy of (k + 1)th order espe-
cially under the L? norm. The difference due to the two sets of fluxes is negligible. As a
comparison, we also present in Tables 1 and 2 (right half) the results by the method in [4]
based on the first-order form of the model, implemented in the nodal form. (Note the meth-
ods in [4] were described in their modal form.) Schemes of the same accuracy order from
both families produce almost the same errors, with the comparable elapsed time. The non-
linear algebraic systems solved at each interpolation node in both families of methods are
of the same size, with the proposed methods here involving relatively more algebraic eval-
uations to generate the nonlinear systems and hence requiring slightly more elapsed time.

For this example, we can define the discrete energy é’r'h“/ % as
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Table1 1D kink shape solution: numerical errors and convergence rates of E of the proposed method
(“mixed-order form™) and the method in [4] (“first-order form”), Alternating 1

N, Mixed-order form First-order form
L? L® Time/s L2 L® Time/s
k=1
100 1.28E-04 - 5.52E-04 - 0.01 1.28E-04 - 5.52E-04 - 0.01
200 4.19E-05 1.61 1.87E-04 1.56 0.05 4.19E-05 1.61 1.87E-04 1.56 0.04
400 1.21E-05 1.79 4.36E-05 2.10 0.28 1.21E-05 1.79 4.35E-05 2.10 0.22
800 3.30E-06 1.87 1.52E-05 1.52 0.63 3.31E-06 1.87 1.52E-05 1.52 0.58

1600 7.37E-07 2.16 3.97E-06 194 2.30 7.37E-07 2.17 3.96E-06 194 1.99
k=2

100 3.54E-05 - 1.70E-04 - 0.03 3.53E-05 - 1.70E-04 - 0.02

200 4.44E-06 3.00 2.24E-05 293 0.19 443E-06 3.00 2.23E-05 293 0.14

400 5.55E-07 3.00 2.71E-06 3.05 1.50 5.54E-07 3.00 2.70E-06 3.05 1.32

800 6.90E-08 3.01 3.46E-07 297 4.83 6.89E-08 3.01 3.45E-07 297 4.14
k=3

100 8.37E-06 - 348E-05 - 0.07 8.35E-06 - 3.48E-05 - 0.06

200 5.23E-07 4.00 2.16E-06 4.01 0.59 5.22E-07 4.00 2.15E-06 4.01 0.58

400 3.25E-08 4.01 1.52E-07 3.83 6.91 3.24E-08 4.01 1.51E-07 3.83 6.04

Table2 1D kink shape solution: numerical errors and convergence rates of E of the proposed method
(“mixed-order form") and the method in [4] (“first-order form™), Alternating 2

N, Mixed-order form First-order form
? L» Time/s 2 L® Time/s
k=1
100 1.42E-04 - 6.57E-04 - 0.01 1.42E-04 - 6.57E-04 - 0.01
200 3.79E-05 191 1.27E-04 2.38 0.04 3.79E-05 190 1.26E-04 238 0.03
400 1.03E-05 1.87 4.10E-05 1.63 0.23 1.03E-05 1.87 4.08E-05 1.63 0.21
800 3.23E-06 1.68 1.18E-05 1.80 0.59 3.23E-06 1.68 1.18E-05 1.80 0.54
1600 9.10E-07 1.83 3.13E-06 191 2.13 9.11E-07 1.83 3.12E-06 191 192
k=2
100 3.53E-05 - 1.53E-04 - 0.03 3.52E-05 - 1.53E-04 - 0.02

200 4.40E-06 3.00 1.93E-05 299 0.17 439E-06 3.00 1.92E-05 299 0.16

400 5.51E-07 3.00 242E-06 3.00 1.43 5.50E-07 3.00 241E-06 3.00 1.19

800 6.90E-08 3.00 3.12E-07 2.95 4.69 6.80E-08 3.00 3.11E-07 295 4.18
k=3

100 8.36E-06 - 3.44E-05 - 0.07 8.35E-06 - 3.43E-05 - 0.08

200 5.23E-07 4.00 2.15E-06 4.00 0.56 5.22E-07 4.00 2.15E—-06 4.00 0.51

400 3.25E-08 4.01 1.47E-07 3.87 6.39 3.24E-08 4.01 147E-07 3.87 6.04
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—_ N\ 2 7 n—1
- 1— 1, € [ n-1/2 1 (P,—F,
5‘“”:/ “H-H '+ =2(FE 4 ——r
h ol 27 T T\ P 207 At

@y 7\ | 3a 72\
+2—a;)2<PZ_/> + 5T <EZ_/> dQ.
p

Our analysis in Theorem 2 states that the discrete energy is conserved over time, namely,
SZH/ ‘- SZ_]/ % =0, foralln, and this is validated by the time history of the energy devia-

tion SZH/ i 5,1,/ % in Fig. 1. One can see that the discrete energy is conserved up to the
machine accuracy.

3.1.2 2D Manufactured Solution

In this section, we illustrate the accuracy, parallel scalability, and the energy conservation
of the proposed methods in two dimensions.
Accuracy: To demonstrate the accuracy, we consider a manufactured solution

Hz = eCOS(W(t+GX+ﬂy))’

Ex - ﬂCCOS(W(t+ax+ﬂ.V)),

Ey — aecos(w(t+ax+ﬂy))’

P, =E, Py = Ey, 0= H,
D, =E, Dy = Ey,

that satisfies the following 2D nondimensionalized system of the TE mode:
0H, +0.E, —9d,E =0,
9D, —d,H, =0,
9D, +9d.H, =0,
D=c¢c_E+P+a(l —0)|E|’E + abQE +f,,
9P +y0,P + 0P = @ E + fp,
0,0 +71,0,0+ >0 = &’ |E|* + f,

with suitable forcing terms f, fp, fQ added to the constitutive relation and the ODE
part. The computational domain is Q = [0, 2x/(aw)] X [0, 2%/ (pw)] with a = cos(0.3x),

%1015 10715 3 x10713

— Alternating 1 — Alternating 1
- — - Alternating 2 - — - Alternating 2

— Alternating 1
- — - Alternating 2

Fig. 1 1D kink shape solution: energy deviation 5"h+1/2 —5111/2. Left: k =1, middle: k =2, right: k= 3.
Mesh: N, = 400
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f = sin(0.3w), w = 1.0, and the boundary conditions are periodic. The model parameters
are set as: €, = 1.0, o, = w, = 1.0,y =0.05,a=1/3,0 =05, w, = 1.0, y, = 0.05. The
final time is 7 = 1.0.

Our numerical schemes (26) are adapted by adding the forcing term f;,"*! to (26d), fp"
to (26g), and f” to (26h). To match the (k + 1)th-order accuracy in space, we first set

dt = Ch**D/2 with h= —2  Cc=03fork=1,C=1for k=2, and C =2 for
(Ax)~T+(Ay)~!

k = 3. The time step size is then taken as At = to render a uniform temporal mesh.

T
The error tolerance in the Newton solve for each nonlinear system is Err,,; = 1072, This
experiment is carried out using MPI Fortran on the cluster LSSC-1V of the State Key Lab-
oratory on Scientific and Engineering Computing, Chinese Academy of Sciences, with 16
processors.

In Tables 3 and 4 (left half), we report the L? and L*® errors and convergence orders of
H_ computed by the proposed methods with k = 1,2, 3 and two alternating fluxes (28)—(29),
as well as the CPU time. The results confirm the optimal accuracy of (k + 1)th order. As a
comparison, we also present in Tables 3 and 4 (right half) the results by the method in [17]
based on the first-order form of the model. Schemes of the same accuracy order from both
families produce almost the same errors, with the slightly more elapsed time used by the
proposed methods as we have seen in the 1D example with the kink shape solution.

Scalability: It is widely known that the local nature of (explicit) DG methods contrib-
utes to their high parallel efficiency. With the specific treatments of nonlinearity in the
nodal DG setting (see Sect. 2.3), one can expect that our proposed algorithms will have the
similar parallel efficiency as the standard DG methods applied to hyperbolic problems [3].

Table 3 2D manufactured solution: numerical errors and convergence rates of H, of the proposed method
(“mixed-order form") and the method in [17] (“first-order form™), Alternating 1

Mesh Mixed-order form First-order form
12 L™ Time/s 12 L Time/s
k=1
20 x 20 1.32E-02 - 9.06E-02 - 0.00 1.32E-02 - 9.08E—-02 - 0.00
40 x 40 3.61E-03 1.87 2.30E-02 198 0.02 3.61E-03 1.87 230E-02 198 0.02
80 x 80 7.88E-04 2.20 5.56E-03 2.05 0.11 7.86E-04 2.20 5.56E-03 2.05 0.11
160 x 160 2.08E-04 1.92 1.45E-03 194 0.86 2.08E-04 192 1.45E-03 194 0.85
320% 320 5.55E-05 191 3.81E-04 193 6.79 5.54E-05 191 3.77E-04 194 6.59
k=2
20 x 20 748E-04 - 6.43E-03 - 0.01 7.06E-04 - 6.12E-03 - 0.01
40 x 40 8.97E-05 3.06 6.02E-04 3.42 0.04 8.51E-05 3.05 546E—-04 349 0.05
80 x 80 9.87E-06 3.18 6.83E-05 3.14 048 9.25E-06 3.20 6.52E-05 3.07 0.48
160 x 160 1.40E-06 2.81 1.36E-05 2.33 5.31 1.32E-06 2.81 1.27E-05 236 5.07

320x320 1.69E-07 3.05 1.27E-06 3.42 61.62 1.60E-07 3.05 1.16E-06 3.46 57.90
k=3

20 % 20 1.24E-04 - 4.02E-04 - 0.01 8.24E-05 - 3.58E-04 - 0.01
40 x 40 7.85E-06 3.98 2.54E-05 3.99 0.18 5.15E-06 4.00 242E-05 3.89 0.19
80 % 80 496E-07 398 1.78E-06 3.83 2.3 3.26E-07 398 1.60E-06 3.92 274

160 x 160 3.10E-08 4.00 1.06E-07 4.07 46.60 2.04E-08 3.99 9.56E-08 4.06 43.78
320x320 2.12E-09 3.87 7.14E-09 3.89 737.08 1.77E-09 3.53 6.72E-09 3.83 708.47
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Table 4 2D manufactured solution: numerical errors and convergence rates of H, of the proposed method
(“mixed-order form") and the method in [17] (“first-order form”), Alternating 2

Mesh Mixed-order form First-order form
L? L® Time/s L? L® Time/s
k=1
20 x 20 1.54E-02 - 9.71E-02 - 0.01 1.54E-02 - 9.65E-02 - 0.01
40 x 40 330E-03 222 225E-02 211 0.02 3.30E-03 222 226E-02 2.10 0.02
80 x 80 8.34E-04 199 S5.13E-03 2.13 0.11 8.32E-04 199 5.14E-03 2.13 0.11
160 x 160 2.18E—04 1.93 148E-03 1.79 0.85 2.18E-04 193 147E-03 1.81 0.85
320%x 320 5.36E-05 2.02 3.61E-04 204 6.77 5.35E-05 2.02 3.58E-04 2.04 6.61
k=2
20 x 20 6.59E-04 — 391E-03 - 0.01 6.17E-04 - 342E-03 - 0.01
40 x 40 7.43E-05 3.15 3.61E-04 344 0.05 6.87E-05 3.17 3.72E-04 3.20 0.04
80 x 80 9.20E-06 3.01 S5.50E-05 272 0.52 8.49E-06 3.02 S5.65E-05 272 048
160 X 160 1.22E-06 2.92 8.82E-06 2.64 541 1.13E-06 291 7.94E-06 2.83 5.08
320%x 320 146E-07 3.06 9.69E-07 3.19 62.27 1.35E-07 3.06 9.05E-07 3.13 57.80
k=3
20 x 20 1.24E-04 - 4.17E-04 - 0.01 8.13E-05 - 3.17E-04 - 0.01
40 x 40 7.84E-06 398 251E-05 4.05 0.18 5.10E-06 4.00 1.88E-05 4.08 0.19
80 x 80 4.94E-07 399 1.70E-06 3.88 2.81 321E-07 399 1.30E-06 3.85 274
160 x 160 3.09E-08 4.00 1.09E-07 3.96 46.01 2.01E-08 4.00 7.64E-08 4.09 43.68

320320 2.12E-09 3.87 7.66E-09 3.83 73470 1.75E-09  3.52 5.60E-09 3.77 71391

We here will use our method (26) with k = 2 and Alternating 2 flux as an example, applied
to the 2D manufactured solution in the accuracy test, to illustrate the parallel scalability. To
this end, we divide the computational domain into N, subdomains, with N, being the num-
ber of processors used in the simulation, and then time-march the methods in each subdo-
main on one processor, with additional communication in a surrounding ghost layer [2].
We first study the strong scalability of our scheme on a fixed mesh N, = N = 320. In
Table 5, we show the speed-up and parallel efficiency Eg;,,,, as the number of processors
increases. The “speed-up” is the ratio of the computational time with one single processor

. S d-1 . .
to that with N, processors, and Eg; o, = ql’e;—uP. As one can see, over 94% efficiency is

achieved on up to 256 processors. If we furtpher increase the computing resources (e.g.,
N, = 512,1024), the workload over each processor becomes smaller and smaller, and the
parallel efficiency will be restricted by the communication between processors.

We further examine the weak scalability of our scheme by increasing the problem size
and the number of processors N, simultaneously while keeping the workload per proces-
sor a constant. In each simulation, the problem is solved over 200 time steps. As shown in
Table 6, over 90% efficiency is achieved on up to 1 024 processors, exhibiting good scal-
ability for large scale simulation, similarly to the standard DG methods applied to hyper-
bolic problems [3]. Here E,,, is the ratio of the computational time with one single pro-
cessor to that with N, processors.

Energy conservation: To validate the energy conserving property of our schemes in two
dimensions, we use the same initial and boundary conditions as for the accuracy test in
this section, while switching off the external sources fp,, fp, fp, and setting the damping
parameters y = y, = 0 in the simulation. As predicted by Theorem 2, the discrete energy
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Table 5 Strong scalability: k = 2, Alternating 2, N, = N, = 320

N, Time/s Speed-up Eqrong
1 955.774 - -

2 480.076 1.99 99.54%
4 241.309 3.96 99.02%
8 120.725 7.92 98.96%
16 60.631 15.76 98.52%
32 30.369 3147 98.35%
64 15.221 62.79 98.11%
128 7.628 125.30 97.89%
256 3.959 241.40 94.30%
512 2.122 450.43 87.97%
1024 2.564 372.77 36.40%

Table 6 Weak scalability: k = 2, Alternating 2, 200 time steps

N, N, XN, Time/s Eeax

1 200 x 200 44.681 -

2 400 x 200 44.882 99.55%
4 400 x 400 45.014 99.26%
8 800 x 400 45.412 98.39%
16 800 x 800 45.572 98.04%
32 1600 x 800 46.216 96.68%
64 1600 x 1600 46.360 96.38%
128 3200 x 1600 47.209 94.65%
256 3200 x 3200 47.358 94.61%
512 6400 x 3200 49.226 90.77%
1024 6400 x 6400 49.223 90.77%

is conserving. In Fig. 2, we plot the time history of energy deviation SZH/ - 8}11/ 2 up to
T = 100. As it shows, our schemes conserve the discrete energy quite well over long time
simulation.

3.2 Physically Relevant Simulations

In this section, we apply our proposed schemes to simulate some physically relevant prob-
lems, including a 1D soliton-like wave propagation, 2D spatial-soliton propagation, as well
as 2D two-beam interactions. With similarity in the results and to save space, we only pre-
sent the results with Alternating 1 numerical fluxes, i.e., (47a) in one dimension and (28)
in two dimensions. All 2D simulations are parallelly implemented in our codes. The initial
configuration of the solutions are zero for all the examples considered in this section.
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Fig.2 2D example: energy deviation 5";1/2—5}1[/2. Left: k=1, middle: k=2, right: k=3. Mesh:
IV)L = Ivy = 80

3.2.1 1D Soliton-Like Wave Propagation
The propagation of a 1D soliton-like wave in the physical domain Q = [0,45] is governed
by the following nondimensinalized model:
0,H—-0.E=0,
0,D—-0.H =0,
D=¢e E+P+a(l —0)E +abQE,
4P +70,P + 03P = E,
0,0+7,0,0+ w20 = 0’E”.
Following [4, 11], the physical coefficients are

€, =225 €=525 p =ec—€, y=1168x107, y =292/32,
a=007, =03, Q =125, w,=584, o,=128, ,=w)\h.

On the left boundary x = 0, an incident wave is injected as
E(x =0,1) = f() cos(Qyt), f(t) = Msech(t — 20), (48)

where M physically characterizes the order of solitons. This boundary condition can be
imposed through numerical flux straightforwardly with the use of Alternating 1 numerical
flux in (47a). Interested readers can refer to [4] to see how Alternating 2 numerical flux
in (47b) can be applied at x = 0, as for this case the magnetic field H(x = 0, #) needs to be

"o 10 20 30 40 o 10 20 30 40 ) 10 20 30 40
X X X

Fig.3 1D soliton-like wave propagation: fundamental soliton with M = 1. Left: k = 1, middle: k = 2, right:
k=3
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approximated first. At the right boundary x = 45, we follow the strategy in [4] and apply
an approximate absorbing boundary condition by neglecting the nonlinear effects and the
delayed response. The simulation is up to the final time 7 = 80. The mesh size # is equal to
45 /6 400 with the time step size At = 0.1k, and k = 1,2, 3. The error tolerance in the New-
ton solve is set as Err,; = 10710,

In Figs. 3 and 4, we plot the electric fields recorded at ¢ = 40 and ¢ = 80 for the tran-
sient fundamental soliton with M = 1, and for the second-order soliton with M = 2, respec-
tively, with k = 1,2, 3. The results are comparable with those by the schemes in [4] based
on the first-order form of the model. In Figs. 5 and 6, we further show the time evolution
of the discrete energy SZH/ * and the temporal spectrum of E,, respectively. The spectrum
is obtained through the discrete Fourier transform of the electric field E,(¢) recorded at
x=0.2 from ¢t = 0 to time T, = 2n/€, X 50 over 50 time periods. One can see that the
total energy decreases after the entire incident wave enters the domain, demonstrating the
energy stability of the schemes. Moreover, in addition to the main soliton-like pulse with
the fundamental frequency €, the third-order and fifth-order harmonic signals are gener-
ated and detected as in Fig. 6. The third-order harmonic signals correspond to the small
daughter pulses shown in Figs. 3 and 4, while the fifth-order harmonic signals are too weak
to observe in these plots.

3.2.2 Spatial-Soliton Propagation in two Dimensions

In this example, we simulate a 2D spatial-soliton propagation in optical glasses [13]. The
governing equations are

“o 10 20 30 40 “o 10 20 30 40 “o 10 2 30 40
X X X

Fig.4 1D soliton-like wave propagation: second-order soliton with M = 2. Left: k = 1, middle: k = 2, right:
k=3

Fig.5 1D soliton-like wave
propagation: time history of the
discrete energy. Left: M = 1,
right: M =2

Energy
Energy

@ Springer



Communications on Applied Mathematics and Computation

0 T T T T T 0
—E(0.0) [
—— k=1
-1 :.'s — = -1
{ i k=3
= 2 f i = 2
= ! =
5 | 5
5 3 % f‘ ¥ & 3
= AR =
g { g
a4 I ?W’ﬁ 1 a4
5 1 -5
-6 6
0 1 2 3 4 5 6 0 1 2 3 4 5 6
w/Qy w/Q

Fig.6 1D soliton-like wave propagation: semi-log plot of the spectrum of E,. Left: M = 1, right: M =2

o0, H, + 9,E, — 0,E, =0, (49a)
oD, —o,H, =0, (49b)
oD, +9,.H, =0, (49¢)

3
D= eo(eooE +b Y P +a(l - 0)|EPE + aBQE), (49d)
s=1
0uP, +v,0,P, + 0y P = E, s=1,2,3, (49¢)
0,0 +7,0,0 + 0?0 = W?|E|*, (491)

where

@y, = 2.7537 x 10'%rad /s, wy, = 1.6205 x 10'%rad/s, wy; = 1.9034 x 10" rad/s,

By = 0.696 17, f, = 0.40794, f; = 0.89748, w,, = \/fwy,, v,=0.5=1,23,
€o = 1.0, b= 10, a =189 x 1072m*/V?, 6 = 0.3,

247
T = 12.21s, 7, = 32.0fs.

The physical domain is , = [0,38 pm] X [—3 pm, 3 pm]. On the left boundary x = 0, the
following signal is introduced:

H.(x =0,y,1) = Hysin(w t)sech(y/w), (50)

where @, = 4.35 x 1019 rad/s is the carrier frequency. And w, H, are the width and the
magnitude of the incident wave, respectively, which will be specified later. The bound-
ary condition at x = 0 can be imposed directly by the Alternating 1 numerical flux (28).
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Fig.7 2D spatial-soliton propagation: snapshot of |H_| at 7 = 300 fs for the fundamental soliton propaga-
tion, with w = 667.0 nm, H, = 4.77 X 10’ A/m, and k = 2

On the other three boundaries, approximate absorbing boundary conditions as in [17]
are applied to suppress the unphysical reflections. These numerical boundary treat-
ments are simple yet rough, and the actual domain used in our simulation is enlarged to
Q =1[0,60 pm] X [—4 pm, 4 pm] to compensate the possible insufficiency of the adopted
strategy to control artificial reflections. We simulate the propagations up to the final time
T = 300 fs with the time step size A = 0.05 & on a uniform spatial mesh with # = 20 nm in

both the x and y directions. The discrete space V;l‘ with k = 2 is used. The error tolerance in
the Newton solve is set as Err,; = 1078,

%107
(A/m)
10
8
s
£ " .
4
x107
l(A/m)
15
E:i AT i
“o 5 10 15 20 25 30 35
/um
x10%
(A/m)
20
£ 1.5
% I

ST EEEEEEEEEEEEET G H i S N T HEOW

15 20 25 30

@ /um

Fig.8 2D spatial-soliton propagation: snapshot of |H_| at T = 300 fs for the second-order soliton propa-

gation, with w = r X 667.0 nm, H, = 2/r x4.77 x 10’ A/m, and k = 2. Top: a r = 5.99/3.99, middle: b
r=3.99/3.99, bottom: ¢ r = 3.26/3.99
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Fig.9 2D spatial-soliton propagation: semi-log plot of the spectrum of the average of E,, in the y direction
at x = 50 nm and with k = 2. The top-left is for the fundamental soliton propagation, with w = 667.0 nm,
H,=4.77x 10" A/m. The rest is for the second-order soliton propagation, with w =rX 667.0 nm,

Hy=2/rx4.77x 107 A/m: top-right (r=5.99/3.99), bottom-left (r=3.99/3.99), bottom-right
(r=3.26/3.99)

Figure 7 shows the absolute value of the magnetic field |H_,|at t = T, when the param-
eters are taken as w = 667.0 nm and H, = 4.77 X 10’ A/m, corresponding to the funda-
mental soliton. As we can see, the shape and the magnitude remain the same as the wave
propagates in the glass. When we enhance the magnitude of the incident waves properly, a
second-order soliton is launched. This second-order soliton is the direct consequence of the
interference between two fundamental solitons, leading to focusing and defocusing effects
during the propagation, see Fig. 8 and its caption for three sets of parameter choices for @
and H,,.

To showcase the high-order harmonic generation, in Fig. 9 we present the discrete Fou-
rier transform of e, (7) up to 200 time periods 7, = 2n/w,. X 200 with e, (#) being the aver-
age in the y direction of the TE field Ey(x, -,1) at x =50 nm. All four sets of parameter
choices considered so far are examined. For all cases, one can clearly see that the third-
order harmonic waves are generated in the interacting process. As the magnitude H,, of the
incident wave increases and its width @ decreases, the strength of the third-order harmonic
also grows. From Fig. 9, we also observe small humps with magnitudes related to H; and
w around the frequency of second-order harmonic waves. These second-order harmonic
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waves, however, are not expected for isotropic media we consider here [7]. Based on a
preliminary study by mesh refinement and domain enlargement, we find that those humps
still persist even when the mesh is very refined, we hypothesize that the appearance of such
a second-order harmonic wave is not a numerical artifact, but may be due to the incoming
wave signal at the boundary.

3.2.3 Two-Beam Interactions in two Dimensions

Finally, we want to simulate another interesting example of two-beam interactions in the
optical glasses [16], for which the same model and media property as in Sect. 3.2.2 are
used.

The computational domain is Q = [0,50 um] X [—15 pum, 15 pm]. The final time is
T = 250fs. The incident wave injected at the left boundary x = 0 is the superposition of
two beams when # = 1,

Beam, = sin(w_f)sech((y — y;)/w),
Beam, = sin(w, ! + @)sech((y — y,)/w), 51)
H(0,y, 1) = Hy(Beam, + 7 Beam,).

The amplitude H, =2.0X 108 A/m, the characteristic width w =261 nm, and
o, = 2.35 x 10" rad/s. @ denotes the relative phase between the two beams. y, and y, are
the locations of the peaks of the two beams, and they are taken as y; = —1.317w X d,, and
¥, = —y,. Here d,, is the normalized separation distance and defined as the ratio of |y, — y,|
and the full-width at half-maximum (FWHM). In our simulation, the time step size is
At = 0.05h, and the spatial mesh is uniform with # =20 nm in both the x and y direc-
tions. The discrete space V,’; with k = 2 is used. The boundary condition at x = 0 is imposed
through numerical fluxes, while on the rest of the domain boundaries, approximate absorb-
ing boundary conditions as in [17] are applied. The error tolerance in the Newton solve is
set as Err,,; = 1075,

We start with the case of a single beam, i.e., # = 0, initially located at y; = 0. Similar as
the fundamental soliton examined in Sect. 3.2.2, from Fig. 10 one can observe that the nar-
row soliton preserves its profile quite well during the propagation.

We then consider the interactions between two beams, with 7 = 1. We firstly set the
phase angle as @ =0, and take different normalized separation distances, namely,
d,=3.5,2.5,1.5. As one can see in Fig. 11, the initially separated beams rapidly merge
into a single beam and exhibit periodic focusing and defocusing effects as the second-order
spatial soliton shown in Sect. 3.2.2. And the distance when the two beams start to merge
depends on the initial separation distance. Once two beams merge into one, they never

% 101()
(V/m)
4

—_— N W

0 5 10 15 20 25 30 35 40 45 50
z/um

Fig. 10 Single-beam propagation, snapshot of |E|with k =2 and ¢ =0
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Fig. 11 Two-beam interactions, snapshot of |E| with k = 2 and ¢ = 0. From top to bottom: d,, = 3.5,2.5, 1.5
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Fig. 12 Two-beam interactions, snapshot of |E| with k = 2 and ¢ = n. From top to bottom: d, = 3.5,2.5, 1.5

split again. On the right boundary, unphysical reflection occurs due to the relatively simple
absorbing boundary conditions applied here.

When the phase angle is changed to ¢ = =, the interactions will be fairly different. Par-
ticularly, from Fig. 12, one can see that the two beams repel each other during the propa-
gation and the onset of the mutual repulsion depend on the initial separation distance. In
particular, when d,, = 1.5, the two beams begin to repel within a very short propagation
distance, and stay divergent from each other.
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Fig. 13 Two-beam interactions, snapshot of |E| with k=2 and ¢ ==/2. From top to bottom:
d,=35,25,15

In the last case, we set the phase angle @ to be /2. As shown in Fig. 13, the two beams
also repel each other during the propagation. However, as the initial separation distance
decreases, one of the two beams gets more energy at the expense of the other beam. All
results above agree well with those reported in [16]. The magnetic field H,, though not
plotted here, shows similar behavior as the electric field E in each test.

4 Conclusions

In this work, a class of energy stable numerical schemes is proposed to simulate electromag-
netic waves propagating in optical media where the media responses include the linear Lor-
entz dispersion, the instantaneous nonlinear cubic Kerr response, and the nonlinear delayed
Raman molecular vibrational response. The underlying model is a mixed-order PDE-ODE
system, and the methods are second-order accurate in time and arbitrary order accurate in
space, with good efficiency especially in the parallel setting due to the decoupled nature of
the nonlinear algebraic system over each time step. The main contribution to algorithmic
development lies in the design of a new discretization of the nonlinear Kerr and Raman
terms in a two-step temporal framework, to ensure a provable energy relation and stability.
The methods are illustrated numerically for their accuracy, efficiency, energy stability, and
parallel scalability through 1D and 2D examples with the scalar and vector-valued electric
field. Together with the previous work [4, 17], the methods further enrich the energy sta-
ble numerical methods for nonlinear optics based on full Maxwell’s equations. Though the
mixed-order model consists of fewer unknowns, we observe numerically that the proposed
methods are computational slightly more expensive than those in [4, 17] (with nodal imple-
mentation). For both types of methods, they solve the PDE part similarly, and the nonlin-
ear algebraic systems solved at each interpolation node are essential of the same size (i.e.,
dy X dg). The proposed methods here involve relatively more algebraic evaluations to gener-
ate the nonlinear systems. With the ODE part discretized by a two-step temporal method,
our schemes also do not save in memory usage compared with those in [4, 17].
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There are several future directions we plan to pursue. First, we will consider the model
in its second-order form, that is, (1c)—(le) with y,0,D + VXVXE = 0. The question is
whether one can design an energy stable discretization for such model. Second, for (lin-
ear) models that are in first-order, mixed-order, or second-order forms, a detailed compari-
son study on the numerical dispersion relations for the designed schemes is necessary to
compare their wave resolution properties. Finally, the simple absorbing boundary condi-
tions adopted here from [17] have demonstrated some insufficiency to suppress unphysi-
cal reflections. More systematic investigation is needed for more robust and effective
numerical boundary treatments in simulating optical phenomena in nonlinear and disper-
sive media. One can also explore the flexibility of DG methods to improve the efficiency
through adaptive simulations. It remains an open question to design methods of higher than
second-order temporal accuracy with provable energy stability and of similar local nature,
hence the associated computational efficiency as our proposed methods.
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