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Strictly proper scoring rules (SPSR) are incentive compatible for eliciting information about random variables
from strategic agents when the principal can reward agents after the realization of the random variables. They
also quantify the quality of elicited information, with more accurate predictions receiving higher scores in
expectation. In this paper, we extend such scoring rules to settings where a principal elicits private probabilistic
beliefs but only has access to agents’ reports. We name our solution Surrogate Scoring Rules (SSR).'SSR is built
on a bias correction step and an error rate estimation procedure for a reference answer defined using agents’
reports. We show that, with a little information about the prior distribution of the random variables, SSRin a
multi-task setting recover SPSR in expectation, as if having access to the ground truth. Therefore, a salient
feature of SSR is that they quantify the quality of information despite the lack of ground truth, just as SPSR
do for the setting with ground truth. As a by-product, SSR induce dominant uniform strategy truthfulness in
reporting. Our method is verified both theoretically and empirically using data collected from real human
forecasters.

CCS Concepts: » Information systems — Incentive schemes; - Theory of computation — Quality of
equilibria.

Additional Key Words and Phrases: Strictly proper scoring rules, information elicitation without verification,
peer prediction, dominant strategy incentive compatibility, information calibration

1 INTRODUCTION

Accurate assessment of random variables of interest (e.g. how likely the S&P 500 index will go up
next week) plays a crucial role in a wide array of applications, including computational finance [7],
geopolitical forecasting [10, 43], weather and climate forecasting [12], and the prediction of the
replicability of social science studies [1, 15]. Since such assessments are often elicited from people,
how to incentivize people to provide accurate assessments has been a topic of great scientific
interests.

For settings where the principal will have access to the ground truth (e.g. after a week, knowing
whether the S&P 500 index actually went up), strictly proper scoring rules (SPSR) [4, 13, 17, 37, 46]
have been developed to elicit probabilistic assessments and evaluate them against the ground truth.
SPSR have two desirable properties. First, they incentivize truthful information reporting: the
SPSR score of an agent’s reported prediction is strictly maximized in the agent’s expectation if
she truthfully reveals her prediction. Second, the SPSR score of a prediction measures the quality
of the prediction in the sense that the closer the prediction is to the underlying, unknown true
distribution of the random event, the higher the expected score.
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However, in many applications, the ground truth is not available in time or at all. For example,
geopolitical events usually take months to resolve [43], and whether a study will be successfully
replicated is not known if a replication test of it is not attempted. In this paper, we extend the
literature of SPSR to the information elicitation without verification (IEWV) settings, where the
principal has no access to the ground truth and still wants to elicit private probabilistic beliefs. We
ask the following research question:

Can we extend SPSR to scoring mechanisms that can achieve truthful elicitation of
probabilistic information and quantify the quality of the elicited information for IEWV?

Witkowski et al. [47] explored this question in a single-task setting (i.e., having a single random
variable of interest to predict). When an unbiased proxy to the true probability distribution of
the ground truth is available, they generalized SPSR to proper proxy scoring rules, which score a
prediction against the unbiased proxy while maintaining the two properties of SPSR. However,
when the principal only has access to agents’ reports, it remains an open problem how such an
unbiased proxy can be constructed without affecting the incentive properties.

In this paper, we study the research question in a multi-task setting, where a principal wants to
predict multiple random variables that are similar a priori. We provide a positive answer to the
question. In our solution, the principal only needs to know the order of the prior probability of each
possible outcome (e.g., for binary random variables, the more likely outcome) and does not need
to have an unbiased proxy for each task. Specifically, we develop a family of scoring mechanisms
that utilize the similarity of tasks and the conditional independence of agents’ beliefs to construct
a biased proxy of the ground truth, and then, score a prediction against this proxy by removing
the bias w.r.t. the underlying SPSR that one wants to recover. Our proxy is explicitly constructed
only from agents’ reported predictions. As a result, we achieve the dominant uniform strategy
truthfulness [14] in eliciting probabilistic predictions, where truthful reporting is the strict best
strategy when each agent adopts the same strategy across all tasks. Furthermore, the scores of our
mechanisms recover the scores of SPSR in expectation. To the best of our knowledge, our work
provides the first meta solution that enables applications of any SPSR to the IEWV setting without
relying on access to unbiased proxies of the ground truth. We name our solution Surrogate Scoring
Rules (SSR).

As a building block, we first introduce SSR for a stylized setting where the principal has access
to a noisy estimate of the ground truth, as well as the estimate’s error rates, to evaluate the elicited
information. We show that SSR preserve the same information quantification and truthful elicitation
properties just as SPSR, despite the lack of access to the ground truth. These surrogate scoring
rules are inspired by the use of surrogate loss functions in machine learning [2, 5, 29, 40, 41]. They
remove the bias from the noisy estimate of the ground truth such that in expectation a report is as
if evaluated against the ground truth.

Building on the above bias correction step, when the principal only has access to agents’ reports
and the order of the prior probabilities of each outcome, we develop the SSR mechanisms for
the multi-task setting to achieve information quantification and the dominant uniform strategy
truthfulness when the principal has sufficiently many tasks and agents. Our mechanisms rely on an
estimation procedure to accurately estimate the average bias in the peer agents’ reports. With the
estimation, a random peer agent’s report can serve as a noisy estimate of the ground truth, and SSR
can then be applied to achieve the two desired properties. We evaluate the empirical performance
of the SSR mechanisms using 14 real-world human forecast datasets. The results show that SSR
effectively recover SPSR scores but using only agents’ reports.

We summarize our contributions as follows:
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e We extend SPSR to a family of scoring mechanisms, the SSR mechanisms, that operate in
the IEWV setting. The SSR mechanisms only require access to peer reports and the order
of the prior probabilities of the ground truth being each outcome, and they can truthfully
elicit probabilistic beliefs. An SSR mechanism can build upon any SPSR and quantifies in
expectation the value of the elicited information just as the corresponding SPSR does as if it
had access to the ground truth. Therefore, our work complements the proper scoring rule
literature and expands the application of SPSR in challenging elicitation settings where the
ground truth is unavailable.

e For the IEWV setting, most existing mechanisms focus on incentivizing truthful reporting
of categorical signals via rewarding the correlation between two agents’ reports: Our SSR
mechanisms complement this literature from two perspectives. First, SSR mechanisms in-
duce dominant uniform strategy truthfulness in eliciting probabilistic predictions instead
of categorical signals. Second, instead of scoring a prediction by assessing the correlation
between two agents’ reports, SSR mechanisms score predictions according to their prediction
accuracy against the unknown ground truth. This property encourages agents to search for
more accurate forecasts.

e We evaluate the empirical performance of SSR mechanisms on 14 real-world human prediction
datasets. The results show that SSR mechanisms can better reflect the true accuracy of agents
in terms of SPSR scores than other existing mechanisms designed for IEW'V.

Organization. The rest of the paper is organized as follows. Section 2 provides a survey of related
work. Section 3 introduces strictly proper scoring rules and their two main desirable properties in
the information elicitation with verification setting. In Section 4, we introduce our model of [EWV
and our main assumptions for eliciting predictions. In Section 5, we study the information elicitation
problem in the stylized setting, where the principal has access to a noisy estimate of the ground
truth with a known bias. We introduce surrogate scoring rules as a powerful solution in this section.
In Section 6, we propose the dominant uniform strategy truthful mechanisms, SSR mechanisms, to
address the IEWV in the multi-task binary-outcome task setting. We generalize our mechanisms
and results to the multi-outcome task setting in Section 7. We present our experimental study of our
mechanisms in Section 8. We discuss several restrictions of our mechanisms in Section 9. Omitted
proofs can be found in the Appendix.

2 RELATED WORK

The most relevant literature to our paper is on strictly proper scoring rules (SPSR) and peer prediction.
SPSR are designed to elicit subjective beliefs about random variables when the principal can evaluate
agents’ predictions after the random variables are realized. Brier [4] proposed the widely used
Brier score to quantify the quality of forecasts. Subsequent work studied other SPSR and developed
several characterizations of SPSR [13, 17, 37, 46].

Peer prediction refers to a collection of mechanisms developed for incentivizing truthful reporting
in IEWV. Our SSR mechanisms are additions to this collection. The core idea of peer prediction is
to leverage peer reports as references to score an agent’s report. The pioneer work [28] considered
a single-task elicitation setting where each agent observes a private signal associated with a single
task of interest, and a principal who knows the joint distribution of these signals wants to elicit
the exact realizations of the signals. It proposed the first mechanism where truthful reporting is
a Bayesian Nash Equilibrium (BNE). Following this work, Jurca and Faltings [18, 19] proposed
mechanisms where truthful reporting is a BNE with a strictly higher payment than any other
pure-strategy equilibrium. Kong et al. [21] proposed a mechanism, in which truthful reporting is
the BNE with the highest payoff for agents among all equilibria on a binary-outcome task. Frongillo
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and Witkowski [11] characterized all mechanisms that admit a truthful reporting equilibrium in
this setting. Another research thread for single-task elicitation asks agents to answer additional
questions in addition to providing their signal. The Bayesian Truth Serum [31] additionally asks the
agents to report their beliefs about other agents’ reports and then uses this additional information
to score the answer of each agent. The advantage of this approach is that the principal needs not to
know the joint distribution of agents’ signals and that the additional information can be used to
identify the correct answer to the question [32]. However, this approach introduces extra work
for the agents. For interested readers, this line of research has been further developed by other
studies [33, 36, 39, 49].

To relax the requirement on the principal’s knowledge of the signal distribution, many recent
peer prediction studies have focused on a multi-task setting, where there exists a set of i.i.d. tasks,
allowing the principal to leverage the statistical patterns in agents’ reports to incentivize truthful
reporting. Our work falls into this category. The multi-task setting was simultaneously developed
by Dasgupta and Ghosh [6] and Witkowski and Parkes [50]. The latter was the first to explicitly
estimate relevant aspects of agents’ belief models from agents’ reports (which our paper also uses),
while the former achieves provably stronger equilibrium properties. In the mechanism of Dasgupta
and Ghosh [6], the truthful reporting equilibrium has the highest expected payoff for agents among
all equilibria when eliciting binary signals. Radanovic et al. [35] and Shnayder et al. [42] extended
the mechanism of Dasgupta and Ghosh [6] to elicit categorical signals while maintaining the same
incentive property. More recent studies have achieved the dominant uniform strategy truthfulness
in the multi-task setting. Parallel to our work, Kong and Schoenebeck [23] developed a framework
to design mechanisms to elicit general signals as long as certain notions of mutual information can
be estimated from agents’ reports. Their mechanisms, which includes the mechanism of Shnayder
et al. [42] as a special case, are dominant uniform strategy truthful when there is an infinite number
of tasks. Kong [20] further achieved this truthfulness property with a finite number of tasks for
eliciting categorical signals. Kong et al. [24] and Schoenebeck and Yu [38] proposed dominant
uniform strategy truthful mechanisms to elicit continuous signals with normal distributions and
with general full-support marginal distributions, respectively. When there is a noisy estimate of the
ground truth with a known confusion matrix, Goel and Faltings [14] proposed a mechanism that
also achieves the dominant uniform strategy truthfulness; the reward of an agent in the mechanism
is an affine transformation of the the agent’s correctness rate over all classes. In comparison, our
dominant uniform strategy truthfulness mechanisms focus on eliciting posterior beliefs of the
ground truth and the rewards in our mechanisms recover in expectation the accuracy of agents
in terms of the SPSR. Instead of assuming availability of an estimate of the confusion matrix, we
construct an estimate from the agents’ reports, assuming the principal knows the order of the prior
probabilities of each possible outcome of the ground truth.

There are a few studies also focusing on eliciting probabilistic predictions like our paper. Among
these studies, Witkowski and Parkes [48] and Radanovic and Faltings [34] consider single-task
elicitation and ask agents to report additional information as required by the Bayesian Truth
Serum [31]. The two mechanisms proposed make truthful reporting an ex-post equilibrium and
a BNE, respectively. Kong and Schoenebeck [22] provided a mechanism to elicit probabilistic
predictions for the multi-task setting. Although truthful reporting is an equilibrium strategy under
their mechanism, the mechanism is not dominant uniform strategy truthful. When the principal has
access to an unbiased proxy of the ground truth, the proxy scoring rules developed by Witkowski
et al. [47] can be used to elicit probabilistic predictions for the single-task setting as what SPSR
offer with access to the ground truth. In this case, proxy scoring rules score a prediction against
the unbiased proxy using a SPSR, and the expected score is equal to the expected score given by
the SPSR using the ground truth up to a positive affine transformation [8]. In comparison, our
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mechanisms also offer a meta approach to recover the score for any SPSR. Our mechanisms do not
require access to an unbiased proxy but a set of i.i.d. tasks.

Finally, our work borrows ideas from the machine learning literature on learning with noisy
data [e.g. 9, 29, 40, 44]. At a high level, our goal in this paper aligns with the goal in learning from
noisy labels — both aim to evaluate a prediction when the ground truth is missing, but instead a
noisy signal of the ground truth is available. Our work addresses the additional challenge that the
error rate of the noisy signal remains unknown a priori.

3 PRELIMINARIES

Before we introduce our model of information elicitation without verification, we first briefly
introduce strictly proper scoring rules (SPSR), which are designed for the well-studied information
elicitation with verification settings. We highlight two nice properties of SPSR: (1) SPSR quantify
the value of information and (2) SPSR is incentive compatible for elicitation. Our goal of this paper
is to develop scoring rules that match these properties for the more challenging without verification
settings. Our solutions build upon the understanding of SPSR.

SPSR are designed for eliciting subjective distributions of random variables when the principal
can reward agents after the realization of the random variables. SPSR apply to eliciting predictions
for any random variables, but we introduce them for binary random variables in this section because
the rest of our paper focuses on the binary case. Let Y € {0, 1} represent a binary event. An agent
has a subjective belief p € [0, 1] for the likelihood of Y = 1. When the agent reports a probabilistic
prediction g € [0,1] of Y being 1, the principal rewards the agent using a scoring function S(g, y)
that depends on both the agent’s report g and the realized outcome of Y. Strict properness of S(, -)
is defined as follows.

Definition 3.1. A function S : [0,1] x {0, 1} — R that maps a reported belief ¢ and the ground
truth Y into a score is a strictly proper scoring rule if it satisfies E[S(p,Y)] > E[S(q, Y)], for all
p.q € [0,1] and p # g. Both expectations are taken with respect to Y ~ Bernoulli(p).

There is a rich family of strictly proper scoring rules, including the Brier score (S(q,Y) =
1 - (g - Y)?), the log scoring rule (S(g,Y) = log(q) if Y = 1 and S(q, Y) = log(1 — ¢) if Y = 0) and
the spherical scoring rules [13].

Incentive compatibility of SPSR. The definition of SPSR immediately gives incentive compat-
ibility. If an agent’s belief is p, reporting p truthfully uniquely maximizes her expected score.

SPSR quantify the value of information. Another nice property of SPSR is that they quantify
the value/accuracy of reported predictions. To give a rigorous argument, we use an indicator vector
y of length 2 to represent the realization of Y, with 1 at the Y-th position and 0 otherwise. That is,
y=(0,1)ifY =1andy = (1,0) if Y = 0. We use a probability vector q = (1 — g, g) to represent
probability q. By the representation theorem [13, 26, 37], any strictly proper scoring rule can be
characterized using a corresponding strictly convex function G as follows: S(q, y) = G(y)—Dg(y. q),
where Dg is the Bregman divergence function of G. Now consider the unknown true distribution
of Y, denoted by p* = (1 — p*, p*). The expected score for an agent predicting q is

E[S(q.y)] = E[G(y)] - E[Ds(y, 9],

where all three expectations are taken over Y ~ Bernoulli(p*). This means that the maximum
score an agent can receive in expectation is EyBemoulli(p*) [G(y)], which happens when the agent’s
report ¢ = p*. Moreover, a prediction q with a smaller divergence E,.,+[Dg(y, q)] receives a
higher score in expectation. Intuitively, By pernoutti(p*) [Dc (¥, )] characterizes how “far away" q is
from the true distribution of Y under divergence function Dg. This implies that a strictly proper
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scoring rule S qualifies the the accuracy of a prediction q based on the corresponding divergence
function. When S is taken as the Brier scoring rule, the corresponding Bregman divergence is
the quadratic function, and Ey.pemoutti(p*) [P (¥ @)1 = |lp* - q||%, implying that a prediction q
closer to p* according to ¢ norm receives a higher score in expectation. When S is taken as the
log scoring rule, the corresponding Bregman divergence is the KL-divergence, Dk, which is also
called the relative entropy, and Ey.germoulii(p*) [P (¥, Q)] = Dxz(p*llq) + H(p*), where H is the
entropy function. A prediction with a smaller KL-divergence from p* receives a higher score in
expectation. This property of SPSR allows the principal to take an expert’s average score over a set
of prediction tasks as a proxy of his average accuracy and rank experts accordingly.

4 MODEL AND MECHANISM DESIGN PROBLEM

We consider a multi-task setting for the information elicitation without verification (IEW V) problem
Under this setting, we aim to develop scoring mechanisms that are incentive compatible and are
able to quantify the value of elicited information, recovering the two desirable properties that SPSR
achieve in the presence of the ground truth. In this section, we formally introduce the information
structure of our setting and the exact mechanism design problem we consider.

4.1 Model of Information Structure

A principal has a set of tasks [m] = {0, ..., m — 1}. Each task asks for a prediction for an independent
random variable of interest, denoted by Yi, k € [m]. For now, we assume that these random variables
to predict are binary variables, i.e., Yx € {0,1},Vk € [m]. We will generalize our results to (non-
binary) categorical random variables in Section 7. There is a set of informed agents [n] = {0, ...,n—1}.
Each agent i € [n] privately observes a random signal O; x generated by Yy for each task k € [m],
and thus holds a posterior belief about Y, represented by P; x := Pr[Yy = 1|O;]. The posterior P; x
is a random variable as the signal O;  is a random variable. Furthermore, we make the following
main assumptions on the information structure among the signals and ground truth.

AssumpTION 1. Tasks are independent and similar a priori, that is, the joint distribution of
(O14, - Oni, Yy) is i.id. for all tasks k € [m].

This assumption is natural when the set of tasks are of similar nature, for example, tasks to
predict the replicability of multiple studies published in the same journal and the same year. In
this example, readers may a priori hold the same journal-wide belief about the features and the
replicability of each study. After reading the journal, each agent receives a private signal for each
individual study, which allows her to provide a more informed prediction for that study. This
assumption is common for multi-task IEWV.!

Based on Assumption 1, each Y; has the same prior, denoted by p := Pr[Y; = 1]. Also, for a
fixed agent i, the distribution of signal O;; conditioned on Yj on each task k € [m] is the same.
We use D; and D, to denote this conditional distribution for agent i for conditions Y = 1 and
Y = 0, respectively. We assume that Z);' # D, otherwise, observation O; is independent and
uninformative to Y. Each agent forms her posterior belief P;  using the prior p and the conditional
distributions D and D; . We require no knowledge of D and D;" for the principal and the agents
other than agent i. Furthermore, we assume that agents’ signals are independent conditioned on
the ground truth.

Kong [20], Kong and Schoenebeck [22] consider information elicitation for objective questions (i.e., questions where an
objective ground truth exists). They make the same assumption as Assumption 1. Other studies (e.g., [6, 20, 23, 35, 42])
consider information elicitation for subjective questions (i.e., questions with no objective ground truth, e.g., how do you
rate the movie?). These studies also assume that the joint distributions of agents’ signals are the same across all tasks.

ACM Trans. Econ. Comput.



Surrogate Scoring Rules 7

AsSUMPTION 2. For each task, agents’ signals are mutually independent conditioned on the ground
truth, i.e., Yk € [m],Pr [01,k, On,kIYk] = [licn) Pr[OixYe].

This assumption excludes the scenarios where agents have some form of “side information” to
coordinate their reports. With “side information”, it is impossible to have any mechanism that can
truthfully elicit agents’ predictions without access to ground truth. This issue has been noted by
Kong and Schoenebeck [22] and Kong [20] for tasks with ground truth and the same assumption
has been adopted. Finally, we make a technical assumption about the prior p and the principal’s

knowledge.
AssuMPTION 3. It holds that p # 0.5 and the principal knows whether p > 0.5 or not.

We do not assume that the principal knows the exact prior p of tasks but assume that she knows
whether p > 0.5 or p < 0.5. This one binary-bit of information helps the principal distinguish
between the set of truthful predictions and the set of inverted predictions (i.e. everyone reporting
1 — pix instead of p; x), which otherwise is impossible to distinguish. In practice, this information is
usually easy to obtain. In the example of predicting the replicability of studies, this assumption
only requires that the principal knows whether the majority of the studies can be replicated or
not. The assumption p # 0.5 is a technical condition we need in order to distinguish the truthful
reporting scenario from the inverted reporting scenario.

We also assume that the posterior P;; for any agent i on any task k is different under different
realizations of private signal O; k. This assumption is without loss of generality, because different
realizations of O;; which lead to the same posterior P; ; for agent i on task k also lead to the same
posterior about any other agent’s signal O i for agent i due to Assumption 2. Therefore, we can
merge multiple realizations of O; x that lead to the same posterior P;; into one realization without
influencing agent i’s belief about other agents’ signals and the ground truth. Consequently, it is
without loss of generality to assume that there exists a one-to-one correspondence between the real-
ization of an agent’s signal O; ;. and her posterior P; ;. According to this one-to-one correspondence
and Assumptions 1 and 2, the following two conditions hold for P;x for i € [n], k € [m].

ProposITION 4.1. Under Assumptions 1 and 2, the following two conditions hold for agents’ beliefs
Piy,i € [n],k € [m].

(1) Py, ..., Purand Yy are independent of their own counterparts across tasks k € [m] but have the

same joint distribution, i.e., (Py, ..., Py, Yi) are i.i.d. across tasks k € [m].
(2) For each task k € [m], Py, ..., P i are independent conditioned on Y, i.e., Pr[Py, ..., Pyl Y] =
[Tien) PrlPik|Yec]. Vk € [m].

The first condition in Proposition 4.1 implies that an agent has the same expertise level across
different tasks, as the joint distribution of her posterior belief and the ground truth is the same
across tasks. The second condition implies that given the ground truth, each agent’s probabilistic
prediction is independent. The two conditions in Proposition 4.1 in fact characterize a broader
space of information structure than the space captured by Assumptions 1 and 2. The former space
includes the information structure where each task has a different prior but the distribution of the
posterior beliefs of each agent are still the same across tasks. Our theoretical results in this paper
hold for the model with this more broader information structure space characterized by the two
conditions in Proposition 4.1 and with Assumption 3, where p refers to the mean prior over all
tasks.

4.2 Mechanism design problem

We consider the multi-task peer prediction mechanisms where the principal assigns each task
k to a subset [ni] C [n] of agents, collects a single probabilistic prediction ¢;x € [0,1] from

ACM Trans. Econ. Comput.



8 Liu and Wang, et al.

each agent i assigned with task k, and pays each agent based on all predictions collected from all
agents. We use [m;] C m to denote the set of tasks assigned to agent i. We use g;x = 0 to denote
that agent i has not been assigned to task k. Such a multi-task peer prediction mechanism can
be formally expressed as a function R : {0 U [0, 1]}™™ — R", which maps a prediction profile
on all tasks and all agents to a vector of total payments of all agents. In this paper, we restrict
our attention to anonymous mechanisms that give each prediction from an agent an independent
payment like SPSR. Thus, a mechanism that we consider can be fully expressed by a score function
R:{0U[0,1]} x {0 U [0,1]}* ™ — R, which maps a single prediction g; s of agent i on task k
and a profile of predictions from all other agents into a single reward score for that prediction, and
agent i’s total reward is the sum of the scores she obtains across the tasks she is assigned with.

Agents have no obligation to report their true beliefs. Instead, given a mechanism, an agent can
report strategically to maximize her expected payment. As there exists a one-to-one correspondence
between an agent’s signal and her posterior on a single task in our model, we can define an agent’s
reporting strategy on a single task without loss of generality as a function that maps her posterior
to a distribution where her reported prediction is drawn from.

Definition 4.2. Let Afq,1] be the space of all probability distributions over [0, 1]. The strategy of
an agent i on task k is a mapping o; : [0,1] — A 1], which maps her posterior belief P;; into a
distribution o; (P; k) over [0,1], from which the agent draws the reported prediction Q; k.

We use the upper case Q; x to denote the reported prediction when we want to emphasize that
the reported prediction is a random variable determined by an agent’s posterior belief and her
reporting strategy jointly, otherwise, g; x is used. We further assume that each agent adopts the
same mixed strategy across all asigned tasks.

AssumpTION 4. (Uniform Strategy) For any agent'i € [n], she adopts the same strategy o;(-) over
all assigned tasks k € [m;].

This assumption is reasonable as we assume that tasks are a priori similar to each other. We use
0i(+) to denote the reporting strategy adopted by agent i on all tasks she answers and use o_; to
denote the strategy profile used by all agents except agent i. Furthermore, we use E[R(q;x; 0-;)] to
denote the expected score that agent i receives for reporting g; x when other agents use strategy
profile o_;, where the expectation is taken over the randomness in ground truth, other agents’
signals and strategies and in the mechanism itself. We use E[R(0;;0_;)] to denote the expected
reward of agent i when her report is also a random variable generated by her belief P;; and
reporting strategy o;.

In this paper, our goal is to design a mechanism R(-) in the [EWV setting with similar properties
that SPSR have for the information elicitation with verification setting: quantification of the value
of information and incentive compatibility.

Quantifying value of information. The score of each prediction should reflect the true
accuracy of the prediction, similar to what SPSR achieve. That is, for all i, k and g, x and for any true
distribution of the ground truth Y¢, E[R(qix; 0-i)] = f (Ev, [S(gi- Yk)]) holds for a SPSR S(-) and
a strictly increasing function f, where the two expectations are taken over the true distributions of
the random variables in the two expressions at each side of the equality. This design goal pursues
that the score that an agent receives for a prediction in IEWYV recovers what the agent would
receive with a SPSR (with access to the ground truth) in expectation.

Incentive Compatibility. A mechanism satisfies incentive compatibility to some extent if
truthful reporting is a strategy that maximizes an agent’s expected utility under certain conditions.
In this paper, we pursue the dominant uniform strategy truthfulness [14], where truthful reporting

ACM Trans. Econ. Comput.



Surrogate Scoring Rules 9

is a dominant strategy if we restrict the strategy space with the uniform strategy assumption
(Assumption 4).

Formally, in IEVW, a dominant uniform strategy truthful mechanism is a mechanism where
truthful reporting on each task maximizes an agent’s expected reward no matter what uniform
strategies the other agents play and strictly maximize the agent’s expected reward if other agents’
reports are also informative.? Let o} be the truthful reporting strategy for agent i, i.e., o is
the function that maps a belief p; to a distribution where all probability mass is put on p;. Let
O ik = ﬁ 2 j#i Qjk be the mean of all agents’ reported predictions on task k except agent i’s.

Note that Q_;  is a random variable, because of the randomness in reporting strategy o; and the
randomness in signal O for all j # i. We say that Q_; is informative about the ground truth
if E[Q_iklyx = 1] # E[Q_ik|yx = 0]. We formally define the dominant uniform strategy truthful
mechanisms as follows.

Definition 4.3. (Dominant uniform strategy truthfulness). A mechanism R(+) is dominant uniform
strategy truthful if Vi € [n], Vk € [m;], V{D}L, D; }je[n) and for any realization o; i of signal O;:
E[R(0};0-1)|0ix = 0ix] = E[R(03;0-;)|Oix = 0;k] for any uniform strategy o; # o] and any
uniform strategy profile of other agents o_;, and the inequality holds strictly for any uniform
strategy profile o_; under which Q_; is informative about Y;.

In Definition 4.3, we characterize the condition that peers’ reports are informative by that the
expectation of the mean of peers’ reports on a task differs when conditioned on different realizations
of the ground truth.

5 ELICITATION WITH A NOISY ESTIMATE OF GROUND TRUTH

Before we develop mechanisms with the two desirable properties we pursue, in this section we
first obtain these two properties under a very stylized setting: elicitation with a noisy estimate of
ground truth. In this stylized setting, we introduce surrogate scoring rules as an effective solution.
These scoring rules will be the building blocks of our mechanisms designed for the general setting.

This stylized setting has only one event Y and one agent i, who observes a signal O; generated
from distribution D;(Y) and forms a posterior P; = Pr[Y = 1|O;]. The principal in this setting
has access to a noisy estimate Z € {0, 1} of the ground truth Y, although she has no access to the
exact realization of Y. The noisy estimate Z is characterized by two error rates, ¢ and e, defined
asel =Pr[Z=0|Y = 1], e; := Pr[Z = 1]Y = 0], which are the probabilities that Z mismatches Y
under the two realizations of Y. The principal knows the realization Z and the exact error rates
er, e7. The principal cannot expect to do much if Z is independent of Y. Therefore, we assume that
Z and Y are stochastically relevant, an assumption commonly adopted on the relation between a
signal and the ground truth in the information elicitation literature [28].

Definition 5.1. A random variable Z is stochastically relevant to a random variable Y if the
distribution of Y conditioned on Z differs for different realizations of Z.

%In a standard dominant truthful mechanism, truthful reporting strictly maximizes the agent’s expected reward no matter
what strategies other agents play. In IEWV, however, if all peer agents report predictions independently w.r.t. the ground
truth on each task, then there will be no information available for the mechanism to incentivize truthful reporting. Therefore,
it is inevitable to allow a dominant truthful mechanism in IEWV to pay truthful reporting strictly more only when the peer
reports are informative about the ground truth. For example, in studies [20, 23], the dominant uniform strategy truthful
mechanism is defined to be a mechanism that pays truthful reporting strictly more only when for each agent, there exists at
least one peer agent reporting truthfully. We will see later that in our definition, we do not require that there is at least one
peer agent reporting truthfully. We allow all peer agents to play non-truthfully, but require the mean of peer agents’ reports
to be informative with respective to the ground truth.

ACM Trans. Econ. Comput.
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The following lemma shows that the stochastic relevance condition directly translates to a
constraint on the error rates, that is, e} + e, # 1. This lemma can be proved immediately by writing
out the distribution of Y conditioned on Z in terms of the two error rates e}, e; and the prior of Z.

LEMMA 5.2. The noisy estimate Z is stochastically relevant to the ground truth Y if and only if
er+e; # 1.

The goal of the principal in this setting is to design a scoring rule to elicit the posterior P;
truthfully based on this noisy estimate Z and the error rates e}, e; . We define the design space of
the scoring rules with the noisy estimate as follows.

Definition 5.3. Given a noisy estimate Z of ground truth Y with error rates (e}, e;) € [0,1]% a
scoring rule against the noisy estimate of the ground truth is a function R : [0,1] X {0, 1} — R that
maps a prediction g; € [0, 1] and a realized noisy estimate z € {0, 1} to a score. The function R can
depend on the two error rates (e, e ).

Adopting the terminology from the scoring rule literature, we refer to strict properness of a
scoring rule against a noisy estimate of ground truth as the property that the rule assigns a strictly
better expected score to a truthful prediction of the ground truth than to a non-truthful prediction.

Definition 5.4. A scoring rule R(g;, Z) against a noisy estimate Z of ground truth is strictly proper
for eliciting an agent’s posterior belief generated by signal Oy if it holds for all realizations o; of O;
and the posterior p; = Pr[Y = 1|O; = o;] that

Ez0,=0: [R(pi» Z)] > Ez|0,=0;[R(qi» Z)],Yqi € [0,1](q; # pi)-

5.1 Surrogate scoring rules (SSR)

In this section, we present our solution, the surrogate scoring rules (SSR), for this stylized setting.
SSR are a family of scoring rules that evaluate a prediction against a noisy estimate of ground
truth. For any distribution of the ground truth and any stochastically relevant noisy estimate of
the ground truth, the expected score that SSR give to the prediction, with expectation taken over
the randomness of the noisy estimate, is equal to (up to a monotonic increasing transformation)
the expected score that a SPSR gives to the same prediction, with expectation taken over the
randomness of the ground truth. We will see that SSR are strictly proper under mild conditions.

Definition 5.5 (Surrogate Scoring Rules). R : [0,1] X {0,1} — R is a surrogate scoring rule if
for some strictly proper scoring rule S : [0,1] X {0,1} — R and a strictly increasing function
f : R — R, it holds that Vp;,q;, e}, e; € [0,1] and e} +e; # 1, Ez[R(q;,Z)] = f (Ey[S(gi, Y)]),
where Y is the ground truth drawn from Bernoulli(p;) and Z is a noisy estimate of Y with error
rates e}, e; .

Definition 5.5 defines the SSR R(-) as scoring rules that help us remove the bias in Z and return
us the same score given by a SPSR in expectation. The idea of SSR is borrowed from the machine
learning literature on learning with noisy data [5, 27, 29, 40, 44]. SSR can be viewed as a particular
class of the proxy scoring rules proposed by Witkowski et al. [47]. Witkowski et al. [47] achieve
properness of proxy scoring rules by plugging in an unbiased proxy of the ground truth to a SPSR.
With SSR, we directly work with biased proxy and design scoring functions to de-bias the noise in
the proxy. We have the following strict properness result for SSR straightforwardly:

THEOREM 5.6. Given the prior p of the ground truth Y and a private signal O;, SSR R(q;, Z) against
a noisy estimate Z is strictly proper for eliciting the posterior P; = Pr[Y = 1|0;] if Z and O; are
independent conditioned on Y, and Z is stochastically relevant to Y.
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We provide an implementation of SSR, which we call SSR,:
(1-e7)-S(gi,1) —e7 - (g4, 0)

R(@Z=1) = g 0
—€; — €
(1-e3)-5(q;,0) —e; - S(q;, 1)
R(qiaZ:O): lq T = 1 P (2)
—e; —e;

where S can be any strictly proper scoring rule. This SSR implementation is inspired by Natarajan
et al.[29]. As can been seen from Eqs. 1 and 2, the knowledge of the error rates e}, e; is crucial for
defining SSR,,. Moreover, SSR,, has the property that the expected score Ez|y[R(q;, Z)] conditioned
on the realization of the ground truth Y is exactly the same as the score S(g;, Y) given by the SPSR.
More formally, we have the following lemma.

LEMMA 5.7 (LEMMA 1, [29]). For SSR,, ground truth Y and noisy estimate Z, ¥q;, ef,e; € [0,1]
ande} +e; # 1,Vy € {0,1} : Ez|y=y[R(qi, 2)] = S(gi, Y = y).
Proor. Lemma 1 in [29] proves the statement for e} + e, < 1. For completeness, we provide the
proof for e} + e # 1 here. Let ¢q; € [0, 1] be an arbitrary prediction. When y = 1, we have
Ez|y=1[R(gi. Z)] = (1 - €])R(q:, 1) + €5 R(g;, 0)
(1-e)S(qi1) — €75(qi, 0) et (1=€7)5(g:,0) — e7S(g, 1)

=(1-¢)

1—ef —e; g l—ef —e;
(e —e) —eted) $6a)
B 1—ef —e;
=5(qi1)

When y = 0, we have
Ez|y=0[R(qi, Z)] = e; R(qi, 1) + (1 — e;)R(q;,0)
_(1—¢;)S(gi, 1) — €75(g;, 0) .
=e

z 1-ef —e;

(1-¢3)5(qi,0) — e, S(qi, 1)

1—ef —e;

(1-e)

=5(g:,0)
O

Intuitively; the linear transformation in SSR,, ensures that, in expectation, the prediction g; is
scored as if it was scored against the ground truth Y under the underlying SPSR. We would like
to note that other surrogate loss functions designed for learning with noisy labels can also be
leveraged to design SSR. With the conditional unbiasedness property of SSR,, we can formally
claim that SSRy, is a surrogate scoring rule, as stated in Theorem 5.8 below.

THEOREM 5.8. SSR,, is a surrogate scoring rule andVp;, q;, ef, e; € [0,1](ef+e; # 1),Ez[R(qi, Z)] =
Ey[S(qi,Y)], where Y is the ground truth drawn from Bernoulli(p;) and Z is the noisy estimate of
ground truth Y with error rate e}, e .

Proor. As shown by Lemma 5.7, for SSR,, we have Vp;, q;, ef, e, (ef +e; # 1) and Vy € {0, 1},
Ez|y=y[R(qi,2)] = S(g;, Y = y), we have immediately

Ez[R(qi 2z)] = By [Ezw[R(CIi, Z)]] =Ey[S(gi V)]
o

With Theorem 5.8 we know that SSR,, quantifies the quality of information of a prediction just
as the underlying strictly proper scoring rule S does. Furthermore, SSR, has the following variance:
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Mechanism 1 SSR mechanisms (Sketch)

1: For each task k, we uniformly randomly pick at least 3 agents, assign task k to them and collect
their predictions.

2: For each agent i and each task k the agent answers, we construct a reference report Z; ;. using
the agent’s peer agents’ reports, and estimate the error rates e; , and ey for Zjx.

3: Pay each agent i for her prediction g; x on task k by SSR R(g; k. Zi’k) if e;’;k +e;, # 1, and pay
0, otherwise.

THEOREM 5.9. Let p, := Pr[Z = 1]. For a fixed prediction q; € [0, 1], SSR, suffers the following
variance:

2 _ Pz'(l_pz)

S —e)r (S(gin 1) — S(g:,0)* 3)

Ez[R(qi,Z) — Bz[R(qi, 2)]]
Proor.

Ez [R(gi, Z) - Ez[R(qi, 2)]]*

2
=PZ(R(qi, 1) - (pzR(gi, 1) + (1 - q2)R(q;, 0)))

2
+(1- pz)(R(q,-, 0) - (pR(gi, 1) + (1 - g)R(gs, 0)))

=p:(1 - p2)*(R(gss 1) ~ R(qs, 0))2 + (1= p2)p2(R(g: 0) = R(gs 1))2
=p-(1-pz)(R(q:,0) - R(g;, 1))*

_ 2
~ P (- 500 ) - 2500000 - (1 €)5(010) - €550 )
pz(l - pz)

0oy 8@ D = S(3.0)°

6 ELICITATION WITHOUT VERIFICATION

The results in the previous section are built upon the fact that there exists a noisy estimate of
ground truth with known error rates. In this section, we apply the idea of SSR to the IEWV setting.
A reasonable way to do so is to use agents’ reports as the source of the noisy estimate. Although the
principal does not know the exact bias in agents’ reports, we find a way to construct such a noisy
proxy of ground truth and estimate its error rates. We refer to this noisy proxy as the reference
report. Applying SSR with this reference report, we can finally get a family of mechanisms which
are dominant uniform strategy truthful and which also quantify the value of information in agents’
reports as what SPSR do. Within this family, we can choose different underlying SPSR for SSR to
get different mechanisms. We call this family of mechanisms SSR mechanisms. We present a sketch
of our SSR mechanisms in Mechanism 1.

The challenge of designing such mechanisms is to construct the reference report Z; ;. in Mecha-

+ -

nism 1 and successfully estimate its error rates 7, , e, . In the following sections, we show how to

construct this reference report and estimate its error rates.
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6.1 Reference report and its property

Recall that we use Q; x to denote the reported prediction of agent j on task k, which is generated
by agent j’s posterior belief P;; and reporting strategy o;. Let S;x € {0,1} be a binary signal
independently drawn from Bernoulli(Q; x). We refer to S; i as the prediction signal of agent j on
task k. We construct the reference report Z; ;. for agent i as follows: We uniformly randomly pick an
agent j from agent i’s peer agent set [n]\{i}, collect agent j’s prediction Q; ., and draw a prediction
signal Sj . ~ Bernoulli(Q; ;). We use this S as the reference report Z; . for agent i on task k.

Conditioned on all peer agents’ reports Q; x, j € [n]\{i}, the distribution of Z; ;. is Bernoulli(Q__l-,k),
because we pick a prediction signal from all peer agents uniformly randomly. Recall that in our
model, Q;x ~ 0;(Pix),i € [n],k € [m]. Due to Proposition 4.1 and Assumption 4, Q_; is i.i.d.
across tasks k € [m] and is independent to agent i’s posterior P; conditioned on the ground truth
Y. for any task k. Therefore, Z; i, k € [m] that we construct have the following two properties.

LEmMA 6.1. Vi € [n],k € [m], Z; is independent to agent i’s posterior Pyj conditioned on Y.

This property ensures that Z;x can be used as the conditionally independent noisy estimate
of the ground truth in Theorem 5.6 and thus, SSR against Z; ;. is strictly proper for eliciting the
posterior belief P; k.

LEMMA 6.2. For any strategy profile agents play, the reference reports of a single agent i for any
i € [n] arei.id. across tasks and have the same error rates w.r.t. their corresponding ground truth Yy, i.e.,
Vo1, ...,0n, Vi € [n],3ef, e € [0,1],Vk € [m] : Pr[Z;) = 0|V =1] = ¢, Pr[Z;) = 1|V = 0] = ¢; .

This lemma shows that the error rates of the reference reports of an agent i are the same across
all tasks. This property allows the estimation of the error rates using the multi-task prediction
data. In the following sections, we introduce the estimation of the error rates and complete our
mechanisms. We prove Lemma 6.1 and 6.2 below.

Proor. Proposition 4.1 and Assumption 4 directly imply that 1) for each task, Qq, ..., On x are
mutually independent conditioned on the ground truth Y, and 2) (Q1, ..., Onk, yi) are i.i.d across
tasks k € [M]. As Z;y is independently drawn from Bernoulli(Q_; x), we immediately have that
1’) for each task k € [m], Z;x is independent to O;; and thus to P;; := Pr[Y; = 1|O;], and 2’)
(Zik, Yr) have the same joint distribution for k € [m]. As a result of 2’), Z; , k € [m] have the same
error rates w.r.t. the corresponding Y. O

6.2 Asymptotic setting

To better deliver our idea for error rates estimation, we start with an asymptotic setting with infinite
amounts of tasks and agents, i.e., m,n — oo. We will later provide a finite sample justification for
our mechanism. Based on Lemma 6.2, the reference reports of an agent on different tasks have the
same distribution and error rates. Therefore, we focus on estimating the error rates of the reference
report of agent i on a generic task k, while we use Z to denote this reference report, omitting the
subscripts i and k, and use e}, e; to denote its error rates.

Our estimation algorithm resembles the “method of moments” We establish three equations on
the first- to the third-order statistics, of which the parameters can be expressed by the unknown
error rates e, e; . We show that the three equations, with knowing the true parameters (which is
true in the asymptotic setting), together uniquely determine e}, e; . Thus, we can solve the three
equations to obtain e}, ;. In the next section, we argue that in the finite sample setting, with
imperfect estimates of the parameters of the three questions, the solution from these three perturbed
equations still approximate the true values of €], e, with guaranteed accuracy.
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To construct these three equations, we make the following preparation. Let s; x be the realization
of the prediction signal S; x of agent j on task k, and let S_; := {s;x} jzike[m] be the realization

profile of all prediction signals from all peer agents of agent i. On a generic task k, we draw three
random variables Z;, Z,, Zs. Z, represents the realization of a prediction signal uniformly randomly
drawn from the set of all prediction signals {s;x } j»; on task k except agent i’s. Z, represents the
realization of another uniformly randomly picked prediction signal from set {s; } j2; but excluding
Z;. Similarly, Z5 represents the realization of another uniformly randomly picked prediction signal
from set {s; x } j» but excluding Z; and Z,. Because agents’ reports are conditionally independent,
Z1, Z,, Z3 are also independent conditioned on the ground truth. Moreover, Z; and the reference
report Z have the same error rates, as they are generated by the same random process. With infinite
number of agents, Z, and Z3 also have the same error rates as Z. Furthermore, (Z1, Z3, Z3) is i.i.d.
across different tasks, according to Proposition 4.1 and Assumption 4. Therefore, with infinite
number of tasks (and thus infinite number of samples from the joint distribution Z;,Z,, Z3), we can
know the exact distribution parameters of any statistics about Z, Z; and Z3. We can then establish
the following three equations.

1. First-order equation: The first equation is based on the distribution of Z. Let a_; := Pr[Z = 1].
a_; can be expressed as a function of e, e; via spelling out the conditional expectation:

ai=p-Pr[Z=1Y=1]+(1-p)-Pr[Z=1]Y =0} =p-(1~€})+(1—-p)-e;.  (4)

2. Matching between two prediction signals: The second equation is based on a second-order
statistic called the matching probability. We consider the matching-on-1 probability of Z;, Z, i.e.,
the matching-on-1 probability of the prediction signals from two uniformly randomly picked peer
agents of agent i). Let f_; := Pr[Z; = 1,Z, = 1]. It can be written as a function of e, e} as follows:

z’7z

Poi=p-Pr[Z1=1,Z,=1Y=1]+(1=p) - Pr(Z,=1,Z, =1|Y = 0]
=p-Pr(Z;=1Y=1]-Pr[Z;=1Y =1]+ (1 -p) - Pr[Z; =1|Y = 0] Pr [Z, = 1|Y = 0]
=p-(1-e)’+(1-p)-(e)% ®)

3. Matching among three prediction signals: The third equation is obtained by going one order

higher. We check the matching-on-1 probability over three prediction signals Z1, Z,, Z; uniformly

randomly drawn from three different peer agents on the same task. Let y_; := Pr[Z; = Z, = Z3 = 1].
Similar to Eq. 5, we have:

y-i=p-(1=€)°+(1-p) - (e)*. (6)

Notice that all three parameters a_;, f_;, y—; can be perfectly estimated using S_; with infinite
number of tasks and agents, yet without accessing any of the ground truth. With the knowledge of
these three parameters, we prove the following:

THEOREM 6.3. p,e;,es are uniquely identified by Eqs. 4-6 under Assumption 3 (p # 0.5 and the
principal knows whether p > 0.5 or not). The solution is in the closed form shown in Algorithm 1.

Proor. Let x™ :=e;, x* := 1 — e}. Recall the three equations we have
ai=(1=p)-x +p-x" ™)
Poi=(1=p)- (x) +p- (x) ®)
y-i=(1=p)- ()’ +p- (x)° ©)
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Algorithm 1 e}, e solver
Input: x—is ﬁ—ia Y-i 1 (p > 05)
Output: €}, e;
1: Compute the following quantities:
g oiT a-if-i p oo FiV=iT (B-i)?
p-i = (a-)* B-i = (a-i)?

2: Let

a-Va?-4b _ a+Va®-4b , a;i—-Xx
X = 2 » X 1= 2 ’p = x —

3: If1(p’ >05)=1(p > 0.5), thenel =1-X, e =x,elseef =1—-x, e; =X.

We can rewrite the three equations as:

ai—x"=(1-p)(x" —x7) (10)
Boi= (1=p)(x~ = x")(x™ +x%) + (x1)° (11)
y-i = (1=p)(x™ =x") ()2 +x7 - "+ (x)%) + (x*)° (12)
Plugging Eq. 10 into Egs. 11 and 12 and re-organizing the two equations, we have respectively:
Boi=a_i(x” +x7) —x7-xT (13)
yoi= oo (7 +x")2 —x7 - xT) —x7 o xt(xT +x) (14)
Let
X +xT=a x -x"T =0,
then we have a = % from Eq 13. Note that a is well defined, as o.w. if @_; = 0, we have to have

x~ = x* = 0 which leads to e; + ¢} =1, a contradiction.
Substituting x~ +x* and x~ - x* with % and b correspondingly in Eq. 14, we have

(b+p_i)° b+
-i-(ﬁ—b MRl (15)
b )2 b? b B_;
:M—b-a_i———izy_i (16)
oa_; x—j a—j
B-i (ﬂ—i)z a—iy-i — (ﬂ—i)2
Pt o) b=yai- p= G ” P 17
= (a_l- a-; iz B —(a)? (17)
Thus, a = b:f i‘i = 2‘_’;0(:'_%5 b= a'ﬁi;yif(_ofi_)iz)z. Then from x~ +x* =a, x~ - x* = b, we have
. axvVa®-4b _ aFVa®-4b a_j—x~
x = = =
2 * 2 ’ xt—x~

Thus, we have two pairs of solutions for the error rates and the prior:

. [ et a’?—4b _ a—Va2—4bp a-i—e,
6’1: _—56’1:—5 (l):—,
= 2 = 2 -~

€)= 1€y =1 apPe =1-pa
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Mechanism 2 SSR mechanisms

1: For each task k, uniformly randomly pick at least 3 agents, assign task k to them, collect their
reported predictions g; ¢ and generate the prediction signal S; x for each prediction.

2: For each agent i and each task k the agent answers, uniformly randomly select one prediction
signal S; x from her peers’ prediction signals on the same task and let the reference report
Zik =Sk

3: Establish Egs. 4-6 and solve out the error rates e, , e;, for Z;x for any k using Algorithm 3.

4: Pay each agent i’s prediction g; x on each task k she answers by applying SSR,, with g; x and

the noisy estimate Z;x with error rates e , e if e, +e;. # 1, and pay 0, otherwise.

As in these two solutions, the values for the prior is symmetric w.r.t. 0.5. Thus, by Assumption 3,
the principal can identify the unique correct solution from the two.
O

We can continue to establish higher-order equations. However, we show that they do not provide
additional information about the three unknown variables, p, e}, and e .

THEOREM 6.4. Any higher order (> 4) matching equations can be expressed by the first- to the
third-order equations, Egs. 4-6.

Proor. We follow the shorthand notations as in the proof of Theorem 6.3. The n-th equation is
Pr[Zi=..=Z,=1]=(1-p)(x)" +p(x")".
For n > 4, the right-hand of the equation can be expressed as
(1=p) )" +pED = (T=p) ()" +p(r")") (7 +x7)
—x7 T ((1=p) )" P p ()"
=Pr[Z;=..=Z,_1](x~ +x%)
—Pr[Zi=..=Z, 5]x -x*

As we know from the proof of Theorem 6.3, x~ + x* and x~ - x* are uniquely determined by the
first three equations; i.e., Eqs. 4-6 (no matter whether Assumption 3 is made or not). Therefore, by
induction starting from n = 4, the n-th equation can be expressed by the first three equations. O

Now we have completed our SSR mechanisms. The full version of the mechanisms is presented
in Mechanism 2. Intuitively speaking, Theorem 6.3 shows that without ground truth data, knowing
how frequently agents’ predictions reach consensus with each other will help us characterize
the (average) subjective biases in their reports. Furthermore, it implies that SSR mechanisms are
asymptotically (in m, n) preserving the information quantification property that strictly proper
scoring rules have, i.e., Ez[R(qik, Z)] = Ey[S(qgik, Y)], and that SSR mechanisms induce truthful
reporting as the unique best uniform strategy for an agent, when Z is informative (i.e., 1-e} —e; # 0),
and as a best strategy otherwise. Formally, we have the following theorem.

THEOREM 6.5. Under Assumptions 1-4, SSR mechanisms are dominant uniform strategy truthful
with infinite number of tasks and agents. Furthermore, for any agent i and task k, if the average
prediction of all other agents are informative, i.e., e} + e, # 1 for the noisy estimate of the ground
truth Z; i constructed for agent i, then the expected score of SSR mechanisms for agent i’s prediction
on a task is equal to the expected score given by the corresponding strictly proper scoring rule S:
Vqix € [0,1],Ez, [R(qik Zik)] = By, [S(qik, Yi)]-
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Proor. Recall that in Assumption 4, we assume that each agent adopts the same reporting
strategy across tasks. As long as this assumption is satisfied, for an agent i, no matter what exact
strategy the other agents play, we can always correctly estimate the error rates e} and e; of the
reference report Z constructed for agent i, according to Theorem 6.3. Furthermore, by Lemma 6.1,
Z is independent to agent i’s belief conditioned on the ground truth. Therefore, according to
Theorem 5.6, when e} + e # 1, i.e., the other agents’ average prediction is informative about
the ground truth Y, SSR give agent i’s prediction q; x a reward unbiased to the expected reward
given by the corresponding SPSR, i.e., ¥q;x, Ez,, [R(qik, Zix)] = By, [S(qik, Yr)]. Consequently,
truthful reporting strictly maximizes the expected reward of agent i. When e} + e = 1, i.e., the
other agents’ average prediction is uninformative about Y for task k, SSR mechanisms always
reward agent i zero, where truthful reporting also maximizes the expected reward of agent i. Thus,
SSR mechanisms are dominant uniform strategy truthful. O

REMARK 1. Theorems 6.3 and 6.5 rely on Proposition 4.1 and Assumptions 3 and 4. Proposition 4.1
and Assumption 4 guarantee that there exists a similar information pattern across the predictions of
different tasks that we can learn to infer the ground truth. Therefore, they can be hardly relaxed in
IEVW settings. For Assumption 3, we’d like to argue that at least one bit of information is needed in
order to distinguish the case where agents are truthfully reporting from the case where agents are
misreporting by reverting their observations. This is because for any distribution of the observed reports
of agents resulted by a world with parameters (p, e}, e; ) and with agents reporting truthfully, there
always exists the following counterfactual world achieving the same distribution of the observed reports
of agents: a world with parameters (1 — p,1—e;, 1 — e}) and with agents misreporting predictions via
relabelling 0 — 1 and 1 — 0. Thus, the mechanism designer cannot tell the two worlds apart from
only the observed reports. Some studies [20, 23] relax Assumption 3 by allowing the truthful reporting
strategy to weakly dominate this “relabeling equilibrium’”.

We will show in the next section, SSR mechanisms are also dominant uniform strategy truthful
with finite number of tasks and agents under mild conditions. Several remarks follow. (1) We would
like to emphasize again that for an agent i, both Z and R(-) come from the prediction signals of her
peer agents’ reports S=;: Z is directly picked from S_;; R(-) depends on the error rates e} and e;
of Z, which are also learnt from S_;. (2) When making reporting decisions under SSR mechanisms,
agents can choose to be oblivious of how much error presents in others’ reports, because truthful
reporting is the dominant strategy, i.e., no matter what uniform reporting strategy other agents play,
truthful reporting always maximizes the expected reward. This removes the practical concern of
implementing truthful reporting as a particular Nash Equilibrium when there exists a non-truthful
reporting equilibrium. (3) Another salient feature of SSR mechanisms is that they transfer the
cognitive load of having prior knowledge from the agent side to the mechanism designer side.
Yet we do not assume the designer has exact knowledge of the prior either (but the knowledge of
whether the prior is greater than 0.5 or not); instead we will leverage the power of estimation from
reported data to achieve our goals.

6.3 Finite sample analysis

With finite m, n, we use the same procedure as shown in Algorithm 1 to estimate the error rates
e}, e; for each agent, except that we cannot have the exact value for a_;, f_;, y_; but only with
finite-sample estimates for them. Specifically, for agent i, letting ki, k2, ks (which could be different
on different tasks) be the three agents whose prediction signals are selected as Z;, Z,, Z3 on each
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task k € [M],® we estimate:

— 2 WSk =1) —_ Yoy V(Skyk = Sk = 1) — 2y T(Skyk = Skpk = Skak = 1)

m m m

We then use these three values to replace a_;, f_;, y—;, respectively, in Algorithm 1 to solve Eqs. 4-6.
We denote the resulted error rates as e;; and e, and the corresponding SSR,, using these error rates
as R(-).

There are two reasons that these finite-sample estimates ez' and e are not equal to the exact true
error rates e} and e, for Z. First, in constructing Eqs. 4-6, the error rates of two randomly picked
prediction signals Z,, Z3 will not have the exactly same error rates with Z, as these signals come
from a slightly different agent pool. Second, a_;, B:, y=: are not exactly equal to a_;, f—;, y—; with
finite samples. However, we will show that the errors induced by these two factors in estimating
the error rates diminish with m and n. Consequently, the SSR computed using é} ,e; also have a
small and diminishing error towards the SSR computed with the exact error rates e, e .

LEMMA 6.6. €7, e, given by Algorithm 1 using a_;, ,B: Y=i satisfy that for an arbitrary § € (0, 1),
~ — 1
with probability at least 1 — 6, e} —e}| < ¢, le; —e;| < € for somee = O(% + \/1%‘), which can be

made arbitrarily small with increasing m and n.

Proor SKETCH. We present the high-level idea of our proof here and defer the complete proof
to the appendix. We consider the two aforementioned errors separately. Both of them can be
transformed to a diminishing error attaching to the evaluation of a_;, f_;, and y_;. This diminishing
noise in @_;, f—;, and y_; can then be transformed into a diminishing error in the final solution of
el e;. ]

Next, we show that the deviations of the rewards of SSR mechanisms due to the imperfect
estimation of the error rates in the finite sample case can also be bounded to be arbitrarily small.
We first deal with a special case: evenif 1 — e} — e is far from zero, the estimated 1 — ef —¢ in
the denominator of SSR, can be arbitrary close to zero by coincidence. In this case, agents can
have unbounded scores, which may be far from the exact scores agents should obtain when the
estimation is perfect. To address this special case, the principal can select a threshold x greater but
close to zero, and pay agents zero when |1 — ég' —e; | < K instead of just when 1 — ég' —e, =0.Asa
result, the final reward of each agent is always bounded. Next, we introduce a lemma we will use
in our proof.

< lh=bl+lh =)

LEMMA 6.7. Vl],lg, t1,t € [—1, 1], ti,to #0, [+ — L < [hia]

L
151 ty

Lty=ht
337

Lity—Lity+hty—hit
ity

L_bL

< lellb=bl+bllta=t] . [h=bl+|t -t
151 ty -

PROOF. [t122] = [t:2]

]

This lemma is an extension to Lemma 7 of [25], which considers the case where all variables are
non-negative. Now we present our main theorem about the diminishing error in estimating the
SSR scores.

THEOREM 6.8. For a bounded SPSR S(-) with supremum max S, for an arbitrary § € (0, 1), and
somee =O( ++ IHTS) such that with probability at least 1 — 5, |e} — ef|<e le; —e | <€ letm

n

3In practice, we only need to assign task k to these three randomly selected agents.

ACM Trans. Econ. Comput.



Surrogate Scoring Rules 19

and n be sufficiently large such that € < |1 — e, — e}|/4, the SSR mechanism built upon S(-) satisfies,
with probability at least 1 — 8, that
=~ 12max S
IR(qik> Z) = R(qik, Z)| < VAR

where A = |1 — e; — e}|. Furthermore, taking over all the randomness in the score, we have

1 I}
—+\/—nm),\7’i,k.
N m

Proor. This proof is straight-forward following the error rate bounding result (Lemma 6.6). We
use sgn(Z), Z € {0, 1} as the superscript, where sgn(0) refers to super script “—” and sgn(1) refers
to super script “+”.

Consider an arbitrary agent i and a task k, we have

€, Vie[n],ke[m],qk€[0,1],Z € {0,1},

Eﬁ@wzﬂ—mﬂ%bmwzo

_ sgn(1-2) 1— esgn(l—Z)

IR(qix, Z) — R(qix, Z)| =‘ = - = |S(gix 2)
1- e; —e; 1-e; —e;
e;gn(Z ) eSgn(Z )

- - e S(ql,ksl_Z)‘

~ —  1_ .t
l—e;'—ez l1—e; z

1— e;gn(l—Z) 1— e;gn(l—Z)
< = — ———|max$
1-ef—e; l-ez—e;
eiyn(Z) eiyn(Z)
+ ——— — ——|max$
1—ef=e, 1—e;—e;
Since € < (1 —e] — ¢)/4, we know that
1€ —e;| > [1-¢; —efl/2
Thus, with probability at least 1 — 6,
y < sgn(1-2) sgn(1-2) e —
sgn(1-2) sgn(1-2) ezg - ezg + e; te, — e; — €
1-e; 1-e, <
1ef - l-ea-e | I(1-ef —e)(1—ef —e0)
3e 6e
< <

- -g)(1-ef-e) A
In above inequalities, the first “<” follows Lemma 6.7, the second follows Lemma 6.6, and the third

follows |1 — ég' —e;| > |1 —e; —ef|/2. Similarly, we have

ezgn(Z) ezgn(Z)

1—ef —e; 1-e;—e;

6e
A2

Plugging back, we have proved the claim that with probability at least 1 — §,

12€ - max S
T; vqi,k € [0: l]aZ € {03 1}'

AsE[S(qik Z)] = E[R(qik, Z)], letting 6§ = %, we have the expected error E[ﬁ(qi,k, Z)] - E[S(qik. 2)]

bounded by O ((1 -5 (% + ‘/1“7’") + %) -0 (% " /lnTm)

|§(qi,k’ Z) - R(qi,k’ Z)l <
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]

Theorem 6.8 indicates that the errors of the expected scores given by SSR mechanisms w.r.t.
the expected score given by the underlying SPSR can be made arbitrary small with sufficiently
large m and n. As a result, for arbitrarily discretized report space of a prediction, SSR mechanisms
are still dominant uniform strategy truthful with finite but sufficiently large m and n. To see this,
we can make the error smaller than the minimum absolute difference of the SPSRs of any two
allowed probability reports. In such way, there will be no beneficial deviation for agents to report
non-truthfully. This result considers the reality that in real surveys, agents are often allowed to
specify at most two decimal digits for probabilistic predictions.

COROLLARY 6.9. For discretized report space of probabilistic predictions, SSR mechanisms which are
built upon bounded SPSR are dominant uniform strategy truthful for finite but sufficiently large m
and n.

7 GENERALIZATIONS TO MULTI-OUTCOME TASKS

In this section, we discuss how to extend SSR and SSR mechanims to the multi-outcome multi-task
setting. A multi-outcome task asks agents to provide predictions about a multi-outcome random
variable Y, which takes value from a finite support set [c¢] = {0,...,c = 1} with ¢ > 2. A noisy
estimate Z € [c] of the ground truth Y is characterized by a confusing matrix:

€0,0 €0,1 cee €0,c—1
€1,0 €1,1 cee €1,c-1
Ez — B 5 ,C ,
€c-10  €c-11 .- €c—1c-1

where e, , represents the flipping probability of Z w.r.t. Y, i.e., ey, = Pr[Z =0|Y = u],Vu,v € [c].

7.1 Generalization of SSR

The surrogate scoring rules for a task with ¢ outcomes are defined as follows. Let A°~! be the
(¢ — 1)-dimension probability simplex, i.e., AS™! := {(xo, X 2 X = 1, X0, e X > 0}.

i=

Definition 7.1 (Surrogate Scoring Rules). R : A°"! x [¢] — R is a surrogate scoring rule for a
c-outcome task if for some strictly proper scoring rule S : A°~! X [¢] — R and a strictly increasing
function f : R — R, the following equation holds:

Vp,q € A°"LVE, € [0,1]°(E, is invertible) : Bz [R(q, Z)] = f (By[S(q, Y)]),

where the ground truth Y is drawn from Categorical(p) and Z is a noisy estimate of Y with
confusing matrix E,.

We have the following theorem immediately.

THEOREM 7.2. Given the prior p of the ground truth Y and a private signal O;, SSR R(q, z) with a
noisy estimate Z of the ground truth is strictly proper for eliciting an agent’s posterior p; := Pr[Y|O;]
if Z and O; are independent conditioned on Y and E, is invertible.

Now we give an implementation of SSR, SSR,, for a c-outcome task. Let S(q;) be the vector of SPSR
scores for a prediction q; € A°~! under each realization of Y, i.e., S(q;) := (S(q;, Y = 0), ..., S(q;, Y =
¢ — 1)). Similarly, let R(q;) := (R(q;, Z = 0), ..., R(q;, Z = ¢ — 1)). Our implementation SSR,, goes as
follows:

R(q;) = (E;)"'S(q))
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Clearly, for SSR, we have S(q;) = E - R(q;), which gives
c—1

Vo € [c],S(qi Y =0) = ) ekR(qin Z = k) = Ezjy=o[R(qi. 2)].
k=0

LEMMA 7.3. For SSRy: Vv € [c], Bz|y=0[R(pi, Z)] = S(pi, Y = v)
The following theorem follows immediately.

THEOREM 7.4. SSR, is a surrogate scoring rule for a multi-outcome task, and for any distribution
p € A°! of the ground truth Y and for any invertible confusing matrix E, of a noisy estimate Z of the
ground truth, we have¥q € A"} Ez[R(q,Z)] = Ey[S(q, Y)].

We include a detailed example of SSR,, for a three-outcome task below.

Example 7.5. Let ¢ = 3 and let the confusing matrix of a noisy signal Z being

05 0.25 0.25 3 -1 -1
E,=1025 05 025=(E)'=|-1 3 -1
0.25 0.25 0.5 -1, @

We obtain a closed-form of SSR,:

R(q,Z =0) :=35(q,0) — S(q,1) —5(q, 2)
R(q.Z =1) := =5(q,0) +35(q,1) — S(q,2)
R(q,Z =2) := -5(q,0) = S(q, 1) +35(q, 2)

7.2 Generalization of SSR mechanisms

SSR mechanisms can also be extended to multi-outcome tasks and maintain the two properties
we pursue: the dominant uniform strategy truthfulness and qualifying the value of information as
what SPSR do.

We consider the same setting of information structures under Assumptions 1-3, except that
Y, k € [m] in these assumptions are c-outcome categorical random variables, agents’ beliefs are
categorical distributions, and that in Assumption 3, the prior probabilities of Y being each outcome
are different and the principal knows the order of these prior probabilities. As we have shown that
SSR can be extended to multi-outcome events, to construct the corresponding SSR mechanism, we
just need to construct the corresponding noisy estimate Z of the ground truth and estimate the
confusion matrix E, for multi-outcome tasks.

The noisy estimate Z for an agent i on task k can be constructed similarly as the counterpart in
the binary case, i.e., we uniformly randomly pick an agent j # i and draw Z ~ Categorical(q; x),
where qjx is the reported distribution of Y; from agent j. Then, the confusion matrix can also be
estimated using the method of moments. However, as there are ¢ — 1 unknown parameters in the
confusion matrix E, and the prior p of i, we have to establish ¢ — 1 equations. These equations
could be solved numerically. These c? — 1 equations will have ¢! real-value symmetric solutions,
each corresponds to a permutation of the labeling of the ¢ outcomes. To identify the unique solution
that yields the true confusion matrix and the prior of Y, i.e., to identify the correct labeling of the
outcomes, the principal has to know the order of the prior probabilities of ¥ being each outcome,
as what we assume in Assumption 3 for multi-outcome tasks. Thus, with the multi-task variant of
Assumptions 1-3, we can still construct a noisy estimate Z of the ground truth, estimate its confusion
matrix, and apply SSR to obtain unbiased estimates of agents’ scores given by the underlying SPSR.

Despite the positive result in theory, there are some caveats of applying SSR mechanisms to
multi-outcome tasks. First, Assumption 1 essentially assume that the confusion matrix of an agent
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is homogeneous across different tasks. However, as there is no clear correspondence between the
labels of the outcomes of different tasks, the confusion matrix of the noisy estimate Z for an agent
is less likely to be homogeneous across different tasks. Therefore, the real data can deviate far from
Assumption 1. Second, as there are more parameters in the confusion matrix to estimate in the
multi-task case than in the binary case, we need a much larger number of agents and tasks and
denser predictions to maintain decent estimation accuracy. Third, to apply a SSR mechanism to
multi-outcome tasks, these tasks have to have the same number of outcomes. However, in most
crowd forecasting projects, the number of multi-outcome tasks with the same number of outcomes
is much smaller than the number of binary questions and may not be sufficient to make accurate
estimation of the confusion matrix. These caveats leave a massive space for future research.

8 EMPIRICAL STUDIES

Using 14 real-world human forecasting datasets, we empirically examine the performance of
SSR mechanisms in revealing agents’ prediction accuracy in terms of SPSR. We focus on three
aspects: the unbiasedness of SSR, the correlation of SSR scores to SPSR scores, and the accuracy of
SSR in selecting true top forecasters in terms of SPSR. We also compare the performance of SSR
mechanisms to several existing peer prediction mechanisms. The overall results show that our SSR
mechanisms have an advantage in recovering SPSR.

8.1 Setting

8.1.1 Datasets. We conduct our experiments on 14 datasets from three human forecasting and
crowdsourcing projects: the Good judgment Project (GJP), the Hybrid Forecasting Competition
(HFC), and the human judgment datasets collected by MIT. These three projects differ in participant
population, forecasting topics, and elicitation methods, offering a rich environment for empirical
evaluation.

GJP datasets [3]. The GJP data consists of four datasets for geopolitical forecasting questions.
The four datasets, denoted by G1~G4, were collected from 2011 to 2014, respectively. They contain
different sets of forecasting questions and forecasters.

HFC datasets [16]. We use the forecast data of team participants in the Hybrid Forecasting
Competition. The data consists of three datasets, denoted by H1~H3, referring to the forecasting
data collected in the preseason competition, the first competition, and the second competition,
respectively. The the preseason competition lasted half a year, and the two formal competitions
lasted around one year. The three datasets have different forecasting questions and partially
overlapped participating teams.

MIT datasets [32]. The MIT data consists of seven datasets, denoted by M1a, M1b, M1c, M2, M3,
M4a, M4b, respectively. Each dataset uses one of four sets of questions and has a different participant
pool. The questions range from guessing the capital of each state and predicting the price interval
of artworks to some trivia questions. The forecasters were students in class and colleagues in labs.
In datasets M1a, M1b, M4a, M4b, forecasters report only binary votes on forecasting questions. In
datasets M1c, M2, M3, forecasters give probabilistic predictions.

Both GJP and HFC projects allow participants to make daily forecasts. For testing peer prediction
mechanisms in our setting, we only need to use a single prediction for each participant on a
forecasting question. In our experiments, we mainly focus on the final prediction of each participant
made on each question (i.e., the last prediction made by each participant before the close date
of the corresponding forecasting question) in these two projects. At the end of Section 8.2, we
complement our analysis by verifying the robustness of SSR with respect to the choice of the time
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Items G1 G2 G3 G4 H1 H2 H3 Mla Mlb Milc M2 M3 M4a M4db
# of questions (original) 94 111 122 94 44 86 203 50 50 50 80 80 90 90
# of agents (orginal) 1972 1238 1565 7019 79 317 222 51 32 33 39 25 20 20

After applying the filter

# of questions 94 111 122 94 44 86 203 50 50 50 80 80 90 90

# of agents 1409 948 1033 3086 79 316 222 51 32 33 39 25 20 20

Avg. # of answers per question 851 533 369 1301 71 295 220 51 32 33 39 18 20 20
Avg. # of answers per agent 57 62 44 40 39 80 201 50 50 50 80 60 90 90
Majority vote correct ratio (%)  0.90  0.92 095 096 093 093 086 058 076 074 0.61 0.68 0.62 0.72

Table 1. Statistics about binary-outcome datasets from GJP, HFC and MIT datasets

the predictions are made. Also, we focus on the forecasting questions which have binary outcomes
in these datasets. To have a relatively stable estimation over the accuracy of agents, we filter out
participants who made predictions on less than 15 questions. The basic statistics of these datasets
are presented in Table 1.

8.1.2  SPSR. We consider three SPSR, the Brier score, the log scoring rule, and the rank-sum scoring
rule, because of their usage in practice and connections to machine learning concepts. The first
two are the most widely adopted scoring rules. They are equivalent to two main loss functions, the
squared error and the cross-entropy loss, respectively, used in the machine learning community.
The rank-sum scoring rule can be written as an affine transformation of the area under the receiver
operating characteristic curve (AUC-ROC),* which is also a widely adopted accuracy metric in the
machine learning community.

In our experiments, we adopt the conventional formula of the Brier score used in the GJP and
HFC projects. The Brier score ranges from 0 to 2, with a smaller score corresponds to higher
accuracy. This is different from using SPSR as a payment method, where the higher the better. We
can transfer between these two usages by applying a negative scalar. We orient the log scoring
rule and the rank-sum score rule in the same direction as the Brier score, with a minimum (best)
score of 0. The exact formula for each scoring rule is as follows: Recall that g; x and Y, are agent i’s
prediction and the ground truth for task k, respectively, and [m;] is the set of tasks answered by
agent i.

e Brier score: SB° (q; ¢, i) = 2(q;x—Yi)%. We use the mean Brier score, m% Dike[m;] SBrer (g, Vi),
to represent an agent’s overall accuracy under the Brier score over the set of tasks she an-
swered.

¢ Log scoring rule: S"’g(qi,k, Yi) = Yilog(qix) + (1 — Yi)log(1 — gix). We use the mean
log score, ml, 2ke[mi] S'Og(qi,k, Y)), to represent an agent’s overall accuracy under the long
scoring rule over the tasks she answered. As the log scoring rule is unbounded when the
forecast predicts the opposite of the ground truth, we change all forecasts of 1 to 0.99 and
forecasts of 0 to 0.01 to ensure that the score is always a real number.

e Rank-sum scoring rule is a multi-task scoring rule. For a single task k, it assigns a score

S (Giks yk) = Yk - ¥ (qirl{qin Y efmy)) »

“The affine transformation coefficients are determined by the numbers of the tasks with ground truth 1 and with ground
truth 0. (according to Egs. 12 and 13, [30]). Thus, when evaluating agents’ prediction accuracy on the same set of answered
questions, the rank-sum scoring rule is equal to the AUC-ROC for each agent up to the same affine transformation determined
by the ground truth of the questions. However, the AUC-ROC itself is not an SPSR, as when considering the incentive, the
affine transformation coefficients may differ in different agents’ beliefs.
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where lﬁ (%,kH‘]i,k'}k’e[mi]) = Zk’e[mi] ﬂ(qi,k’ < qi,k) - Zk’E[mi] ﬂ(qi,k’ > qi,k) is the rank
of prediction g; x among all predictions from agent i. Then, agent i’s rank-sum score S;a”k is
defined as: S{a”k = Dke[mi] S™K(g; r, Y¢).? The range of the score increases with the number

of answered tasks quadratically, thus we use the normalized score 1+ %S{a”k with range [0, 2].

8.1.3 Treatments. Though existing peer prediction methods are not designed for recovery of
SPSR, we add comparisons to them for completeness of our study.® In particular, we would like to
understand whether in practice SSR mechanisms have the advantage of revealing the true scores
given by SPSR while not accessing ground truth information.

In our experiments, we consider four popular existing peer prediction methods, serving as
comparisons to SSR: proxy scoring rules (PSR) with extremized mean [47], peer truth serum
(PTS) [35], correlated agreement (CA) [42], determinant mutual information (DMI) [20].

PSR is to directly apply the SPSR w.r.t. an unbiased proxy of the ground truth. When the principal
knows no unbiased proxy, Witkowski et al. [47] recommend using the extremized mean of the
reported predictions to serve as the proxy. In our experiments, we adopt the same formula for the

ﬁ, where g is the average reported
prediction on task k. Using different SPSR as the underlying scoring rule, we can get different PSR
and SSR.

PTS, CA, and DMI do not depend on SPSR and are designed to elicit categorical labels instead
of probabilistic predictions. So we make the following adaption for them to take probabilistic
predictions as inputs. Our adaption is based on the fact that in essence, these mechanisms all
appreciate the joint distribution of agents’ reported labels to compute the scores: For a task k, an
agent who reports probability P; ;. believes that the true label of the task has probability P; s to be 1.
Therefore, on this task, the joint probability of agent i’s believed true label and agent j’s believed
true label both being 1 is P; P} i, assuming their believed true labels are independent conditioned
on their predictions. By this way, we can compute the joint distribution of the believed true labels
of two peer agents on each task and their joint distribution over the whole dataset is the mean
of their joint distributions on each task. Using this joint distribution over the whole dataset, we
can compute the scores for PTS, CA, and DMI directly. This adaption method for PTS, CA, and
DMI turns out to give better correlations between the scores of these three mechanisms and the
true SPSR scores than the alternative adaption method of using the mostly likely categorical labels
indicated by the probabilistic predictions as inputs for these mechanisms (see how the correlations
shown in Figs. 9 and 10 in the appendix (most likely labels as inputs) compare to the correlations
shown in Figs. 2'and 3.).

extremized mean as in their experiments [47], i.e., 7

8.2 Main results

Unbiasedness of SSR. Our theorem shows that under certain assumptions, the reward of an SSR
mechanism is unbiased to the reward of the SPSR that the SSR mechanism is built upon. However,
it is unclear to what extent this unbiasedness holds in real datasets where these assumptions are
unlikely to hold strictly. Therefore, we empirically examine the concrete relationship between SSR
scores and the corresponding SPSR scores.

>The AUC-ROC of agent i is % 1 - ——Lt—5"k| where m;+ = 2k’e[m;] 1 (Yxr = 1) (given by Egs. 12 and 13, [30]).

m:’(mlfm:') i
®We do not intend to claim our mechanism is better in any sense, as it would be an unfair comparison since the goals were
different in each design of these mechanisms. For example, the mechanisms [20, 42] can characterize determinant mutual
information between an agent’s reports and the underlying ground truth.
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Fig. 1. Regression of individuals’ true accuracy and SSR score over 14 datasets under three different SPSR.
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Fig. 2. The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)
between individuals’ peer prediction scores and different SPSR.

Fig. 1 plots the score pairs received by forecasters in each of the 14 datasets. Each score pair
represents the SPSR score and the SSR score that an individual forecaster receives in a single dataset.
As can be seen, under each of the three SPSR we test, the SSR scores demonstrate a salient linear
relationship to the true SPSR scores. We further draw a linear regression curve between the SSR
scores and the true scores for each of the three SPSR of interest (the blue curves in Fig. 1). To draw
this linear regression curve, we first cluster the score pairs into different groups based on the value
of the SPSR scores and compute the center point (the mean score pair) for each group, represented
by the orange triangles in Fig: 1. Then, we regress on these center points.” The three regression
curves demonstrate a slope of 0.74, 0.73, and 0.84, respectively, all with an intercept near 0. This
result indicates that though the SSR scores are not exactly unbiased in real data, they still follow an
affine transformation of the true SPSR scores with decent approximate unbiasedness.

We also notice that under all three SPSR, the SSR scores tend to underestimate the true scores
by around 20%. As the SSR scores follow an affine transformation of the SPSR scores empirically,
this underestimation can possibly be mitigated by applying a constant scaling factor (e.g., 1.25 as
suggested by our regression) without influencing the incentive properties of the SSR mechanisms.

Correlation with SPSR. We compare the correlations between agents’ SPSR scores and the
scores given by the five peer prediction mechanisms we test. We first measure the correlations on
each dataset independently using Pearson’s correlation coefficient (corr) and then classify them
into different levels based on the value of the coefficient. Finally, we count the number of datasets
at different correlation levels for each peer prediction mechanism and present the results in Fig. 2.

The reason for clustering score pairs before regression is that the SPSR scores of forecasters are not distributed evenly within
the range of the SPSR score, with most forecasters’ SPSR scores falling in the low range of the SPSR score. Consequently,
drawing the regression curve directly on all score pairs will mainly reflect the regression pattern in the low range of the
SPSR score instead of the whole range. In fact, for each of the three SPSR tested, the corresponding SSR mechanism obtains
a regression slope closer to 1 at the low range of the SPSR score.
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As can be seen, all five peer prediction mechanisms achieve a strong correlation (corr=>0.5) to
the SPSR on half of the 14 datasets, while the SSR mechanisms demonstrate an even stronger
correlation pattern. In particular, the SSR mechanisms achieve a very strong correlation (corr>0.8)
on 9 out of the 14 datasets under all three SPSR, and achieve correlations in more datasets than
other mechanisms for each of the following levels: corr>0.9, corr>0.8, and corr>0.5. The advantage
of SSR in the correlation to the SPSR is most salient under the Brier score and is more salient when
compared to the PTS, CA, DMI mechanisms than compared to the PSR mechanisms. We observe
similar results using Spearman’s rank correlation test (Fig. 3), which implies that SSR mechanisms
also rank the agents similarly to SPSR.

The performance of SSR mechanisms in reflecting the true SPSR scores depends on the accuracy
of estimating the error rates of the constructed noisy estimate of ground truth in SSR mechanisms.
This estimation accuracy depends on the number of prediction samples that SSR mechanisms have
access to. In our previous experiments, each task receives a considerable number of predictions (no
less than 20 on average), which may give an edge to the SSR mechanisms. However, a principal
with a limited budget can often collect only a small number of predictions for each task. Therefore,
we are also interested in comparing the performance of SSR mechanisms to other peer prediction
mechanisms when each task receives only a limited number of predictions. To simulate this scenario,
for each original dataset, we sample a subset of users to create a new dataset such that each new
dataset has an average of 4~5 predictions per task with a minimum of 3 predictions, which is
the minimum number of predictions per task required by our SSR mechanisms.® Fig. 4 shows the
correlation results of each peer prediction mechanism based on the average Pearson’s correlation

8To ensure a minimum of 3 predictions per task, we removed a small number of tasks that receive less than 3 predictions
by this sampling method. Over the 100 runs of random sampling, around 20 tasks are removed on average from each GJP
dataset, and no more than 2 tasks are removed from each of the other datasets in each run. This sampling operation keeps a
decent number of predictions for each agent, which allows a stable computation for the scores of SSR, PTS, CA, and DMI
mechanisms.
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coefficient over 100 runs of random sampling. As can be seen, overall, the correlations between
each peer prediction mechanism and the three SPSR in these sampled datasets decrease when
compared to the corresponding correlations in the original datasets. SSR mechanisms still maintain
a strong correlation (corr=0.5) over half of the 14 datasets, while the other mechanisms do not.
However, the performance difference of SSR and other mechanisms shrinks. The PSR mechanisms
outperform SSR mechanisms at two correlation levels, corr>0.8 and corr>0.9, under the Brier score
and the log scoring rule. In fact, the single-task PSR mechanisms demonstrate smaller correlation
decreases, indicating that they are more robust to the number of predictions than the other four
multi-task mechanisms.

Expert identification. SPSR are sometimes used to identify top forecasters to assign prizes,
e.g., in projects GJP and HFC. Moreover, accurate identification of true top forecasters without
access to the ground truth can help improve the aggregation accuracy, when a principal wants to
aggregate forecasters’ predictions into a final prediction for each task [45]. Therefore, we examine
to what extent different peer prediction scores can identify top-performing experts in terms of the
true SPSR, without access to the ground truth.

In GJP and HFC projects, forecasters may answer different sets of forecasting questions. It is
non-trivial to compare each forecaster’s performance when they answer different sets of questions,
whose difficulty levels vary. Here we use the mean peer prediction scores and mean SPSR scores to
measure the forecaster’s performance for simplicity, as our main purpose is to compare how close
the evaluation results will be when we use true SPSR and when we use the SSR scores in the same
way. Though we are demonstrating the application of SSR in expert identification, it is a by-product
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of its calibration property and we acknowledge that the identification might be affected by other
factors, including how agents selected the forecasting questions. In projects like GJP, the organizers
impute and standardize the scores for different questions and then prize the forecasters. Arguably,
forecasters have no incentive to choose easy questions a prior, which alleviates the evaluation bias
induced by heterogeneous difficulty levels of the forecasting questions.

We first rank the forecasters according to one of the three SPSR (when the rank-sum scoring rule
is chosen, we use the AUC-ROC instead to evaluate agents’ true accuracy, because as an accuracy
metric instead of an incentive device, AUC-ROC is much more popular than the rank-sum scoring
rule). We focus on two metrics about expert identification: (i) the percentage of top % forecasters
identified by the SPSR in the top % forecasters selected by a peer prediction method, and (ii) the
percentage of below-average forecasters (the bottom 50% forecasters) under the SPSR in the top
t% forecasters selected by a peer prediction method. The results are shown in Figs. 5 and 6. For
illustration, consider the left (Brier) pane of Figure 5. Of the top 10% forecasters according to SSR,
40% are indeed in the top 10% according to the Brier score. We find that for both the Brier score
and the log score, there are more true top t% forecasters in the top % forecasters selected by SSR
than in the top t% forecasters selected by other peer prediction mechanisms, when t% ranges from
5% to 50%. Meanwhile, there are less true below-average forecasters in the top t% forecasters under
SSR and PSR mechanisms than under the other peer prediction mechanisms. For AUC-ROC, while
the SSR mechanism maintains a relatively smaller number of true below-average forecasters in its
top 10% to 15% forecasters, all five peer prediction mechanisms perform similarly, which echos the
correlation results under the rank-sum scoring rule, where the five peer prediction mechanisms all
achieve strong correlation in most of the datasets (Fig. 2c).
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Robustness of SSR in temporal forecasting. The above experiments use the final forecasts
of each participant in the two temporal forecasting projects, the GJP and HFC projects. In this
experiment, we test whether our evaluation is robust to the choice of the prediction time in temporal
forecasting. In particular, we focus on the metric of the Brier score metric and re-do the experiments
shown in Fig. 1a and Fig. 2a while using the initial prediction and the average prediction (from
the open date to the close date of the forecasting question) of each participant instead of the final
prediction (see Fig. 7 and 8).° Fig. 7 shows that the Pearson’s correlation coefficient between SSR
and the Brier score only decreases slightly when the initial and average predictions are used are
used. Fig. 8 shows that when we use earlier predictions, the correlations between the five peer
prediction scores and the Brier score slightly decrease, while SSR still maintains a relative advantage
in correlation over other mechanisms.

9 DISCUSSION

In this paper, we propose the SSR mechanisms such that truthful reporting one’s posterior belief is
a dominant strategy in the multi-task IEWV setting, when each agent uses a consistent reporting
strategy across all tasks. Moreover, the reward of a prediction given by an SSR mechanism quantifies
the value of information in expectation as if the prediction is assessed by the corresponding SPSR
with access to the ground truth. Because of these two properties, our mechanisms are particularly
suitable for information elicitation scenarios where using SPSR to reward agents are favored but
the ground truth is not available in time, such as forecasting long-term geopolitical events and
predicting the replicability of social science studies.

There are also some limitations of applying our models and mechanisms. First, our Assumption 2
requires agents’ signals on a task to be independent conditioned on the ground truth Y. This implies
that our SSR mechanisms only apply to scenarios where there exists such an objective ground truth
or where there is no objective ground truth but the agents’ signals are correlated only through a
single latent variable. An example of the latter is asking an agent how likely an essay is well-written
or not. Although whether an essay is well-written or not may not have an objective answer, as
long as the agents’ signals-are independent conditioned on a latent variable that captures the real
quality of the essay, our mechanisms should incentivize truthful reporting as a dominant strategy
when all agents adopt uniform strategies across tasks. In comparison, most existing multi-task
peer prediction mechanisms [e.g. 20, 35, 42] that elicit categorical signals do not require agents’
signals to be correlated only through a latent variable. Instead, they allow a broader correlation
pattern (e.g., self-predicting [35]) or arbitrary correlations as long as signals are not completely
independent [e.g. 20, 42].

Second, to estimate the error rates of the noisy estimate of the ground truth, our mechanisms
require at least three reports for each task. In contrast, several multi-task mechanisms [e.g. 6, 20, 35,
42] only need one peer agent to achieve their incentive properties. Moreover, the variance of the
rewards of SSR mechanisms depends on the number of tasks and reports that the mechanisms have
access to. A relatively large number of tasks and reports is needed to obtain a low-variance reward
for each agent. As can be seen from our empirical study, although SSR mechanisms still maintain
better correlations to the true SPSR scores than the other mechanisms when there are only a few
reports per task, SSR mechanisms have a more salient correlation decrease when compared to the
case where each task receives a sufficient number of answers. SSR mechanisms are more sensitive
to the size of the dataset. However, our analysis suggests that as long as agents adopt uniform
strategies across tasks, it is possible to learn the statistical patterns of agents’ reports without
influencing the incentive. Therefore, a future direction to mitigate SSR mechanisms’ sensitivity to

°Fig. 1a and Fig. 7c are the same. Fig. 2a and Fig. 8c are the same.
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the amount of data is to develop or adopt more sophisticated estimation algorithms that require
fewer tasks and reports to achieve stable performance.

ACKNOWLEDGMENTS

This research is based upon work supported in part by National Science Foundation (NSF) under
Grant No. CCF-1718549, 1IS-2007887, 1IS-2007951 and IIS-2143895, the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2017-
17061500006 and the Defense Advanced Research Projects Agency (DARPA) and Space and Naval
Warfare Systems Center Pacific (SSC Pacific) under Contract No. N66001-19-C-4014. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of NSF, ODNI, IARPA, DARPA, SSC
Pacific or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.

We also thank the anonymous reviewers of TEAC for constructive feedback that helped us better
present the results in the paper. A conference version of the paper has been published in EC’20
with the same title. See https://dl.acm.org/doi/abs/10.1145/3391403.3399488

REFERENCES
[1

—

Adam Altmejd, Anna Dreber, Eskil Forsell, Juergen Huber, Taisuke Imai, Magnus Johannesson, Michael Kirchler,
Gideon Nave, and Colin Camerer. 2019. Predicting the replicability of social science lab experiments. PloS one 14, 12
(2019).

Dana Angluin and Philip Laird. 1988. Learning from noisy examples. Machine Learning 2, 4 (1988), 343-370.

Pavel Atanasov, Phillip Rescober, Eric Stone, Samuel A Swift, Emile Servan-Schreiber, Philip Tetlock, Lyle Ungar, and

Barbara Mellers. 2016. Distilling the wisdom of crowds: Prediction markets vs. prediction polls. Management science

63, 3 (2016), 691-706.

[4] Glenn W Brier. 1950. Verification of forecasts expressed in terms of probability. Monthey Weather Review 78, 1 (1950),
1-3.

[5] Tom Bylander. 1994. Learning linear threshold functions in the presence of classification noise. In Proceedings of the
seventh annual conference on Computational learning theory. ACM, 340-347.

[6] Anirban Dasgupta and Arpita Ghosh. 2013. Crowdsourced judgement elicitation with endogenous proficiency. In
Proceedings of the 22nd international conference on World Wide Web. 319-330.

[7] Darrell Duffie and Jun Pan. 1997. An overview of value at risk. Journal of derivatives 4, 3 (1997), 7-49.

[8] Alexander Frankel and Emir Kamenica. 2019. Quantifying information and uncertainty. American Economic Review
109, 10 (2019), 3650-80.

[9] Benoit Frénay and Michel Verleysen. 2014. Classification in the presence of label noise: a survey. IEEE transactions on
neural networks and learning systems 25, 5 (2014), 845-869.

[10] Jeffrey A Friedman, Joshua D Baker, Barbara A Mellers, Philip E Tetlock, and Richard Zeckhauser. 2018. The value of
precision in probability assessment: Evidence from a large-scale geopolitical forecasting tournament. International
Studies Quarterly 62, 2 (2018), 410-422.

[11] Rafael Frongillo and Jens Witkowski. 2016. A geometric method to construct minimal peer prediction mechanisms. In
Thirtieth AAAI Conference on Artificial Intelligence.

[12] Tilmann Gneiting and Adrian E Raftery. 2005. Weather forecasting with ensemble methods. Science 310, 5746 (2005),
248-249.

[13] Tilmann Gneiting and Adrian E. Raftery. 2007. Strictly Proper Scoring Rules, Prediction, and Estimation. J. Amer.
Statist. Assoc. 102, 477 (2007), 359-378.

[14] Naman Goel and Boi Faltings. 2019. Deep bayesian trust: A dominant and fair incentive mechanism for crowd. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 1996-2003.

[15] Suzanne Hoogeveen, Alexandra Sarafoglou, and Eric-Jan Wagenmakers. 2019. Laypeople Can Predict Which Social
Science Studies Replicate. (2019).

[16] IARPA. 2019. Hybrid Forecasting Competition. https://www.iarpa.gov/index.php/research-programs/hfc?id=661.

[17] Victor Richmond Jose, Robert F. Nau, and Robert L. Winkler. 2006. Scoring Rules, Generalized Entropy and utility
maximization. (2006). Working Paper, Fuqua School of Business, Duke University.

[18] Radu Jurca and Boi Faltings. 2007. Collusion-resistant, incentive-compatible feedback payments. In Proceedings of the

8th ACM conference on Electronic commerce. ACM, 200-209.

— —
w N
[t i}

ACM Trans. Econ. Comput.


https://dl.acm.org/doi/abs/10.1145/3391403.3399488
https://www.iarpa.gov/index.php/research-programs/hfc?id=661

Surrogate Scoring Rules 31

[19]
[20]

[21

—

[22]
[23]

[24

=

[25

—

[26]
[27]
[28]
[29]
[30]

[31]
[32]

[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]
[45]

[46]

Radu Jurca and Boi Faltings. 2009. Mechanisms for making crowds truthful. Journal of Artificial Intelligence Research
34 (2009), 209-253.

Yuging Kong. 2020. Dominantly Truthful Multi-task Peer Prediction with a Constant Number of Tasks. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2398-2411.

Yuqing Kong, Katrina Ligett, and Grant Schoenebeck. 2016. Putting peer prediction under the micro (economic) scope
and making truth-telling focal. In International Conference on Web and Internet Economics. Springer, 251-264.

Yuqing Kong and Grant Schoenebeck. 2018. Water from two rocks: Maximizing the mutual information. In Proceedings
of the 2018 ACM Conference on Economics and Computation. 177-194.

Yuqing Kong and Grant Schoenebeck. 2019. An information theoretic framework for designing information elicitation
mechanisms that reward truth-telling. ACM Transactions on Economics and Computation (TEAC) 7, 1 (2019), 2.
Yuqing Kong, Grant Schoenebeck, Biaoshuai Tao, and Fang-Yi Yu. 2020. Information elicitation mechanisms for
statistical estimation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 2095-2102.

Yang Liu and Mingyan Liu. 2015. An Online Learning Approach to Improving the Quality of Crowd-Sourcing. In
Proceedings of the 2015 ACM SIGMETRICS (Portland, Oregon, USA). ACM, New York, NY, USA, 217-230.

John McCarthy. 1956. Measures of the Value of Information. PNAS: Proceedings of the National Academy of Sciences of
the United States of America 42, 9 (1956), 654-655.

Aditya Menon, Brendan Van Rooyen, Cheng Soon Ong, and Bob Williamson. 2015. Learning from corrupted binary
labels via class-probability estimation. In International Conference on Machine Learning. 125-134.

Nolan Miller, Paul Resnick, and Richard Zeckhauser. 2005. Eliciting Informative Feedback: The Peer-Prediction Method.
Management Science 51, 9 (2005), 1359 —1373.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. 2013. Learning with noisy labels.
In Advances in neural information processing systems. 1196—-1204.

Matthew Parry et al. 2016. Linear scoring rules for probabilistic binary classification. Electronic Journal of Statistics 10,
1(2016), 1596-1607.

Drazen Prelec. 2004. A Bayesian truth serum for subjective data. science 306, 5695 (2004), 462-466.

Drazen Prelec, H Sebastian Seung, and John McCoy. 2017. A solution to the single-question crowd wisdom problem.
Nature 541, 7638 (2017), 532.

Goran Radanovic and Boi Faltings. 2013. A Robust Bayesian Truth Serum for Non-Binary Signals. In Proceedings of the
27th AAAI Conference on Artificial Intelligence (AAAI ’13).

Goran Radanovic and Boi Faltings. 2014. Incentives for truthful information elicitation of continuous signals. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.

Goran Radanovic, Boi Faltings, and Radu Jurca. 2016. Incentives for effort in crowdsourcing using the peer truth serum.
ACM Transactions on Intelligent Systems and Technology (TIST) 7, 4 (2016), 48.

Blake Riley. 2014. Minimum truth serums with optional predictions. In Proceedings of the 4th Workshop on Social
Computing and User Generated Content (SC14).

Leonard J. Savage. 1971. Elicitation of Personal Probabilities and Expectations. J. Amer. Statist. Assoc. 66, 336 (1971),
783-801.

Grant Schoenebeck and Fang-Yi Yu. 2020. Learning and Strongly Truthful Multi-Task Peer Prediction: A Variational
Approach. arXiv preprint arXiv:2009.14730 (2020).

Grant Schoenebeck and Fang-Yi Yu. 2020. Two Strongly Truthful Mechanisms for Three Heterogeneous Agents
Answering One Question. In International Conference on Web and Internet Economics. Springer, 119-132.

Clayton Scott. 2015. A Rate of Convergence for Mixture Proportion Estimation, with Application to Learning from
Noisy Labels.. In AISTATS.

Clayton Scott, Gilles Blanchard, Gregory Handy, Sara Pozzi, and Marek Flaska. 2013. Classification with Asymmetric
Label Noise: Consistency and Maximal Denoising.. In COLT. 489-511.

Victor Shnayder, Arpit Agarwal, Rafael Frongillo, and David C Parkes. 2016. Informed truthfulness in multi-task peer
prediction. In Proceedings of the 2016 ACM Conference on Economics and Computation. ACM, 179-196.

Philip E Tetlock, Barbara A Mellers, Nick Rohrbaugh, and Eva Chen. 2014. Forecasting tournaments: Tools for
increasing transparency and improving the quality of debate. Current Directions in Psychological Science 23, 4 (2014),
290-295.

Brendan van Rooyen and Robert C Williamson. 2015. Learning in the Presence of Corruption. arXiv preprint:1504.00091
(2015).

Juntao Wang, Yang Liu, and Yiling Chen. 2019. Forecast aggregation via peer prediction. arXiv preprint arXiv:1910.03779
(2019).

Robert L. Winkler. 1969. Scoring rules and the evaluation of probability assessors. J. Amer. Statist. Assoc. 64, 327 (1969),
1073-1078.

ACM Trans. Econ. Comput.



32 Liu and Wang, et al.

[47] Jens Witkowski, Pavel Atanasov, Lyle H Ungar, and Andreas Krause. 2017. Proper proxy scoring rules. In Thirty-First
AAAI Conference on Artificial Intelligence.

[48] J. Witkowski and D.C. Parkes. 2012. Peer prediction without a common prior. In Proceedings of the 13th ACM Conference
on Electronic Commerce (EC ’12). ACM, 964-981.

[49] Jens Witkowski and David C. Parkes. 2012. A Robust Bayesian Truth Serum for Small Populations. In Proceedings of
the 26th AAAI Conference on Artificial Intelligence (AAAI °12).

[50] Jens Witkowski and David C Parkes. 2013. Learning the prior in minimal peer prediction. In Proceedings of the 3rd
Workshop on Social Computing and User Generated Content at the ACM Conference on Electronic Commerce, Vol. 14.

ACM Trans. Econ. Comput.



Surrogate Scoring Rules 33

APPENDIX
A MISSING FIGURES

@ @ @
k] k] k]
£ ssR £ ssR £ ssR
g g g - 0.9~1, p<0.05
= PSR = PSR = PSR corr i
g g g W= corr: 0.8~0.9, p<0.05
g 2 B s g P corr: 0.5~0.8, p<0.05
T oA T A T ca corr: 0~0.5, p<0.05
& & & p>=0.05
§ DMI § DMI § DMI corr<0, p<0.05
o 012345678 91011121314 = 012345678 91011121314 = 0123456 7891011121314

# of datasets over 14 datasets # of datasets over 14 datasets # of datasets over 14 datasets

(a) Brier score (b) Log scoring rule (c) Rank-sum scoring rule
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to the most likely binary vote with uniform random tie breaking.

B PROOF OF LEMMA 5.2

Proor. Suppose z and y are not stochastically relevant, we have

1, (18)
1. (19)

Pr(y =0|z =0] =Pr[y = 0|z
Prly=1|z=0] =Pr[y =1}z

1
1

From Eqn. (18) we know that

Prly=0,z=1] Pr[y=0,z=0] Prly=0Je; Pr[y=0](1-e;)

s

Pr[z =1] Pr[z = 0] Prlz=1] Pr[z =0]
When Pr[y = 0] # 0, we have gig:g = lf;e_. Similarly from Eqn. (19), we have E%ZH = 1:; ,

when Pr[y = 1] # 0. Therefore we, obtained

e, 1—e
1-e; e~
from which we have e; + e} = 1. Contradiction. The other direction follows similarly. O
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C PROOF OF LEMMA 6.6

Proor. We consider the estimation of the error rates e}, e of an agent i, and we consider a generic
task as tasks are a priori similar. Thus, in the proof, we drop the subscript k, which indexes the tasks.
There are two layers of estimation error is solving the system of equations Eqn. (4, 5, 6):

¢ 1. Estimation error due to heterogeneous agents: the higher order equations doesn’t
capture the true matching probability with heterogeneous agents. As we draw Z; and Z3 in a
task without replacement, with finite number of agents, Z, and Z; are dependent with Z;,
and the error rates of Z, and Z3 are not exactly the same to the error rates of Z; (z).

e 2. Estimation errors due to finite estimation samples: The last sources of errors come
from the estimation errors of f_;, y—; and a_;.

Next we bound the two errors separately.

1. Estimation error due to heterogeneous agents: The challenge lies in the fact that the
higher order equations doesn’t capture the true matching probability with heterogeneous agents.

We first consider Eqn. (5). (5) is not precise— randomly picking a prediction signal from all
agents without replacement leads to a different error rates. This will complicate the solution for
the system of equations. We show that our estimation, though being ignoring the above bias,
will not affect our results by too much: Let k; be the agent whose prediction signal is picked to
be Z;. Conditioned on agent k; being picked and on reports ¢qi, ...,qn, we have Pr[Z; = Z, =

1|91, - N, k1] = qi, - (M) . Recall that gy, is arandom variable because of the private signal

ck, received by agent k; and the randomness in oy, and that e} = By, 4|y=1[d-i]. We have that

PI'[Zl = ZZ = 1|y = 1] = Ek1 [qu,...,qn\yﬂ [PI'[Zl = ZZ = llkl,ql, veny qN]]]

w22
I

N-2
[ 2 j2ik, 95
N2
[ (N —1)G—;

qk
= Eg, » q15-qN | Y 11k, ] qu ----- gn|y=1 | N-2 - N—12”
[ N-1 1
=Ex, |Bq,....qnly=11qK ] - (me: TN = g ldan =1 [le])]
N-1 1
ot PRI | T A e |
N-1 1
= () - 0,
N-2 N -2
— 2
where o = By, [qu,..i,quyzl[qkl]]'
Note both e and w are no more than 1. Then,
2
1 2
@ o] s Sy Lo
N -2 N-2 N-=2 N-2

This adds ﬁ error bias in the step where we replace Pr[z; = z, = 1|y = 1] with (e})? in the
deduction of Eqn. (5). And, it finally adds ﬁ error bias in estimating _; (through both (e;)? and
(1-¢})?) in Eqn. (5).
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Similarly for the matching among three agents (Eqn. (6)) we have

3
N-3

[Pr(zi=2Z,=2Zs =1y = 1] - (})*| <

And this adds 7= error bias in estimating y-;.
2. Estlmatlon errors due to finite estimation samples: The last sources of errors come from

the estimation errors of B:-, y=: and a_;. Direct application of the Chernoff bound gives us the
following lemma:

LemMma C.1. When there are M samples for estimating E, y=i and aZ; respectively (total budgeting
3M), we have with probability at least 1 — § taht

f In5
|ﬁ— l| = ZM |Y— l| = |a— a_i| < ZM.

The error analysis in 1 and 2 jointly imply that with probability atleast 1 —

_ Iné 2 Iné 3 In$
S5 o —_— S
=Bl S\t i vl S\ s ladi e <\
i =il < \gpg * g =i 7=l oM " =g e ol 2M

Now we are ready to prove Lemma 6.6. First of all, from Algorithm 1, we can easily derive that

la—al |Va2—4b— Va? — 4b|

le; —e | < oot 5 (20)
~ la—al V@ —4b — Va2 — 4b|
+ +

le —ey| < >ut 5 (21)

For the latter term in Eqn. (20) and ( 21), we have

|Va2 < 4b — Va2 —8b| |(Va? — 4b — VaZ —4b) - (Va2 — 4b + Va? — 4b)|
2 2(Va? — 4b + Va? — 4b)

@ —a?|  4|b-b]
< +

2Va2 —4b  2Va? -

li—al> a-la—al 2[b-b]

< + +

2Va?2 —4b Va2 —4b Va® -

The first inequality is due to that we drop the positive 2Va? — 4b in the denominator. For the second
inequality, note that a is non-negative as essentially, a = 1 - €7 + e, shown in proof for Theorem 6.3.
To summarize, we have

— 1 a . 2|b - b| 1 o

le; —e; | < |-+ ——|ld—a|+ + |a— al (22)
2 a? — 4b Va2 —4b  2Va? -

~ 1 a . 2lb—b 1 .

let —ef| < (— + —) |a—al+ | | + |d — al? (23)
2 a? — 4b Va2 —4b  2Va? -
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The key tasks here reduce to bounding |@ — a| and |l; — b|. Recall

a i a-if-i
 Pei— (a)?
b ::a—i)/—i - (ﬂ—i)z
B-i — (a-i)?

We know the following facts
1(B=i = (@) = (B=i = (a-)H)| <(@)? = (a-)?| + |B=; = Bl
<L0a; —a_i|+ |B:_ﬁ—i| <3 % +L,
2M N -2
(7= = mits) = (y-i = Pio=d)| <IV=: = y—il + |Boia=s — fictei]
|75 = yeil + 1Bi = Bel + @ — o]

lng 2 3
+—
2M N-2 N-3

(@77 = (B-0)®) = (aiy—i — (B-0)?)| <|@Ti— @il + 1755 — yil + 2B — fil

In § 2 3
<=+ +—,
2M N-2 N-3

Next, denoting n = p(1 — p)(1 = e} — e; )? (which also means A = p(1 - p)(x~ — x)?), we have
Boi—(a-1)" =(1=p) - (x)2tp- (x)’ = ((1=p)-x" +p-x)°
=(1-p)-p-(x~ —x)°
=n
Let N be sufficiently large such that

In & 2
/ 5
3 + 24
2M N -2 <1 (24)

= =2 Pd-p) 7
Boi— (@) = 2 2

then

Therefore,

- @b i b

poi— (@) P-i—(a-p)?

I(ﬁ—'—(tx D) = (B-i = (@)D + (7= = poia=) = (y-i = Piay)|
1B=i — (@02 - |B=i — (a—i)?|

2 In § 4 3
<= 6\/ f——
n? 2M  N-2 N—3

Note that the first inequality uses Lemma 6.7.

|la—al| =
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Similarly for b, we have

. 2 Iné 4 3
b - bl <= 7\/—5+—+—
n 2M N-2 N-3

Together, we proved that when M and N are sufficiently large such that Eqn. (24) holds, i.e.,
6
3 IZW‘S+% < g,wehave

Ini 1
S
e; —e | <0 SV
~ Inl 1
S
ez+—62'|§0 W‘FN
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