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Abstract—Artificial Intelligence (AI) is moving towards the 

edge. Training an AI model for edge computing on a centralized 

server increases latency, and the privacy of edge users is 

jeopardized due to private data transfer through a less secure 

communication channels. Additionally, existing high-power 

computing systems are battling with memory and data transfer 

bottlenecks between the processor and memory. Federated 

Learning (FL) is a collaborative AI learning paradigm for 

distributed local devices that operates without transferring local 

data. Local participant devices share the updated network 

parameters with the central server instead of sending the original 

data. The central server updates the global AI model and deploys 

the model to the local clients. As the local data resides only on the 

edge, these devices need to be protected from cyberattacks. The 

Federated Intrusion Detection System (FIDS) could be a viable 

system to protect edge devices as opposed to a centralized 

protection system. However, on-device training of the model in 

resource constrained devices may suffer from excessive power 

drain, in addition to memory and area overhead. 

In this work we present a memristor based system for AI 

training on edge devices. Memristor devices are ideal candidates 

for processing in memory, as their dynamic resistance properties 

allow them to perform multiply-add operations in parallel in the 

analog domain with extreme efficiency. Alternatively, existing 

CMOS-based PIM systems are typically developed for edge 

inference based on pretrained weights, and are not equipped for 

on-chip training. We show the effectiveness of the system, where 

successful learning and recognition is achieved completely within 

edge devices. The classification accuracy of the memristor system 

shows negligible loss when compared a software implementation. 

To the best of our knowledge, this first demonstration of a 

memristor based federated learning system. We demonstrate the 

effectiveness of this system as an intrusion detection platform for 

edge devices, although given the flexibility of the learning 

algorithm, it could be used to enhance many types of on board 

leaning and classification applications. 

Keywords—PIM, memristor, Federated Learning, low power, 

Intrusion Detection 

I. INTRODUCTION  

Communication technology is moving towards the edge, 
and billions of smart devices are connected to the internet 
through communication channels. Typically, in current 

infrastructure, distributed mobile devices are sharing 
information with a cloud computing system. Thus, this existing 
method is vulnerable to information theft. As a result, several 
studies have been completed on Machine Learning (ML) and 
Artificial Neural Network (ANN) based Intrusion Detection 
System (IDS) development [1-3]. However, a cloud computing 
IDS still leaves vulnerabilities on the edge devices. Moreover, 
cloud computing is not suitable for applications that demand 
low latency and low power [1]. 

Recently, Federated Learning (FL) was proposed by Google 
AI as a new learning paradigm for distributed mobile devices 
[4]. The FL system has many potential applications in edge 
computing, healthcare, image recognition, and more [5]. In the 
FL method, the ANN is trained on the mobile devices on local 
data, and periodically shares the updated network information 
with the central server instead of sharing the original data. Then 
the central server adjusts the model in each communication 
round and deploys the updated model among the clients. In this 
work we present novel hardware to implement FL with extreme 
edge efficiency, and we demonstrate the utility of such a system 
by implementing a collaborative learning environment capable 
of sharing information about incoming cyber-attacks at the 
edge. 

An FL-based Intrusion Detection System (FIDS) can 
collaboratively learn cyber intrusion types, share any intrusion 
knowledge, and make a robust protection system [6-8]. FIDS 
could be a viable alternative to the existing rule-based IDS 
(SNORT, BRO, etc) for protecting edge and IoT devices [6]. A 
rule-based IDS runs state-machine algorithms and requires a 
million lines of code to find the potential threat. Moreover, the 
SNORT system has a high false-positive rate, and human 
intervention is needed to correct it [9]. Thus, running a high 
volume of IDS programs on resource-constrained edge devices 
is not feasible.  

Although the FL is a revolutionary ML model able to train 
distributed AI devices without sharing local data, the FL model 
is trained using the edge device's power supply [10]. The usage 
of the local devices may suffer from power outages, and these 
local systems now require additional memory to store network 
parameters before sending them to the server. Additionally, the 
fact that network devices could have widely varying power 



consumption and computation ability may make the 
implementation of FL on a large scale challenging [10]. Thus it 
would be best for the chosen IDS to operate at extreme low 
power, and be non-volatile. A few works on FL implementation 
in hardware can be found [10-16] for resource constrained edge 
applications.  

Neuromorphic [17] and Processing In Memory (PIM) [18] 
computing systems could be a viable solution for implementing 
FL in IoT or edge devices to address this resource bottleneck. 
The FL algorithm is implemented in a Spiking Neural Network 
(SNN) for the IoT and edge applications in [11,12,14,15]. 
However, no one has yet reported or proposed a FL 
implementation for on-chip and online learning in a PIM 
hardware system. PIM is primarily an analog in-memory 
computing paradigm. Commercially available PIM systems use 
SRAM cells to store quantized binary weights and target edge 
AI inference [19], not on-device training. 

Non-Volatile Memory (NVM) devices are compatible with 
in-memory computing and ANNs, as they can efficiently 
implement vector-matrix multiplication [20]. The memristor is 
a popular NVM device and can be implemented in a resistive 
crosspoint array to perform multiplication and addition in the 
analog domain in a highly parallel fashion [20-24]. With 
supervised and unsupervised learning algorithms, the 
memristor-based ANN is implemented for image classification 
[25], network intrusion, and anomaly detection [24]. There is 
no reported implementation of the FL algorithm in memristor-
based in-memory on-chip computing. Thus, the main 
contributions of this work are as follows: 

1.This work provides the proof of concept for the 
implementation of FL in-memory training in a highly parallel 
form in a memristor-based ANN architecture.  

2. FL for IDS applications in resource constrained edge devices 
using the proposed memristor-based PIM system. 

The rest of the paper is organized as follows: Section II 
briefly describes the FL system and algorithm. Section III 
explains the related works and reviews the hardware 
implementation of FL in the literature. Section IV discusses the 
dataset that is used for this experiment. Section V discusses the 
memristor implementation of the FL system, as well as training 
for FL intrusion detection. Section VI is about the experimental 
setup for dataset distribution, training, and testing procedures. 
The results of memristor FL are discussed in section VII, and 
section VIII presents a power, energy, and timing analysis of 
the system. Section IX presents a brief conclusion on this work.  

II. FEDERATED LEARNING (FL) 

FL is a collaborative and on-device ANN learning 
paradigm. First, the global model is deployed to all clients. The 
client devices learn based on local data, and share the updated 
synaptic weights through a communication protocol. Local data 
stays in the local device. Thus, helping to preserve the privacy 
of confidential information. The server receives the shared 
weights from all of the client devices, computes the average, 
updates the global model, and deploys the updates to the clients. 
The process is known as the FederatedAveraging (FedAvg) 
algorithm [26]. Fig. 1 presents a federated network where n 

client devices are connected to the central global server through 
a bidirectional communication channel. 

Client 1 Client 2 Client 3 Client N

ANN Model

Global Server

...

 
Fig. 1. Federated learning model diagram. 

The functional algorithm for the FL [26] is presented in Fig. 
2 with the network parameters W0

G randomly initialized, and 
the same model is deployed among the clients. The clients are 

trained on the local data, and the updated weights 𝑤𝑟+1
𝑖  are then 

sent to the central server without sharing the actual local data. 
It is assumed that the clients are performing their local training 
simultaneously and sharing the information with the server 
periodically, so that the server does not need to wait for a 
particular client. In each communication round 𝑟, the central 
server averages the accumulated weights shared by the clients. 
After performing the averaging, the central server deploys the 
updated model 𝑤𝑟+1

𝐺  to the clients, and this process is then 
repeated until training is complete. 

Algorithm: The Cr clients are indexed by i; D is the local data 
size indexed by d, E is the number of local epochs, R represents 
the communication rounds indexed as r, 𝜂 is the learning rate, 
and 𝜃 represents the network parameters. ni is the sample set on 
the local device i, which can be varied from device to device 
and n is the total number of samples present for all clients.  

 

𝑤0
𝐺  ←Randomly initialize the weights in the server and deploy 

to the clients 

      for each round r=1,2, 3…, R 

            Randomly choose a subset of clients from Cr   

            for each client i 𝜖 Cr  execute simultaneously 

                  for e 𝜖 1,2,…,E (local epoch) 

                        for  d 𝜖 D  

  𝑤𝑟+1
𝑖   𝑤𝑟

𝑖  - 𝜂𝛻𝑙(𝑤𝑟
𝑖; 𝑏) 

                       end for 

                 end for 

           end for 

           𝑤𝑟+1
𝐺 ← ∑

𝑛𝑖

𝑛

Cr

𝑖  𝑤𝑟+1
𝑖   Global Averaging 

           Test the updated global model with the test dataset 

      end for 

 
Fig. 2. Functional algorithm for the federated learning system. This algorithm 

was taken from [26]. 

III. RELATED WORK 

FL is an on-device synergistic learning paradigm, and the 
training process takes place on-chip, on power constrained edge 



devices. When these edge devices utilize traditional computing 
hardware, they suffer a memory and data transfer bottleneck.  

A feasibility study implementing FL in resource constrained 
devices has been performed on portable devices (such as the 
Raspberry-PI) to detect emotion from sound [10]. The 
difficulties of implementing FL in the presence of 
heterogeneous hardware under a federated system are discussed 
in [27]. FL on battery-powered devices is studied in [16] using 
a two-fold FL training strategy. This approach eliminates the 
problem of missing clients.  

The challenges of FL and future directions for 
implementation are discussed in the review in [10]. The 
findings of this work suggest that hardware improvement is 
required for on-device FL beyond algorithm development. 
Their study also suggests that to overcome the bottlenecks of 
traditional Von Neumann computing, the developer can explore 
non-Non Neumann computing paradigms. Neuromorphic [17] 
and Processing In Memory (PIM) [18] computing systems 
could be the viable solution for implementing FL in IoT or edge 
devices to address this bottleneck of resource-constrained 
computing devices. Neuromorphic and PIM computing systems 
are non von Neumann computing paradigms, and they consume 
very low computation power compared to traditional von 
Neumann computing.  

A Spiking Neural Network (SNN) based FL-SNN 
implementation is proposed in [15] using feedback signals 
within each SNN instead of backpropagation. A one-shot FL 
learning method for gesture recognition in a neuromorphic 
processor is proposed, which preserves local device data [12]. 
Work in [14] proposed and validated the importance of SNN 
neuromorphic computing in FL for image recognition tasks 
while preserving local information.   

Memristor-based neuromorphic systems have the potential 
to alleviate the stringent power constraints of on-chip learning 
in resource constrained devices. Yet, there is no reported FL 
implementation in the memristor-based in-memory computing 
system. However, the implementation of memristor based 
supervised and unsupervised learning systems is studied 
extensively [20-25].  

FL for intrusion detection systems has previously only been 
reported using software implementations [6-8]. A FL algorithm 
for intrusion detection implemented with a multilayer 
perceptron (MLP) and probabilistic ensemble classifier 
distributor with the NSL-KDD dataset is reported, achieving 
81-84% accuracy depending on various noise parameters. FL 
for intrusion detection is reported in [6] for centralized and 
federated setups of nine clients. The more basic FedAvg 
achieves around 87% accuracy. Training the network with 
selected features may affect the model's performance, to 
combat this a feature selection method is applied in the FL 
system for intrusion detection with accuracy between 49 and 
78% on NSL-KDD data with various feature selection of the 
network packets in [7]. An anomaly-based intrusion detection 
system is reported with various data distribution and achieved 
54-77% accuracy [8]. These intrusion detection examples are 
all implemented in software, and other than our presented 
system, there is no reported FL implementation for intrusion 
detection in hardware.  

Alternatively, our work presents a proof of concept for 
implementing an FL algorithm on a memristor-based PIM 
system. The protection of edge devices from potential intrusion 
is another concern, thus we demonstrate how our memristor-
based PIM for FL is able to implement a collaborative IDS.   

IV. NSL-KDD DATASET 

NSL-KDD is a popular dataset for designing and testing 
ANN-based intrusion detection systems [28]. NSL-KDD 
provides training and testing datasets separately, containing 
125,973 network packets for training and 22,544 packets for 
testing the intrusion detection model. Both datasets are 
comprised of normal and malicious packets. Each packet has 43 
attributes with nominal, binary, and numeric values. The 
nominal values are replaced with integers, and data contains 
five categories which are labeled from 0 to 4. The min-max 
normalization is performed on the entire dataset to bound the 
values in [0,1]. Examples of normal and malicious network 
packets are shown in Fig. 3 in their raw and normalized form.  

The malicious packets fall mainly within 4 categories: DoS, 
Probe, U2R, and R2L. Due to the very low number of samples 
in the U2R category, this study considers only the other 3 
malicious types, as well as Normal packets for training and 
testing the FL intrusion detection system.  

0,tcp,http,SF,287,2251,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,

7,0.00,0.00,0.00,0.00,1.00,0.00,0.43,8,219,1.00,0.00,0.12

,0.03,0.00,0.00,0.00,0.00,normal,21 

(a) 

0,icmp,eco_i,SF,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,

0.00,0.00,0.00,0.00,1.00,0.00,0.00,1,16,1.00,0.00,1.00,1.

00,0.00,0.00,0.00,0.00,ipsweep,18 

(b) 

0,0,0.04347,0,2.17e-07,1.05e-05,0,0,0,0,0,1,0,0,0,0,0,0, 

0,0,0,0.0156,0.01761,0,0.11,0,0,1,0,0.22,0.3568,1,1,0,0.0

1,0.02,0,0,0,0,1 

(c) 

0,1,0.10,0,1.304e-08,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

0.0019,0.00195,0,0,0,0,1,0,0,0.0039,0.0627,1,0,1,1,0,0,0,

0,0.857 

(d) 

Fig. 3. Example network packets (a) and (b) directly from the NSL-KDD 
dataset and (c) and (d) preprocessed normalized packets ready for training and 
evaluation.   

V. MEMRISTOR FL IMPLEMENTATION AND TRAINING 

The memristor is an emerging NVM device examined 
significantly for online and on-chip learning [20-25]. This work 
implements memristor-based FL, and demonstrates how it can 
be used for network intrusion detection. The MLP network 
architecture is considered for this experiment.   

A. Network Topologies 

The general architecture for the MLP is displayed in Fig. 4. 
The MLP is a supervised network that can classify data samples 
within a known set of classes. The computation of the MLP is 
carried out according to equations (1-3). Here 𝑏  and 𝑓(𝑥) 
denote the bias and activation function, respectively. 

𝐿1𝑗 = 𝑓(∑ 𝑤1(𝑖,𝑗). 𝑥𝑖 + 𝑏1𝑗
41
𝑖=1 )   () 

𝐿2𝑘 = 𝑓(∑ 𝑤2(𝑗,𝑘). ℎ1𝑗 + 𝑏2𝑘
90
𝑗=1 )           () 

𝐿3𝑙 = 𝑓(∑ 𝑤3(𝑘,𝑙). ℎ2𝑘 + 𝑏3𝑙
10
𝑘=1 )        () 
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Fig. 4. Basic architecture for the MLP used in this study. 

B. Memristor Based Implementation 

The basic neuron circuit we use in this work is displayed in 
Fig. 5, and this pattern can be repeated within a crossbar to 
define an entire layer of neurons. Thus, this memristor based 
neuron layer can perform multiply and addition operations very 
efficiently in parallel in the analog domain [20]. This neuron 
circuit requires two memristors to represent a single synaptic 
weight.  

 
Fig. 5. Memristor based neuron circuit. 

For a given input, a positive weight value is observed when 
𝜎𝑖+ > 𝜎𝑖− . Otherwise, the weight observed is negative 
[21,22,24]. This circuit is able to carry out multiply-add 
operations according to equation (4). The memristor devices 
modeled are assumed to have a resistance ratio of 
approximately 200 and a write threshold voltage of 1.3V, where  
𝜎𝑚𝑎𝑥 = 2 × 10−5 Ω−1 and  𝜎𝑚𝑖𝑛 = 1 × 10−7 Ω−1. 

𝐷𝑃𝑗 = ∑ 𝑥𝑖 × (𝜎𝑖𝑗
+ − 𝜎𝑖𝑗

−)𝑁+1
𝑖=1       (4) 

𝑦𝑗 = 𝑓(𝐷𝑃𝑗)      (5) 

 
In Fig. 5, each input column is connected to a virtually 

grounded op-amp. The output yj in equation (5) represents the 
neuron output after accounting for the activation function, 
approximating the rail voltages to squeeze the DPj values 
effectively. 

 

Fig. 6. Sigmoid activation function overlaid with the utilized approximation. 

Equation (6) displays the typical sigmoid function used in 
deep learning. Equation (7) displays the approximated sigmoid 
activation function generated by the op-amps when the VDD and 
VSS of the second op-amp stage are connected to 0 and 1 V 
respectively. The plot in Fig. 6 displays an overlay of f(x) and 
g(x) to visually compare these two activation functions. Fig. 7 
presents the crossbar layers implemented in the FL experiment 
client devices.  

 

Fig. 7. Memristor crossbar circuits connected to build a multilayered neural 
network with inputs (x) and outputs (y). The column amplifier circuit is shown 
in the inset. 

𝑓(𝑥) =
1

1+𝑒−𝑥          (6) 

𝑔(𝑥) = {
1,                      𝑥 > 2

0.25𝑥 + 0.5, |𝑥| ≤ 2
0,                      𝑥 < 2

   (7) 

C. Memristor Crossbar Training for FL 

The training algorithm utilized is as follows:  

i) Initialize the memristors with low random conductance in 
the central server and deploy the MLP model to the mobile 
devices or clients. 



ii) For an input packet x at a local device: 

a) Compute 𝐷𝑃𝑗  and 𝑦𝑗  at the neuron outputs of each 

crossbar layer. The input is inserted in the memristor 
array on the horizontal wires.  

b) For a neuron 𝑗, compute the error 𝛿𝑗 based on the output 

𝑦𝑗  and the target 𝑡𝑗  using equation (8) with the 

derivative of the activation function 𝑔(𝑥). 

𝛿𝑗 = (𝑦𝑗 − 𝑡𝑗)𝑔′(𝐷𝑃𝑗)    (8) 

c) Back propagate the error toward the input from each 
hidden layer neuron 𝑗  according to equation (9). The 
computed error is inserted from the columns of the 
memristor array. 

𝛿𝑗 = ∑ 𝛿𝑘𝑘 𝑤𝑘,𝑗𝑔(𝐷𝑃𝑗)    (9) 

d) Compute the weight update ∆𝑤𝑗  according to the error 

function and update weight layers with learning rate 𝜂 
and Stochastic Gradient Descent (SGD) process. The 
gradients are computed in the digital domain and these 
are translated to write pulse of varying length then 
amplitude, that are able to update each memristor by the 
correct amount (according to the theoretical weight 
update equations). 

e) Send the updated weight to the central server through 
the prescribed communication protocol in each 
communication round. 

f) Receive the updated model from the central server and 
repeat the same training process on the local data.   

iii) Return to step (ii) until the global model reaches satisfactory 
accuracy. 

This approach allows us to simulate the way in-situ on-chip 
learning would be utilized within the memristor crossbars. Thus 
memristor resistance is tuned and optimized during the training 
process. In addition to the energy and throughput advantages, 
on-chip training is beneficial because it accounts for the 
variation in resistance present across an array of memristor 
devices [29].  

VI. EXPERIMENT SETUP 

This experiment considers six edge clients in the federated 
network under a central server. First, a randomly initialized 
model is deployed to the clients to train on the individual 
datasets, then all clients are evaluated with a single test dataset 
to determine the model performance after each communication 
round. The experiment is performed for the ideal and extreme 
federated cases [4,26]. In an ideal federated case, all 
participants receive an equal number of classes for training their 
local devices. The ideally distributed dataset is known as the 
Independent and Identical Distributed (IID) dataset. If any 
clients do not receive data from all of the training categories, 
then the training system is based on a non-IID dataset [4,26]. 
Even if a client in the FL system does not receive data from all 
categories, once the central server updates the global model, 
this client will be able to recognize these categories in the 
future. Thus, a local device can perform inference on the 
packets that were not present during its own training procedure.  

In this study, all features (except the label) in the network 
packets are used to train the model. At first, all of the data 

categories are distributed randomly in subgroups, and each 
subgroup contains 1,000 network packets.  Then each subgroup 
is randomly sent to the participants, and it is assumed that 
training on the local devices is performed simultaneously.   

This study includes two experiments. In the first 
experiment, all of the clients are trained with the IID dataset 
with all four classes (Normal, DoS, Probe, R2L) of the NSL-
KDD dataset, and each client receives a random training 
dataset. In the second experiment, the clients receive a subset 
of the non-IID dataset that contains random samples, but each 
client may not receive all the dataset categories. The non-IID 
experiment was performed in various combinations: (1) all 
participants received two random classes; (2) each participant 
receives only one random class to learn (considered an extreme 
random case); (3) each client receives data from an unknown 
number of classes, it may be all four or it may be fewer.  

After performing each of the FL training processes, the 
model is tested with a single test set to measure the various 
training processes fairly. The classification accuracy of the 
trained model is evaluated with equation (10). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛−∑ 𝑊𝑟𝑜𝑛𝑔 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 

∑ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  (10) 

VII. RESULTS AND DISCUSSION 

The training result for each client in the model is presented 

in Fig. 8 and Fig. 9 for IID and non-IID training datasets, 

respectively. The results present the squared error in each 

communication round converging for individual clients.  

 
Fig. 8. Training error vs. epochs for each client in the memristor based FL 
system for IID data. 

In Fig. 8, the convergence progress is similar for all six 
clients. Nevertheless, the convergence pattern within different 
clients is not entirely uniform, as the source of IID data may be 
different. The differences in convergence are exaggerated in 
local devices if they receive a non-IID dataset, as presented in 
Fig. 9.  

Alternatively, Figs. 10 through 14 present the performance 
of the global model during each of the communication rounds, 
after receiving data from the memristor based clients. In the FL 
setup, the local devices train the model using local data, and 
then send the updated weights to the central server during each 
communication round. The local devices each train on their 
own local data for 5 epochs between each communication 
rounds for these experiments.  



 
Fig. 9. Training error vs. epochs for each client in the memristor based FL 
system for non-IID data. 

Performance is measured on the global model after each 
communication round is completed. Fig. 10 presents the model 
performance for IID data where the local devices are 
guaranteed to receive all four categories in their local data, yet 
the sources of the samples may be different. The global 
accuracy is greater than 98% for both the baseline software and 
the memristor based PIM implementations. There is a 
negligible difference in accuracy between the memristor 
implementation and the software approach. In the IID case, all 
local devices exhibit high accuracy (96% to 98%). However, if 
the local devices are trained with the non-IID dataset, the 
performance is affected drastically in the local model due to 
inadequate knowledge of unknown categories.  

 
Fig. 10. Accuracy vs. communication round of the memristor based FL system 

when IID dataset is received by the local devices. 

In Fig. 11, the advantage of the FL system over standalone 
edge learning of the client devices is presented to establish the 
importance of the FL system for distributed learning systems 
when the edge devices possess insufficient data to train the local 
IDS model. The individual IDS performance and collaborative 
performance are presented in Fig. 11 to show how the FL 
system can perform much better than any of the clients 
individually. Fig. 11 clearly demonstrates the advantages of 
collaborative learning.  

Fig. 12 presents the performance of the model using the non-
IID dataset. In this case, each client received two randomly 
selected categories of data for training. If the local models 
receive fewer classes for training, weight values will be biased 
toward learned data, and thus the model accuracy is degraded. 
However, testing accuracy achieved was about 77% in the 

memristor system, compared to 81% in the traditional software 
implementation. However, the accuracy of both the memristor 
and software implementations are better than [7,8] and similar 
to [6]. Furthermore, the accuracy may be increased further by 
implementing a deeper network in future development.  

 

 
Fig. 11. Accuracy of the FL system compared with and the accuracy of each 
individual client for the non-IID dataset case. 

 
Fig. 12.  Accuracy vs. communication round of the FL system for the non-IID 
dataset received by local devices. Each device received two randomly selected 

categories of data.  

In the most extreme examination of this system, each client 
receives only one randomly selected class for training the local 
models. The resulting global model performance is presented in 
Fig. 13. Although the accuracy is comparatively lower than that 
of Figs. 11 and 12, the performance is still better than the results 
reported in [7, 8].  

Finally, Fig. 14 presents the performance of the FL model when 

one local device receives all four of the data categories, and 

each of the other five clients receive only one category. The 

results in Figs. 13 and 14 demonstrate the benefit of FL in a 

distributed system of edge devices. In Fig. 13, each device 

received only one category, and the performance of the 

federated model deteriorated significantly. However, if any 

local device receives more data classes from which to learn, 

then the global performance of the model improves for all 

clients. 



 
Fig. 13. Accuracy vs. communication round of the FL system for the non-IID 

dataset received by the local devices. Each client received only one randomly 

selected dataset category for training their local model.  

 

Fig. 14.  Accuracy vs. communication round of FL for non-IID dataset received 

by the local devices. One client received all four categories for training, and the 

other clients each received only one category randomly selected from the 

dataset. 

VIII. SYSTEM POWER, ENERGY, AND TIMING ANALYSIS 

The energy, power, and timing of the memristor crossbar 
and peripheral circuitry has been estimated for the FL learning 
in each local device (see Table I). The software version is run 
on an ASUS-Tinkerboard as a reference low power device for 
measuring the robustness of the memristor-based in-memory 
computing system.  

TABLE I.  POWER, ENERGY, AND TIMING ANALYSIS OF THE MEMRISTOR-
BASED PIM SYSTEM  OF A SINGLE  LOCAL DEVICE AND IN TINKERBOARD 

Metrics MEM-PIM Tinkerboard Efficiency  

Area (mm2) 0.626 NA NA 

Training Time (s) 2.12 × 10-6 8.1 ×10-4 382 

Training Energy (J) 22.4 × 10-9 4.05 ×10-3 1.81 ×105 

Training Power (W) 10.6 × 10-3 5 471.7 

Inference Time (s) 2.88 ×10-7 3.71 ×10-4 1288.2 

Inference Energy (J) 1.08 ×10-9 1.86 ×10-3 1.72 ×106 

Inference Power (W) 3.74 ×10-3 5 1336.9 

 
The Tinkerboard typically consumes 5W during processing. 

The energy is computed based on its time required to perform 
the training and recognition operations. The power, energy, and 
timing results are presented in Table I for a single local device 
in the case of inference on the KSL-KDD network packets.  
Based on the measured data and comparison, it can be 

determined that the memristor-based PIM system performs 
better than the Tinkerboard in all metrics. Table I shows the 
data for a single local device in the distributed systems. 

IX. CONCLUSION 

A memristor-based federated learning system is presented 
for collaborative learning at the edge. To demonstrate the 
effectiveness of this approach, a network intrusion detection 
dataset is learned that has the potential to secure edge 
computing devices with a small fraction of the resources 
consumed by alternative approaches. This is the first 
implementation of an FL algorithm in a memristor-based in-
memory computing system. The training process was 
traditional backpropagation in the crossbar system, and the 
local SGD method was utilized as the optimization method. The 
latency of communicating between the local devices and the 
central server is not considered in this study. Future work may 
emphasize the numerical precision and latency for data transfer 
to the server through the communication channel during the 
training process. This work may be extended by studying an FL 
implementation in a memristor-based PIM circuit that considers 
reduced numerical precision. 
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