Memristor Based Federated Learning for Network

Security on the Edge using Processing in Memory
(PIM) Computing

Shahanur Alam, Chris Yakopcic, and Tarek M. Taha
Dept. Of Electrical and Computer Engineering, University of Dayton
Dayton, OH, USA
{alamm8, cyakopcicl, tarek.taha}@udayton.edu

Abstract—Artificial Intelligence (AI) is moving towards the
edge. Training an AI model for edge computing on a centralized
server increases latency, and the privacy of edge users is
jeopardized due to private data transfer through a less secure
communication channels. Additionally, existing high-power
computing systems are battling with memory and data transfer
bottlenecks between the processor and memory. Federated
Learning (FL) is a collaborative Al learning paradigm for
distributed local devices that operates without transferring local
data. Local participant devices share the updated network
parameters with the central server instead of sending the original
data. The central server updates the global AI model and deploys
the model to the local clients. As the local data resides only on the
edge, these devices need to be protected from cyberattacks. The
Federated Intrusion Detection System (FIDS) could be a viable
system to protect edge devices as opposed to a centralized
protection system. However, on-device training of the model in
resource constrained devices may suffer from excessive power
drain, in addition to memory and area overhead.

In this work we present a memristor based system for Al
training on edge devices. Memristor devices are ideal candidates
for processing in memory, as their dynamic resistance properties
allow them to perform multiply-add operations in parallel in the
analog domain with extreme efficiency. Alternatively, existing
CMOS-based PIM systems are typically developed for edge
inference based on pretrained weights, and are not equipped for
on-chip training. We show the effectiveness of the system, where
successful learning and recognition is achieved completely within
edge devices. The classification accuracy of the memristor system
shows negligible loss when compared a software implementation.
To the best of our knowledge, this first demonstration of a
memristor based federated learning system. We demonstrate the
effectiveness of this system as an intrusion detection platform for
edge devices, although given the flexibility of the learning
algorithm, it could be used to enhance many types of on board
leaning and classification applications.

Keywords—PIM, memristor, Federated Learning, low power,
Intrusion Detection

I. INTRODUCTION

Communication technology is moving towards the edge,
and billions of smart devices are connected to the internet
through communication channels. Typically, in current

infrastructure, distributed mobile devices are sharing
information with a cloud computing system. Thus, this existing
method is vulnerable to information theft. As a result, several
studies have been completed on Machine Learning (ML) and
Artificial Neural Network (ANN) based Intrusion Detection
System (IDS) development [1-3]. However, a cloud computing
IDS still leaves vulnerabilities on the edge devices. Moreover,
cloud computing is not suitable for applications that demand
low latency and low power [1].

Recently, Federated Learning (FL) was proposed by Google
Al as a new learning paradigm for distributed mobile devices
[4]. The FL system has many potential applications in edge
computing, healthcare, image recognition, and more [5]. In the
FL method, the ANN is trained on the mobile devices on local
data, and periodically shares the updated network information
with the central server instead of sharing the original data. Then
the central server adjusts the model in each communication
round and deploys the updated model among the clients. In this
work we present novel hardware to implement FL with extreme
edge efficiency, and we demonstrate the utility of such a system
by implementing a collaborative learning environment capable
of sharing information about incoming cyber-attacks at the
edge.

An FL-based Intrusion Detection System (FIDS) can
collaboratively learn cyber intrusion types, share any intrusion
knowledge, and make a robust protection system [6-8]. FIDS
could be a viable alternative to the existing rule-based IDS
(SNORT, BRO, etc) for protecting edge and IoT devices [6]. A
rule-based IDS runs state-machine algorithms and requires a
million lines of code to find the potential threat. Moreover, the
SNORT system has a high false-positive rate, and human
intervention is needed to correct it [9]. Thus, running a high
volume of IDS programs on resource-constrained edge devices
is not feasible.

Although the FL is a revolutionary ML model able to train
distributed Al devices without sharing local data, the FL model
is trained using the edge device's power supply [10]. The usage
of the local devices may suffer from power outages, and these
local systems now require additional memory to store network
parameters before sending them to the server. Additionally, the
fact that network devices could have widely varying power

consumption and computation ability may make the
implementation of FL on a large scale challenging [10]. Thus it
would be best for the chosen IDS to operate at extreme low
power, and be non-volatile. A few works on FL implementation
in hardware can be found [10-16] for resource constrained edge
applications.

Neuromorphic [17] and Processing In Memory (PIM) [18]
computing systems could be a viable solution for implementing
FL in IoT or edge devices to address this resource bottleneck.
The FL algorithm is implemented in a Spiking Neural Network
(SNN) for the IoT and edge applications in [11,12,14,15].
However, no one has yet reported or proposed a FL
implementation for on-chip and online learning in a PIM
hardware system. PIM is primarily an analog in-memory
computing paradigm. Commercially available PIM systems use
SRAM cells to store quantized binary weights and target edge
Al inference [19], not on-device training.

Non-Volatile Memory (NVM) devices are compatible with
in-memory computing and ANNSs, as they can efficiently
implement vector-matrix multiplication [20]. The memristor is
a popular NVM device and can be implemented in a resistive
crosspoint array to perform multiplication and addition in the
analog domain in a highly parallel fashion [20-24]. With
supervised and unsupervised learning algorithms, the
memristor-based ANN is implemented for image classification
[25], network intrusion, and anomaly detection [24]. There is
no reported implementation of the FL algorithm in memristor-
based in-memory on-chip computing. Thus, the main
contributions of this work are as follows:

1.This work provides the proof of concept for the
implementation of FL in-memory training in a highly parallel
form in a memristor-based ANN architecture.

2. FL for IDS applications in resource constrained edge devices
using the proposed memristor-based PIM system.

The rest of the paper is organized as follows: Section II
briefly describes the FL system and algorithm. Section III
explains the related works and reviews the hardware
implementation of FL in the literature. Section IV discusses the
dataset that is used for this experiment. Section V discusses the
memristor implementation of the FL system, as well as training
for FL intrusion detection. Section VI is about the experimental
setup for dataset distribution, training, and testing procedures.
The results of memristor FL are discussed in section VII, and
section VIII presents a power, energy, and timing analysis of
the system. Section IX presents a brief conclusion on this work.

II. FEDERATED LEARNING (FL)

FL is a collaborative and on-device ANN learning
paradigm. First, the global model is deployed to all clients. The
client devices learn based on local data, and share the updated
synaptic weights through a communication protocol. Local data
stays in the local device. Thus, helping to preserve the privacy
of confidential information. The server receives the shared
weights from all of the client devices, computes the average,
updates the global model, and deploys the updates to the clients.
The process is known as the FederatedAveraging (FedAvg)
algorithm [26]. Fig. 1 presents a federated network where n

client devices are connected to the central global server through
a bidirectional communication channel.

Global Server

N
ANN Model

4

Client N

Client 1 Client 2 Client 3

Fig. 1. Federated learning model diagram.

The functional algorithm for the FL [26] is presented in Fig.
2 with the network parameters Wo® randomly initialized, and
the same model is deployed among the clients. The clients are
trained on the local data, and the updated weights w;, ; are then
sent to the central server without sharing the actual local data.
It is assumed that the clients are performing their local training
simultaneously and sharing the information with the server
periodically, so that the server does not need to wait for a
particular client. In each communication round r, the central
server averages the accumulated weights shared by the clients.
After performing the averaging, the central server deploys the
updated model wf,; to the clients, and this process is then
repeated until training is complete.

Algorithm: The C. clients are indexed by i, D is the local data
size indexed by d, E is the number of local epochs, R represents
the communication rounds indexed as r,) is the learning rate,
and 6 represents the network parameters. #; is the sample set on
the local device i, which can be varied from device to device
and 7 is the total number of samples present for all clients.

w§ «Randomly initialize the weights in the server and deploy

to the clients
for each round r=1,2, 3..., R
Randomly choose a subset of clients from C,
for each client i € C, execute simultaneously
foree 1,2,.. E (local epoch)
for de D
Wyyy € Wi -nVI(w); b)
end for
end for
end for
wi,, « Zlc% wi,, € Global Averaging
Test the updated global model with the test dataset
end for

Fig. 2. Functional algorithm for the federated learning system. This algorithm
was taken from [26].

III. RELATED WORK

FL is an on-device synergistic learning paradigm, and the
training process takes place on-chip, on power constrained edge

devices. When these edge devices utilize traditional computing
hardware, they suffer a memory and data transfer bottleneck.

A feasibility study implementing FL in resource constrained
devices has been performed on portable devices (such as the
Raspberry-PI) to detect emotion from sound [10]. The
difficulties of implementing FL in the presence of
heterogeneous hardware under a federated system are discussed
in [27]. FL on battery-powered devices is studied in [16] using
a two-fold FL training strategy. This approach eliminates the
problem of missing clients.

The challenges of FL and future directions for
implementation are discussed in the review in [10]. The
findings of this work suggest that hardware improvement is
required for on-device FL beyond algorithm development.
Their study also suggests that to overcome the bottlenecks of
traditional Von Neumann computing, the developer can explore
non-Non Neumann computing paradigms. Neuromorphic [17]
and Processing In Memory (PIM) [18] computing systems
could be the viable solution for implementing FL in IoT or edge
devices to address this bottleneck of resource-constrained
computing devices. Neuromorphic and PIM computing systems
are non von Neumann computing paradigms, and they consume
very low computation power compared to traditional von
Neumann computing.

A Spiking Neural Network (SNN) based FL-SNN
implementation is proposed in [15] using feedback signals
within each SNN instead of backpropagation. A one-shot FL
learning method for gesture recognition in a neuromorphic
processor is proposed, which preserves local device data [12].
Work in [14] proposed and validated the importance of SNN
neuromorphic computing in FL for image recognition tasks
while preserving local information.

Memristor-based neuromorphic systems have the potential
to alleviate the stringent power constraints of on-chip learning
in resource constrained devices. Yet, there is no reported FL
implementation in the memristor-based in-memory computing
system. However, the implementation of memristor based
supervised and unsupervised learning systems is studied
extensively [20-25].

FL for intrusion detection systems has previously only been
reported using software implementations [6-8]. A FL algorithm
for intrusion detection implemented with a multilayer
perceptron (MLP) and probabilistic ensemble classifier
distributor with the NSL-KDD dataset is reported, achieving
81-84% accuracy depending on various noise parameters. FL
for intrusion detection is reported in [6] for centralized and
federated setups of nine clients. The more basic FedAvg
achieves around 87% accuracy. Training the network with
selected features may affect the model's performance, to
combat this a feature selection method is applied in the FL
system for intrusion detection with accuracy between 49 and
78% on NSL-KDD data with various feature selection of the
network packets in [7]. An anomaly-based intrusion detection
system is reported with various data distribution and achieved
54-77% accuracy [8]. These intrusion detection examples are
all implemented in software, and other than our presented
system, there is no reported FL implementation for intrusion
detection in hardware.

Alternatively, our work presents a proof of concept for
implementing an FL algorithm on a memristor-based PIM
system. The protection of edge devices from potential intrusion
is another concern, thus we demonstrate how our memristor-
based PIM for FL is able to implement a collaborative IDS.

IV. NSL-KDD DATASET

NSL-KDD is a popular dataset for designing and testing
ANN-based intrusion detection systems [28]. NSL-KDD
provides training and testing datasets separately, containing
125,973 network packets for training and 22,544 packets for
testing the intrusion detection model. Both datasets are
comprised of normal and malicious packets. Each packet has 43
attributes with nominal, binary, and numeric values. The
nominal values are replaced with integers, and data contains
five categories which are labeled from 0 to 4. The min-max
normalization is performed on the entire dataset to bound the
values in [0,1]. Examples of normal and malicious network
packets are shown in Fig. 3 in their raw and normalized form.

The malicious packets fall mainly within 4 categories: DoS,
Probe, U2R, and R2L. Due to the very low number of samples
in the U2R category, this study considers only the other 3
malicious types, as well as Normal packets for training and
testing the FL intrusion detection system.

0,tcp, http, SF,287,2251,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 3,
7,0.00,0.00,0.00,0.00,1.00,0.00,0.43,8,219,1.00,0.00,0.12
,0.03,0.00,0.00,0.00,0.00,normal, 21

(2)

0,icmp,eco_i,sF,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,
0.00,0.00,0.00,0.00,1.00,0.00,0.00,1,16,1.00,0.00,1.00,1.
00,0.00,0.00,0.00,0.00,ipsweep, 18

(b)
.04347,0,2.17e-07,1.05e-05,0,0,0,0
2

0,0
,0.0156,0.01761,0,0.21,0,0,1,0,0.
2,0,0,0,0,1

0,0,0 ’
0,0,0 2
1,0.0

©)

0,1,0.10,0,1.304e-08,0,0,0,0,0,0,0,0,0,0,0
0.0019,0.00195,0,0,0,0,1,0,0,0.0039,0.0627
0,0.857

’

@)

Fig. 3. Example network packets (a) and (b) directly from the NSL-KDD
dataset and (c) and (d) preprocessed normalized packets ready for training and
evaluation.

V. MEMRISTOR FL IMPLEMENTATION AND TRAINING

The memristor is an emerging NVM device examined
significantly for online and on-chip learning [20-25]. This work
implements memristor-based FL, and demonstrates how it can
be used for network intrusion detection. The MLP network
architecture is considered for this experiment.

A. Network Topologies

The general architecture for the MLP is displayed in Fig. 4.
The MLP is a supervised network that can classify data samples
within a known set of classes. The computation of the MLP is
carried out according to equations (1-3). Here b and f(x)
denote the bias and activation function, respectively.

Lij = f(XHwagjy-xi + b)))
Lo = f(Z721 Wagis- haj + ba))
Ly = f(Xk21 Wagery- hak + bsy) (3)

Fig. 4. Basic architecture for the MLP used in this study.

B. Memristor Based Implementation

The basic neuron circuit we use in this work is displayed in
Fig. 5, and this pattern can be repeated within a crossbar to
define an entire layer of neurons. Thus, this memristor based
neuron layer can perform multiply and addition operations very
efficiently in parallel in the analog domain [20]. This neuron
circuit requires two memristors to represent a single synaptic
weight.

Synapse

e

Memristor

Fig. 5. Memristor based neuron circuit.

For a given input, a positive weight value is observed when
0i; > 0;_ . Otherwise, the weight observed is negative
[21,22,24]. This circuit is able to carry out multiply-add
operations according to equation (4). The memristor devices
modeled are assumed to have a resistance ratio of
approximately 200 and a write threshold voltage of 1.3V, where
Omax = 2X1075Q Y and 0,, =1 x 1077 Q7L

DP; = Xi%Y' x; % (o35 — o) “
y; = f(DB) 5)

In Fig. 5, each input column is connected to a virtually
grounded op-amp. The output y; in equation (5) represents the
neuron output after accounting for the activation function,
approximating the rail voltages to squeeze the DP; values
effectively.

1
g 0.8 Sigmoid Function
;’ = = = Op. Amp Approx.
Sos6f

S

= 041

=}

i=3

3

o 0.2

Input Voltage (V)
Fig. 6. Sigmoid activation function overlaid with the utilized approximation.

Equation (6) displays the typical sigmoid function used in
deep learning. Equation (7) displays the approximated sigmoid
activation function generated by the op-amps when the V'pp and
Vss of the second op-amp stage are connected to 0 and 1 V
respectively. The plot in Fig. 6 displays an overlay of f{x) and
g(x) to visually compare these two activation functions. Fig. 7
presents the crossbar layers implemented in the FL experiment
client devices.

Xj
X,
x5

—— o ———

Fig. 7. Memristor crossbar circuits connected to build a multilayered neural
network with inputs (x) and outputs (y). The column amplifier circuit is shown
in the inset.

1

f) == (6)
1, x> 2

g(x) =40.25x + 0.5, |x| <2 (7
0, x <2

C. Memvristor Crossbar Training for FL
The training algorithm utilized is as follows:
i) Initialize the memristors with low random conductance in

the central server and deploy the MLP model to the mobile
devices or clients.

ii) For an input packet x at a local device:

a) Compute DP; and y; at the neuron outputs of each
crossbar layer. The input is inserted in the memristor
array on the horizontal wires.

b) For a neuron j, compute the error &; based on the output
y; and the target t; using equation (8) with the
derivative of the activation function g(x).

6 = —t)g'(DP) ®)

c) Back propagate the error toward the input from each

hidden layer neuron j according to equation (9). The

computed error is inserted from the columns of the
memristor array.

0j = Xk Ok Wk,j.g(DPj))

d) Compute the weight update Aw; according to the error
function and update weight layers with learning rate n
and Stochastic Gradient Descent (SGD) process. The
gradients are computed in the digital domain and these
are translated to write pulse of varying length then
amplitude, that are able to update each memristor by the
correct amount (according to the theoretical weight
update equations).

e) Send the updated weight to the central server through
the prescribed communication protocol in each
communication round.

f) Receive the updated model from the central server and
repeat the same training process on the local data.

iii) Return to step (ii) until the global model reaches satisfactory
accuracy.

This approach allows us to simulate the way in-situ on-chip
learning would be utilized within the memristor crossbars. Thus
memristor resistance is tuned and optimized during the training
process. In addition to the energy and throughput advantages,
on-chip training is beneficial because it accounts for the
variation in resistance present across an array of memristor
devices [29].

VI. EXPERIMENT SETUP

This experiment considers six edge clients in the federated
network under a central server. First, a randomly initialized
model is deployed to the clients to train on the individual
datasets, then all clients are evaluated with a single test dataset
to determine the model performance after each communication
round. The experiment is performed for the ideal and extreme
federated cases [4,26]. In an ideal federated case, all
participants receive an equal number of classes for training their
local devices. The ideally distributed dataset is known as the
Independent and Identical Distributed (IID) dataset. If any
clients do not receive data from all of the training categories,
then the training system is based on a non-IID dataset [4,26].
Even if a client in the FL system does not receive data from all
categories, once the central server updates the global model,
this client will be able to recognize these categories in the
future. Thus, a local device can perform inference on the
packets that were not present during its own training procedure.

In this study, all features (except the label) in the network
packets are used to train the model. At first, all of the data

categories are distributed randomly in subgroups, and each
subgroup contains 1,000 network packets. Then each subgroup
is randomly sent to the participants, and it is assumed that
training on the local devices is performed simultaneously.

This study includes two experiments. In the first
experiment, all of the clients are trained with the IID dataset
with all four classes (Normal, DoS, Probe, R2L) of the NSL-
KDD dataset, and each client receives a random training
dataset. In the second experiment, the clients receive a subset
of the non-IID dataset that contains random samples, but each
client may not receive all the dataset categories. The non-1ID
experiment was performed in various combinations: (1) all
participants received two random classes; (2) each participant
receives only one random class to learn (considered an extreme
random case); (3) each client receives data from an unknown
number of classes, it may be all four or it may be fewer.

After performing each of the FL training processes, the
model is tested with a single test set to measure the various
training processes fairly. The classification accuracy of the
trained model is evaluated with equation (10).

__ X Total Population—Y Wrong Detection

Accur = 1
ceuracy Y Total Population (0)

VII. RESULTS AND DISCUSSION

The training result for each client in the model is presented
in Fig. 8 and Fig. 9 for IID and non-IID training datasets,
respectively. The results present the squared error in each
communication round converging for individual clients.

Error vs. Communication round for IID data

160 ; : :
i —Client]
140 | ——Client2 |1
| Client3
« 120+ \‘ ——Client4 ||
£ ‘u ——Client5
m 100 - Client6 |
=
g
s 80 §
=
o
2 60+ 1
40 - E
NASVAS—
20 ‘ ‘ . ‘
0 10 20 30 40 50

Communication Round
Fig. 8. Training error vs. epochs for each client in the memristor based FL
system for IID data.

In Fig. 8, the convergence progress is similar for all six
clients. Nevertheless, the convergence pattern within different
clients is not entirely uniform, as the source of IID data may be
different. The differences in convergence are exaggerated in
local devices if they receive a non-1ID dataset, as presented in
Fig. 9.

Alternatively, Figs. 10 through 14 present the performance
of the global model during each of the communication rounds,
after receiving data from the memristor based clients. In the FL
setup, the local devices train the model using local data, and
then send the updated weights to the central server during each
communication round. The local devices each train on their
own local data for 5 epochs between each communication
rounds for these experiments.

Error vs. Communication Round, Non-IID data

100 T T T
—Clientl
— Client2
80 Client3 |
. —Client4
g ——Client5
5 60 Client6 | |
o
I
S 40t i
o
2]
20 - 1
D
0 ! e
0 10 20 30 40 50

Communication Round
Fig. 9. Training error vs. epochs for each client in the memristor based FL
system for non-1ID data.

Performance is measured on the global model after each
communication round is completed. Fig. 10 presents the model
performance for IID data where the local devices are
guaranteed to receive all four categories in their local data, yet
the sources of the samples may be different. The global
accuracy is greater than 98% for both the baseline software and
the memristor based PIM implementations. There is a
negligible difference in accuracy between the memristor
implementation and the software approach. In the IID case, all
local devices exhibit high accuracy (96% to 98%). However, if
the local devices are trained with the non-IID dataset, the
performance is affected drastically in the local model due to
inadequate knowledge of unknown categories.

Experiment on IID 4 classes in all clients

0.95 - 1
2 09 1
g
=]

8
< 0.85F 1
Memristor
Software
0.8 1
075 L 1 L 1
0 10 20 30 40 50

Communication Rounds
Fig. 10. Accuracy vs. communication round of the memristor based FL system
when IID dataset is received by the local devices.

In Fig. 11, the advantage of the FL system over standalone
edge learning of the client devices is presented to establish the
importance of the FL system for distributed learning systems
when the edge devices possess insufficient data to train the local
IDS model. The individual IDS performance and collaborative
performance are presented in Fig. 11 to show how the FL
system can perform much better than any of the clients
individually. Fig. 11 clearly demonstrates the advantages of
collaborative learning.

Fig. 12 presents the performance of the model using the non-
IID dataset. In this case, each client received two randomly
selected categories of data for training. If the local models
receive fewer classes for training, weight values will be biased
toward learned data, and thus the model accuracy is degraded.
However, testing accuracy achieved was about 77% in the

memristor system, compared to 81% in the traditional software
implementation. However, the accuracy of both the memristor
and software implementations are better than [7,8] and similar
to [6]. Furthermore, the accuracy may be increased further by
implementing a deeper network in future development.

non-IID data

—FL
——Client 1
0.8 Client 2—————
—CClient 3
——Client 4
§0-6 r Client 5 1
5 ——Client 6
Q
204 \ / 1
0 L 1 L Il
0 10 20 30 40 50

Communication Rounds
Fig. 11. Accuracy of the FL system compared with and the accuracy of each
individual client for the non-IID dataset case.

Experiment on non-IID data, 2 classes each client

0.8 r 1
206r 1
£
=]

3
< 04r 1
Software
Memristor
0.2+ 1
O L 1 1 1
0 10 20 30 40 50

Communication Rounds
Fig. 12. Accuracy vs. communication round of the FL system for the non-IID
dataset received by local devices. Each device received two randomly selected
categories of data.

In the most extreme examination of this system, each client
receives only one randomly selected class for training the local
models. The resulting global model performance is presented in
Fig. 13. Although the accuracy is comparatively lower than that
of Figs. 11 and 12, the performance is still better than the results
reported in [7, 8].

Finally, Fig. 14 presents the performance of the FL. model when
one local device receives all four of the data categories, and
each of the other five clients receive only one category. The
results in Figs. 13 and 14 demonstrate the benefit of FL in a
distributed system of edge devices. In Fig. 13, each device
received only one category, and the performance of the
federated model deteriorated significantly. However, if any
local device receives more data classes from which to learn,
then the global performance of the model improves for all
clients.

Experiment on non-IID data,1 class each

=
[
T

N
~
T

Accuracy
o
W
:

—— Memristor
— Software | |

e
to
.

e
=
.

0

0 10 20 30 40 50
Communication Rounds

Fig. 13. Accuracy vs. communication round of the FL system for the non-IID

dataset received by the local devices. Each client received only one randomly

selected dataset category for training their local model.

Experiment on non-IID data, 1 client 4 classes, rest 1 class
. . . T

0.8

0.6 1
>
g Soft
— oltware
§ 0.4 Menmristor | |
<

0.2 1

0 1 1 1 L
0 10 20 30 40 50

Communication Rounds

Fig. 14. Accuracy vs. communication round of FL for non-IID dataset received
by the local devices. One client received all four categories for training, and the
other clients each received only one category randomly selected from the
dataset.

VIII. SYSTEM POWER, ENERGY, AND TIMING ANALYSIS

The energy, power, and timing of the memristor crossbar
and peripheral circuitry has been estimated for the FL learning
in each local device (see Table I). The software version is run
on an ASUS-Tinkerboard as a reference low power device for
measuring the robustness of the memristor-based in-memory
computing system.

TABLE I. POWER, ENERGY, AND TIMING ANALYSIS OF THE MEMRISTOR-
BASED PIM SYSTEM OF A SINGLE LOCAL DEVICE AND IN TINKERBOARD

Metrics MEM-PIM Tinkerboard Efficiency
Area (mm’?) 0.626 NA NA
Training Time (s) 2.12x10° 8.1 x10* 382
Training Energy (J) 224 x10° 4.05 x1073 1.81 x10°
Training Power (W) 10.6 x 1073 5 471.7
Inference Time (s) 2.88 x1077 3.71 x10* 1288.2
Inference Energy (J) 1.08 x10” 1.86 x10° 1.72 x10°
Inference Power (W) 3.74 X103 5 1336.9

The Tinkerboard typically consumes SW during processing.
The energy is computed based on its time required to perform
the training and recognition operations. The power, energy, and
timing results are presented in Table I for a single local device
in the case of inference on the KSL-KDD network packets.
Based on the measured data and comparison, it can be

determined that the memristor-based PIM system performs
better than the Tinkerboard in all metrics. Table I shows the
data for a single local device in the distributed systems.

IX. CONCLUSION

A memristor-based federated learning system is presented
for collaborative learning at the edge. To demonstrate the
effectiveness of this approach, a network intrusion detection
dataset is learned that has the potential to secure edge
computing devices with a small fraction of the resources
consumed by alternative approaches. This is the first
implementation of an FL algorithm in a memristor-based in-
memory computing system. The training process was
traditional backpropagation in the crossbar system, and the
local SGD method was utilized as the optimization method. The
latency of communicating between the local devices and the
central server is not considered in this study. Future work may
emphasize the numerical precision and latency for data transfer
to the server through the communication channel during the
training process. This work may be extended by studying an FL
implementation in a memristor-based PIM circuit that considers
reduced numerical precision.

REFERENCES

[11 C. Gustavo, M. Saeteros, W. Onate, and M. V. Garcia. "Fog
computing at industrial level, architecture, latency, energy, and
security: A review." Heliyon 6, no. 4 (2020): ¢03706.

[2] D. P. Vinchurkar, and A Reshamwala. "A review of intrusion
detection system using neural network and machine learning." J.
Eng. Sci. Innov. Technol 1 (2012): 54-63.

[3] R. Samrin, and D. Vasumathi. "Review on anomaly based
network intrusion detection system." In 2017 International
Conference on Electrical, Electronics, ~Communication,
Computer, and Optimization Techniques (ICEECCOT), pp. 141-
147. IEEE, 2017.

[4] J. Konecny, , H. B. McMahan, X. Y. Felix, P. Richtarik, A. T.
Suresh, and D. Bacon. "Federated learning: Strategies for
improving communication efficiency." arXiv preprint
arXiv:1610.05492 (2016).

[51 Q. Yang, Y. Liu, T. Chen, and Y. Tong. "Federated machine
learning: Concept and applications." ACM Transactions on
Intelligent Systems and Technology (TIST) 10, no. 2 (2019): 1-19.

[6] E.M. Campos, F. S. Pablo, A. G. Vidal Vidal, J. L. H. Ramos, J.
B. Bernabe, G. Baldini, and A. Skarmeta. "Evaluating Federated
Learning for intrusion detection in Internet of Things: Review and
challenges." Computer Networks (2021): 108661.

[71 Y. Qin, and M. Kondo. "Federated Learning-Based Network
Intrusion Detection with a Feature Selection Approach." In 2021
International Conference on Electrical, Communication, and
Computer Engineering (ICECCE), pp. 1-6. IEEE, 2021.

[8] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad. "Internet of
things intrusion detection: Centralized, on-device, or federated
learning." /EEE Network 34, no. 6 (2020): 310-317.

[9] A. Shahid, J. M. Zain, M. F. Zolkipli, Z. Inayat, S. Khan, B.
Anthony, and V Chang. "From intrusion detection to an intrusion
response system: fundamentals, requirements, and future
directions." Algorithms 10, no. 2 (2017): 39.

A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini. "A
survey on federated learning for resource-constrained IoT
devices." IEEE Internet of Things Journal 9, no. 1 (2021): 1-24.
N. Skatchkovsky, H. Jang, and O. Simeone. "Federated
neuromorphic learning of spiking neural networks for low-power
edge intelligence." In ICASSP 2020-2020 IEEE International

Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8524-8528. IEEE, 2020.

(10

—_

[11

—

[12] K. Stewart, and Y. Gu. "One-Shot Federated Learning with
Neuromorphic Processors." arXiv preprint
arXiv:2011.01813 (2020).

[13] D. S. Johnson, W. Lorenz, M. Taenzer, S. Mimilakis, S.
Grollmisch, J. AbeBer, and H. Lukashevich. "Desed-fl and urban-
fl: Federated learning datasets for sound event detection." arXiv
preprint arXiv:2102.08833 (2021).

[14] Y. Venkatesha, Y. Kim, L. Tassiulas, and P. Panda. "Federated
Learning with Spiking Neural Networks." arXiv preprint
arXiv:2106.06579 (2021).

[15] N. Skatchkovsky, H. Jang, and O. Simeone. "Spiking neural
networks—Part III: Neuromorphic communications." IEEE
Communications Letters 25, no. 6 (2021): 1746-1750.

[16] Z. Xu, L. Li, and W. Zou. "Exploring federated learning on
battery-powered devices." In Proceedings of the ACM Turing
Celebration Conference-China, pp. 1-6. 2019.

[17] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E.
Dean, G. S. Rose, and J. S. Plank. "A survey of neuromorphic
computing and neural networks in hardware." arXiv preprint
arXiv:1705.06963 (2017).

[18] D. Ielmini, and H. S. P. Wong. "In-memory computing with
resistive switching devices." Nature Electronics 1, no. 6 (2018):
333-343.

[19] S. Bavikadi, P. R. Sutradhar, K. N. Khasawneh, A. Ganguly, and
S. M. P. Dinakarrao, 2020, September. A review of in-memory
computing architectures for machine learning applications.
In Proceedings of the 2020 on Great Lakes Symposium on
VLSI (pp. 89-94).

[20] Burr, Geoffrey W. "A role for analogue memory in Al
hardware." Nature Machine Intelligence 1, no. 1 (2019): 10-11.

[21] C. Yakopcic and T. M. Taha, “Analysis and Design of Memristor
Crossbar Based Neuromorphic Intrusion Detection Hardware,”
IEEE/INNS International Joint Conference on Neural Networks
(IICNN), pp. 1-7, Rio de Janeiro, Brazil, July, 2018

[22] R. Hasan and T. M. Taha, “Enabling Back Propagation Training
of Memristor Crossbar Neuromorphic Processors”, International
Joint Conference on Neural Networks (IJCNN), Beijing, July
2014

[23] O. Krestinskaya, K. N. Salama, and A. P. James. "Learning in
memristive neural network architectures using analog
backpropagation circuits." IEEE Transactions on Circuits and
Systems I: Regular Papers 66, no. 2 (2018): 719-732.

[24] M .S. Alam, B. R. Fernando, Y. Jaoudi, C. Yakopcic, R. Hasan,
T. M. Taha, and G. Subramanyam. "Memristor Based
Autoencoder for Unsupervised Real-Time Network Intrusion and
Anomaly Detection." In Proceedings of the International
Conference on Neuromorphic Systems, pp. 1-8. 2019.

[25] L. Huang, J. Diao, H. Nie, W. Wang, Z. Li,Q. Li, and H. Liu,
2021. Memristor Based Binary Convolutional Neural Network
Architecture With Configurable Neurons. Frontiers in
neuroscience, 15, p.328.

[26] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y.
Arcas. "Communication-efficient learning of deep networks from
decentralized data." In Artificial intelligence and statistics, pp.
1273-1282. PMLR, 2017.

[27] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini.
"Federated learning for resource-constrained iot devices:
Panoramas and state-of-the-art." arXiv preprint
arXiv:2002.10610 (2020).

[28] NSL-KDD data: https://www.unb.ca/cic/datasets/nsl.html

[29] C. Yakopcic, T. M. Taha, D. J. Mountain, T. Salter, M. J.
Marinella, M. McLean, “Memristor Model Optimization Based
on Parameter Extraction from Device Characterization Data,”

IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 5, pp. 1804-1095, May, 2020.

https://www.unb.ca/cic/datasets/nsl.html

