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Abstract
Label noise in real-world datasets encodes wrong
correlation patterns and impairs the generalization
of deep neural networks (DNNs). It is critical to
find efficient ways to detect corrupted patterns.
Current methods primarily focus on designing ro-
bust training techniques to prevent DNNs from
memorizing corrupted patterns. These approaches
often require customized training processes and
may overfit corrupted patterns, leading to a per-
formance drop in detection. In this paper, from
a more data-centric perspective, we propose a
training-free solution to detect corrupted labels.
Intuitively, “closer” instances are more likely to
share the same clean label. Based on the neighbor-
hood information, we propose two methods: the
first one uses “local voting” via checking the noisy
label consensuses of nearby features. The second
one is a ranking-based approach that scores each
instance and filters out a guaranteed number of in-
stances that are likely to be corrupted. We theoret-
ically analyze how the quality of features affects
the local voting and provide guidelines for tuning
neighborhood size. We also prove the worst-case
error bound for the ranking-based method. Ex-
periments with both synthetic and real-world la-
bel noise demonstrate our training-free solutions
consistently and significantly improve most of
the training-based baselines. Code is available at
github.com/UCSC-REAL/SimiFeat.

1. Introduction
The generalization of deep neural networks (DNNs) depends
on the quality and the quantity of the data. Nonetheless, real-
world datasets often contain label noise that challenges the
above assumption (Krizhevsky et al., 2012; Zhang et al.,
2017; Agarwal et al., 2016; Wang et al., 2021a). Employing
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human workers to clean annotations is one reliable way to
improve the label quality, but it is too expensive and time-
consuming for a large-scale dataset. One promising way
to automatically clean up label errors is to first algorithmi-
cally detect possible label errors from a large-scale dataset
(Cheng et al., 2021a; Northcutt et al., 2021a; Pruthi et al.,
2020; Bahri et al., 2020), and then correct them using either
algorithm or crowdsourcing (Northcutt et al., 2021b).

Almost all the algorithmic detection approaches focus on
designing customized training processes to learn with noisy
labels, where the idea is to train DNNs with noisy supervi-
sions and then make decisions based on the output (North-
cutt et al., 2021a) or gradients (Pruthi et al., 2020) of the
last logit layer of the trained model. The high-level intu-
ition of these methods is the memorization effects (Han
et al., 2020), i.e., instances with label errors, a.k.a., cor-
rupted instances, tend to be harder to be learned by DNNs
than clean instances (Xia et al., 2021; Liu et al., 2020; Bai
& Liu, 2021). By setting appropriate hyperparameters to
utilize the memorization effect, corrupted instances could
be identified.

Limitations of the learning-centric methods The above
methods suffer from two major limitations: 1) the cus-
tomized training processes are task-specific and may require
fine-tuning hyperparameters for different datasets/noise; 2)
as long as the model is trained with noisy supervisions, the
memorization of corrupted instances exists. The model will
“subjectively” and wrongly treat the memorized/overfitted
corrupted instances as clean. For example, some low-
frequency/rare clean instances may be harder to memorize
than high-frequency/common corrupted instances. Mem-
orizing these corrupted instances lead to unexpected and
disparate impacts (Liu, 2021).

Existing solutions to avoid memorizing/overfitting are to
employ some regularizers (Cheng et al., 2021a) or use
early-stopping (Bai et al., 2021; Li et al., 2020b). How-
ever, their performance depends on hyperparameter settings.
One promising way to avoid memorizing/overfitting is to
drop the dependency on the noisy supervision, which mo-
tivates us to design a training-free method to find label
errors. Intuitively, we can carefully use the information
from nearby features to infer whether one instance is cor-
rupted or not. The comparison between our data-centric and
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Figure 1. The existing learning-centric pipeline vs. our proposed
data-centric pipeline. The inputs are features and the corresponding
noisy labels, and the outputs are a set of corrupted labels. Blue:
The learning-centric solution. Orange: The data-centric solution.

existing learning-centric solutions is illustrated in Figure 1.

Our training-free method enables more possibilities beyond
a better detection result. For example, the concerns about the
required assumptions and hyperparameter tuning in those
training-based methods will now be released due to our
training-free property. The complexity will also be much
lower, again due to removing the possibly involved training
processes. This light detection solution also has the potential
to serve as a pre-processing module to prepare data for
other sophisticated tasks (e.g., semi-supervised learning
(Xie et al., 2019; Berthelot et al., 2019)).

Our main contributions are:

• New perspective: Different from current methods that
train customized models on noisy datasets, we propose a
training-free and data-centric solution to efficiently detect
corrupted labels, which provides a new and complemen-
tary perspective to the traditional learning-centric solu-
tion. We demonstrate the effectiveness of this simple idea
and open the possibility for follow-up works.

• Efficient algorithms: Based on the neighborhood infor-
mation, we propose two methods: a voting-based local
detection method that only requires checking the noisy
label consensuses of nearby features, and a ranking-based
global detection method that scores each instance by its
likelihood of being clean and filters out a guaranteed per-
centage of instances with low scores as corrupted ones.

• Theoretical analyses: We theoretically analyze how the
quality of features (but possibly imperfect in practice)
affects the local voting and provide guidelines for tuning
neighborhood size. We also prove the worst-case error
bound for the ranking-based method.

• Numerical findings: Our numerical experiments show
three important messages: in corrupted label detection, i)
training with noisy supervisions may not be necessary;
ii) feature extraction layers tend to be more useful than
the logit layers; iii) features extracted from other tasks or
domains are helpful.

1.1. Related Works

Learning with noisy labels There are many other works
that can detect corrupted instances (a.k.a. sample selection)
in the literature, e.g., (Han et al., 2018; Yu et al., 2019; Yao
et al., 2020; Wei et al., 2020; Jiang et al., 2020; Zhang et al.,
2021; Huang et al., 2019), and its combination with semi-
supervised learning (Wang et al., 2020; Li et al., 2020a;
Cheng et al., 2021a). Another line of works focus on design-
ing robust loss functions to mitigate the effect of label noise,
such as numerical methods (Ghosh et al., 2017; Zhang &
Sabuncu, 2018; Gong et al., 2018; Amid et al., 2019; Wang
et al., 2019; Shu et al., 2020; Wang et al., 2022a) and sta-
tistical methods (Natarajan et al., 2013; Liu & Tao, 2015;
Patrini et al., 2017; Liu & Guo, 2020; Xia et al., 2019; Zhu
et al., 2021a; Jiang et al., 2022; Feng et al., 2021; Wei et al.,
2021b; 2022c). They all require training DNNs with noisy
supervisions and would suffer from the limitations of the
learning-centric methods.

k-NN for noisy labels The k-NN technique often plays im-
portant roles in building auxiliary methods to improve deep
learning (Jiang et al., 2018). Recently, it has been extended
to filtering out corrupted instances when learning with noisy
labels (Gao et al., 2016; Reeve & Kabán, 2019; Kong et al.,
2020; Bahri et al., 2020). However, these methods focus
on learning-centric solutions and cannot avoid memorizing
noisy labels.

Label aggregation Our work is also relevant to the litera-
ture of crowdsourcing that focuses on label aggregation (to
clean the labels) (Liu et al., 2012; Karger et al., 2011; 2013;
Liu & Liu, 2015; Zhang et al., 2014; Wei et al., 2022e).
Most of these works can access multiple reports (labels) for
the same input feature, while our real-world datasets usually
have only one noisy label for each feature.

2. Preliminaries
Instances Traditional supervised classification tasks build
on a clean dataset D := {(xn, yn)}n∈[N ], where [N ] :=
{1, 2, · · · , N}. Each clean instance (xn, yn) includes fea-
ture xn and clean label yn, which is drawn according to
random variables (X,Y ) ∼ D. In many practical cases, the
clean labels may be unavailable and the learner could only
observe a noisy dataset denoted by D̃ := {(xn, ỹn)}n∈[N ],
where (xn, ỹn) is a noisy instance and the noisy label ỹn
may or may not be identical to yn. We call ỹn is corrupted
if ỹn 6= yn and clean otherwise. The instance (xn, ỹn) is a
corrupted instance if ỹn is corrupted. The noisy data dis-
tribution corresponds to D̃ is (X, Ỹ ) ∼ D̃. We focus on
the closed-set label noise that Y and Ỹ are assumed to be
in the same label space, e.g., Y, Ỹ ∈ [K]. Explorations on
open-set data (Xia et al., 2020a; Wei et al., 2021a; Luo et al.,
2021) are deferred to future works.
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Clusterability In this paper, we focus on a setting where
the distances between two features should be comparable or
clusterable (Zhu et al., 2021b), i.e., nearby features should
belong to the same true class with a high probability (Gao
et al., 2016), which could be formally defined as:

Definition 2.1 ((k, δk) label clusterability). A dataset D
satisfies (k, δk) label clusterability if: ∀n ∈ [N ], the fea-
ture xn and its k-Nearest-Neighbors (k-NN) xn1 , · · · , xnk
belong to the same true class with probability at least 1− δk.

Note δk captures two types of randomnesses: one comes
from a probabilistic Y given X , i.e., ∃i, x,P(Y = i|X =
x) /∈ {0, 1}; the other depends on the quality of features and
the value of k, which will be further illustrated in Figure 3.
The (k, 0) label clusterability is also known as k-NN label
clusterability (Zhu et al., 2021b).

Corrupted label detection Our paper aims to improve the
performance of the corrupted label detection (a.k.a. finding
label errors) which is measured by the F1-score of the de-
tected corrupted instances, which is the harmonic mean of
the precision and recall, i.e.

F1 = 2/(Precision−1 + Recall−1).

Let 1(·) be the indicator function that takes value 1 when
the specified condition is satisfied and 0 otherwise. Let
vn = 1 indicate that ỹn is detected as a corrupted label, and
vn = 0 if ỹn is detected to be clean. Then the precision and
recall can be calculated as

Precision =

∑
n∈[N ] 1(vn = 1, ỹn 6= yn)∑

n∈[N ] 1(vn = 1)
,

Recall =

∑
n∈[N ] 1(vn = 1, ỹn 6= yn)∑

n∈[N ] 1(ỹn 6= yn)
.

Note the F1 score on corrupted instances is sensitive to the
case when the noise rate is mild to low, which is typically the
case in practice. For example, if 20% of the data is corrupted
but the algorithm reports no label errors, the returned F1

score on corrupted instances is 0 while the one on clean
instances is 2/(0.8−1 + 1) ≈ 0.89.

3. Corrupted Label Detection Using Similar
Features

Different from most methods that detect corrupted instances
based on the logit layer or model predictions (Northcutt
et al., 2021a; Cheng et al., 2021a; Pruthi et al., 2020; Bahri
et al., 2020), we focus on a more data-centric solution that
operates on features. Particularly we are interested in the
possibility of detecting corrupted labels in a training-free
way. In this section, we will first introduce intuitions, and
then provide two efficient algorithms to detect corrupted
labels with similar features.

Features

k-NN 
Label Estimator

k-NN Labels

Voting or Ranking

k-NN of 

Figure 2. Detect corrupted labels with similar features. Orange
circle: instance with noisy label 1. Blue square: instance with
noisy label 2. Green dashed circle: A k-NN example.

3.1. Intuitions

The learning-centric detection methods often detect cor-
rupted instances by comparing model predictions with noisy
labels (Cheng et al., 2021a; Northcutt et al., 2021a) as illus-
trated in Figure 1. However, for the data-centric method, the
feature xn cannot be directly compared with the noisy label
ỹn since xn is not directly categorical without a model, i.e.,
the connection between a single xn and ỹn is weak. Thus
our first step should be establishing an auxiliary categorical
information using only features.

As illustrated in Figure 2, the high-level intuition is to check
label consensuses of nearby features. With (k, 0) label
clusterability as in Definition 2.1, we know the true labels
of xn and its k-NN xn1 , · · · , xnk should be the same. If we
further assume the label noise is group-dependent (Wang
et al., 2021b), i.e., each xn and its k-NN can be viewed as a
local group and share the same noise transition matrix (Liu,
2022): P(Ỹ = ỹn|X = xn, Y = yn) = P(Ỹ = ỹn|X =
xn′ , Y = yn), ∀xn′ ∈ {xn1

, · · · , xnk}, we can first treat
their noisy labels as k + 1 independent observations of
P(Ỹ = ỹn|X = xn, Y = yn), then estimate the probability
by counting the (weighted) frequency of each class in the
k-NN label estimator, and get k-NN labels ŷn. We use the
bold y to indicate a vector, which can be seen as either an
one-hot encoding of a hard label or a soft label (Zhu et al.,
2022a). The i-th element ŷn[i] can be interpreted as the
estimated probability of predicting class-i.

Note the k-NN technique has been implemented by Bahri
et al. (2020) as a filter to remove corrupted instances. How-
ever, this approach focuses on calculating distances on the
logit layer, which inevitably requires a task-specific training
process and may suffer from the limitations mentioned in
Section 1. Besides, using appropriate features may be better
than model logits/predictions when the dataset is noisy. See
discussions below.
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Features could be better than model predictions Dur-
ing supervised training, memorizing noisy labels makes
the model generalizes poorly (Han et al., 2020), while us-
ing only features may effectively avoid this issue (Li et al.,
2021a). For those pre-extracted features, e.g., tabular data
in UCI datasets (Dua & Graff, 2017), the input features
are already comparable and directly applying data-centric
methods on these features avoids memorizing noisy labels.
For more challenging tasks such as image or text classifi-
cations, we can also borrow some pre-trained models to
pre-process the raw feature to improve the clusterability of
features, such as BERT (Devlin et al., 2019) for language
tasks, CLIP (Radford et al., 2021) for vision-language tasks,
or some feature extractors from unsupervised learning (Ji
et al., 2019) and self-supervised learning (Jaiswal et al.,
2021; Liu et al., 2021a; He et al., 2020; Chen et al., 2020;
Cheng et al., 2021b), which are not affected by noisy labels.

3.2. Voting-Based Local Detection

Inspired by the idea implemented in model decisions, i.e.,
selecting the most likely class as the true class, we can
simply “predict” the index that corresponds to the largest
element in ŷn with random tie-breaking, i.e., yvoten =
arg maxi∈[K] ŷn[i]. To further detect whether ỹn is cor-
rupted or not, we only need to check vn := 1(yvoten 6= ỹn).
Recall vn = 1 indicates a corrupted label. This voting
method relies only on the local information within each
k-NN label ŷn, which may not be robust with low-quality
features. Intuitively, when the gap between the true class
probability and the wrong class probability is small, the ma-
jority vote will be likely to make mistakes due to sampling
errors in ŷn. Thus only using local information within each
ŷn may not be sufficient. It is important to leverage more
information such as some global statistics, which will be
discussed later.

3.3. Ranking-Based Global Detection

The score function can be designed to detect corrupted in-
stances (Northcutt et al., 2021a; Cheng et al., 2021a; Pruthi
et al., 2020; Bahri et al., 2020), hard-to-learn instances
(Liu et al., 2021b), out-of-distribution instances (Wei et al.,
2022b), and suspicious instances that may cause model un-
fairness (Wang et al., 2022b). However, it is not clear how to
do so without training a task-specific model. From a global
perspective, if the likelihood for each instance being clean
could be evaluated by some scoring functions, we can sort
the scores in an increasing order and filter out the low-score
instances as corrupted ones. Based on this intuition, there
are two critical components: the scoring function and the
threshold to differentiate the low-score part (corrupted) and
the high-score part (clean).

Scoring function A good scoring function should be able to

give clean instances higher scores than corrupted instances.
We adopt cosine similarity defined as:

Score(ŷn, j) =
ŷ>n ej

‖ŷn‖2‖ej‖2
,

where ej is the one-hot encoding of label j. To evaluate
whether the soft label ŷn informs us a clean instance or not,
we compare Score(ŷn, ỹn) with other instances that have
the same noisy label. This scoring function captures more
information than majority votes, which is summarized as
follows.
Property 3.1 (Relative score). Within the same instance,
the score of the majority class is higher than the others,
i.e., ∀j 6= yvoten , j ∈ [K], ∀n ∈ [N ] : Score(ŷn, y

vote
n ) >

Score(ŷn, j).

Property 3.2 (Absolute score). Score(ŷn, j) is jointly de-
termined by both ŷn[j] and ŷn[j′], ∀j′ 6= j.

The first property guarantees that the corrupted labels would
have lower scores than clean labels for the same instance
when the vote is correct. However, although solely relying
on Property 3.1 may work well in the voting-based method
which makes decisions individually for each instance, it is
not sufficient to be trustworthy in the ranking-based global
detection. Empirically we observe that if we choose a score
function that Property 3.2 does not hold, e.g., treating k-
NN soft labels as model predictions and check the cross-
entropy loss, it does not always return satisfying results in
our experiments. The main reason is that, across different
instances, the non-majority classes of some instances may
have higher absolute scores than the majority classes of
the other instances, which is especially true for general
instance-dependent label noise with heterogeneous noise
rates (Cheng et al., 2021a). Property 3.2 helps make it less
likely to happen. Consider an example as follows.

Example Suppose ŷn1
= ŷn2

= [0.6, 0.4, 0.0]>, ŷn3
=

[0.34, 0.33, 0.33]>, yn1
= yn2

= yn3
= 1, ỹn1

= ỹn3
=

1, ỹn2 = 2. We can use the majority vote to get perfect de-
tection in this case, i.e., yvoten1

= yvoten2
= yvoten3

= 1 = yn1 ,
since the first class of each instance has the largest value.
However, if we directly use a single value in soft label yn
to score them, e.g., Score′(ŷn, j) = ŷn[j], we will have
ŷn1

[ỹn1
] = 0.6 > ŷn2

[ỹn2
] = 0.4 > ŷn3

[ỹn3
] = 0.34,

where the ranking is n3 ≺ n2 ≺ n1. Ideally, we know
instance n2 is corrupted and the true ranking should be
n2 ≺ n3 ≺ n1 or n2 ≺ n1 ≺ n3. To mitigate this problem,
we choose the cosine similarity as our scoring function. The
three instances could be scored as 0.83, 0.55, 0.59, corre-
sponding to an ideal ranking n2 ≺ n3 ≺ n1. We formally
introduce the detailed ranking approach as follows.

Ranking Suppose we have a group of instances with the
same noisy class j, i.e. {(xn, ỹn)}n∈Nj , where Nj :=
{n|ỹn = j} are the set of indices that correspond to noisy



Detecting Corrupted Labels Without Training a Model to Predict

class j. Let Nj be the number of indices in Nj (counted
from noisy labels). Intuitively, we can first sort all instances
in Nj in an increasing order by argsort and obtain the
original indices for the sorted scores as:

I = argsort{Score(ŷn, j)}n∈Nj ,

where the low-score head is supposed to consist of corrupted
instances (Northcutt et al., 2021a). Then we can simply
select the first Ñj instances with low scores as corrupted
instances:

vn = 1(Loc(n, I) ≤ Ñj),
where Loc(n, I) returns the index of n in I. Instead of
manually tuning Ñj (Han et al., 2018), we discuss how to
determine it algorithmically.

Threshold The number of corrupted instances in Nj is
approximately P(Y 6= j|Ỹ = j)·Nj whenNj is sufficiently
large. Therefore if all the corrupted instances have lower
scores than any clean instance, we can set Ñj = P(Y 6=
j|Ỹ = j) ·Nj to obtain the ideal division. Note Nj can be
obtained by directly counting the number of instances with
noisy label j. To calculate the probability

P(Y 6= j|Ỹ = j) = 1− P(Y = j|Ỹ = j),

we borrow the results from the HOC estimator (Zhu et al.,
2021b; 2022b), where the noise transition probability
P(Ỹ = j|Y = j) and the marginal distribution of clean
label P(Y = j) can be estimated with only features and
the corresponding noisy labels. Then we can calculated our
needed probability by Bayes’ rule

P(Y = j|Ỹ = j) = P(Ỹ = j|Y = j)·P(Y = j)/P(Ỹ = j),

where P(Ỹ = j) can be estimated by counting the frequency
of noisy label j in D̃. Technically other methods exist in
the literature to estimate P(Ỹ |Y ) (Liu & Tao, 2015; Patrini
et al., 2017; Northcutt et al., 2021a; Li et al., 2021b). But
they often require training a model to fit the data distribution,
which conflict with our goal of a training-free solution;
instead, HOC fits us perfectly.

3.4. Algorithm: SimiFeat

Algorithm 1 summarizes our solution. The main compu-
tation complexity is pro-processing features with extractor
g(·), which is less than the cost of evaluating the model
compared with the training-based methods. Thus SimiFeat
can filter out corrupted instances efficiently. In Algorithm 1,
we run either voting-based local detection as Lines 1, 1, or
ranking-based global detection as Lines 1, 1. The detection
is run multiple times with random standard data augmenta-
tions to reduce the variance of estimation. The majority of
results from different epochs is adopted as the final detection
output as Line 1, i.e., flag as corrupted if vn = 1 in more
than half of the epochs.

4. How Does Feature Quality Affect Our
Solution?

In this section, we will first show how the quality of features1

affects the selection of the hyperparameter k, then analyze
the error upper bound for the ranking-based method.

4.1. How Does Feature Quality Affect the Choice of k?

Recall k is used as illustrated in Figure 2. On one hand,
the k-NN label estimator will be more accurate if there
is stronger clusterability that more neighbor features be-
long to the same true class (Liu & Liu, 2015; Zhu et al.,
2021b), which helps improve the performance of later algo-
rithms. On the other hand, with good but imperfect features,
stronger clusterability with a larger k is less likely to satisfy,
thus the violation probability δk increases with k for a given
extractor g(·). We take the voting-based method as an exam-
ple and analyze this tradeoff. For a clean presentation, we
focus on a binary classification with instance-dependent
label noise where P(Y = 1) = p, P(Ỹ = 2|X,Y =

1) = e1(X), P(Ỹ = 1|X,Y = 2) = e2(X). Suppose
the instance-dependent noise rate is upper-bounded by e,
i.e., e1(X) ≤ e, e2(X) ≤ e. With δk as in Definition 2.1,
we calculate the lower bound of the probability that the vote
is correct in Proposition 4.1.

Proposition 4.1. The lower bound for the probability of
getting true detection with majority vote is

P(Vote is correct|k) ≥ (1− δk) ·I1−e(k + 1− k′, k′ + 1),

where k′ = d(k+ 1)/2e− 1, I1−e(k+ 1−k′, k′+ 1) is the
regularized incomplete beta function defined as I1−e(k +

1− k′, k′+ 1) = (k+ 1− k′)
(
k+1
k′

) ∫ 1−e
0

tk−k
′
(1− t)k′dt.

Proposition 4.1 shows the tradeoff between a reliable k-
NN label and an accurate vote. When k is increasing,
Term-1 (1− δk) (quality of features) decreases but Term-2
I1−e1(k + 1− k′, k′ + 1) (result of pure majority vote) in-
creases. With Proposition 4.1, we are ready to answer the
question: when do we need more labels? See Remark 4.2.
Remark 4.2. Consider the lower bounds with k1 and k2

(k1 < k2). Supposing the first lower bound is lower than the
second lower bound, based on Proposition 4.1, we roughly
study the trend with an increasing k by comparing two
bounds and get

1− δk1

1− δk2

<
I1−e(k2 + 1− k′2, k′2 + 1)

I1−e(k1 + 1− k′1, k′1 + 1)
.

For example, when k1 = 5, k2 = 20, e = 0.4, we can
calculate the incomplete beta function and 1−δ5

1−δ20
< 1.52.

Supposing δ5 = 0.2, we have δ20 < 0.47. This indicates

1Note the voting-based method achieves an F1-score of 1 when
(k, 0)-NN label clusterability, k → +∞, holds.



Detecting Corrupted Labels Without Training a Model to Predict

Algorithm 1 Detection with Similar Features (The SimiFeat Detector)

1: Input: Number of epochs: M . k-NN parameter: k. Noisy dataset: D̃ = {(xn, ỹn)}n∈[N ]. Feature extractor: g(·).
Method: Vote or Rank. Epoch counter m = 0.

2: repeat
3: x′n ← RandPreProcess(xn), ∀n; # Initialize & Standard data augmentations
4: xn ← g(x′n), ∀n; # For tasks with rarely clusterable features, extract features with g(·)
5: ŷn ← kNNLabel({xn}n∈[N ], k) # Get soft labels. One can weight instances by the similarity to the center instance.
6: if Vote then
7: yvoten ← arg maxi∈[K] ŷn[i]; # Apply local majority vote
8: vn ← 1(yvoten 6= ỹn), ∀n ∈ [N ]; # Treat as corrupted if majority votes disagree with noisy labels
9: else

10: P(Y ),P(Ỹ |Y )← HOC({(xn, ỹn)}n∈[N ]); # Estimate clean priors P(Y ) and noise transitions P(Ỹ |Y ) by HOC

11: P(Y |Ỹ ) = P(Ỹ |Y ) · P(Y )/P(Ỹ ); # Estimate thresholds by Bayes’ rule
12: for j in [K] do
13: Nj := {n|ỹn = j}; # Detect corrupted labels in each setNj

14: I ← argsort{Score(ŷn, j)}n∈Nj ; # I records the raw index of each sorted value

15: vn ← 1
(
Loc(n, I) ≤ b(1− P(Y = j|Ỹ = j)) ·Njc

)
; # Select low-score (head) instances as corrupted ones

16: end for
17: end if
18: Vm = {vn}n∈[N ]; # Record detection results in the m-th epoch
19: until M times
20: V =Vote(Vm, ∀m ∈ [M ]); # Do majority vote based on results from M epochs
21: Output: [N ] \ V .

increasing k from 5 to 20 would not improve the lower
bound with features satisfying δ20 > 0.47. This observation
helps us set k with practical and imperfect features. We set
k = 10 in all of our experiments.

Remark 4.2 indicates that: with practical (imperfect) fea-
tures, a small k may achieve the best (highest) probability
lower bound. To further consolidate this claim, we nu-
merically calculate δk with different quality of features on
CIFAR-10 and the corresponding probability lower bound
in Figure 3. We find most of the probability lower bounds
first increase then decrease except for the “perfect” feature
which is extracted by the extractor trained using ground-
truth labels. Note this feature extractor has memorized all
clean instances so that δk → 0 since k � 5000 (the number
of instances in the same label class).

4.2. How Does Feature Quality Affect F1-Score?

We next prove the probability bound for the performance
of the ranking-based method. Consider a K-class classifi-
cation problem with informative instance-dependent label
noise (Cheng et al., 2021a). Denote random variable S by
the score of each instance being clean. A higher score S
indicates the instance is more likely to be clean. Denote
the score of a true/false instance by Strue

n,j := Score(ŷn, j)

when ỹn = yn = j and Sfalse
n′,j := Score(ŷn′ , j) when

ỹn′ = j, yn′ 6= j. Both are scalars. Then for instances in
Nj , we have two set of random variables Strue

j := {Strue
n,j |n ∈

Nj , ỹn = yn = j} and Sfalse
j := {Sfalse

n′,j |n′ ∈ Nj , ỹn′ =
j, yn′ 6= j}. RecallNj := {n|ỹn = j} are the set of indices
that correspond to noisy class j. Intuitively, the score Strue

n,j

should be greater than Sfalse
n′,j . Suppose their means, which

depend on noise rates, are bounded, i.e.,

E[S true
n,j ] ≥ µtrue

j , E[Sfalse
n′,j ] ≤ µfalse

j

for all feasible n, n′. Assume there exists a feasible v such
that both Strue

j and Sfalse
j follow sub-Gaussian distributions

with variance proxy ∆2

2v (Buldygin & Kozachenko, 1980;
Zhu et al., 2021c) such that:

P(µtrue
j −S true

n,j ≥ t) ≤ e
− vt2

∆2 ,P(Sfalse
n′,j−µfalse

j ≥ t) ≤ e−
vt2

∆2 ,

and the probability density satisfies P(S true
j = µtrue

j ) =

P(Sfalse
j = µfalse

j ) = 1/∆, where 1/∆ is the “height” of
both distributions, v is the decay rate of tails. Let N−j
(N+

j ) be the number of indices in Sfalse
j (Strue

j ). Theorem 4.3
summarizes the performance bound of the ranking-based
method. See Appendix for the proof.

Theorem 4.3. With probability at least p, when the thresh-
old for the ranking-based method is set to

(1− P(Y = j|Ỹ = j)) ·Nj

as Line 15, the F1-score of detecting corrupted instances in
Nj by ranking is at least 1− e−v max(N−,N+)+α

N− , where p =



Detecting Corrupted Labels Without Training a Model to Predict

0 25 50 75 100
k

0.0

0.2

0.4

0.6

0.8

1.0

k

0 25 50 75 100
k

0.0

0.2

0.4

0.6

0.8

1.0

Lo
we

r b
ou

nd

R18-Img
R34-Img
R50-Img
R34-C10-SSL
R34-C100-SSL
ViT-B/32-CLIP
R34-C10-Clean
R34-C100-Clean

Figure 3. The trends of δk and probability lower bounds on CIFAR-10 (Krizhevsky et al., 2009) when raw features are extracted with
different g(·). The outputs of the last convolution layer are adopted. R18/34/50: ResNet18/34/50. Img: Pre-trained on ImageNet (Deng
et al., 2009). C10/100-Clean: Pre-trained on clean CIFAR-10/100. C10/100-SSL: Pre-trained on CIFAR-10/100 without labels by
SimCLR (Chen et al., 2020). ViT-B/32-CLIP: CLIP Pre-trained vision transformer (Radford et al., 2021).

∫ µtrue
j −µ

false
j −∆

−1 f(t)dt, f(t) is the probability density func-
tion of the difference of two independent beta-distributed
random variables β1−β2, where β1 ∼ Beta(N−, 1), β2 ∼
Beta(α+ 1, N+ − α).

Theorem 4.1 shows the detection performance depends on:
• the concentration of Strue

n,j and Sfalse
n′,j : variance proxy ∆2

2v ;
• the distance between Strue

n,j and Sfalse
n′,j : µ

true
j − µfalse

j .

Intuitively, with proper scoring function and high-quality
features, we have small variance proxy (small ∆ and large
v) and F1-score approximates to 1.

5. Empirical Results
We present experimental evidence in this section. The per-
formance is measured by the F1-score of the detected cor-
rupted labels as defined in Section 2. Note there is no
training procedure in our method. The only hyperparame-
ters in our methods are the number of epochs M and the
k-NN parameter k. Intuitively, a larger M returns a col-
lective result from more times of detection, which should
be more accurate. But a larger M takes more time. We
set M = 21 (an odd number for better tie-breaking) for an
efficient solution. The hyperparameter k cannot be set too
large as demonstrated in Figure 3. From Figure 3, we notice
that the lower bound (RHS figure) is relatively high when
k = 10 for all settings. Therefore, in CIFAR (Krizhevsky
et al., 2009) experiments, rather than fine-tune M and k for
different settings, we fix M = 21 and k = 10. We also
test on Clothing1M (Xiao et al., 2015). Detailed experiment
settings on Clothing1M are in Appendix C.

Synthetic label noise We experiment with three popular
synthetic label noise models: the symmetric label noise, the
asymmetric label noise, and the instance-dependent label
noise. Denote the ratio of instances with corrupted labels in
the whole dataset by η. Both the symmetric and the asym-
metric noise models follow the class-dependent assumption

(Liu & Tao, 2015), i.e., the label noise only depends only
on the clean class: P(Ỹ |X,Y ) = P(Ỹ |Y ). Specially, the
symmetric noise is generated by uniform flipping, i.e., ran-
domly flipping a true label to the other possible classes w.p.
η (Cheng et al., 2021a). The asymmetric noise is generated
by pair-wise flipping, i.e., randomly flipping true label i to
the next class (i mod K) + 1. Denote by d the dimension
of features. The instance-dependent label noise is synthe-
sized by randomly generating a d × K projection matrix
wi for each class i and project each incoming feature with
true class yn onto each column of wyn (Xia et al., 2020b).
Instance n is more likely to be flipped to class j if the pro-
jection value of xn on the j-th column of wyn is high. See
Appendix B in (Xia et al., 2020b) and Appendix D.1 in (Zhu
et al., 2021b) for more details. We use symmetric noise
with η = 0.6 (Symm. 0.6), asymmetric noise with η = 0.3
(Asym. 0.3), and instance-dependent noise with η = 0.4
(Inst. 0.4) in experiments.

Real-world label noise The real-world label noise comes
from human annotations or weakly labeled web data. We use
the 50, 000 noisy training labels (η ≈ 0.16) for CIFAR-10
collected by (Zhu et al., 2021b), and 50, 000 noisy training
labels (η ≈ 0.40) for CIFAR-100 collected by (Wei et al.,
2022d). Both sets of noisy labels are crowd-sourced from
Amazon Mechanical Turk. For Clothing1M (Xiao et al.,
2015), we could not calculate the F1-scores due to the lack
of ground-truth labels. We firstly perform noise detection
on 1 million noisy training instances then train only with
the selected clean data to check the effectiveness.

5.1. Fitting Noisy Distributions May Not Be Necessary

Our first experiment aims to show that fitting the noisy
data distribution may not be necessary in detecting cor-
rupted labels. To this end, we compare our methods, i.e.,
voting-based local detection (SimiFeat-V) and ranking-
based global detection (SimiFeat-R), with three learning-
centric noise detection works: CORES (Cheng et al., 2021a),
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Table 1. Comparisons of F1-scores (%). CORES, CL, TracIn: Train with noisy supervisions. SimiFeat-V and SimiFeat-R: Get g(·)
without any supervision. Top 2 are bold.

METHOD
CIFAR10 CIFAR100

Human Symm. 0.6 Asym. 0.3 Inst. 0.4 Human Symm. 0.6 Asym. 0.3 Inst. 0.4
CORES 65.00 92.94 7.68 87.43 3.52 92.34 0.02 9.67

CL 55.85 80.59 76.45 62.89 64.58 78.98 52.96 50.08
TRACIN 55.02 76.94 73.47 58.85 61.75 76.74 48.42 49.89

DEEP k-NN 56.21 82.35 75.24 63.08 57.40 70.69 56.75 63.85
SIMIFEAT-V 82.30 93.21 82.52 81.09 73.19 84.48 65.42 74.26
SIMIFEAT-R 83.28 95.56 83.58 82.26 74.67 88.68 62.89 73.53

Table 2. Comparisons of F1-scores (%). CORES, CL, TracIn: Use logit layers. SimiFeat-V/R: Use only representations. All methods
use the same fixed extractor from CLIP. Top 2 are bold.

METHOD
CIFAR10 CIFAR100

Human Symm. 0.6 Asym. 0.3 Inst. 0.4 Human Symm. 0.6 Asym. 0.3 Inst. 0.4
CE SIEVE 67.21 94.56 5.24 8.41 16.24 88.55 2.6 1.63
CORES 83.18 96.94 12.05 88.89 38.52 92.33 7.02 85.52

CL 69.76 95.03 77.14 62.91 67.64 85.67 62.58 61.53
TRACIN 81.85 95.96 80.75 64.97 79.32 91.03 63.12 64.31

DEEP k-NN 82.98 87.47 76.96 77.42 72.33 82.95 64.96 74.25
SIMIFEAT-V 87.43 96.44 88.97 87.11 76.26 86.88 73.50 80.03
SIMIFEAT-R 87.45 96.74 89.04 91.14 79.21 90.54 68.14 77.37

confident learning (CL) (Northcutt et al., 2021a), TracIn
(Pruthi et al., 2020), and deep k-NN (Bahri et al., 2020). We
use ResNet34 (He et al., 2016) as the backbone network in
this experiment.

Baseline settings All these three baselines require training
a model with the noisy supervision. Specifically, CORES
(Cheng et al., 2021a) trains ResNet34 on the noisy dataset
and uses its proposed sample sieve to filter out the corrupted
instances. We adopt its default setting during training and
calculate the F1-score of the sieved out corrupted instances.
Confident learning (CL) (Northcutt et al., 2021a) detects
corrupted labels by firstly estimating probabilistic thresh-
olds to characterize label noise, ranking instances based on
model predictions, then filtering out corrupted instances
based on ranking and thresholds. We adopt its default
hyper-parameter setting to train ResNet34. TracIn (Pruthi
et al., 2020) detects corrupted labels by evaluating the self-
influence of each instance, where the corrupted instances
tend to have a high influence score. The influence scores are
calculated based on gradients of the last layer of ResNet34
at epoch 40, 50, 60, 100, where the model is trained with a
batch size of 128. The initial learning rate is 0.1 and decays
to 0.01 at epoch 50. Note TracIn only provides ranking
for instances. To exactly detect corrupted instances, thresh-
olds are required. For a fair comparison, we refer to the
thresholds learned by confident learning (Northcutt et al.,
2021a). Thus the corrupted instances selected by TracIn are
based on the ranking from its self-influence and thresholds
from CL. To highlight that our solutions work well with-
out any supervision, our feature extractor g(·) comes from
the ResNet34 pre-trained by SimCLR (Chen et al., 2020)
where contrastive learning is applied and no supervision is

required. Extractor g(·) is obtained with only in-distribution
features, e.g., for experiments with CIFAR-10, g(·) is pre-
trained with features only from CIFAR-10. The detailed
implementation for deep k-NN filter (Bahri et al., 2020) is
not public. Noting their k-NN approach is employed on the
logit layer, we reproduce their work by firstly training the
model on the noisy data then substituting the model logits
for g(·) in SimiFeat-V. The best epoch result for deep k-NN
is reported.

Performance Table 1 compares the results obtained with or
without supervisions. We can see both the voting-based and
the ranking-based method achieve overall higher F1-scores
compared with the other three results that require learning
with noisy supervisions. Moreover, in detecting the real-
world human-level noisy labels, our solution outperforms
baselines around 20% on CIFAR-10 and 10% on CIFAR-
100, which indicates the training-free solution are more ro-
bust to complicated noise patterns. One might also note that
CORES achieves exceptionally low F1-scores on CIFAR-
10/100 with asymmetric noise and CIFAR-100 with human
noise. This observation also informs us that customized
training processes might not be universally applicable.

5.2. Features May Be Better Than Model Predictions

Our next experiment aims to compare the performance of
the data-centric method with the learning-centric method
when the same feature extractor is adopted. Thus in this
experiment, all methods adopt the same fixed feature extrac-
tor (ViT-B/32 pre-trained by CLIP (Radford et al., 2021)).
Our proposed data-centric method directly operates on the
extracted features, while the learning-centric method further
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Table 3. Comparisons of F1-scores (%) using g(·) with different δk (%). Model names are the same as Figure 3.

PRE-TRAINED MODEL
CIFAR10 CIFAR100

1− δk Human Inst. 0.4 1− δk Human Inst. 0.4
R18-IMG 35.73 75.40 80.22 11.30 74.91 71.99
R34-IMG 48.13 79.52 82.43 16.17 76.88 74.00
R50-IMG 45.77 78.40 82.06 15.81 76.55 73.51

VIT-B/32-CLIP 64.12 87.45 91.14 19.94 79.21 77.37
R34-C10-SSL 69.31 83.28 85.26 2.59 68.03 65.94

R34-C10-CLEAN 99.41 98.39 98.59 0.22 60.90 60.73
R34-C100-SSL 18.59 59.96 74.99 22.46 74.67 73.53

R34-C100-CLEAN 18.58 60.17 76.41 89.07 92.87 95.29

Table 4. Experiments on Clothing1M. None: Standard training
with 1M noisy data. R50-Img (or ViT-B/32-CLIP, R50-Img
Warmup-1): Apply our method with ResNet50 pre-trained on Ima-
geNet (or ViT-B/32 pre-trained by CLIP, R50-Img with 1-epoch
warmup). The clean test accuracy on the best epoch, the last 10
epochs, and the last epoch, are listed. Top-1 is bold.

DATA SELECTION # TRAINING BEST EPOCH LAST 10 LAST

NONE 1M (100%) 70.32 69.44 ± 0.13 69.53
R50-IMG 770K (77.0%) 72.37 71.95 ± 0.08 71.89

VIT-B/32-CLIP 700K (70.0%) 72.54 72.23 ± 0.17 72.11
R50-IMG WARMUP-1 767K (76.7%) 73.64 73.28 ± 0.18 73.41

train a linear layer with noisy supervisions based on the
extracted features. In addition to the baselines compared
in Section 5.1, we also compare to CE Sieve (Cheng et al.,
2021a) which follows the same sieving process as CORES
but uses CE loss without regularizer. Other settings are the
same as those in Section 5.1.

Table 2 summarizes the results of this experiment. By count-
ing the frequency of reaching top-2 F1-scores, we find Sim-
iFeat-R wins 1st place, SimiFeat-V and CORES are tied
for 2nd place. However, similar to Table 2, we find the
training process of CORES to be unstable. For instance, it
almost fails for CIFAR-100 with asymmetric noise. Besides,
comparing deep k-NN with SimiFeat-V, we find using the
model logits given by an additional linear layer fine-tuned
with noisy supervisions cannot always help improve the
performance of detecting corrupted labels. It is therefore
reasonable to believe both methods that directly deal with
the extracted features achieve an overall higher F1-score
than other learning-centric methods.

5.3. The Effect of the Quality of Features

Previous experiments demonstrate our methods overall out-
perform baselines with high-quality features. It is interesting
to see how lower-quality features perform. We summarize
results of SimiFeat-R in Table 3. There are several interest-
ing findings: 1) The ImageNet pre-trained models perform
well, indicating the traditional supervised training on out-
of-distribution data helps obtained high-quality features; 2)
For CIFAR-100, extractor g(·) obtained with only features

from CIFAR-10 (R34-C10-SSL) performs better than the
extractor with clean CIFAR-10 (R34-C10-Clean), indicating
that contrastive pre-training has better generalization ability
to out-of-distribution data than supervised learning; 3) The
F1-scores achieved by g(·) trained with the corresponding
clean dataset are close to 1, indicating our solution can give
perfect detection with ideal features.

5.4. More Experiments on Clothing1M

Besides, we test the performance of training only with the
clean instances selected by our approach in Table 4. Stan-
dard training with Cross-Entropy loss is adopted. The only
difference between the first row and other rows of Table 4
is that some training instances are filtered out by our ap-
proach. Table 4 shows simply filtering out corrupted in-
stances based on our approach distinctively outperforms the
baseline. We also observe that slightly tuning g(·) in the
fine-grained Clothing1M dataset would be helpful. Note
the best-epoch test accuracy we can achieve is 73.64%,
which outperforms many baselines such as HOC 73.39%
(Zhu et al., 2021b), GCE+SimCLR 73.35% (Ghosh & Lan,
2021), CORES 73.24% (Cheng et al., 2021a), GCE 69.75%
(Zhang & Sabuncu, 2018). See more detailed settings and
discussions in Appendix C.

6. Conclusions
This paper proposed a new and universally applicable data-
centric training-free solution to detect noisy labels by using
the neighborhood information of features. We have also
demonstrated that the proposed data-centric method works
even better than the learning-centric method when both
methods are build on the same features. Future works will
explore other tasks that could benefit from label cleaning,
e.g., fairness (Liu & Wang, 2021) and multi-label learning
(Liu et al., 2021c), and extend the idea to long-tail sub-
population detection (Liu, 2021; Wei et al., 2022a).
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The omitted proofs and experiment settings are provided as follows.

A. Theoretical Analyses
A.1. Proof for Proposition 4.1

Now we derive a lower bound for the probability of getting true detection with majority vote:

P(Vote is correct|k) ≥(1− δk) ·
[
p

d(k+1)/2e−1∑
l=0

(
k + 1

l

)
el(1− e)k+1−l

+ (1− p)
d(k+1)/2e−1∑

l=0

(
k + 1

l

)
el(1− e)k+1−l

]
=(1− δk) · [p · I1−e(k + 1− k′, k′ + 1) + (1− p) · I1−e(k + 1− k′, k′ + 1)]

where I1−e(k + 1− k′, k′ + 1) is the regularized incomplete beta function defined as

I1−e(k + 1− k′, k′ + 1) = (k + 1− k′)
(
k + 1

k′

)∫ 1−e

0

tk−k
′
(1− t)k

′
dt,

and k′ = d(k + 1)/2e − 1.

B. Proof for Theorem 4.3
Proof. Now we derive the worst-case error bound. We first repeat the notations defined in Section 4.2 as follows.

Denote random variable S by the score of each instance being clean. A higher score S indicates the instance is more likely
to be clean. Denote the score of a true/false instance by

Strue
n,j := Score(ŷn, j) | (ỹn = yn = j),

Sfalse
n′,j := Score(ŷn′ , j) | (ỹn′ = j, yn′ 6= j).

Both are scalars. Then for instances in Nj , we have two set of random variables Strue
j := {Strue

n,j |n ∈ Nj , ỹn = yn = j} and
Sfalse
j := {Sfalse

n′,j |n′ ∈ Nj , ỹn′ = j, yn′ 6= j}. Recall Nj := {n|ỹn = j} are the set of indices that correspond to noisy class
j. Intuitively, the score Strue

n,j should be greater than Sfalse
n′,j . Suppose their means, which depend on noise rates, are bounded,

i.e.,
E[S true

n,j ] ≥ µtrue
j , E[Sfalse

n′,j ] ≤ µfalse
j

for all feasible n, n′. Assume there exists a feasible v such that both Strue
j and Sfalse

j follow sub-Gaussian distributions with

variance proxy ∆2

2v (Buldygin & Kozachenko, 1980; Zhu et al., 2021c) such that:

P(µtrue
j − Strue

n,j ≥ t) ≤ e
− vt2

∆2 ,P(Sfalse
n′,j − µfalse

j ≥ t) ≤ e−
vt2

∆2 ,

and the probability density satisfies P(S true
j = µtrue

j ) = P(Sfalse
j = µfalse

j ) = 1/∆, where 1/∆ is the “height” of both
distributions, v is the decay rate of tails. Let N−j (N+

j ) be the number of indices in Sfalse
j (Strue

j ).

For ease of notations, we omit the subscript j in this proof since the detection is performed on each j individually.

Let Sfalse (Strue) be an arbitrary random variable in Sfalse (Strue). Denote the order statistics of random variables in set Sfalse

by Sfalse
(1) , · · ·S

false
(N−), where Sfalse

(1) is the smallest order statistic and Sfalse
(N−) is the largest order statistic. The following lemma

motivates the performance of the rank-based method.

Lemma B.1. The F1-score of detecting corrupted labels in Nj by the rank-based method will be no less than 1− α/N−

when the true probability P(Y = j|Ỹ = j) is known and Sfalse
(N−) < S true

(α+1).
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Lemma B.1 connects the upper bound for the number of wrongly detected corrupted instances with order statistics. There
are two cases that can cause detection errors:
Case-1:

0 ≤ µtrue − Strue < ∆ and 0 ≤ Sfalse − µfalse < ∆ : at most α errors when Sfalse
(N−) < S true

(α+1).

and Case-2:
µtrue − Strue ≥ ∆ or Sfalse − µfalse ≥ ∆ : at most max(N−, N+) errors

We analyze each case as follows.

Case-1: When Case-1 holds, we have

P(µtrue − Strue = x) ≤ 1/∆, x ∈ [0,∆]

and
P(Sfalse − µtrue = x) ≤ 1/∆, x ∈ [0,∆].

The above two inequalities show that the left tail of Strue and the right tail of Sfalse can be upper bounded by uniform
distributions. Denote the corresponding uniform distribution byU true ∼ Unif(µtrue−∆, µtrue) andU false ∼ Unif(µfalse, µfalse+
∆).

With true P(Y = j|Ỹ = j), the detection errors only exist in the cases when the left tail of Strue and the right tail of Sfalse

are overlapped. When the tails are upper bounded by uniform distributions, we have

P(Sfalse
(N−) < S true

(α+1)) ≥ P(U false
(N−) < U true

(α+1))

=P
([
U false − µfalse]

(N−)
+ µfalse <

[
U true − (µtrue −∆)

]
(α+1)

+ (µtrue −∆)
)

=P
([
U false − µfalse]

(N−)
−
[
U true − (µtrue −∆)

]
(α+1)

< µtrue − µfalse −∆
)
.

Note [
U false − µfalse]

(N−)
∼ Beta(N−, 1),

and [
U true − (µtrue −∆)

]
(α+1)

∼ Beta(α+ 1, N+ − α),

where Beta denotes the Beta distribution. Both variables are independent. Thus the PDF of the difference is

f(p) =


B(N+ − α, 1)pN

+−α(1− p)α+1F (1, N− +N+, 1−N−;α+ 2; 1− p, 1− p2)/A, 0 < p ≤ 1

B(N−−, N+ − α)(−p)N
+−α(1 + p)N

−+N+−α−1F (N+ − α,−α,N− +N+;N− +N+ − α; 1− p2, 1 + p)/A, −1 ≤ p < 0

B(N− + α,N+ − α)/A, p = 0,

where A = B(N−, 1)B(α+ 1, N+ − α), B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt

F (a, b1, b2; c;x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2 dt.

Therefore, we have

P(Sfalse
(N−) < Strue

(α+1)) ≥
∫ µtrue−µfalse−∆

−1

f(p)dp.

Case-2 The other part, we have no more than e−v ·max(N−, N+) corrupted instances that may have higher scores than
one clean instance.

Wrap-up From the above analyses, we know, w.p. at least
∫ µtrue−µfalse−∆

−1
f(p)dp, there are at most e−v max(N−, N+)+α

errors in detection corrupted instances. Note Precision = Recall if we detect with the best threshold NjP(Y = j|Ỹ = j).
Therefore, the corresponding F1-score would be at least 1− e−v max(N−,N+)+α

N− .
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Table 5. Experiments on Clothing1M (Xiao et al., 2015) with or without balanced sampling. None: Standard training with 1M noisy
data. R50-Img (or ViT-B/32-CLIP, R50-Img Warmup-1): Apply our method with ResNet50 pre-trained on ImageNet (or ViT-B/32
pre-trained by CLIP, R50-Img with 1-epoch warmup).

DATA SELECTION # TRAINING SAMPLES BEST EPOCH LAST 10 EPOCHS LAST EPOCH

NONE (STANDARD BASELINE) (UNBALANCED) 1M (100%) 70.32 69.44 ± 0.13 69.53
NONE (STANDARD BASELINE) (BALANCED) 1M (100%) 72.20 71.40 ± 0.31 71.22

R50-IMG (UNBALANCED) 770K (77.0%) 72.37 71.95 ± 0.08 71.89
R50-IMG (BALANCED) 770K (77.0%) 72.42 72.06 ± 0.16 72.24

VIT-B/32-CLIP (UNBALANCED) 700K (70.0%) 72.54 72.23 ± 0.17 72.11
VIT-B/32-CLIP (BALANCED) 700K (70.0%) 72.99 72.76 ± 0.15 72.91

R50-IMG WARMUP-1 (UNBALANCED) 767K (76.7%) 73.64 73.28 ± 0.18 73.41
R50-IMG WARMUP-1 (BALANCED) 767K (76.7%) 73.97 73.37 ± 0.03 73.35

C. Experiment Settings on Clothing1M
We firstly perform noise detection on 1 million noisy training instances then train only with the selected clean data to check
the effectiveness. Particularly, in each epoch of the noisy detection, we use a batch size of 32 and sample 1,000 mini-batches
from 1M training instances while ensuring the (noisy) labels are balanced. We repeat noisy detection for 600 epochs to
ensure a full coverage of 1 million training instances. Parameter k is set to 10.

Feature Extractor: We tested three different feature extractors in Table 4: R50-Img, ViT-B/32-CLIP, and R50-Img
Warmup-1. The former two feature extractors are the same as the ones used in Table 3. Particularly, R50-Img means the
feature extractor is the standard ResNet50 encoder (removing the last linear layer) pre-trained on ImageNet (Deng et al.,
2009). ViT-B/32-CLIP indicates the feature extractor is a vision transformer pre-trained by CLIP (Radford et al., 2021).
Noting that Clothing1M is a fine-grained dataset. To get better domain-specific fine-grained visual features, we slightly train
the ResNet50 pre-trained with ImageNet for one epoch, i.e., 1,000 mini-batches (batch size 32) randomly sampled from 1M
training instances while ensuring the (noisy) labels are balanced. The learning rate is 0.002.

Training with the selected clean instances: Given the selected clean instances from our approach, we directly apply
the Cross-Entropy loss to train a ResNet50 initialized by standard ImageNet pre-trained parameters. We did not apply
any sophisticated training techniques, e.g., mixup (Zhang et al., 2018), dual networks (Li et al., 2020a; Han et al., 2018),
loss-correction (Liu & Tao, 2015; Natarajan et al., 2013; Patrini et al., 2017), and robust loss functions (Liu & Guo, 2020;
Cheng et al., 2021a; Zhu et al., 2021a; Wei & Liu, 2020). We train the model for 80 epochs with a batch size of 32. We
sample 1, 000 mini-batches per epoch randomly selected from 1M training instances. Note Table 4 does not apply balanced
sampling. Only the pure cross-entropy loss is applied. We also test the performance with balanced training, i.e., in each
epoch, ensure the noisy labels from each class are balanced. Our approach can be consistently benefited by balanced training,
and achieves an accuracy of 73.97 in the best epoch, outperforming many baselines such as HOC 73.39% (Zhu et al., 2021b),
GCE+SimCLR 73.35% (Ghosh & Lan, 2021), CORES 73.24% (Cheng et al., 2021a), GCE 69.75% (Zhang & Sabuncu,
2018). We believe the performance could be further improved by using some sophisticated training techniques mentioned
above.


