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Abstract

Wisdom of the crowd (Surowiecki, 2005a) disclosed a striking fact that the majority vot-
ing answer from a crowd is usually more accurate than a few individual experts. The same
story is observed in machine learning - ensemble methods (Dietterich, 2000) leverage this
idea to exploit multiple machine learning algorithms in various settings e.g., supervised
learning and semi-supervised learning to achieve better performance by aggregating the
predictions of different algorithms than that obtained from any constituent algorithm alone.
Nonetheless, the existing aggregating rule would fail when the majority answer of all the
constituent algorithms is more likely to be wrong. In this paper, we extend the idea pro-
posed in Bayesian Truth Serum (Prelec, 2004) that “a surprisingly more popular answer
is more likely to be the true answer instead of the majority one” to supervised classifica-
tion further improved by ensemble final predictions method and semi-supervised classifica-
tion (e.g., MixMatch (Berthelot et al., 2019)) enhanced by ensemble data augmentations
method. The challenge for us is to define or detect when an answer should be considered as
being “surprising”. We present two machine learning aided methods which can reveal the
truth when the minority instead of majority has the true answer on both settings of super-
vised and semi-supervised classification problems. We name our proposed method the
Machine Truth Serum. Our experiments on a set of classification tasks (image, text, etc.)
show that the classification performance can be further improved by applying Machine
Truth Serum in the ensemble final predictions step (supervised) and in the ensemble data
augmentations step (semi-supervised).
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1 Introduction

Wisdom of the crowd reveals the power of aggregating opinion from a diverse groups
rather than a few individuals. Although the idea was proposed for mainly aggregating
human judgements, it has been successfully applied in the context of machine learning
(ML). Ensemble methods was proposed to further improve the performance in various
settings e.g., supervised learning (SL) and semi-supervised (SSL) by combining several
component learning models trained from different categories to composite a system instead
of utilizing a single one (Dietterich, 2000). More specifically, ensemble methods can be
utilized to enhance the final prediction results in SL and applied to generate better pseudo
labels based on data augmentations of unsupervised data in SSL (e.g., MixMatch (Berth-
elot et al., 2019)). Ensemble methods have achieved exceptionally satisfactory performance
in some international ML competitions such as Kaggle, and KDD-Cups.

The most popular way of aggregating in ensemble methods is majority voting rule. One
classical example is Random Forest (Ho, 1995), which outputs the majority answer from
multiple trained decision trees. Inference methods have been applied to obtain better aggre-
gation that aims to outperform the majority voting rule (Raykar et al., 2010; Zhang et al.,
2014; Liu et al., 2012; Zhou et al., 2012, 2014). These inference methods usually perform
joint inference under the homogeneous assumption of certain hidden models over a large
amount of data points.

However, all the methods mentioned above are based on the same assumption that the
majority answer is more likely to be correct. For more sophisticated inference models, the
majority answer is mostly likely to initiate the inference when the algorithm has no prior
information. While enjoying the assumption that the majority answer is tending to be cor-
rect, it is questionable in the settings where special knowledge is required to get the truth
answer, but this kind of knowledge is only owned by few individual experts (when they are
not widely shared) (Chen et al., 2004; Simmons et al., 2010; Prelec et al., 2017). Echoing
to the above problem in the setting of aggregating human judgements, the similar challenge
is faced when we need to aggregate the predictions of different learning methods in ML.
For example, we have a state-of-the-art (SOTA) deep learning (Goodfellow et al., 2016)
classification model which obtains the best performance among the learning methods uti-
lized in the ensemble model. For some data point, the classification result of this SOTA
deep learning model may be the correct minority. Apply the majority rule on this data
point will lead to a wrong answer.

We aim to explore whether we can obtain better aggregation results than the majority
voting rule even when the majority answer is wrong. We also target a method that can con-
duct the inference on each data point separately without having the homogeneous assump-
tions over a massive dataset.

The question sounds unlikely to resolve at a first look, but we are inspired by the semi-
nal work Bayesian Truth Serum (BTS) (Prelec, 2004; Prelec et al., 2017) which approached
this question in the setting of incentivizing and aggregating truthful human judgements.
The core idea behind BTS is simple and elegant: the correctness of an answer cannot be
guaranteed based on its popularity (having a higher posterior), but rather whether it is
“surprisingly” popular or not. The answer having a higher posterior than its prior is taken
as being “surprisingly” popular and should be considered as the true answer. Prelec et al.
(2017) also argued that by eliciting a peer prediction information, which is defined as the
fraction of “how many other people would agree with you”, an informative prior can be
constructed to compared with the majority-voted posterior. BTS can be operated on each
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single question separately, without leveraging a certain homogeneity assumption through
seeing a large number of similar tasks.

In this paper, we make a connection between these two seemingly irrelevant topics, and
extend the key idea in Bayesian Truth Serum to further improve the performance of ensem-
ble learning methods in the context of supervised and semi-supervised classification. The
challenge is that we would not be able to elicit a belief from a classifier on “how many
other classifiers would agree with themselves”, which renders the task of computing the
prior difficult. We proposed two ML aided algorithms to mimic the procedure of reporting
the peer prediction information, which we jointly name as Machine Truth Serum (MTS). In
Heuristic Machine Truth Serum (HMTS), we pair each baseline classifier (an agent) with
a regressor model, which is trained to predict the peer prediction information using a pro-
cessed training dataset. With the predictions from the regressors, we will be able to apply
the idea of BTS to decide on whether adopting the minority as the answer via comparing
the prior (computed using the regressor) and the posterior for each data point. In Discrimi-
native Machine Truth Serum (DMTS), we directly train one classifier to predict whether
adopting the minority as the answer or not. We applied our proposed MTS methods in both
supervised and semi-supervised classification tasks. In supervised classification task, we
adopted MTS methods in the ensemble final predictions step. For semi-supervised clas-
sification tasks, MixMatch (Berthelot et al., 2019) and MixText (Chen et al., 2020) are con-
sidered as the ensemble baseline methods and MTS are utilized to generate better pseudo
labels for unsupervised data based on ensemble data augmentation method. As for the
training complexity of our algorithm, the training time of HMTS is linear in the number
of label classes because of the training of extra regressors. DMTS will only need to train
one additional classifier and both the training and the running time are almost the same as
the basic majority voting algorithm. Therefore our proposed methods are very practical to
implement and run.

Our contributions summarize as follows: (1) We propose Heuristic Machine Truth
Serum (HMTS) and Discriminative Machine Truth Serum (DMTS) to complement ensem-
ble methods, which can detect when minority should be considered the true answer instead
of the majority. (2) Our experiments over several real-world classification datasets reveal
promising results of our approach in the settings of SL and SSL by applying MTS meth-
ods in the ensemble final predictions and ensemble data augmentation steps respectively.
Our proposed methods also outperform popular ensemble algorithms. (3) To pair with our
experimental results, we also provide analytical evidences for the correctness of our pro-
posed approaches. (4) Our approaches can be generically applied in ensemble methods to
replace the majority voting rules.

The rest of the paper is organized as follows. Section 2 introduces some related works.
Section 3 reviews preliminaries and BTS. Section 4 introduces our Machine Truth Serum
approaches. Section 5 presents our experimental results. Section 6 concludes our paper.

2 Related work
2.1 Ensemble methods
Wisdom of the crowd (Surowiecki, 2005b) often performs better than a few elite individu-

als in the applications such as decision making of public policy (Morgan, 2014), answering
the questions on general world knowledge (Singh et al., 2002). The same idea has been also

@ Springer



Machine Learning

successfully applied in ML - ensemble methods combine multiple learning algorithms and
usually performs better than any single method (Dietterich, 2000). Ensemble methods are
usually used where aggregating the predictions are needed such as ensemble final predic-
tions in supervised learning and ensemble data augmentations in SSL. In this paper, we
focus on classification problem which is one of the most fundamental problems in ML
community (Dai & Le, 2015; Yang et al., 2015; Howard & Ruder, 2018; Clark et al., 2018;
Yang et al., 2019; Sachan et al., 2019; Yao et al., 2020).

2.1.1 Ensemble final predictions for supervised classification

In this part, we focus on describing the ensemble methods aggregating the final predic-
tions for supervised classification which is the most commonly used scenario of ensem-
ble methods. Ensemble methods consist of a rich family of algorithms. Popular ensemble
methods include Boosting (e.g., AdaBoost (Freund & Schapire, 1997)), Bootstrap aggre-
gating (e.g., Random Forest (Ho, 1995)), and Stacking (Bishop, 2006).

2.1.2 Ensemble data augmentation for semi-supervised classification

Another important application of ensemble methods is to generate better pseudo labels
for unsupervised data with the help of data augmentation in semi-supervised classifica-
tion other than improving the performance of final predictions. There are a wide family of
SSL algorithms (Chapelle et al., 2006; Oliver et al., 2018; Berthelot et al., 2019; Xie et al.,
2019; Chen et al., 2020). In this paper, we mainly review the recent pseudo labeling based
SSL methods (Lee et al., 2013; Rasmus et al., 2015; Gong et al., 2017; Liu et al., 2019;
Iscen et al., 2019; Berthelot et al., 2019). Pseudo labeling based SSL methods benefit from
the unlabeled dataset by providing the high-quanlity explicit pseudo labels after applying
data augmentation and ensemble methods. Some recent SSL methods such as UDA (Xie
et al., 2019) conducted the consistency regularization training with implicit pseudo-labels
and cannot be considered as our ensemble baseline because they don’t use ensemble data
augmentation methods to generate the pseudo labels. In this paper, we utilized MixMatch
(Berthelot et al., 2019) and MixText (Chen et al., 2020) as the ensemble baseline methods
in the SSL setting.

2.2 Bayesian truth serum

As mentioned in above sections, typical algorithms for aggregating human judgements
and classical ensemble methods for combining classifiers’ predictions have the same
assumption that the majority answer is likely to be correct. Most works in these two set-
tings, except for (Prelec, 2004), would fail when the majority answer is instead likely to be
wrong. But BTS only works in the setting of aggregating human judgements by collecting
subjective judgment data. Inspired by the ideas proposed by Prelec (2004); Prelec et al.
(2017), we proposed two ML aided algorithms to discover the correct answer when it is
minority instead of majority in the setting of classification problem. As our proposed meth-
ods are ML algorithms, they can be trained and the predictions will be made automatically
instead of collecting subjective judgment data as the case in (Prelec, 2004).
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3 Preliminary

In this paper, we consider supervised and semi-supervised classification problems. None-
theless, for simplicity of demonstration, our main presentation focuses on binary classifica-
tion. A multi-class extension of our method is presented in Section 4.3.

3.1 Supervised classification tasks

Suppose that we have a training dataset D; := {(x;, y,-)}j\;"I and a test dataset
T:={(x.y,) }[T=], where x; € X C R is a d-dimensional feature vector and y;1s its true class
label. We have K baseline classifiers F := {f},f5,....fx : X = {0, 1}} that map each feature
vector to a binary classification outcome. Ensemble method such as boosting algorithms
can combine {f},f,, ....fx } to get better prediction results than each single one. For instance,
Random Forest first applies the bootstrap aggregating to train multiple different decision
trees to correct overfitting problems of decision trees. After training, the majority rule will
be applied to generate the prediction result. We define the binary cross-entropy (BCE) loss
of supervised classification as £(f,(x,),y;) := —[y; - In(f,(x;)) + (1 — ;) - In(1 — f;(x;))] for
the k-th classifier on each data point (x;,y;) in the training dataset. Therefore, the empirical
risk of the supervised classifier for f;,k = 1, ..., K using true labels is as follows:

Li(fi, D) = Z £ (fi(x), i)

N, &

The above dependence on the majority voting rule is ubiquitous in ensemble methods. The
key assumption of using the majority rule is that the majority is more likely to be correct
than random guessing. Denoting as Maj({f;(x),f,(x), ..., fx(x)}) the majority answer from
the K classifiers, formally, most, if not all, methods require that

P(Maj({f,(x)./,(0), ... fg(D)}) #y) < 0.5

Our goal is still to construct a single aggregator A, ({f;, />, ....fx }) that takes the classifiers’
predictions on each supervised data point as inputs and generates an accurate aggregated
prediction. But we aim to provide instruction to cases where it is possible that

P(Maj({f, (), /,(x), ... fg(D)}) # y) > 0.5

The challenge is to detect when the minority population has the true answer.

3.2 Semi-supervised classification tasks

In the semi- superv1sed classification tasks, there is also an unlabeled dataset
Dy = {(xNL o )} Pt where the labels are missing or unobservable. Let N := N, +NU
We umfy the whole data including both labeled and unlabeled as D := {(xn,yn)}

{yn .= are the true labels of supervised dataset and {yn}n _n, 41 Ar€ the pseudo labels of

unsupervised dataset. Compared with supervised classification tasks, the information of
unsupervised should be leveraged to improve the performance. Recent SSL methods usu-
ally apply the consistency regularization methods to make use of unsupervised data, where
the output of original inputs and their data augmented ones should be consistent (Lee et al.,
2013; Rasmus et al., 2015; Tarvainen & Valpola, 2017; Miyato et al., 2018; Iscen et al.,
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2019; Berthelot et al., 2019; Sohn et al., 2020; Chen et al., 2020). In this paper, we con-
sider MixMatch (Berthelot et al., 2019) and MixText (Chen et al., 2020) as our ensemble
baseline methods because they generated the high-quanlity explicit pseudo labels for unsu-
pervised data using ensemble methods.

For each unlabeled data XN, 45 Jj =1,..., Ny, the pseudo label can be generated by ensemble
the model predictions of its data augmentations. We set the number of data augmentations for
each unlabeled data to M. The data augmentation is denoted by
XN, 4im = Sagment Gy, 45)sm = 1,... Myj = 1,..., Ny;. The pseudo label yy ,; can be generated
based on M model predictions of data augmentations as
W47 = Fapen( 5 Tt oGy aion) )11 = Lo My = 1, Ny Whete (oo o) are
extra M classifiers which are only utilized to generate better pseudo labels of unsupervised
data and ensemble methods are limited to applying on this pseudo labeling process (not used
in final classification prediction). We denoted the classifier conducting the final classification
prediction as f(-). The function fy,pen(+) can reduce the entropy of pseudo labels, e.g., setting
to one-hot encoding based on the probabilities of different class labels (Sohn et al., 2020). The
empirical risk of the semi-supervised classifier for f(-) using pseudo labels is as follows:

Ny Ny
1 1
L,(f.D,.Dy) = v Z C(f(x,),y,) + N Z C(f Xy, 15 YN, +7)-
L i =

Similar to 3.1, our goal is to construct a single aggregator Ag({f}, />, ----fys }) that takes the
model predictions of data augmentations on each unsupervised data point as inputs and
generates a high-quality pseudo label even the majority of model predictions is wrong. The
challenge is still to detect when the minority population has the true answer.

3.3 Bayesian truth serum

Prelec (2004) considers the following human judgement elicitation problem: There are a
set of agents denoted by {a,-}f: - The designer aims to collect subjective judgement from
each agent about an unknown event y € {0, 1} and aggregate accordingly. Each of the agent
i needs to report his own predicted label /; € {0, 1} for y, and the percentage of other agents
he believes will agree with him p; € [0, 1]. We will also call this second belief information
as the peer prediction information. Denote the i’s local belief of [, j # i as lf.’J., J#Ii p;is
defined as follows:

Z#,- ]l(lib,j = li)]

pi = IEI?‘/‘]-#i l K—1

In above the expectation is w.r.t. li’ ,j # 1 - this definition rigorously sets up the formula-
tion, since in BTS, each agent only observes his/her private signals but not others.

We, as the designer, obtain the prediction labels {li}f{: and the percentage information
{ pi}f= , from all the agents. The posterior for each label is defined as the actual percentage
of this label which can be easily calculated utilizing the prediction results: (for label 1)

1. =1

Posterior(1) =
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In (Prelec, 2004; Prelec et al., 2017), Prelec et al. promote the idea of using the average
predicted percentage of the responding label as the approximation of the priors: (for label

1).

K 10=1 “10=
Zi:lpi(’ " (1 =ittt
K

Prior(1) = @

If Posterior(1) > Prior(1), label 1 will be taken as the surprisingly more popular answer,
which should be considered as the true answer y, even though it might be in minority’s
hands. The same rule is applied to label 0. Formally, if we denote § as the aggregated
answer:

. J 1 if Prior(1) < Posterior(1);
Y= 0 ifPrior(1) > Posterior(1). 3

The rest of the paper will focus on generalizing the above idea to aggregate classifiers’
predictions.

4 Machine truth serum

In this section, we introduce Machine Truth Serum (MTS). We aim to build a more robust
ensemble method which can recover the true answer (in minority’s hands) if the majority’s
answer is wrong. Suppose we have access to a set of basic classifiers. We’d like to build a
BTS-ish ensemble method to further improve the model’s robustness. The challenge is to
compute the priors from the classifiers - machine-trained classifiers do not encode beliefs
as human agents do, so we cannot elicit the peer prediction information from them directly.
We propose two machine learning aided approaches to perform the generation of this peer
prediction information. We first introduce two MTS approaches for binary classification
in supervised learning. Then we extend these approaches to multiclass classification case
in supervised learning. After describing our proposed methods in supervised learning, we
show the MTS methods for binary classification in SSL. Finally, the theoretical analysis of
our MTS methods are provided.

4.1 Heuristic machine truth serum

We first introduce Heuristic Machine Truth Serum (HMTS). The high-level idea is to train
a regression model for each classifier to predict the percent of the agreement from other
classifiers on the prediction of each particular data point. After getting the predicted labels
and the predicted peer prediction information of the classifiers, we can again approximate
the priors using the predicted peer prediction information for each classifier, compute the
average and compare it to posterior. In this part, HMTS for binary classification in super-
vised learning is introduced firstly and its multiclass extension is stated in Sect.4.3.
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Algorithm 1 Heuristic Machine Truth Serum (Binary classification)

Require:
1: Input:
2 D ={(z1,%1)s -, (N, ,Yn, ) }: training data
3 T ={(z1,y1), ..., (x7,yr)}: testing data
4 F={f1,..., f}: classifiers
Ensure:
5: Train K classifiers (F) on the training data
6 Fori,j =1,..., K, compute §] according to Eqn.(4).
7. Train machine belief regressors g;o,g;1 on training dataset DJH =
{(a 57) 5
8: fort =1toT do
9: Get Prior(z4,! = 1) and Posterior(x,,l = 1) according to Eqn.(5) and

Eqn.(7).
10: if Prior(z¢,! = 1) < Posterior(z;,! = 1) then
11 Output “surprising” answer 1 as the final prediction.
12: else
13: if Prior(x,1 = 1) > Posterior(z;,! = 1) then
14: Output “surprising” answer 0 as the final prediction.
15: end if
16: end if
17: end for

Given the training data D = {(xi,y,»)}f.\z1 and multiple classifiers {fk}le, we first try to
compute the k-th classifier’s “belief” of the fraction of other classifiers that would “agree”
with it. Denote this number as )')fl for each training example (x;,y;). )’)f.‘ can be computed as
follows:

5 = ek L(f.(x) = fix)

= 4
; . 4)

By above, we have pre-processed the training data to  obtain
Dy 1= {(x,,yk)}[ » k=1,...K, which can serve as the training data to predict the peer
prediction information of classifier k (again to recall, peer prediction information is the
fraction of other classifiers that classifier k believes would agree with it) We then train
peer prediction regression models {p, }X teg ON Dy 1= {(xl, )} L ., K respec-
tively to map x; to y We consider different class labels' and will ﬁrst tram two regres-
sion models: p; and pk are two belief regression models of classifier k and trained on
the examples whose predlcted labels are Os (DHIk = {(x;, yk) filx) = 0} ) and 1s
(DHIk = {(xl,y ) L filx) =1} _Ll) respectively.

Then we compute the following prior of label 1 for each (x,,y,) € 7 in the testing
dataset:

+ 3 —1-
mmﬁ{ Pels) - B = 5)

l-p (x) iffi(x)=0

! In BTS, an agent predicts how many other agents agree with it depending on its own prediction.
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After obtaining these peer prediction regression results p,(x,) for all test data points, the
prior and posterior of (x,,y,) € 7 in the test dataset are then calculated by,

P(x,, 1) ;:M;
K ©)
TR =D
0, 1) =2

If P(x,, 1) < Q(x,, 1), the “surprising” answer 1 will be considered as the true answer. The
decision rule is similar for label 0. The procedure is illustrated in Algorithm 1.

To be noted, training the regressors to estimate the prior instead of directly using Eq.(4)
is necessary. Because, if we don’t train the regressors and estimate the prior directly using
Eq.(4), prior will always be equal to posterior and we cannot use the decision rule men-
tioned above to obtain the “surprising” answer by comparing prior and postrior. For sim-
plicity, the proof for binary classification (multiclass case is similar) is given as follows:

We set K; = Y, 1(fi(x,) = 1) and K, = Y, 1(f(x,) = 0). Obviously, K = K, + K,. Then
we can get:

e L, (00) = filx) = 1)

_k _
y ()= X1
Yo L, () = filx) = 0)
-k _ 2 2
5 (0)= X1

The above two quantities further help us compute both the posterior and the “direct prior”
as follows:

D) - 1(x) = 1) + (1= 7(0) - L(fi(x) = 0)]

Pdirecr(xt’ 1) =

K
Y R - 1 (x) = D1+ X [ = 350) - 1(fi(x) = 0)]
= X ; @)
_Kl.%+K2.(l_II<(z:ll) E_Zk]l(fk(xf)=l)~
- K T K K ’
1 =1
Q(x,, 1) :=M. 8)

K

Therefore, the prior is equal to the postrior by comparing Eqs.(7) and (8). Based on this
proof, learning the regressors to estimate the prior instead of directly using Eq.(4) is
necessary.

4.2 Discriminative machine truth serum

The Heuristic Machine Truth Serum above relies on training models to predict the peer
prediction information for each classifier (which will be used to compute the priors) and
compare them to the posteriors, and then decide on whether to follow the minority opin-
ion or not. HMTS closely mimicked the procedure of BTS method in the seed paper. But
it is not the most efficient way due to the extra computational cost of regressors. Also, its
performance is dependent on the quality of regression models. We notice the above task of
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determining whether to follow the minority or not is also a binary classification question.
This observation inspires us to utilize a classification model to directly predict for each
data point whether the minority should be chosen as the answer or not.

We propose Discriminative Machine Truth Serum (DMTS). Again, DMTS for binary
classification will be introduced firstly and its multiclass extension is stated in Section 4.3.
With DMTS, a new training dataset D := {x;, 51,-}?21 about whether considering the
minority as the final answer or not is constructed. Each data D), := (x;,3,), fori = 1,...,N,,
in this new training dataset is calculated as follows: for each (x;,y;) € D,

A { 1 if majority of 7 onx; # the true label; ©)

Y1\ 0 if majority of F on x; = the true label.

Now with above preparation, predicting whether majority is correct or not becomes a
standard classification problem on Dy, := {xi,j),-}?zl. This is readily solvable by apply-
ing standard techniques. In our experiments, we will mainly use a Multi-Layer Perceptron
(MLP) (Goodfellow et al., 2016) denoted as f. f is trained on this new training dataset
and can directly predict whether we should adopt the minority as the answer or not. f does
not restrict to MLP and can be other classifiers. We have tried several other methods, such
as logistic regression and support vector machine, with similar conclusions obtained. The

whole procedure of DMTS is illustrated in Algorithm 2.

Algorithm 2 Discriminative Machine Truth Serum (Binary classification)

Require:
1: Input:
2 Dp ={(z1,%1), .-, (N, ,Yn, ) }: training data
3 T ={(z1,y1),.... (7, yr)}: testing data
Ensure:
4: fori=1to N, do
5: Compute g; according to Eqn.(7).
6. end for
7. Train DMTS classifier f on the dataset {z;, i } N4
8: fort =1to T do
9 Compute the classification result 7, := f(z;)
10: if y, = 0 then
11: Stay with the majority answer.

12: else

13: if y, = 1 then

14: Predict with the minority answer.
15: end if

16: end if

17: end for

4.3 Multiclass extension of HMTS and DMTS
HMTS and DMTS can be extended to multiclass classification problem with the same ideas

by modifying them accordingly. In the multiclass case, [ € Y = {0, ...,L} is denoted as the
class label of the dataset. Consider HMTS first. For each classifier k, we need to consider
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different class labels of regression models {p}}, where [ € Y = {0,...,L}. p} is the belief
regression model of classifier k and trained on the examples whose predicting labels are Is.
Again compute the following prior for each x;

= {0, <

(1=pie)) -1y iffile) = v # L. (10)

where r; = pf((xi) /(Xeey:cxy Pi(x)) is defined as the ratio of the I’s belief to the summa-
tion of all the other classes’ beliefs except for class v. In the multi-class classification
tasks, we cannot directly obtain the prior of class [ — p,’((xi) as in the binary classifica-
tion by using (1 — p;(x,) if fi(x;) = v # l. Therefore, the prior regressors for other classes
{pi(x;) | c €Y c# v}need to be utilized to calculate the prior of class / with a normali-
zation parameter r;.

In HMTS, Eq.(7) modify to the following:

K
il
Plpy =D
K
K (11)
X LA =D
Q(xi,l) ':T

We then compute all the priors and posteriors of each class label based on Eq.(11). It is
possible that there exist more than one class labels whose posterior is larger than its prior.
We define the set containing all these label classes as )V, = {I | P(x;,]) < O(x;,[)}. We

then predict the class label which has the biggest improvement from its prior to posterior:
argmax,cy {Qx;, ) — P(xi, D))

In DMTS, firstly we need to train a model that decides whether to apply the minority as the
final answer which are very similar to the binary case. The difference is that we will then
choose the minority answer as the predicted answer instead of using majority if 1) it has the
most votes in the minority answers and ii) the prediction result of classifier obtained in the
training phase is 1 (we should use minority).

How does MTS work? In Fig. 1, we show four sample images to demonstrate how
HMTS correct the wrong majority predictions. We show for these four cases even with
high prediction on the wrong class, we are able to correct the prediction by introducing
MTS to check on the priors. For example, in the first sample, the wrong prediction (number
8) is provided if we only look at posterior (number 0: 0.400; number 8: 0.467) following
the majority rule. But the “surprising popular” correct minority (number 0) will be recov-
ered if we predict based on Posterior - Prior (number 0: +0.117; number 8: +0.054).

4.4 HMTS and DMTS for semi-supervised classification

In this section, we describe the HMTS and DMTS for SSL classification problem. For
simplicity, we consider binary classification and its multiclass extension can be inferred
accordingly.

As we focus on applying ensemble methods on the pseudo labels’ generation based on
data augmentations for each unsupervised data, we first need to compute the m-th data
augmentation classifier’s “belief” of the fraction of other data augmentation classifiers
that would “agree” with it. We first train M data augmentation classifiers {7, %ﬂ on the

@ Springer



Machine Learning

lg : . |-|-|||II|

-n-nnla
001 2 3 4 5 6 8 9 001 2 3 4 5 6 7 8 9 001 2 3 4 s 6 7 8 9
True label: Posterior Prior Posterior - Prior
Number 0 . o o
Original prediction: 8 (Wrong!) New prediction: O (Correct!)
- I n - I - . u
" | 1 I
& L N N
0012 3 4 5 6 7 8 9 01 2 3 a4 5 6 7 8 9 001 2 3 4 s 6 7 8 9
True label: Posterior Prior Posterior - Prior
Number 1 . o o
Original prediction: 2 (Wrong!) New prediction: 1 (Correct!)

" | | I
lﬂ;‘" g 1 1ni
- | sanlalaan

001 2 3 4 5 6 7 8 o 001 2 3 4 5 & 7 8 9 o 1 2z 3 4 s 6 7 8 9
True label: Posterior Prior Posterior - Prior
Number 5 . e e
Original prediction: 9 (Wrong!) New prediction: 5 (Correct!)
I - I =
f? R T L |
1 1 s iRl
0 1 2 3 a4 s 6 7 8 o o 1 2 3 a4 s 6 7 8 9 o 1 2 3 a s 6 7 8 9
True label: Posterior Prior Posterior - Prior
Number 7 . o o
Original prediction: 1 (Wrong!) New prediction: 7 (Correct!)

Fig. 1 Four sample images (number 0, 1, 5, and 7) where HMTS corrects the wrong majority predictions
of the majority voting baseline on Pendigits dataset (10 classes) testing dataset. Their posterior, prior, and
posterior-prior information are listed

supervised training dataset D; = {(x;, y,»)}?iLl. Then we can compute the classification pre-
dictions denoted as f,,(x;,,),m = 1,..,M;i = 1,..., N, for the data augmentations of super-
vised training dataset generated by x;, := Augmentation(x;),m =1,...M;i=1,...,Nj.
Denote the m-th data augmentation classifier’s “belief” (the fraction of other data augmen-
tation classifiers that would “agree” with it) as 3" for the data augmentations of each super-

vised training example (x; ., y;). 37" can be computed as follows:

~m ZC#m IL(fc('xi,c) =fm('xi,m))
P =

"= (12)
i M-1

By above, we have pre-processed the supervised training data to obtain

Dll:llm i= 5’:'”)}?217 m = 1,...,M, which can serve as the training data to predict the
peer prediction information of data augmentation classifier m. We then train peer prediction
regression models.{fam 2?:1 on Df]lm = {(;ci’m,j);.")l}%:l, m= L..M resp.ectively to map
X; , to 3. We consider different class labels” and will first train two regression models: p;

and fa:m are two belief regression models of data augmentation classifier m and trained on

2 In BTS, an agent predicts how many other agents agree with it depending on its own prediction.

@ Springer



Machine Learning

the+czxamples wh?rie prAedicted labellsLare Os (Djﬁm = { 5,?1) : fm(xi,m) = 0}7:]) and 1s
(DHlm = {(x,-’m,yi ) i) = 1}[.:1) respectively.

Then compute the following prior of label 1 for the data augmentations of each x;, in
the unsupervised dataset:

IA’; (xj+NL,m) iff m (xj+NL,m) =1

A it 13
1 _pm(xj+N,/,m) lffm(xj+N,‘,m) =0. (13)

ﬁm(xj+N,_,m) = {

After obtaining these peer prediction regression results p,,(xi,y, ,,).J = 1, ..., Ny for all
unsupervised data, the prior and posterior of (X, > Yj+n,m) € Dy in the unsupervised
dataset are then calculated by,

_ Zm ﬁm(x‘HNL,m) .
_—M ;

_Zm ﬂ(fm(xj+NL,m) = 1)
= i .

P(xj+N,‘,m? 1) :
(14)

Oty D) -

If POy, mo 1) < Q(Xjpy, o 1), the “surprising” answer 1 will be considered as the true
pseudo label in the semi-su}\g)ervise classification. The decision rule is similar for answer 0.
As for the DMTS, {3,},, about whether considering the minority as the final pseudo

label for each supervised training data x; or not is constructed. Each data Df) 1= (x;,9,), for
i =1,..,N;, in this new training dataset is calculated as follows: for each (x;,y;) € D;

. { 1 if majority of predictions onx;,(m = 1,...,M) # the true label; (15)

YT\ o if majority of predictions onx; , (m = 1,..., M) = the true label.

im

4.5 Theoretical analysis

We performed a formal analysis of the correctness of our proposed algorithms via proofs
adapted from proofs for BTS (Prelec et al., 2017). Similar to BTS, with MTS, each clas-
sifier (i.e., an agent), depending on its own predicted label, will use a different regression
model to predict how many other classifiers agree with it. For simplicity, we only present
the theorems for binary classification. The proofs of multiclass are similar to the binary
case. The details of proofs are reported in Appendix 1.

To set up for presenting the theorems, we restate our problem: we assume that each
classifier f,(x) can take on any value in the discrete set {s,...,sg} as its features for the
simplicity of proof. In practice, conceptually each feature vector can be represented by an
assigned (large-enough) categorical number. One can consider s;(i = 1,2,,,5) as a code for
each feature vector. Our proof builds on similar assumptions made in (Prelec et al., 2017):

Assumption 1 Conditional on each possible label I, fi(x),k = 1,2,...,K are independent
from each other, and are identically distributed.

Assumption 2 The learner has access to the conditional distribution P(f_.(x) | f,(x)),
where f_,(x) denotes the prediction from a randomly selected classifier j # k.

We reproduce the following theorems:
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Theorem 1 The correct answer (majority or minority) cannot be deduced by any algorithm
if only relying on posterior probabilities, Q(s;,),i = 1,...,8;l = 0,1 because considering
either O or 1 as the correct label can generate the same posterior probabilities based on
the training dataset.

Theorem 1 implies that any existing ensemble algorithm based on the majority voting
rule cannot always infer the true answer no matter either majority or minority is the final
true answer. In other words, we cannot decide whether majority or minority is correct if we
only know the information of the posterior probabilities Q over all the possible labels. The
majority rule applied by the existing ensemble methods is a special case of Theorem 1.

Theorem 2 For input s;, the estimate of the prior prediction for the correct classification
label denoted as I* will be strictly underestimated if the prediction probability of the true
label is less than 1. We can express this as

P(s;, ') < Q(s;, ") if P(I* | s;) < 1.

We leave more details to the Appendix. Theorem 2 is applicable when the task is diffi-
culty that the true label is only observed by a minority of the classifiers. A hidden assump-
tion is that the minority but expert classifiers hold a stronger belief about the ground
truth label than the majority classifiers who predicted wrongly. More formally we assume
P =01 | fi(s;) =1") > P =1* | fi(s;) =) for all [ # [*. The high-level intuition is that
the expert classifiers, though being minority, must retain a strong signal to classify a diffi-
cult task correctly. While for a non-expert one who predicted wrongly, would not “reason”
specially how the hidden true label class. In Sect. 5.1, page 17-19, we have also provided
an empirical observation and explanation.

Theorem 2 shows that having the prior information can help improve the robustness
of models because the minority correct classification result can be recovered using the
rule descried in the theorem when the minority is the true answer instead of the majority
answer. In other words, having Theorem 2, the true minority answer can be revealed as
correct if the prior probability is less than the posterior one. The existing ensemble meth-
ods always adopt the majority result as the final answer and cannot recover the minority
correct answer.

As for the training complexity of our algorithm, the training time of HMTS is linear in
the number of label classes because of the training of extra regressors. DMTS only needs
to train one additional classifier and both the training and the running time are almost the
same as the basic majority voting algorithm. Therefore our proposed methods are very
practical to implement and run. Detailed discussions can be found in Appendix 2.

5 Experimental results

In this section, we present our experimental results. We test our proposed methods by
applying in the ensemble final predictions step in supervised classification and in the
ensemble data augmentations step in semi-supervised classification.

For supervised classification, we conducted the experiments on five binary and four
multiclass real-world classification datasets. Experimental results show that consistently
better classification accuracy can be obtained compared to always trusting the majority vot-
ing outcomes. As for the splitting of training and testing, the original setting are used when
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training and testing files are provided. The remaining datasets only give one data file. We
adopt 50/50 spliting for the testing results’ statistical significance as more data is distrib-
uted to testing dataset.

As for semi-supervised classification, we adopt recent methods - MixMatch (Berthelot
et al., 2019) and MixText (Chen et al., 2020) as our ensemble baselines. We also used
UDA (Xie et al., 2019) as the baseline but it isn’t the ensemble baseline because UDA
doesn’t use ensemble data augmentation methods to generate the pseudo labels. Both of
the ensemble baselines (MixMatch and MixText) mixed labeled and unlabeled datasets uti-
lizing MixUp (Zhang et al., 2018) by applying the recent data augmentations methods to
generate low-entropy explicit pseudo labels for unlabeled examples. The difference is that
Chen et al. (2020) applied MixUp in hidden space so that it is more suitable for text tasks.
We used MixMatch to conduct the image classification experiments on CIFAR-10 and
CIFAR-100 datasets (Krizhevsky et al., 2009). Both CIFAR-10 and CIFAR-100 consist of
50,000 training images and 10,000 testing images. The difference is that CIFAR-10 and
CIFAR-100 have 10 and 100 classes respectively. MixText is used as the ensemble base-
line model for text classification tasks, where Yahoo! Answers (Chang et al., 2008) and
AG News (Zhang et al., 2015) datasets are performed. The experimental results show the
effectiveness of our proposed methods by providing better pseudo labels for unsupervised
data based on data augmentations than commly used ensemble method using the majority
voting rule.

5.1 Experimental setup and results for supervised classification

In our binary classification experiments, we consider five commonly used binary classifica-
tion algorithms which are Perceptron (Rosenblatt, 1958), Logistic Regression (LR) (Peng
et al., 2002), Random Forest (RF), Support Vector Machine (SVM) (Chang & Lin, 2011),
and MLP. In order to test the usefulness of our methods, we experiment with a noisy envi-
ronment - we flipped the true class label with three noisy rates to construct three binary
classifiers for each of the five methods which have mediocre performance on the test data-
sets. We wanted to diversify our classifiers by introducing different noisy rates (varying
the data distribution). Our experiments used 0.06, 0.08, and 0.1 (probability of flipping the
label) for each family of classifier. We also tried other values such as 0.1, 0.2, and 0.3, and
we reached similar conclusions. In total, 15 different classifiers are obtained as the baseline
classifiers.

In this subsection, we report the experimental results on five binary classification data-
sets and analyze when and why our proposed MTS methods perform better than majority
voting.

Table 1 presents the experimental results of accuracy and the number of increased cor-
rect predictions for the three categories of cases, namely, Overall & “High disagreement
(HA)” & “Low disagreement (LA)” cases’, using methods of Uniformly-weighted Majority
Voting, HMTS, and DMTS on five binary classification datasets. Specifically, “HA” cases
are the tasks/instances when the ensemble is least certain about. “LA” ones are the rela-
tively easier tasks/instances that the ensemble is more certain about, which is also the cases
when the majority opinion is likely to be correct.

Because the accuracy improvement from using our proposed MTS mainly occurred for
the HA cases, in Table 1, we report the accuracy of the majority voted baseline and our
proposed methods (HMTS and DMTS) on HA cases, LA cases, and all cases separately.

@ Springer



Machine Learning

00S ‘SPE ‘00€T ‘00¥ ‘v8T e
sjeselep Suns9) [[BISA0 AT JO sIqUINU oy, ‘A[0AT2dSAI SSp “TOE ‘TSTT “€9€ ‘€ET PUB Sp “Cb ‘6FT ‘LE ‘TS 2Ie SI9SBIRP QA UT JOPISUOD M SIOUBISUT '] PUe YH JO SIoquunu
Ay ‘spoyrouwl STIA U * JUSWAAITBSIP MOJ,, SUIABY SB PIISPISUOD 3q [[IM OUBISUI 3} SUONIPUOD IYIO IO "6 10 § ST sse[d Ajuiofew Jo 1oquunu J0A Y} JI  JUaWISesIp Y3y,
SUIABY Se PAIOPISUOD 9q [[IM OURISUT ) PUB SIAYISSBIO GT QABY A\ ‘[[EWS ST | pue () Sunorpaid Jo Ioquinu o) UdoMm}aq 2OUIIP Y} JBY) SUBW |, JUSWISesIp Y31y, oyl

pap[oq st 1039180 yore 10} douewrioptad 1sog

(SSH/0+0SE) %TE'IL (T0E/0+SST) %I v8 (ISTT/L-0S9T) %8E9L (€9€/T+0TE) %LI'S8 (€€T/0+TTT) %6T°S6 (VD SLINA
(SSH/0+0SE) %BT6'IL (TOE/T+SST) %OT'S8 (ISTT/H+0S9T) %68°9L (€9€/T+0T1€) %S6°S8 (€€T/1-TTD) %S816 (VD SLINH
(SS¥/0S€) %T6'9L (TOE/SST) %t +8 (ISTT/0S91) %IL9L (€9€/01€) %0¥'S8 (€£€T/TTT) %6T'S6 (VD Koley
(S¥/1+0€) %68'89 (EV/P+LT) %60°TL (6¥1/0L+Th) BLI'SL (LE/SH1T) %YT'EY (I1S/7+2¥) %0T 06 (VH) SLINA
(S/9+0€) %00°08 (EV/9+LT) %YLIL (6¥1/8%+Th) %0109 (LE/SH1T) %YT'EY (15/8+2h) %+0°86 (VH) SLINH
(S¥/0€) %L9°99 (E¥/LT) B6L'TY (6¥1/2t) %61°8C (LE/TT) %EL'6T (15/2h) %S€ET8 (VH) Aofey
(00S/1+08€) %0T9L (Sre/r+87) %16C8 (00£T/€9+T691) %0E'9L (007/9+12€) %SL18 (F8TH+197) %1076 (TTV) SLINa
(005/9+08€) %0T"LL (S+€/8+287) %90°F8 (00€T/TS+TO9T) %EY'SL (00%/L+12€) %00°T8 (¥8T/L+97) %TY'S6 (TTV) SLIWH
(005/08€)%00°9L (SYE/T8BYL18 (00€T/T69D%LS EL (00%/12€)%ST 08 (¥82/%92) %96'C6 (T11V) Asoley
UBULIOD) uerensny asequiedg MITAJI JATAOIN Jooued jsearqg sjasele

S19SBIEP UONBIYISSR[D ATRUIq 9AY U0 STINA PU® ‘SLINH ‘Sunop Auofepy pajysrom-AJuioyiun jo spoyour 3uisn ‘ sased  (y])
JUQWIQITESIP MO, 29 . (VH) Juowoa1Sesip Y3SIH,, 2 [[BIAQ ‘A[oWRU ‘Sased JO SI1I059)ed 991y} 2y} J0J SuonoIpaid 1091100 PaseaIdul Jo I9qunu Ay} Pue ASeINdOY | 3|qeL

pringer

Qs



Machine Learning

Distributions of the number of wrong -> correct Distributions of the number of correct -> wrong
HA cases in four different intervals according to HA cases in four different intervals according to
(post-prior) using HMTS on Spambase dataset (post-prior) using HMTS on Spambase dataset
60 35
50 30
25
40
20
30
15
20
10
) . I
: : H
[0.00, 0.05) [0.05, 0.10) [0.10, 0.20) [0.20,) [0.00, 0.05) [0.05, 0.10) [0.10, 0.20) [0.20,)
Post — Prior Post — Prior

Fig.2 Distributions of the number of wrong— >correct and correct— >wrong cases (two subsets of HA
cases) in four different intervals according to the value of (posterior - prior) using HMTS on Spambase
binary classification dataset, where a larger value means a bigger difference between prior and posterior
probabilities. Our proposed MTS methods can obtain more correct answers when there is a significant dif-
ference between prior and posterior

From the results, we observe that our MTS methods significantly improve the performance
on HA cases by 10--50%. It is reasonable because the “high disagreement” instances, com-
pared with “low disagreement”, are more difficult to classify. Hence, for HA cases, apply-
ing the majority voting rule leads to low accuracy and the majority answer is unreliable,
when MTS is especially relevant because it was originally designed to address the issue
of the majority being wrong. As such, our MTS methods can recover the correct minority
answer when the majority is wrong, resulting in higher improvement in performance. For
LA cases, that is, when the disagreement is low in the ensemble, accuracy achieved by
trusting the majority labels is already high, as shown in the Majority (LA) row in Table 1.
Such LA tasks leave us little room for our proposed methods to improve, as shown in the
last three rows in Table 1 such that the accuracy is almost unchanged after applying our
MTS methods as compared with the accuracy of the majority voting.

Another observation is that Heuristics Machine Truth Serum (HMTS) tends to have
more robust and better performances than Discriminative Machine Truth Serum (DMTS)
in most datasets, especially in the small-size datasets. These can be explained by the fact
DMTS itself is a MLP classifier which needs a larger size of data to get good results. That
HMTS can improve the classification accuracy in the small size of dataset is particularly
useful in some fields such as healthcare in which collecting data is very time-consuming
and expensive. As for the running time, DMTS is faster than HMTS as HMTS needs to
compute the peer prediction results of all the 15 classifiers and DMTS only predicts once.

To further demonstrate the conditions under which MTS Methods are expected to be
effective, we compare the distributions of the difference between prior and posterior prob-
abilities in two subsets of HA cases from the Spambase dataset. The first subset consists
of the cases where the correct classifications are successfully recovered by applying the
MTS methods. The other subset is constituted by the cases where MTS ends up recover-
ing wrong answers (i.e., the majority is correct in the first place, but rejected by MTS). In
Fig. 2, for these two subsets of HA cases, we respectively present the distributions of the
number of cases (wrong->correct and correct->wrong) in four different intervals according
to the value of (posterior - prior), where a larger value means a bigger difference between
prior and posterior probabilities. As Fig. 2 shows, the MTS methods obtain more correct
answers when there is a significant difference between prior and posterior. In other words,
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Table2 Accuracy and the number of increased correct predictions for the three categories of cases, namely,
Overall & “High disagreement (HA)” & “Low disagreement (LA)” cases’, using methods of Uniformly-
weighted Majority Voting, HMTS, and DMTS on four multi-class classification datasets

Datasets Waveform Statlog Optical Pen-Based

# of class 3 6 10 10

Majority (ALL) 85.04% (2126/2500) 86.70% (1734/2000) 97.50% (1752/1797) 95.08% (3326/3498)
HMTS (ALL)  85.60% (+14/2500) 87.05% (+7/2000)  97.66% (+3/1797)  95.48% (+14/3498)
DMTS (ALL)  85.64% (+15/2500) 86.75% (+1/2000)  97.61% (+2/1797)  95.54% (+16/3498)
Majority (HA)  42.59% (23/54) 23.08% (15/65) 40.00% (6/15) 57.32% (90/157)
HMTS (HA) 62.96% (23+11/54)  53.33% (15+8/65)  53.33% (6+2/15) 68.15% (90+17/157)
DMTS (HA) 68.52% (23+14/54)  24.62% (15+1/65)  60.00% (6+3/15) 66.88% (90+15/157)
Majority (LA)  85.98% (2103/2446) 88.84% (1719/1935) 97.98% (1746/1782) 96.86% (3236/3341)

HMTS (LA) 86.10% 88.79% (1719- 98.04% 96.77% (3236-
(2103+3/2446) 1/1935) (1746+1/1782) 3/3341)

DMTS (LA) 86.02% 88.84% 97.92% (1746- 96.89%
(2103+1/2446) (1719+0/1935) 1/1782) (3236+1/3341)

Best performance for each category is bolded

We have 15 classifiers and the instance will be considered as having “high disagreement” if the vote num-
ber of majority class is less or equals to 6 for the 3-class dataset. The threshold number is 5 for 6-class and
3 for 10-class datasets. For other conditions the instance will be considered as having “low disagreement”.
In MTS methods, the numbers of HA and LA instances we consider in four datasets are 54, 65, 15, 157 and
2446, 1935, 1782, 3341 respectively. The numbers of four overall testing datasets are 2500, 2000, 1797,
3498

we are more likely to recover the correct answer successfully if the difference between
prior and posterior is large.

We also tested our extension to multi-class classification problems. Experimental results
on four multi-class classification datasets are reported in Table 2. We observe that HMTS
and DMTS obtained similarly good performance in the accuracy metric because the size
of multi-class classification datasets is larger and the MLP of DMTS can perform better
than the binary case. In Table 2, we also noted that the similar significant improvement on
the HA cases and almost unchanged performance on the LA cases after applying our MTS
methods for four multi-class classification datasets.

We also observe that, in both binary & multi-class classification tasks, DMTS performs
much worse than HMTS for some datasets. We analyze this phenomenon below.

Analysis on why DMTS performs much worse than HMTS in some datasets In some
datasets (e.g., German and Statlog), compared with HMTS, DMTS performs much worse.
After examining the cases in those datasets, we observe that in the cases where HMTS
recovers the correct minority answers, there is an imbalance in the distribution of labels.
For example, most corrected cases in the Statlog dataset have the same label. It makes
sense because HMTS is a heuristic method and can compute for each data point individu-
ally and doesn’t have the constraints of balanced distribution on labels. For DMTS, how-
ever, we found that the labels of the cases using DMTS are balanced, which suggests that
it seems to be subject to a constraint of label balance. This could be because we trained the
model on the dataset with a balanced distribution of labels. As a result, it enforces the bal-
anced distribution of the labels when applied in the testing datasets.

Finally, we compare between several popular ensemble algorithms and our proposed
approaches. We list the testing accuracy for Adaboost with 15 decision tree base estimators,
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Table 3 Comparison between popular ensemble and our proposed approaches

Methods Adaboost Random Weighted Stacking HMTS DMTS
Forest Majority

Breast Cancer 94.37% 94.37% 94.01% 94.72% 96.13% 94.01%
Movie Review 75.10% 77.20% 81.60% 70.30% 80.85% 80.60%
Spambase 74.74% 74.65% 74.17% 75.91% 76.87% 77.35%
Australian 82.03% 84.06% 84.06% 85.22% 83.44% 82.94%
German 72.20% 74.80% 73.80% 77.20% 77.20% 76.20%
Waveform 81.80% 82.60% 85.36% 84.00% 85.48% 85.60%
Statlog 85.85% 86.15% 86.85% 82.70% 87.10% 86.75%
Optical 93.99% 94.88% 92.21% 95.83% 97.61% 97.66%
Pen-Based 94.97% 95.45% 90.59% 95.43% 95.57% 95.51%
# of best 0 0 1 1 4 3

# of significant wins 0 1 0 0 3 3

Best performance for each dataset is bolded

# of best means the number of datasets where the benchmark achieves the best performance. # of signifi-
cant wins means winning number of comparisons between itself and other methods if they are significantly
different (p-value<0.05) by doing paired t-test

Random Forest with 15 decision trees, Weighted Majority (Germain et al., 2015), Stacking
with the same setting of 15 classifiers utilized in our two MTS algorithms and Logistic
Regression or SVM as meta classifier, HMTS, and DMTS for all nine datasets in Table 3.
As shown in the table, HMTS and DMTS outperform Adaboost, Random Forest, Weighted
Majority, and Stacking in seven datasets and are very close to the best in two datasets.
Compared to other weighted methods, we’d like to note that our aggregation operates on
each single task separately - this means that our method will be more robust when the dif-
ficulty levels of tasks differ drastically in the dataset. None of the other weighted methods
(with fixed and learned weights) has this feature. We also find that our method is robust to
a smaller number of classifiers, in contrast to, say Adaboosting. We also conduct paired
t-testing where all methods are compared to each other. If two methods are significantly
different (p-value<0.05) and one method performs better, it means significant win or better.
Random Forest is significantly better than Adaboost. HMTS and DMTS are significantly
better than Adaboost, Random Forest, and Weighte Majority (almost for Stacking). Paired
t-testing results show the effectiveness of our proposed approaches.

5.2 Experimental setup and results for semi-supervised classification

We adopt the recent SSL methods UDA (Xie et al., 2019), MixMatch (Berthelot et al.,
2019), and MixText (Chen et al., 2020) as our baselines in SSL. Becuase UDA doesn’t
use ensemble data augmentation methods to generate the pseudo labels, we consider Mix-
Match and MixText as the ensemble baselines.

We applied UDA and MixMatch on image classification tasks (CIFAR-10 and CIFAR-
100). In both CIFAR-10 and CIFAR-100 datasets, 14,000 data points are utilized as super-
vised dataset and the remaining as unsupervised dataset. For UDA, it performs worse than
other methods because it doesn’t use ensemble data augmentation methods to generate the
pseudo labels. For MixMatch, we tried different data augmentation settings, where varying
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Table 4 Classification accuracy (%) in UDA, MixMatch (2-AUG), MixMatch (5-AUG), HMTS, and DMTS
settings on the CIFAR-10 and CIFAR-100 testing dataset using MixMatch method. 2-AUG means that two
data augmentation samples are constructed for each unsupervised data. HMTS and DMTS are based on
5-AUG setting

Methods CIFAR-10 (%) CIFAR-100 (%)
UDA 88.70 75.23
MixMatch (2-AUG) 90.68 76.78
MixMatch (5-AUG) 91.59 78.20
HMTS 92.62 80.75
DMTS 91.90 79.52

Best performance for each dataset is bolded

Table 5 Classification accuracy (%) in UDA, MixText (2-AUG), MixText (3-AUG), HMTS, and DMTS
settings on the Yahoo! Answers and AG News testing dataset using MixText method. 2-AUG means that
two data augmentation samples are constructed for each unsupervised data. HMTS and DMTS are based on
3-AUG setting

Methods Yahoo! Answers (%) AG News (%)
UDA 65.6 86.8
MixText (2-AUG) 66.7 87.6
MixText (3-AUG) 67.1 88.3
HMTS 67.8 89.5
DMTS 67.3 88.9

Best performance for each dataset is bolded

number of data augmented samples are constructed for each unsupervised data. As shown
in Table 4, 2-AUG and 5-AUG settings are conducted. We observe that constructing more
data augmented samples can improve the classification accuracy. HMTS and DMTS in
Table 4 are applied on 5-AUG settings. We change the pseudo labels on the “high disagree-
ment” cases, which are the ones when the ensemble is least certain about. In the image
classification tasks, instances are considered as having “high disagreement” if three give
the same classification results and the remaining two provide another consistent prediction
results. HMTS and DMTS further improve the better performance than 5-AUG ensemble
setting.

MixText utilized Mixup in the hidden states so that it is more suitable for text tasks.
UDA can also be used in the text tasks. Therefore, we conducted the experiments on two
text classification datasets - Yahoo! Answers and AG News using UDA and MixText.
100 labeled data and 5,000 unlabeled data per class in both datasets are used to train the
model. For UDA, similar to image classification tasks, it performs worse than other meth-
ods because it doesn’t use ensemble data augmentation methods to generate the pseudo
labels. For MixText, we also tried different data augmentation settings as in the MixMatch,
where varying number of data augmented samples are constructed for each unsupervised
data. In the 2-AUG setting, Russian and German machine translation models are utilized
to generate data augmented samples for each unsupervised data. We add one more model
- French machine translation model in the 3-AUG setting. We change the pseudo labels on
the “high disagreement” cases which is defined in the above paragraph. In the text classifi-
cation tasks, instances are considered as having “high disagreement” if two give the same
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Table 6 Pseudo labels accuracy (%) in high disagreement (HA) cases for 2-AUG, 5-AUG, HMTS, and
DMTS settings on CIFAR-10 dataset

Methods HA accuracy (pseudo labels) in CIFAR-10 Improvement
over 2-AUG
(%)

2-AUG 86.34% (2308/2673) -

5-AUG 89.45% (2391/2673) +3.11%

HMTS 92.07% (2461/2673) +5.73%

DMTS 90.35% (2415/2673) +4.01%

2-AUG means that two data augmentation samples are constructed for each unsupervised data. HMTS and
DMTS are based on the 5-AUG setting. The numbers of HA unsupervised cases and overall unsupervised
cases are 2,673 and 36,000 respectively

classification results and the remaining one provide another prediction result. In Table 5,
we observe the consistent improvement as the one in Table 4.

The reason that our MTS methods work in SSL is that better pseudo labels for unsuper-
vised data are obtained. For better analyzing why our MTS methods are effective, we show
that the accuracy improvement on the high disagreement (HA) cases’ pseudo labels for
unsupervised data since we only applied our MTS methods on HA cases. The number of
HA cases in the 36,000 unsupervised cases in CIFAR-10 dataset is 2,673. Because we actu-
ally have true labels of unsupervised data in CIFAR-10, we can calculate the accuracy on
HA cases’ pseudo labels obtained by aggregating the predictions of data augmented cases
for unsupervised data with ensemble methods. As shown in Table 6, our methods provide
more correct pseduo labels and the improvement is significant. The similar improvements
are observed on the experiments for other datasets (CIFAR-100, Yahoo! Answers, and AG
News) in the SSL setting and the details are shown in Appendix 3.

6 Conclusion

In this paper, we proposed two ML aided methods HMTS and DMTS to detect when the
minority should be the true answer instead of majority. Our experiments over a set of clas-
sification datasets show that better classification performance can be obtained by applying
our MTS methods in the ensemble final prediction step in supervised classification and in
the ensemble data augmentations step in SSL by generating better pseudo labels for unsu-
pervised data. Our proposed methods also outperform popular ensemble algorithms and
can be generically applied as a subroutine in ensemble methods to replace majority voting.
For future work, we will apply our MTS methods on more real-world datasets.

Appendix 1: Proof of theorems in sect.4.4.
In this part, we provided the detailed proof of two theorems which are the analytical evi-

dences for the correctness of our proposed approaches. For simplicity, we only show the
proof details of binary classification. The proof of multi-class classification is similar to the
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binary case. This proof is largely adapted from (Prelec et al., 2017). Nonetheless we repro-
duce the details for completeness.

Theorem 1 The correct answer (majority or minority) cannot be deduced by any algorithm
if only relying on posterior probabilities, Q(s;,[),i =1, ...,S;l = 0, 1 because considering
either O or 1 as the correct label can generate the same posterior probabilities based on
the training dataset.

Proof In this proof, for any arbitrarily selected class label as the answer, we can gener-
ate the same posterior probabilities. Therefore, we cannot decide which label (majority or
minority) is the true class label if only relying on posterior probabilities.

Denote by [* as the true class label. Given the training dataset, P(s; | I*),i = 1,...,S
is known. Based on the description of theorem, the posterior probabilities
0@, ) =PU|sp),i=1,..,851=0,1is also known.

But we don’t know which class label is the truth label. We arbitrarily selected one class
label [ as the true label. We denote the corresponding model is K(s;, /). We will prove that
K(s;,]) can generate the same P(s; | [*),i = 1,..,Sand Q(s;, [) = P( | 5),i=1,...,5/=0,1
for any arbitrarily selected class label /.

Because the known parts don’t constrain the prior over the feature vector s;. In particu-
lar, we can set the prior of model K(s;, /) to:

Pesi | 1) (0 Pl 1))
K(s.) = i r
6D = BT Z P s,)
Because the posteriors in the corresponding model K(s;, /) must equal to the known posteri-

ors, we have K(I | 5;,) = P(l | s;), fori =1, ...,5;/ =0, 1. So we can get the joint distribution
of label / and the feature vector s;:

K s) = KU | spIK(sy) = P ] s)IK(sy)
Pes, [ 19\
=P(s. | I* —_—r ’
(slll)<2r‘, Pmm)
Then we can get the marginal distribution / by summing over i:
P, | )\ ! PG, | 1)\ 7!
K@) = P(s; | I* —r = L
@ Z Gl )(Z P(z|sr>> (Z P(us,))

After getting the marginal distributions K(s;), K(I), and the posteriors, K(/|s;), for
i=1,..,S, the feature vector distribution s; of the arbitrarily selected class label /, K(s; | [)
can be calculated by:

K | s)K(s;) .
K(sﬂl):W:lP(sill)
Because / was arbitrarily chosen, this theorem is proved. |

Theorem 1 implies that any existing ensemble algorithm based on the majority voting
rule cannot always infer the true answer no matter either majority or minority is the final
true answer. In other words, we cannot decide whether majority or minority is correct if we
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only know the information of the posterior probabilities Q over all the possible labels. The
majority rule applied by the existing ensemble methods is a special case of Theorem 1.

In the following part, we are considering the extra information which is the estimation
of other classifiers’ prediction results. We use P(v, | s,),! € {0, 1} to represent the how
many percentage of basic classifiers will predict label / given s;.

We also define two possible learnt final classification functions a)g and a)’l which decide
the final label for each s;. ), is the function which finally predict s; as 0 and o is the func-

0

tion which finally predict s; as 1. If the true label is 1, w’l is defined as the actual final clas-

sifier and a)6 is counterfactural final classifier. For simplicity, we ignore the input index of

a);',l € {0, 1} for each s; and write it as w;, [ € {0, 1} in the proof of Theorem 2.

Theorem 2 For input s;, the estimate of the prior prediction for the correct classification
label denoted as I* will be strictly underestimated if the prediction probability of the true
label is less than 1. We can express this as

P(sp I*) < O(s,. 1) if P(* | s,) < 1.

Proof For each s;, we set [* as the true label. We first prove that the actual percentage of
predicted labels for the true label in the actual final classifier exceeds counterfactual classi-
fier’s percentage for the true label, P(v;. | wu) > P(vu | w)), [ # I™.

Based on the description of w; and v, mentioned above and a BTS’s hidden assumption
that the minority but expert classifiers hold a stronger belief about the ground truth label
than the majority classifiers who predicted wrongly, for the true label /,, the probability of
o, being the actual final classifier for the expert classifiers predicting correctly is higher
than the one for the non-expert classifiers predicting the other wrong label I. Therefore, we
can get P(w. | vi.) > P(wy. | v). Then we have P(w;. | vi.)P(v) > P(w;. | v)P(v)) by tim-
ing the same factor P(v,) on both sides. So we have:

Pwp | vi) > Pwp | vi)Pp) + Pwg | v)P(v) = P(w.) (AD)
According to Bayesian rule, we have the following deduction:

P | wp) _ Pwp | vi)Pw)) _ Pwp | ve) 1 —Pw.)

= = A2
Pve | wy) Pw, | vi)Pw,) 1 =Pw, |ve) P(we) (A2)

Based on (A1), (A2) is greater than one. So P(v. | wy) > P(vy. | w)), 1 # I* is proved.
The estimate of classification prediction given the feature value s; can

be computed by marginalizing the actual and counterfactual final classifi-
ers, P |s) =P | we)Pws | s)+ P, | w)Pw; |s;). And we proved that
Py | we) > P(vy | w), 1 # I*. Therefore, P(vy | s;) < P(vi | wp). It will be the strict
inequality unless P(w. | s;) = 1. If the prediction probability is less than 1, the prior pre-
diction for each s; will be strictly underestimated. So we can get P(s;, [*) < O(s;, [*) if the
prediction probability is less than 1. This theorem is proved. O

Theorem 2 shows that having the prior information can help improve the robustness of mod-
els because the minority correct classification result can be recovered using the rule descried
in the theorem when the minority is the true answer instead of the majority answer. In other
words, having Theorem 2, the true minority answer can be revealed as correct if the prior prob-
ability is less than the posterior one. The existing ensemble methods always adopt the majority
result as the final answer and cannot recover the minority correct answer.
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Appendix 2: Complexity analysis of HMTS and DMTS

For HMTS, for example in our experiments, another K - (L + 1) (label classes {0, 1, ..., L})
simple regressors will be trained to predict others’ beliefs based on K baseline classifiers.
So the total training time is linear in the number of label classes.

After training the extra regressors, running the algorithm only requires taking L + 1
averages (K of the K - (L + 1) regressors each) and compare with average posterior. DMTS
will only need to train one additional classifier based on K classifiers and both the train-
ing and the running time are almost the same as the basic majority voting algorithm. The
above complexity analysis shows our methods are very practical.

Appendix 3: Pseudo labels accuracy (%) in high disagreement (HA)
cases for other datasets

In this section, we show accuracy improvement on the high disagreement (HA) cases’
pseudo labels for unsupervised data for CIFAR-100, Yahoo! Answers, and AG News data-
sets. As shown in Tables 7, 8, and 9 , we observe the consistent improvements after apply-
ing our proposed MTS methods.

Table 7 Pseudo labels accuracy (%) in high disagreement (HA) cases for 2-AUG, 5-AUG, HMTS, and
DMTS settings on CIFAR-100 dataset

Methods HA accuracy (pseudo labels) in CIFAR-100 Improvement
over 2-AUG
(%)

2-AUG 76.18% (2559/3359) -

5-AUG 78.38% (2633/3359) +2.20%

HMTS 81.30% (2731/3359) +5.12%

DMTS 80.53% (2705/3359) +4.35%

2-AUG means that two data augmentation samples are constructed for each unsupervised data. HMTS and
DMTS are based on the 5-AUG setting. The numbers of HA unsupervised cases and overall unsupervised
cases are 3,359 and 36,000 respectively

Table 8 Pseudo labels accuracy (%) in high disagreement (HA) cases for 2-AUG, 3-AUG, HMTS, and
DMTS settings on Yahoo! Answers dataset

Methods HA accuracy (pseudo labels) in Yahoo! Answers Improvement
over 2-AUG
(%)

2-AUG 64.1% (8452/13186) -

3-AUG 66.2% (8729/13186) +2.1%

HMTS 67.4% (8887/13186) +3.3%

DMTS 66.9% (8821/13186) +2.8%

2-AUG means that two data augmentation samples are constructed for each unsupervised data. HMTS and
DMTS are based on the 3-AUG setting. The numbers of HA unsupervised cases and overall unsupervised
cases are 13,186 and 50,000 respectively
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Table9 Pseudo labels accuracy (%) in high disagreement (HA) cases for 2-AUG, 3-AUG, HMTS, and
DMTS settings on AG News dataset

Methods HA accuracy (pseudo labels) in AG News Improvement
over 2-AUG
(%)

2-AUG 86.4% (3558/4118) -

3-AUG 88.1% (3628/4118) +1.7%

HMTS 90.7% (3735/4118) +4.3%

DMTS 90.2% (3714/4118) +3.8%

2-AUG means that two data augmentation samples are constructed for each unsupervised data. HMTS and
DMTS are based on the 3-AUG setting. The numbers of HA unsupervised cases and overall unsupervised
cases are 4,118 and 20,000 respectively
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