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Abstract—This paper presents a new methodology of incorpo-
rating power flow controllers, specifically flexible AC transmis-
sion systems (FACTS), into distributed DC optimal power flow
(DCOPF). The distributed DCOPF problems are then solved
by the alternating direction method of multipliers (ADMM).
Efficient modeling of the power flow control capabilities of promi-
nent FACTS devices, such as the unified power flow controller
(UPFC) and the static synchronous series compensator (SSSC),
enables the seamless integration of FACTS into the ADMM-based
distributed DCOPF, thus allowing FACTS operation to be co-
optimized with generator dispatch under a distributed control
paradigm for the power system. The proposed ADMM-based
distributed DCOPF problem with FACTS devices are studied
through simulations on a 6-bus system and a modified IEEE
118-bus system to verify its convergence to the optimal generator
dispatch.

Index Terms—Distributed DCOPF, ADMM, power flow con-
trol, FACTS devices.

NOMENCLATURE

Indices
g Index of generators
k Index of transmission lines
n Index of buses
u, v,m Index of subsystems
Parameters
ag, bg, cg Quadratic cost function parameters of generator g
bk Susceptance of line k
dn Demand at bus n
fmax
k Capacity of line k
M Total number of subsystems
nFACTS
k The number of modular FACTS devices per phase on

line k
pmax
g Maximum active power output of generator g

This research was supported by the National Science Foundation under
grant number 1756006.

pmin
g Minimum active power output of generator g

V inj
k Maximum FACTS voltage injection on line k

V mod Maximum voltage injection of a modular FACTS
device

xk Reactance of line k
Sets
K̂ Set of lines equipped with FACTS, K̂ ⊂ K
ι+(n) Set of lines that are connected “to” bus n
ι−(n) Set of lines that are connected “from” bus n
G(n) Set of generators connected to bus n
G Set of generators
K Set of transmission lines
N Set of buses
Variables
∆bk FACTS susceptance adjustment on line k
∆xk FACTS reactance adjustment on line k
θk,fr Bus voltage angle at the “from” bus of line k
θk,to Bus voltage angle at the “to” bus of line k
fk Active power flow on line k
pg Active power output of generator g

I. INTRODUCTION

THE complexities of power system operation is increasing
because of renewable energy penetration, power flow

control technologies, demand response (DR) resources, etc.
Moreover, the power grid is shifting towards a more dis-
tributed structure where independent entities are physically
interconnected through transmission lines [1]. These factors
cause difficulties for centralized control and operation of the
power system. A more scalable, robust, and efficient alternative
is the distributed control strategy [2], [3]. Therefore, the
realization of solving power system operation models in a
distributed manner is essential. One of the most important
power system operation models is the optimal power flow
(OPF), which minimizes the operation cost while considering
system constraints. Power system operation requires OPF978-1-6654-9921-7/22/$31.00 ©2022 IEEE
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problems to be solved frequently and efficiently. Previous
studies have discussed the advantages of distributed OPF over
the traditional centralized OPF. Distributed OPF has lower
requirements on communication infrastructure as it limits the
amount of information exchanged [4], which also helps im-
prove cyber security in the smart grid. In addition, distributed
OPF has shown performance superiority in solving complex
problems over large-scale networks [5].

To better utilize the transmission flexibility provided by
flexible AC transmission system (FACTS) devices under the
distributed control scheme, it is critical to incorporate them
into distributed OPF. The power flow control capabilities
of FACTS devices are important for improving the opera-
tion efficiency and available transfer capability (ATC) of the
power grid [6]. Series FACTS devices can provide power
flow control capabilities through adjusting the impedance of
transmission lines. Previous studies have proposed distributed
DCOPF formulations with the incorporation of FACTS devices
[3], [5]. However, only variable-impedance FACTS devices,
for which a prominent example is the thyristor-controlled
series compensator (TCSC), that directly provide continuous
impedance adjustments, are studied. Therefore, there is a
necessity to incorporate other types of FACTS devices into
distributed OPF. Different types of series FACTS devices
rely on different methods to alter the effective reactance of
transmission lines [7]. Prominent FACTS devices such as
the unified power flow controller (UPFC) and the static syn-
chronous series compensator (SSSC), which are both widely
studied and used power flow control technologies, use voltage
injections to effectively emulate reactance adjustments. UPFC
is versatile [8] and is regarded as the latest generation of
FACTS device [9]. Furthermore, SSSC devices are gaining
rapid adoption through a light-weight and easy-to-deploy
modular technology commercialized by Smart Wires Inc. [10].
In this paper, we focus on incorporating these types of FACTS
devices into distributed OPF. For the remainder of this paper,
we use the term “FACTS” is used to specifically refer to them.

Among the optimization methods for solving distributed
OPF, the alternating direction method of multipliers (ADMM)
has been utilized by many studies in recent years because of
its suitability for solving large-scale, distributed optimization
problems [4], [11], [12]. Several previous studies have focused
on using ADMM to solve a variety of distributed OPF models.
In [13], the authors developed a fully distributed and robust
algorithm for ACOPF based on ADMM. In [4], a consensus-
based ADMM approach for solving DCOPF with DR is
presented. DCOPF is an approximate model of ACOPF and
is widely used in market applications [14]. The effect of
communication delay in ADMM-based distributed DCOPF
is studied in [15]. In [16], a learning-aided asynchronous
ADMM is proposed to better utilize computational resources
when solving distributed OPF. The authors in [17] proposed
a privacy preserving ADMM-based DCOPF algorithm and
provided analysis for potential privacy leakage.

In this paper, we propose a distributed DCOPF formulation
using the efficient FACTS modeling developed in [7] for the

incorporation of FACTS devices. The proposed distributed
DCOPF with FACTS is solved using ADMM. To the best of
the authors’ knowledge, no existing literature focuses on solv-
ing distributed OPF with power flow control using ADMM.

The rest of this paper is organized as follows. Section II
introduces the modeling of FACTS in DCOPF. The formula-
tion and the algorithm of ADMM-based distributed DCOPF
with FACTS is presented in Section III. In Section IV, the
proposed model is studied through simulations on two different
test systems. Finally, Section V concludes the paper.

II. MODELING OF FACTS DEVICES

In [7], linear modeling of various types of FACTS devices
are presented for DC-based power system operation problems
based on injection shift factors (ISF). The modeling of FACTS
devices in this paper is adopted from [7], and is also equivalent
to the DC model of SSSC presented in [18].

For a transmission line equipped with FACTS devices, the
DC power flow equation is formulated as:

fk = (bk +∆bk)(θk,to − θk,fr). (1)

Alternatively, (1) can be formulated using reactance:

fk =
θk,fr − θk,to
xk +∆xk

. (2)

As mentioned previously, series FACTS devices provide
power flow control capabilities through altering the apparent
impedance of transmission lines. Therefore, ∆bk and ∆xk

are variables, resulting in nonlinearity in both (1) and (2).
The constraints on ∆bk and ∆xk are dependent on device
type. SSSC alters the line reactance by injecting a voltage
that is in quadrature with the line current [19]. The magnitude
of the voltage injection is controllable. Similarly, UPFC also
provides series compensation through a voltage injection.
The difference between UPFC and SSSC devices in altering
the line reactance is that the angle of the UPFC voltage
injection is also controllable. The series device of UPFC can
be regarded as an SSSC [20], and it provides the maximum
series compensation in magnitude when the voltage injection
is in quadrature with the line current [7]. Therefore, in this
paper, UPFC and SSSC share the same modeling for their
operating ranges regarding line reactance adjustments.

In [7], the variation bounds of ∆bk(θk,to − θk,fr) for a line
k equipped with FACTS devices is derived, which is presented
as follows:

− V inj
k |bk| ≤ ∆bk(θk,to − θk,fr) ≤ V inj

k |bk|. (3)

Eqns. (1) and (3) are nonlinear, which is highly undesirable
in terms of computational efficiency. Moreover, their noncon-
vexity hinders the application in ADMM, as ADMM becomes
a local optimization method when applied to solve nonconvex
problems [12]. To address these issues, equivalently to the
FACTS nodal injection model presented in [21], a variable ϕk

is introduced to substitute ∆bk(θk,to−θk,fr). Eqns. (1) and (3)
are then reformulated as:

fk = bk(θk,to − θk,fr) + ϕk, (4)
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−V inj
k |bk| ≤ ϕk ≤ V inj

k |bk|. (5)

To validate the substitution, the equivalence between the
DCOPF problems before and after the introduction of ϕk needs
to be proved. Therefore, we first present the formulation of the
DCOPF problem with FACTS using the nonlinear DC power
flow equation (1), which is shown as follows:

P1 :

min
∑
g∈G

(agp
2
g + bgpg + cg) (6)

s.t.

(3);

pmin
g ≤ pg ≤ pmax

g , ∀g ∈ G; (7)

− fmax
k ≤ bk(θk,to − θk,fr) ≤ fmax

k , ∀k ∈ K, k /∈ K̂; (8)

− fmax
k ≤ (bk +∆bk)(θk,to − θk,fr) ≤ fmax

k , ∀k ∈ K̂; (9)∑
k∈ι+(n)

bk(θk,to − θk,fr)−
∑

k∈ι−(n)

bk(θk,to − θk,fr)

+
∑

k∈ι+(n),k∈K̂

∆bk(θk,to − θk,fr)−

∑
k∈ι−(n),k/∈K̂

∆bk(θk,to − θk,fr)

= dnt −
∑

g∈G(n)

pg, ∀n ∈ N.

(10)

Eqn. (6) is the quadratic objective function which minimizes
the total fuel cost. (3) is the aforementioned bounds of the
impact of FACTS devices on power flow and is included in the
formulation. (7) enforces the generator output constraints. (8)
and (9) are transmission line thermal capacity limit constraints
for lines without and with FACTS respectively. (10) specifies
the power balance at each bus in the system.

Then, the DCOPF problem after the variable substitution
is needed for comparison. The formulation is presented as
follows:

P2 :

min
∑
g∈G

(agp
2
g + bgpg + cg) (11)

s.t.

(5), (8);

− fmax
k ≤ bk(θk,to − θk,fr) + ϕk ≤ fmax

k , ∀k ∈ K̂; (12)∑
k∈ι+(n)

bk(θk,to − θk,fr)−
∑

k∈ι−(n)

bk(θk,to − θk,fr)

+
∑

k∈ι+(n),k∈K̂

ϕk −
∑

k∈ι−(n),k∈K̂

ϕk

= dnt −
∑

g∈G(n)

pg, ∀n ∈ N.

(13)

Eqn. (5) is the aforementioned constraint on ϕk to enforce
the operating range of FACTS. (12) specifies the thermal

capacity limits on lines equipped with FACTS. (13) is the
nodal balance constraints. Note that for modular FACTS (M-
FACTS) devices, V inj

k for line k(k ∈ K̂) is related to the
number of modules deployed on the line [7]:

V inj
k = nFACTS

k V mod. (14)

Therefore, the proposed model can be utilized for M-FACTS
operation under the distributed control scheme.

Contradiction is used to prove the equivalence between
P1 and P2. Suppose ω∗ = {θ∗,p∗,∆b∗} are the optimal
solutions of P1. Then, for a line k(k ∈ K̂), we can calculate
ϕ∗
k as:

ϕ∗
k = ∆b∗k(θ

∗
k,to − θ∗k,fr). (15)

Using (15) and ω∗, we can form a feasible solution ω̂∗ =
{θ∗,p∗,ϕ∗}. Apparently, ω̂∗ is a feasible for P2. Let Γ(·)
denote the objective function in (6). We now make the
assumption that P1 and P2 are not equivalent, which means
that there exists a solution υ = {θ,p,ϕ} for P2, where:

Γ(p) < Γ(p∗). (16)

Again, for a line k(k ∈ K̂), ∆bk can be calculated as:

∆bk =
ϕk

θk,to − θk,fr
. (17)

Combining (17) with υ, a feasible solution for P1, υ̂ =
{θ,p,ϕ} can be formed. As ω∗ is the optimal solution for
P1, we have:

Γ(p∗) ≤ Γ(p). (18)

Eqn. (16) contradicts (18), implying that the assumption of
P1 and P2 are unequivalent is false. Because of the convexity
and linearity in constraints, we use P2 to further derive the
distributed DCOPF with FACTS, as well as applying ADMM
for solving the model.

III. ADMM-BASED DISTRIBUTED DCOPF WITH FACTS

Following the approach in [4], DCOPF is reformulated
to accommodate the application of ADMM. We use the
decentralized ADMM with a central collector that handles
the global variables [12]. Such approach is also utilized for
distributed DCOPF in [22]. The power system is first divided
into M subsystems. For each subsystem, there are local and
coupling variables. Local variables are strictly only related to
one subsystem. The other variables are all coupling variables.
Each subsystem solves a subproblem independently and report
the coupling variables to the central collector.

Coupling variables can be identified by examining the lines
connecting different subsystems, which are referred to as
boundary lines. Consider a boundary line k with node (k, fr)
in subsystem v and (k, to) in subsystem u. Apparently, θk,fr
and θk,to are both coupling variables. In addition, to locally
solve the problems in v and u, these two variables need to
be duplicated in the neighboring subsystem [4]. Thus, there
are θk,fr and θvk,to in v, as well as θk,to and θuk,fr in u. The
variables and their duplicates all are included in the full set of
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coupling variables. A coupling variable and its duplicates are
associated with the same global variable.

If FACTS devices are deployed on boundary line k, then ϕk

is needed in both v and u to solve local problems in ADMM-
based distributed DCOPF. Thus, ϕv

k and ϕu
k are coupling

variables and are related to the same global variable. We can
see that the previously presented FACTS modeling effectively
facilitates the integration of FACTS in the ADMM-based
distributed DCOPF. The general form consensus optimization
[12] can be applied to formulate the ADMM-based distributed
DCOPF. The formulation is presented as follows [4]:

P3 :

min
M∑

m=1

Cm(xm) (19)

s.t.

xm ∈ ξm, ∀m; (20)
x̃m − z̃m = 0, ∀m. (21)

Eqn. (19) is the objective function which is the summation
of the cost for all subsystems. In (20), ξm is the feasible
region for variables in subsystem m. Therefore, (20) specifies
the constraints for local and coupling variables in P2 for
each subsystem. (21) specifies the relation between coupling
variables and global variables. z̃m is a linear function of the
vector of global variables z [12].

The update rules of the ADMM are specified as [4], [12]:

xj+1
m = argmin

xm∈ξm

(Cm(xm) + λjT
m x̃m +

ρ

2
∥x̃j

m − z̃j
m∥22), ∀m;

(22)

zj+1
h =

∑
G(m,w)=h(x̃

j+1
m )w∑

G(m,w)=h 1
, ∀h; (23)

λj+1
m = λj

m + ρ(x̃j+1
m − z̃j+1

m ), ∀m; (24)

where λj
m is the vector of dual variables in iteration j.

G in (23) denotes the relationship that coupling variables
correspond to a global variable. In (22), the problems are
solved locally in each subsystem. The stopping criteria are [4]:

∥rj+1
m ∥22 = ∥λj+1

m − λj
m∥22 ≤ ϵ1, ∀m (25)

∥sj+1∥22 = ρ∥zj+1 − zj∥22 ≤ ϵ2. (26)

where ϵ1 and ϵ2 are the threshold values.

The algorithm is presented as follows [4]:

Algorithm 1 ADMM-based distributed OPF with FACTS
1: Initialize dual and global variables, set the threshold values

for the stopping criterion;
2: Solve the optimization problem in (22) for each subsys-

tem;
3: Subsystems report coupling variable values, which include

voltage phase angles and FACTS power injections, to the
central collector;

4: The central collector updates global variables and sends
them back to the subsystems;

5: If stopping criteria are satisfied at all subsystems, stop the
algorithm. Otherwise, update the dual variables in each
subsystem and go back to step 2.

IV. NUMERICAL STUDIES

The proposed model of ADMM-based distributed DCOPF
with FACTS is tested in simulations on a 6-bus system as well
as a modified IEEE 118-bus system. A two-way partition is
applied to the 6-bus system and the 118-bus system is divided
into 3 subsystems. Each iteration of ADMM is solved using
IBM CPLEX 12.9 on a Intel Core i5 CPU with 8 GB of RAM.

For SSSC, we assume that each location of FACTS in-
stallation has a maximum voltage injection equivalent to
two SmartValve 10-1800 modules installed, which is 11.32
kV [23]. Note that the M-FACTS devices are installed per
phase, and the maximum voltage injection in real cases needs
be multiplied by

√
3. The maximum voltage injection value is

also used as the maximum voltage injection for UPFC devices.

A. 6-bus system results

The system data, presented in Table I-III, is taken from [4]
with modifications.

TABLE I
GENERATOR DATA OF THE 6-BUS SYSTEM

Unit pmin (MW) pmax (MW) a b c

1 20 200 0.67 26.24 31.67
2 50 200 0.95 12.89 6.78

TABLE II
TRANSMISSION LINE DATA OF THE 6-BUS SYSTEM

Branch From To x(p.u.) fmax (MW)
1 1 2 0.6 150
2 1 3 0.6 50
3 2 4 0.1 150
4 3 5 0.1 150
5 4 5 0.1 150
6 1 6 0.1 150

TABLE III
LOAD DATA OF THE 6-BUS SYSTEM

Demand Location (bus) Load (MW)
1 3 150
2 4 150
3 6 10
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Note that we changed the thermal limit of line 2 from 150
MW to 50 MW to increase the congestion in the system. The
partition of the 6-bus system is shown in Table IV [4].

TABLE IV
PARTITION OF THE 6-BUS SYSTEM

Subsystem Buses
1 1,6
2 2-5

FACTS devices are deployed on line 2 as it is a boundary
line. The effectiveness of power flow control allows the
cheaper generator 1 to produce more compared with the results
obtained from DCOPF without FACTS. To verify that the
ADMM-based distributed DCOPF converges to the optimal
solution, the dispatch results are compared with the ones
obtained from the DCOPF problem with nonlinear FACTS
operating range. The full formulation is presented as follows:

P4 :

min
∑
g∈G

(agp
2
g + bgpg + cg) (27)

s.t.

(7);

− fmax
k ≤ θk,fr − θk,to

xk
≤ fmax

k , ∀k /∈ K̂, k ∈ K; (28)

− fmax
k ≤ θk,fr − θk,to

xk +∆xk
≤ fmax

k , ∀k ∈ K̂; (29)

− V inj
k ≤ ∆xk(θk,fr − θk,to)

xk
≤ V inj

k , ∀k ∈ K̂; (30)∑
k∈ι+(n),k/∈K̂

θk,fr − θk,to
xk

−
∑

k∈ι−(n),k/∈K̂

θk,fr − θk,to
xk

+
∑

k∈ι+(n),k∈K̂

θk,fr − θk,to
xk +∆xk

−
∑

k∈ι−(n),k∈K̂

θk,fr − θk,to
xk +∆xk

= dn −
∑

g∈G(n)

pg, ∀n ∈ N.

(31)

Eqn. (30) is the operating range regarding the effective
reactance adjustment [7]. Because of its nonconvexity and
nonlinearity in constraints, P4 is solved using the IPOPT
solver.

Suppose that p∗
4 is the optimal dispatch obtained by solving

P4, and pk
3 is the dispatch reported by ADMM at iteration k,

we can calculate the 2-norm estimated error (NEE) to show
the convergence of ADMM to the optimal global generator
dispatch as the iteration progresses. At iteration k, the NEE is
calculated as:

NEE(k) =

√∑
g((p

∗
4)g − (pk

3)g)
2

|G|
(32)

where |G| is the total number of generators in the system.
For the 6-bus system, ρ is set to be 600. Threshold values

ϵ1 and ϵ2 are both set to be 0.001. ADMM converged after 27
iterations. Fig. 1 shows how the value of NEE changes as the
algorithm progresses, which verifies the convergence of the
proposed ADMM-based DCOPF to the same result as P4.

0 5 10 15 20 25
iteration

0

10

20

30

40

50

60

70

80
NEE

Fig. 1. NEE value of each iteration of ADMM-based DCOPF for the 6-bus
system.

B. 118-bus system

The IEEE 118-bus test system data is available at [24], and
modifications are made according to [25].The partition of the
system is presented in Table V [4].

TABLE V
PARTITION OF THE 118-BUS SYSTEM

Subsystem Buses
1 1-32, 113-115, 117
2 33-73, 116
3 74-112, 118

FACTS devices are deployed on boundary lines 39 and 112.
The value of ρ is set to be 1750. Threshold values ϵ1 and
ϵ2 are both set as 0.001. The algorithm converged after 301
iterations. The progression of NEE is presented in Fig. 2. From
the NEE results we can see that, for the 118-bus system, the
NEE approaches 0 as the algorithm progresses, which verifies
the convergence of the proposed model to optimal generator
dispatch.

C. Discussion

The first interesting observation is that using per unit (p.u.)
values facilitates the convergence of ADMM. Most implemen-
tations of DC power flow are based on the per unit system.
However, in practice, if the base of power is multiplied at each
side of the constraints, we can directly solve for the real values
through DCOPF. For simulation studies in this paper, such an
approach leads to slow convergence of ADMM compared to
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Fig. 2. NEE value of each iteration of ADMM-based DCOPF for the 118-bus
system.

using p.u. values. If real values are used, ADMM takes more
than 300 iterations to converge for the 6-bus system. For the
118-bus system, it could take more than 1500 iterations if ρ
is not set very desirably. In addition, to achieve convergence
within a reasonable number of iterations, ADMM requires a
very large ρ value, e.g., ρ > 50000, for the 118-bus system.

Another observation is that the favorable ρ value of 20 in
proposed by the authors of [4] is actually too small in our
simulations and results in slow convergence.

V. CONCLUSIONS

In this paper, prominent series FACTS devices are integrated
into the ADMM-based distributed DCOPF model. The devel-
oped model preserves the desirable feature of linearity and
convexity of the original DCOPF problem, facilitating efficient
co-optimization of FACTS point and generator dispatch under
the distributed control scheme. The integration approach and
the proposed model are validated by simulation studies con-
ducted using different test systems. Simulation results shows
the convergence of the ADMM algorithm when solving the
proposed distributed DCOPF model.

Future research will include incorporating other types of
series FACTS devices into the ADMM-based distributed
DCOPF and modifying the ADMM algorithm to accommodate
the computational challenges introduced by the modeling of
certain types of FACTS devices.
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