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Abstract

Optical sensors and learning algorithms for autonomous
vehicles have dramatically advanced in the past few years.
Nonetheless, the reliability of today’s autonomous vehicles
is hindered by the limited line-of-sight sensing capability
and the brittleness of data-driven methods in handling ex-
treme situations. With recent developments of telecommuni-
cation technologies, cooperative perception with vehicle-to-
vehicle communications has become a promising paradigm
to enhance autonomous driving in dangerous or emer-
gency situations. We introduce COOPERNAUT, an end-to-
end learning model that uses cross-vehicle perception for
vision-based cooperative driving. Our model encodes Li-
DAR information into compact point-based representations
that can be transmitted as messages between vehicles via
realistic wireless channels. To evaluate our model, we de-
velop AUTOCASTSIM, a network-augmented driving sim-
ulation framework with example accident-prone scenarios.
Our experiments on AUTOCASTSIM suggest that our coop-
erative perception driving models lead to a 40% improve-
ment in average success rate over egocentric driving mod-
els in these challenging driving situations and a 5x smaller
bandwidth requirement than prior work V2VNet. COOPER-
NAUT and AUTOCASTSIM are available at https://
ut—-austin-rpl.github.io/Coopernaut/.

1. Introduction

The widespread deployment of autonomous driving and
advanced driver assistance systems is challenged by safety
concerns. While deep learning has improved autonomy
stacks with data-driven techniques [9, 10, 42], learning-
based driving policies to date are still brittle, especially in
the face of extreme situations and corner cases that one
might encounter only a few times every million miles of
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Figure 1. COOPERNAUT enables vehicles to communicate critical
information beyond occlusion and sensing range for vision-based
driving. The blue dashed arrows are information sharing flows.
Through cooperative perception, COOPERNAUT makes more in-
formed driving decisions when line-of-sight sensing is limited.

driving [8]. The lack of robustness of learning algorithms
is exacerbated by the limited sensing capabilities of op-
tical sensors on individual vehicles, such as stereo cam-
eras and LiDAR, that are confined to line-of-sight sensing
and unreliable in bad weather conditions. With the advent
of new telecommunication technologies, such as 5G net-
works and vehicle-to-vehicle (V2V) communications, co-
operative perception [6, 13, 21, 32] is becoming a promis-
ing paradigm that enables sensor information to be shared
between vehicles (and roadside devices [45]) in real-time.
The shared information can augment the field of view of in-
dividual vehicles and convey the intents and path plans of
nearby vehicles, offering the potential to improve driving
safety, particularly in accident-prone scenarios.

Ideally, learning autonomous driving policies with coop-
erative perception should take advantage of existing deep
learning methods customized for ego perception [11, 16,

] by considering the combined sensory data from all ve-
hicles as an augmented version of on-board sensing. In
practice, the efficacy of cooperative perception hinges on
what data to transmit within the limited network bandwidth
and how to use the aggregated information to build a coher-
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ent and accurate understanding of traffic situations. Recent
work on cooperative driving has demonstrated the benefit
of cross-vehicle perception for augmenting sensing capa-
bilities and driving decisions [0, 21]. Nonetheless, these
methods have abstracted away raw sensory data with low-
dimensional meta-data. Prior work introduced 3D sensor
fusion (AVR [32], Cooper [13]) and representation fusion
(V2VNet [41]) algorithms that aggregate perception results
from nearby vehicles via V2V channels. They focused
on 3D detection and motion forecasting on static datasets,
rather than interactive driving policies.

We introduce COOPERNAUT, an end-to-end coopera-
tive driving model for networked vehicles. COOPERNAUT
learns to fuse encoded LiDAR information shared by nearby
vehicles under realistic V2V channel capacity. To commu-
nicate meaningful scene information from nearby vehicles
while conforming to bandwidth limits, we design our driv-
ing policy architecture based on the Point Transformer [46],
a self-attention network for point cloud processing. This
architecture pre-processes the raw point cloud, on each
networked vehicle locally, into spatial-aware neural repre-
sentations. These representations are compact, which can
be efficiently transmitted over realistic wireless channels.
Meanwhile, they are physically grounded, thus can be spa-
tially transformed and aggregated with ego representations.
The entire architecture is end-to-end differentiable, permit-
ting control supervision (imitating an oracle planner with
access to privileged information) to flow back to the per-
ception stack, thus ensuring the learned representations and
messages contain task-relevant information.

To examine the effectiveness of COOPERNAUT, we
develop a CARLA-based simulation framework, AUTO-
CASTSIM, where we designed three accident-prone sce-
narios. All the scenarios are designed to be challenging
for ego perception to fully comprehend the traffic situa-
tion. AUTOCASTSIM has a built-in networking simulation
for customizable multi-vehicle communications and an ex-
pert driving model with privileged information. We evaluate
COOPERNAUT with voxel-based baselines [41] and differ-
ent sensor fusion schemes.

In summary, our main contributions are as follows:

* We introduce COOPERNAUT, an end-to-end driving
model with cooperative perception via V2V channels.
Our model learns compact representations for commu-
nication that can be easily harnessed by the ego vehicle
to improve its driving decisions.

* We develop a network-augmented autonomous driv-
ing simulation framework AUTOCASTSIM to evaluate
COOPERNAUT and baselines in accident-prone scenar-
ios and to promote future research on vision-based co-
operative perception.

* Our results show that COOPERNAUT substantially re-
duces safety hazards for line-of-sight sensing. Its de-

sign improves both driving performance and commu-
nication efficiency over baselines.

2. Related Work

Deep Learning for Driving Policy. Learning a driving
controller involves training closed-loop policies using deep
networks, usually via imitation learning and/or reinforce-
ment learning. Imitation learning for autonomous driv-
ing was pioneered by Pomerleau [27], and has since then
been extended to urban and more complex scenarios [7,

, 14,15, 28, 36]. Very recently, reinforcement learn-
ing has also made progress in autonomous driving [12, 39],
showing potential to train better policies in complex situa-
tions [12, 39]. However, reinforcement learning is known
to be more data-hungry and requires engineering a high-
quality reward function. We follow the imitation learning
paradigm but use an expert oracle with complete global in-
formation [1 1] for training efficiency.

3D Perception for Autonomous Driving. 3D percep-
tion has become more popular in autonomous driving due
to the decreasing cost of commoditized LiDAR sensors.
Zhou and Tuzel [47] pioneered using 3D object detection
in autonomous driving, and since then, it has been fur-
ther developed as better models, and more advanced tech-
niques have been discovered. Very recently, Prakash et al.
[28] also explored end-to-end driving using point cloud
data. Two families of 3D perception backbones have been
widely adopted: voxel-based methods discretize points to
voxels [22, 37, 47]; and point-based methods directly op-
erate on coordinates [30, 31, 46]. COOPERNAUT uses a
transformer-based architecture [40] with point-based repre-
sentations [30, 31, 46], which preserves high spatial resolu-
tions with discretization and requires lower bandwidths to
transmit without compression needed by prior work [41].

Networked Vehicles and Cooperative Perception. Net-
work connectivity offers a great potential for improving
the safety and reliability of self-driving cars. Vehicles can
now share surrounding information via Vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2X) channels using
wireless technologies, such as Dedicated Short Range Com-
munication (DSRC) [20] and cellular-assisted V2X (C-
V2X) [18, 34]. These V2V/V2X communication devices
are increasingly deployed in current and upcoming vehi-
cle models [3, 4]). The academic community has built
city-scale wireless research platforms (COSMOS [1]) and
large connected vehicle testbeds (e.g., MCity [5], DRIVE
C2X [38]), to explore the feasibility of cooperative vehi-
cles and applications. Prior work [13, 32] proposed co-
operative perception systems that broaden the vehicle’s vi-
sual horizon by sharing raw visual information with other
nearby vehicles. Such systems can be scaled up to dense
traffic scenarios leveraging edge servers [45] or in an ad-
hoc fashion [33]. Recent work [24, 41, 43] proposed multi-



agent perception models to process sensor information and
share compact representations within a local traffic network.
In contrast, we focus on cooperative driving of networked
vehicles with onboard visual data and realistic networking
conditions, advancing towards real-world V2V settings.

3. COOPERNAUT
3.1. Problem Statement

Our goal is to learn a closed-loop policy that controls an
autonomous ego vehicle, which receives LiDAR observa-
tions O{**®) at time ¢. Assume that there exist a variable
number of N; neighboring vehicles in the range of V2V
communications at time ¢, where Ot(z) is the raw 3D point
cloud from the onboard LiDAR of the i-th vehicle. The
cooperative driving policy for the ego vehicle is to find a
policy m(ay |Ot(eg°), Ogl), e O,ENt)) that makes control de-
cisions a; based on the joint observations of the ego vehicle
and the IV, neighboring vehicles. Here 7 is parameterized
by a deep neural network and trained end-to-end. In prin-
ciple, we can transmit all cross-vehicle observations to the
ego vehicle and process them as a whole. In practice, we
have to take into account the networking bandwidth limit,
which only allows for the message size orders of magni-
tude smaller. We thus first process the raw point clouds into
compact representations, which can be transmitted through
the V2V channels in real-time.

3.2. Background: Point Transformer

Our model’s backbone is the Point Transformer [460], a
newly-developed neural network structure that learns com-
pact point-based representations from 3D point clouds. It
reasons about non-local interactions among points and pro-
duces permutation-invariant representations, making itself
effective in aggregating multi-vehicle point clouds. Here
we provide a brief review of Point Transformers.

We adopt the same design as Zhao et al. [46], which
uses vector self-attention to construct the Point Transformer
Layer. We also apply subtraction between features and ap-
pend a position encoding function § to both the attention
vector v and the transformed features a:

vi= Y p(r(d(x:) — P(x;) +6)) © (alz;) +3) (1)

r;E€X(1)

Here the x; and x; are input features of the point ¢ and j
respectively, y; is the output attention feature for point g,
and X (7) represents the set of points in the neighborhood
of x;; ¢, and « are point-wise feature transformations, an
MLP; ~ is an MLP mapping function with two layers and
one ReLU non-linearity; ¢ is a position-encoding function
and p is a normalization function softmax. Given the 3D

coordinates p;, p; € R3 for point 4 and j, the position-
encoding function is formulated as follows:

0 =0(p; — py) 2

where 0 is an MLP with two linear layers and one ReL.U.

A Point Transformer block is shown in Figure 2, which
integrates the self-attention layer, linear projections, and a
residual connection. The input is a set of 3D points p with
a feature x of each point. This block enables local infor-
mation exchange among points, and produces new feature
vectors for each point. The down-sampling block in Fig-
ure 2 is to reduce the cardinality of the point sets. We per-
form farthest point sampling [17] to the input set to obtain
a well-spread subset, and then use kNN graph and (local)
max pooling in the neighborhood to further condense the
information to smaller sets of points. The output is a subset
of the original input points with new features.

3.3. Our Model

We use cross-vehicle perception to augment the sensing
capabilities of the ego vehicle for it to make more informed
decisions under challenging situations. The key challenge
is to transmit sensory information efficiently through realis-
tic V2V channels, understand the traffic situation from the
aggregated information, and determine the reactive driving
action in real-time.

Our COOPERNAUT model, illustrated in Figure 2, is
composed of a Point Encoder for each neighboring V2V
vehicle to encode its sensory data into compact messages, a
Representation Aggregator to integrate the messages from
neighboring cars with the ego perception, and a Control
Module which translates the integrated representations to
driving commands.

Point Encoder. To reduce communication burdens, ev-
ery V2V vehicle processes its own LiDAR data locally
and encodes the raw 3D point clouds into keypoints, each
associated with a compact representation learned by the
Point Transformer blocks. We construct the encoder with
three Point Transformer blocks accompanied by two down-
sampling blocks, both with a downsampling rate of (1,4, 4).
The final cardinality of intermediate representations is
P/16, where P is the number of points in the raw point
cloud. In our experiments, we preprocess 65,536 raw Li-
DAR points to 2,048 points via voxel pooling, i.e., repre-
senting the points in a voxel grid using their voxel centroid.

The message M produced by the j-th vehicle comprises
a set of position-based representations M; and is mathemat-
ically described as M; = {(pjx, Ry, )}, where pj;, € R
for k = 1,..., K is the position of a keypoint in 3D space
and Ry, is its corresponding feature vector produced by
the Point Encoder. We limit the size of M to be at most K
tuples. These keypoints carrying features are in each vehi-
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Figure 2. COOPERNAUT is an end-to-end vision-based driving model for networked vehicles. It contains a Point Encoder to extract critical
information locally for sharing, a Representation Aggregator for merging multi-vehicle messages, and a Control Module to reason about
the joint messages. Each message produced by the encoder has 128 keypoint coordinates and their associated features. The message is
then spatially transformed into the ego frame. The ego vehicle merges incoming messages and compute aggregated representations through
voxel max-pooling. Finally, the aggregator synthesizes joint representations from the ego vehicle and all its neighbors before passing them
to the Control Module to produce control decisions. The numbers in parentheses denote data dimensions.

cle’s local frame. They preserve the spatial information as
their coordinates are sampled from raw point clouds.

Representation Aggregator. Messages transmitted from
other vehicles need to be fused and interpreted by the ego
vehicle. The Representation Aggregator (RA) for coopera-
tive perception is implemented as a voxel max-pooling op-
eration and a point transformer block. RA first spatially
transforms the keypoints in other vehicles’ coordinates to
the ego vehicle’s frame using their relative poses. This oper-
ation assumes accurate vehicle localization (e.g., using HD
maps). It then aggregates the incoming messages that are
spatially close via max-pooling all the points located inside
the same voxel grid cell. Finally, it fuses the multi-view per-
ception information with another Point Transformer block.
The two operations above preserve the permutation invari-
ance with respect to the ordering of other vehicles and can
handle a variable number of sharing vehicles. For band-
width control, COOPERNAUT receives messages from three
randomly chosen V2V vehicles in the vicinity.

Control Module. The control module is a fully-connected
neural network designed to make control decisions based
on the received messages. These control decisions include
the throttle, brake, and steering, denoted as scalar T, B, S
respectively. These values output from the model are first
clipped to their valid ranges (e.g., [0,1] for throttle). To

comply with the speed limit rules, we apply a PID speed
controller to prevent speeding.

3.4. Policy Learning

We train our model to imitate the expert policy with priv-
ileged information using DAgger [35]. To warm-start policy
learning, we first train the model using behavior cloning.

Behavior Cloning. Behavior Cloning is designed to min-
imize the distribution gap between the training policy and
the expert policy. The goal is to find an optimal policy &
such that the loss w.r.t. the expert’s policy Texpert, under its
induced distribution of states S is minimized, i.e.,

T = arg miHﬂGHESNS [econtrol(ﬂ—(s)7 ’/TCXPCIT(S))] . (3)

The objective function £ oo 1S a linear combination of ;-
loss of throttle, brake, and steering between the policy’s ac-
tions and the expert’s actions:

Leontrol = nlglhrottle + 772£brake + 773‘€steer “4)

where 11, 72, 13 are the coefficients of the loss for each ac-
tion. All three coefficients are set to 1 in our experiments.

DAgger. Limitations of behavior cloning for autonomous
driving have been discussed in Codevilla et al. [15]. DAg-
ger [35] address the covariance shift issues via online train-
ing. The core idea is to let the student policy interact with



the environment under the supervision of the expert and
record the expert’s actions on the same states visited by the
student. The training dataset is iteratively aggregated, using
a mixture of the student’s and expert’s actions. The sam-
pling policy 7; for the ¢-th iteration follows:

71—6)( ert
T, = pert
Tstudent, i 5
where 3; = B¢ x (;_1 are exponentially decreasing from

the initial 5y, representing the probability that the expert’s
action is executed at the ¢-th iteration.

w.p. B;
wp. 1 —5; ©)

3.5. Implementation Details

When more than three neighboring vehicles send mes-
sages, we randomly select messages from three of the vehi-
cles. All the neighbors encode their processed point clouds
locally by the 3-block Point Encoder and send the messages
of size 128 x (128, 3) and warp the coordinates to the ego
frame. We aggregate the merged representations by another
block of Point Transformer. After global max pooling, the
features are concatenated with the ego speed feature before
passing to the fully connected layer.

Our model has a 90ms latency on an NVIDIA GTX3090
GPU, where the point encoder takes 80ms. Our model
training consists of two stages: behavior cloning and DAg-
ger. We first train every scenario-specific model by behav-
ior cloning, then the final policy of behavior cloning serves
as an initial student policy for DAgger. We collect 4 new
trajectories and append them to the Dagger dataset every
5 epochs using a sampling policy (see §3.4) with 8y = 0.8
during the DAgger stage. For all data used for training, 25%
of them are collected under accident-prone scenarios (with
an occluded collider vehicle inserted) and 75% of them are
normal driving trajectories. For more details, please refer to
our supplementary materials and project website.

4. AUTOCASTSIM

We present AUTOCASTSIM, a simulation framework
which offers network-augmented autonomous driving sim-
ulation on top of CARLA [16]. This simulation framework
allows custom designs of various traffic scenarios for train-
ing and evaluating cooperative driving models. The simu-
lated vehicles can be configured with realistic wireless com-
munications. It also provides a path planning-based oracle
expert with access to privileged environment information.

4.1. Scenarios

We designed three challenging traffic scenarios, shown
in Figure 3, in AUTOCASTSIM as our evaluation bench-
mark. These scenarios are selected from the pre-crash ty-
pology of the US National Highway Traffic Safety Admin-
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Figure 3. Benchmarking scenarios in AUTOCASTSIM. The grey
car is the ego vehicle controlled by our model. The orange trucks
are large vehicles that partially block views of the environment.
The red car is not networked and likely to collide with the ego ve-
hicle. All other vehicles are background traffic either with or with-
out sharing capability. The green-blue dots mark the planned tem-
poral trajectories for any moving vehicle, with green dots being
waypoints closer in the future than the blue dots. If two planned
trajectories intersect at a similar color (time), it indicates that a col-
lision may happen. For every scenario, an RGB bird’s-eye view
(BEV), an ego-centric LIDAR BEV image, and a multi-vehicle
fused LiDAR BEV image are presented (left to right). We use less
background traffic here for illustration, and will study the effect of
traffic density in §5.3.

istration (NHTSA) [26], where limited line-of-sight sensing
affects driving decisions:

* Overtaking. A truck blocks the way of a sedan in a two-
way single lane road with a dashed yellow lane divider. The
truck also impedes the sedan’s view of the opposite lane.
The ego car has to overtake with a lane change maneuver.

* Left Turn. The ego car tries to turn left on a left-turn yield
light but encounters another truck in the opposite left-turn
lane, blocking its view of the opposite lanes and potential
straight-driving vehicles.

* Red Light Violation. The ego car is crossing the intersec-
tion when another vehicle is rushing the red light. LiDAR
fails to sense the other vehicle because of the lined-up vehi-
cles waiting for the left turn.

4.2. V2V Communication

To simulate realistic wireless communication, we use
real V2V wireless radios to profile wireless bandwidth ca-



‘ DSRC C-V2X | 802.11n 802.11ac
Throughput (Mbps) 2.0 72 ~ 200 ~ 900
Packet Loss (%) <5 <5 > 90 > 90
Mobility support Yes Yes No No

Table 1. Measured wireless throughput and packet loss rate using
off-the-shelf wireless radios.

pacity and packet loss rate due to channel diversity be-
tween mobile agents. Specifically, we use three iSmart-
ways DSRC radios and three C-V2X radios [2], mounted
on top of moving vehicles, to measure the maximum capac-
ity of continuous wireless transmission in practice. Table 1
shows the tested throughput and packet loss. It also shows
the throughput of WiFi (802.11n, ac) for context. Note that
the 802.11 series is not designed for mobile scenarios. Ta-
ble 1 shows that V2V bandwidth is two orders of magnitude
smaller than the indoor wireless capacity. The extremely
limited bandwidth, in practice, poses significant challenges
for designing the representations for V2V communication.
We use the Winner II wireless channel model [25] in our
simulator and use the measured C-V2X radio capacity and
packet loss rate in the channel model. We refer to prior
work [33] for the design and implementations of the coor-
dination, scheduling, and the network transport layer.

4.3. Oracle Expert

The expert has access to the privileged information of
the traffic scenarios. The information includes the point
cloud from the LiDARs of all neighboring vehicles and
the positions and speeds of these neighboring vehicles and
other traffic participants. The expert transforms all of the
point clouds from neighboring cars to its ego perspective
(which is impractical due to the wireless bandwidth limit
mentioned above). The transformed point cloud is fused
for downstream obstacle detection and planning. The ex-
pert policy leverages all information above to analyze and
avoid possible collisions. The path planning algorithm uses
an A* trajectory planner [ 19] with pose and distance heuris-
tics. The expert moves at a target speed of 20km/h.

5. Experiments

We first discuss the evaluation method and the experi-
ment setup and then give a brief overview of our baselines.
Next we present the main quantitative evaluation results of
our methods against baselines. Finally, we provide further
analysis and visualization to understand the quality of our
learned model.

5.1. Experimental Settings

Scenario Configuration. We generate traces from the three
scenarios we implemented in AUTOCASTSIM (§4.1) for
training and evaluation. These scenarios can be program-
matically re-configured with key parameters, notably the

number of vehicles, vehicle spawning locations, and vehi-
cle cruising speeds. Random combinations of these param-
eters are sampled to procedurally generate traces with traffic
situations of varying complexity — in some cases the ego
vehicle has to take emergency actions to avoid potential col-
lisions, while in other cases, cruising along the default route
can reach the destination.

Dataset. Specifically, for each scenario, we use the expert
agent (§4.3) to generate an initial training set of 12 traces
with randomized scenario configurations, followed by an-
other randomly configured 84 traces for DAgger. In the
evaluation, we systematically test each model on a spec-
trum of 27 randomly selected accident-prone environment
configurations over three repeated runs, each using different
random seeds for background traffic. For fair comparison,
we use a fixed set of 27 test configurations to evaluate all
models.

Metrics. We report three metrics, Success Rate, Collision
Rate, and Success weighted by Completion Time:

Success Rate (SR). A successful completion of the scenario
is defined as the ego agent reaching a designated target lo-
cation in a permissible time without collision or prolonged
stagnation. The success rate is defined as the percentage of
successful completions among all evaluated traces.

Collision Rate (CR). Collision is the most common failure
mode. Collision rate is defined as the percentage of evalu-
ation traces where the ego vehicle collides with any entity,
such as vehicles, buildings, etc.

Success weighted by Completion Time (SCT). SR reflects
overall task success or failure. It does not differentiate the
amount of time a driving agent needs to complete the traces.
We introduce a third metric to weigh the success rate by the
completion time ratio between the expert and the agent:

SCT = TI{agent success } Texpert/ Tagent (6)

where [ is an indicator function, and T¢ypert and Tgen are the
expert’s and the agent’s completion time, respectively. As
the expert agent should require no longer completion time
than the agent, the ratio resides in the range of [0, 1].

5.2. Baselines

We compare COOPERNAUT with non-V2V and V2V
driving baselines. For fair comparison, we adopt the same
neighbor selection process (§3.5) among V2V approaches:

* No V2V Sharing. The non-sharing baseline makes de-
cisions solely based on the onboard LiDAR data and ego
speed. The model shares the same data processing scheme
for an individual vehicle and point encoder architecture as
our final model.

* Early Fusion. The Early Fusion model assumes an unre-
alistic communication bandwidth, with which it can trans-



Model Bandwidth Overtaking Left Turn Red Light Violation

(Mbps) SRt SCTt CR|} SRt SCT?T CR] SRt SCTt CR|
No V2V Sharing - 453+0.6 43.6+0.7 358+3.6 40.3+£59 37.8+4.6 55.6+9.6 47.3+18.7 46.1+184 51.4+174
Early Fusion 60.0 81.9+7.2 812452 11.945.1 72.848.6 68.8+89 26.3+8.1 78.6+11.8 75.849.1 17.7+15.2
Voxel GNN 5.60 70.0+4.8 67.8£42 16.1+3.6 53.5+6.9 51.0£6.9 33.3+73 642+253 62.0+24.8 35.0+25.9
COOPERNAUT (Ours) 5.10 90.5+1.2 88.4+1.1 4.5+3.1 80.7+52 76.2+3.9 18.1+6.2 80.7+7.6 77.8+7.0 17.7+7.8

Table 2. Quantitative results of different models over three repeated runs. SR: Success Rate, in percentage; SCT: Success weighted by
Completion Time, in percentage; CR: Collision Rate, in percentage; In the Bandwidth column, we report the communication throughput
required without data compression. The bandwidth is calculated by assuming 10 Hz LiDAR scanning frequency.

mit and fuse the entire raw point cloud data from all neigh-
boring vehicles. While this method is intractable in practice,
it serves as a baseline to examine our point-based architec-
ture’s effectiveness in representation learning. To fit this
model in GPU memory, we limit the size of the fused input
points to 4,096. Like the previous baseline, Early Fusion
also uses a 3-block Point Transformer encoder.

* Voxel GNN. We adapt V2VNet [41], which is designed
for 3D detection and motion forecasting, to learn end-to-
end driving. Every vehicle processes its local point cloud
onboard and shares a voxel representation with the ego ve-
hicle for control. It uses a graph neural network (GNN) in
the ego frame as the aggregator. The control actions are
predicted from the GNN-fused representations.

For fair comparison, all baselines and proposed ap-
proaches are independently trained over three repeated runs
with the same training parameters (§3.5). We report the av-
erage performance over the three runs on the same scenario
configurations (§5.1).

5.3. Quantitative Results

This section presents the empirical evaluations of all the
models in the three benchmarking scenarios.

Scenario Completion. Table 2 shows the performance
comparisons in each of the three traffic scenarios. In all
three scenarios, the No V2V Sharing model has performed
poorly, with less than 50% success rate for each scenario
and high collision rates. All three cooperative driving mod-
els, including Early Fusion, Voxel GNN, and COOPER-
NAUT, have achieved substantially higher SR and SCT
scores and lower collision rates than the No V2V Sharing
baseline. It indicates that the V2V communication provides
critical information about the traffic situation over the ego
vehicle’s line-of-sight sensing to make informed driving de-
cisions. The Early Fusion method improves over the non-
V2V baseline over 30% in average success rate. However,
the Early Fusion baseline requires transmitting raw point
clouds across vehicles, leading to an unrealistic bandwidth
requirement of 60Mbps (before data compression).

In contrast, pre-processing raw sensory data into repre-
sentations has dramatically reduced the bandwidth require-
ments while improving driving performances. Both Voxel
GNN and COOPERNAUT perform sensory fusion on the rep-

resentation level. In comparison to the other cooperative
driving models, COOPERNAUT outperforms both Early Fu-
sion and Voxel GNN baselines for all three scenarios. We
hypothesize that the point-based representation learning of
COOPERNAUT makes it robust to localization errors com-
pared with fusing raw points in Early Fusion. Furthermore,
the explicit representation of point 3D locations and the
point sampling module of COOPERNAUT retain a high spa-
tial resolution of its intermediate representations in contrast
to the voxel-based feature maps used by Voxel GNN.

Bandwidth Requirement. As shown in Table 2, sharing
raw point cloud at the LiDAR scanning rate of 10fps would
require a wireless bandwidth of 60Mbps, far beyond the
achievable bandwidths in the current (DSRC) and future (C-
V2X or LTE-direct) V2V communication technology (ex-
pected less than 10Mbps, see Table 1). V2VNet [4 1] claims
a bandwidth requirement of 25 Mbps with point cloud com-
pression, which is also beyond what current V2V radios can
support. In our design, both Voxel GNN and COOPERNAUT
requires less than 6Mbps bandwidth, a 4 x reduction of the
communication data sizes of V2VNet without compression.

When developing the V2V models, we carefully ex-
plored the design space of the sharable representation size
and its bandwidth requirement for both Voxel GNN and
COOPERNAUT. For example, if COOPERNAUT were to
share a 3232 representation, it only needs 0.9 Mbps. How-
ever, the coarse information is insufficient for the model to
attain a good performance. We find that a 128x 128 point
representation meets the bandwidth requirements (Table 1)
without substantial performance degradation.

Sensitivity to Traffic Density. We further test COOPER-
NAUT under varied traffic densities in the most challenging
Left Turn scenario. Figure 4 shows that our method general-
izes to variable traffic densities, consistently outperforming
the No V2V Sharing baseline. Qualitatively, we observe
that No V2V Sharing drives slower in denser traffic, react-
ing better to emergency situations. In contrast, V2V meth-
ods do not improve much in denser traffic, as they tend to be
impacted by the increased stochasticity of incoming mes-
sages from changing neighbors. Nonetheless, COOPER-
NAUT outperforms the baselines in all traffic densities with
over 30% higher success rates than No V2V Sharing.
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Figure 4. Sensitivity analysis on the varying levels of traffic den-
sities in the Left Turn scenario.

Qualitative Visualizations. Figure 5 shows an example
evaluation trajectory from Left Turn. The left-turning ego
vehicle (grey) can proactively avoid collision by yielding to
the opposite-going cars with COOPERNAUT. A common
failure pattern of the non-sharing model is that it drives
ahead to its target location regardless of any traffic viola-
tors or potential colliders due to the limited line-of-sight of
its ego perception. The transmitted messages through V2V
channels help our model resolve the ambiguity with cross-
vehicle perception, leading to safer driving decisions in this
accident-prone situation.

5.4. Limitations and Future Work

While our cooperative perception model conforms to re-
alistic wireless bandwidth, we do not take into account prac-
tical networking issues, including transmission latency, net-
working protocols, and repetitive or lost packets. Nonethe-
less, COOPERNAUT is robust to packet loss to a certain
extent (5% as configured in AUTOCASTSIM). Its random
neighbor selection also adds another layer to endure packet
loss from individual transmitters.

Furthermore, highly accurate vehicle localization is as-
sumed, which is used by COOPERNAUT to transform the
point-based representations from neighboring vehicles to
the ego vehicle, even though AUTOCASTSIM simulates
slight errors in the pose and height estimation of a vehicle.
In reality, without a high definition map (HDMap), localiza-
tion error can yield up to meter-level displacement. Using
HDMap can significantly improve location and pose esti-
mation, which is commonly adopted in both industry and
academia [23, 44].

For fair comparison, we use the same down-sampling
scheme for all point-based baselines and our approach,
which proves to be effective in our scenarios with moving
vehicles and large obstacles. For smaller objects like pedes-
trians, adaptive sampling schemes based on semantic infor-
mation is a promising direction for future work. We would
also like to extend the model architecture of COOPERNAUT
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Figure 5. Comparison of trajectories in the Left Turn scenario.
The grey car in the pictures is the controllable ego vehicle. The
red car is going straight in the opposite direction, occluded behind
the orange truck. Our model avoids the collision as it is able to see
the red light violating vehicle from cooperative perception (high-
lighted in the yellow box).

to better incorporate temporal information for improving
driving performance.

6. Conclusion and Future Work

This work investigates vision-based driving using coop-
erative perception for networked vehicles in a newly de-
signed simulation benchmark AUTOCASTSIM. We intro-
duce COOPERNAUT, an end-to-end driving policy that en-
codes, aggregates, and analyzes 3D LiDAR data from net-
worked vehicles. The point encoder and representation ag-
gregator of COOPERNAUT retain detailed spatial informa-
tion and are robust to a varying number of communicat-
ing vehicles. Our empirical results show that our method
improves the robustness of autonomous driving policies in
risk-sensitive traffic scenarios.

This work has ample room for future extension. Our
method relies on a hand-engineered oracle for imitation
learning. It leaves open questions to investigate adaptive
strategies of when to communicate, what to encode in mes-
sages, and how to drive cooperatively, ideally without the
need of an algorithmic oracle.
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