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This article explores city intersections as intelligence nodes

using high-bandwidth, low-latency services for providing
privacy-preserving smart city applications. COSMQOS testbed
experiments using edge-computing-based artificial-
intelligence techniques are reported, for monitoring of
pedestrians, cloud-connected vehicles, and traffic management.

mart cities should be built with the primary goal —human-centered design of future metropolises. Privacy,

of providing social good as defined by local security, and local data governance on one hand, and opti-

communities."> Contemporary technologies mization of bandwidth, computational resources, and

provide a plethora of components to support latencyonthe other hand, implicate traffic intersections as
excellent locations for smart city intelligence nodes.
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and communications infrastructure to
enable interconnections and computa-
tional collaboration among neighbor-
ing intelligence nodes. The nodes will
be equipped with artificial intelligence
(Al)-enabled edge-computing® and com-
munications equipment to facilitate
automated low-latency data harvesting,
inference, and decision making. This
will enable the development of tech-
nologies like cloud connected vehicles,
vehicle to infrastructure communica-
tions, and advanced sensor-based tools
for alerting pedestrians and assisting
handicapped individuals. Future appli-
cations will require intense Al-enabled
computation, very high communication
bandwidths, and ultralow latencies.

We report the results of research on
low-latency real-time applications for
smart city intersections in metropo-
lises and architectures, components,
and methods for building intelligent
intersection nodes. The research uti-
lizes COSMOS, an experimental test-
bed located in New York City.*

SMART CITY

INTERSECTIONS

The focus of this article is low-latency
high-bandwidth applications for smart
city intersections. We explore techno-
logical components needed to support
privacy-preserving real-time appli-
cations, such as collaborative control
of cloud-connected vehicles and active
pedestrian alert and assistance, where
the primary sensors are multiple high-
resolution surveillance cameras. One
of the key tasks for video-based appli-
cations is to detect and track objects
in an intersection with high accuracy.
We explore methods to achieve real-time
processing in smart city intersection
applicationsdefined by end-to-endlaten-
ciesunder 33.3 ms. This includes 1) sen-
sor data acquisition, 2) communication

among end-users, sensors, and edge
cloud, 3) Al-based inference computa-
tion, and 4) providing feedback to partici-
pantsin the intersection. The envisioned
“radar-screen” application is intended
to broadcast the positions and veloci-
ties of objects to intersection partici-
pantsinreal time.

Privacy

Smart-city implementations prior to
year 2022 indicate that privacy and data
security are the key concerns impeding
successfullarge-scale deployments. Pri-
vacy concerns are amplified when video

supported by edge computing and tem-
porary data storage paradigms. This
article describes some technological
components which would need to be
managed in collaboration with local
communities, such as blurring of faces
and license plates.

Real-time interactions

Animportant goal of smart city deploy-
ments is to improve the safety of pedes-
trians and other participants. Even in
the most congested cities it is desirable
to replace human drivers with safer
self-driven vehicles. This motivates

IF THE VEHICLE’S BRAKES COULD BE
ACTIVATED WITHIN THAT TIME, IT IS
CONCEIVABLE THAT LIFE-THREATENING
TRAFFIC ACCIDENTS WOULD BE AVOIDED.

recordings are a part of data acquisition
and processing. The COSMOS research
program has a strong community out-
reach component, exemplified by mul-
tiyear activities on running National
Science Foundation (NSF) Research
Experience and Mentoring (REM) and
Research Experiences for Teachers (RET)
programs where teachers from Har-
lem and other New York City schools
get training and participate in develop-
ing science, technology, engineering,
and mathematics educational material
for students in underprivileged schools
(https://www.cosmos-lab.org/out-
reach/’). Our guiding approach to pri-
vacy is to integrate local communi-
ties into the data governance process.
We plan to develop technologies that
enable the communities to define and
control data acquisition and processing

the concept of cloud-connected vehicles
that interact with city infrastructure
to improve their ability to navigate
and requires exceptionally low closed-
loop latencies associated with security-
critical real-time actions. This article
explores latencies which are inherent
in camera-based sensor data acquisi-
tion and processing.

Real-time for safety-critical appli-
cations. Extracting intelligence that
indicates a potential collision and pro-
viding feedback to vehicles or pedes-
trians presents computational and
latency challenges. City street dynam-
icsare determined by vehicles traveling
atvelocities between 0 and 100 km/h. If
we consider forexampleavehicletravel-
ing at 10 km/h, an arguably reasonable
speed within congested intersections,
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SMART AND CIRCULAR CITIES

the vehicle is moving at approximately
3 m/s. If we divide 3 m/s by the stan-
dard frame rate of a conventional video
equal to 30 fps, the result is a vehicle
movement of 10 cm, the distance trav-
eled in 33.3 ms. If the vehicle's brakes
could be activated within that time,
it is conceivable that life-threatening
traffic accidents would be avoided. This
approximate calculation motivated us
to investigate what is needed to sup-
port latencies below 33 ms—this is an
aggressive target, which is not achiev-
able by contemporary chain of sensing,
video coding, communications, and
computing technologies.

the ability to provide closed-loop ser-
vices faster than 33.3 ms.

Communications latencies. Commu-
nications and networking latencies
are determined as much by speed of
physical media as they are driven by
protocols at the application layer. The
COSMOS optical network can provide
up to 100 Gb/s, offering almost unlim-
ited raw speed. On the other hand,
conventional streaming of high-reso-
lution videos can create hundreds of
milliseconds of latency. This suggests
that video processing and inference
are best done at the “extreme” edge—

CONVENTIONAL VIDEO STREAMING
PROTOCOLS MAY BE INADEQUATE FOR
ACCOMPLISHING VERY LOW LATENCIES,
SO RESEARCH INTO EDGE-STREAMING
PROTOCOLS IS AN APPEALING TOPIC.

Sensor latencies. Smart city sensors
will have a wide range of operational
frequencies and data acquisition band-
widths. CO, sensors may collect sev-
eral bytes per hour, whereas high-res-
olution cameras may stream data in
compressed form at tens of megabits
per second, or in uncompressed form
at several gigabytes per second. Low-
cost CMOS imaging sensors have laten-
cies of several milliseconds, which are
low enough not to obstruct the closed-
loop target of 1/30 s. Internet Protocol
(IP) cameras use video encoding and
streaming protocols that, because of
interframe coding, may have buffers
requiring hundreds of milliseconds to
decode; this process severely impedes
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right next to the video sensor. More
interestingly, this motivates research
on integrated coding and video trans-
mission protocols optimized for ultralow
latency transmission of videos over
high bandwidth edge communica-
tions infrastructure.

Inference and decision latencies.
Inference latencies come from video
preprocessing and deep learning (DL)
algorithms for object detection and
multiple-object tracking (MOT). The
training of DL models is done offline
and does not impact latencies for real-
time interactions. Both published work
and our own studies indicate that con-
temporary GPUs within specialized

pipelines such as NVIDIA TensorRT and
DeepStream can deliver speeds above
30 fps for object detection and tracking.
We previously showed that inference
speed varies as a function of input res-
olution and actual device capabilities,
but we assess that inference computa-
tion will not be a bottleneck in meeting
our real-time latency target.

The decision process is defined as a
higher level of intelligence built on top
of object detection and tracking. For
example, this process would deduce the
implications of a pedestrian being on
a trajectory to intersect with a speedy
vehicle and create a warning (or even a
command) for the pedestrian or vehi-
cle. Computational needs for this type of
processes are subject to ongoing studies,
butitisexpected that the corresponding
latencywouldbelessthanamillisecond.

COSMOS experimental testbed
New York City is an example of a busy
metropolis which provides formidable
challenges for the deployment of smart
city technologies. Busy urban traffic
intersections have a large number of
vehicles and pedestrians moving in
many directions at various speeds, often
with chaotic or unpredictable behavior.
Furthermore, obstructions like building
corners, parked vehicles, and construc-
tion equipment present difficulty to
autonomous vehicle sensors requiring
further advancements in traffic inter-
section-based automation of monitor-
ing, measuring, learning, and feedback.
The COSMOS testbed, NSF-funded
Cloud Enhanced Open Software Defined
Mobile Wireless Testbed for City-Scale
Deployment,4 provides an experimen-
tation platform for applications and
architectures to support intelligence
nodes of future metropolises. For our
research, we use the COSMOS pilot
site located at Columbia University,
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in New York City, at the intersection
of the 120th Street and Amsterdam
Avenue. The pilot node includes two
street-level and two bird's eye cameras,
asillustrated in Figure 1. The COSMOS
edge cloud servers can run real-time
algorithms for detection and tracking
of objects in the intersection to moni-
tor and manage traffic flow and pedes-
trian safety. The node is equipped
with an optical x-haul transport sys-
tem that connects Al-enabled edge
computing clusters. This allows for
baseband processing with massively
scalable CPU and GPU resources with
field-programmable gate array assist,
which can also support software-de-
fined radios. Four technology layers
are provided for experimentation: the
user device layer, radio hardware and
front-haul network resources, radio
cloud, and general-purpose cloud.

BUILDING BLOCKS OF
INTELLIGENT NODES

As of 2022, individual technological
modules for implementing the vision
of smart cities exist in the form of low-
power chips, high-bandwidth modems,
wired and wireless networks, and GPUs
for machine learning (ML) and DL.
However, major challenges exist in the
domains of privacy preservation, secu-
rity, intelligent decision making, sys-
temintegration, and in the interactions
between technology and social good.

Sensors

Sensors range from dozens of low-
rate Internet of Things (IoT)-based
devices collecting data about pollution
to several high-resolution lidars and
cameras providing real-time feeds.
Multimodal data aggregation and col-
laborative intelligence are research
topics of notable importance to smart
intersection nodes.®

Networking

For high-bandwidth applications, net-
working at one intersection has to
support wireless and wired connectiv-
ity from half a dozen infrastructure-
installed cameras. Whereas coded
video from a conventional IP-camera
may require subhundred Mb/s, exper-
imentation with ultra-low latency
provides motivation to send raw video
at several Gb/s per camera. Support
for cloud-connected vehicles could
require harvesting videos and other
data from each vehicle wirelessly,
in either raw or meta format. Con-
ventional video streaming protocols
may be inadequate for accomplish-
ing very low latencies, so research
into edge-streaming protocols is an
appealing topic.

Edge computing
Smart city intersection applications
require substantial computational

resources, demand minimal laten-
cies, and their functionality can be
constrained to a limited geographical
area. Furthermore, data privacy, secu-
rity, and local data governance are
of utmost importance. This strongly
implicates edge computing as the right
modality. Two forms of edge com-
puting can be used. In the extreme,
Al-based computing can be done on
devices located at the sensors, such
as Nvidia Jetson Nanos or ML-enabled
ARM M1-M4 processors integrated
into IoT chips. On the other hand, a
more powerful computing node can be
located in a facilities room of a build-
ing at the intersection. The node is
then connected to sensors by high-
speed wireless, wired, or optical infra-
structure. To support low latencies
from sensors to actuators via Al com-
puting, an edge computing node has to
be integrated tightly with the network
communications infrastructure.

The COSMOS pilot site with cameras and edge-cloud nodes.
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Al-enabled data processing

Intelligent tasks supporting smart
city intersections are varied in com-
plexity: CO, sensors generate several
bytes once per hour, whereas high-res-
olution cameras in our studies gen-
erate megabits per second to be ana-
lyzed by visual DL models for object
detection, tracking, and intelligent
decisions for actuators. Automation
and Al are crucial to scale systems for
highly congested traffic intersections.
Off-the-shelf Al models must be modi-
fied and retrained to accommodate the
peculiarities of smart city intersection
applications—one example being the
detection of tiny pedestrians when

(b)

© ’ (d)

viewed from bird’s eye cameras.
FIGURE 2. The COSMOS testbed camera views. (a) First-floor camera, 120th St. (b) Second-
floor camera, Amsterdam Ave. (c) 12th-floor camera, Amsterdam Ave. (d) Calibrated Data preprocessing. Visual DL tools
12th-floor camera. require data preparation, labeling, and

augmentation. The COSMOS pilot node
contains low-elevation cameras and
high-elevation bird's eye view cam-
eras, each requiring different type of
preprocessing (Figure 2). The variation
in angles and distances to the intersec-
tion, scale of objects, and overlapping
field-of-views allow experimentation
with the best view for a given applica-
tion. For example, street-level cameras
are closer to traffic objects. They con-
sequently provide more visual details
for applications such as multicamera
object reidentification but are not as
well suited to analyze large-scale traf-
fic patterns due to the scale distortion
among objects at varying distances to
the camera—the bird’s eye view cam-
eras offer a better perspective for this
type of application.

High-elevation cameras allow us
to perform calibration transforms to
improve the effectiveness of DL mod-
els. See in Figure 2 and Figure 3 that
the high-elevation camera view can be
adjusted to appear perpendicular to the

=.
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FIGURE 2. (a) Calibrated 16:9 native frame. (b) 16:9 frame squared using zero-padding.
(c) Square cropped frame.
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road by applying a homography trans-
formation, after which resizing and
cropping of the frame create the square
aspect ratio required by many DL mod-
els. In our traffic intersection use case,
there are locations in the frame where
relevant objects do not appear (that is,
no cars on building walls or pedestri-
ans flying in the air). This motivates
the creation of (black) masks overlayed
on top of the frames, as seen in Figure 3
and Figure 4.

Supervised object detection and
tracking models require a large num-
ber of precisely annotated ground truth
labelstotrainthealgorithms. Producing
accurate and consistent sets of labeled
videos is difficult since both domain
knowledge and significant amounts of
time are needed. To support our exper-
iments, we annotated thousands of
frames capturing the intersection in
various weather, lighting, and conges-
tion conditions.

Object detection models typically
struggle with small object detection.
Tiny pedestrians in the bird’s eye camera
view, as well as far-away license plates
in the street-level camera view, convey
very little information. This results in
relatively poor detection and tracking
accuracies. To improve the performance,
we have deployed techniques of training
the DL models with a small-object drone
acquired data set’” and our COSMOS
data sets and applying data augmenta-
tion techniques such as the copy/paste
method illustrated in Figure 4(d).

Object detection and tracking. In
smart traffic intersections, detecting
pedestrians and vehicles and tracking
their trajectories are the prerequisites
for all downstream applications (Fig-
ure5). Thisinvolvestwo computervision
tasks: object detection and MOT. The
objective of object detectionistolocalize

and classify objects within the frame.
MOT aims to associate object identities
across successive frames. State-of-the-
art methods rely on DL blocks such as
convolutional neural networks (CNNs)®
and vision transformers.’ These meth-
odsbring heavy computational cost,and
the accuracy-speed tradeoff (the budget-
ing between computational complex-
ity and inference speed) is vital to the
success of smart city applications. With
this consideration in mind, we exper-
imented with a series of algorithms for
detecting and tracking objects to find

the best approach10 based on our cus-
tom annotated data set for bird’s eye
videos. We choose YOLOv4!! as the base
detector for all downstream applica-
tions since it is able to provide accurate
results in real time. Object detection
performance is shown in Table 1, where
the average precision (AP) and mean AP
(mAP) are used as the evaluation met-
rics (Figure 6). On our bird’s eye view
intersection data, YOLOv4 outperforms
both RetinaNet'? and single-shot multi-
box detector (SSD)*3 in terms of AP and
inference speed, where inference speed

Vehicle—1
o=
sy

(a) YOLOv4 detections of faces and license plates in street level video.
(b) SORT tracking of vehicles and pedestrians in bird’s eye video. (c) Bird's eye ground truth
bounding box labels of intersection objects. (d) Pedestrian copy-paste data augmentation

for improving detection of small objects.
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SMART AND CIRCULAR CITIES

is measured as the average time for a
forward pass through the model with
batch size equal to 1. For MOT, different
scenarios need to be considered sep-
arately. For bird’s eye cameras, object
occlusions barely occur, so reidentifi-
cation (reID) calculation is not as nec-
essary as for the ground-level cameras.
The relD calculation is often the compu-
tation bottleneck in MOT algorithms.
“Simple online and real-time tracking”
(SORT) and “simple online and real-time
tracking with a deep association met-
ric” (DeepSORT) suffice for the bird’s eye
view cameras. Illustrations for detec-
tion are shown in Figure 4.

: N\ d 7 . - n
N ¥V s : - :
Pedestrian and vehicle detection on 120th Street and Amsterdam Avenue,

fourth floor view.
Image resolution and object density.

Highly elevated bird’s eye cameras

' ' have a good view of the overall scene,
TABLE 1. Object detection performance. shown in Figure 2. Pedestrians, which

Model Pedestrian AP (%) | Vehicle AP (%) | mAP (%) | Inference Speed*  2Ppear small, become a problem for
object detection and tracking. Intui-
YOLOv4 66.31 97.58 81.95 34.99 tively, the higher the resolution of the

input image, the more object features
can be preserved. However, higher res-
RetinaNet 20.83 95.59 58.21 22.97 olution leads to a larger computational
cost, thus making the inference slow.
We tested a dozen combinations of
image input resolutions and aspect
ratios to find the best balance between
accuracy and speed, three of which
are shown in Figure 3. Some DL mod-
els, like YOLOv4,!! perform better on
65 1 o Squared Resolution input images with a.fix.ed-sized, square
—e— 16:9 Squared Resolution aspect ratio. To maximize the preserva-
—e— 16:9 Resolution tion of important features of the inter-

section scene and to minimize the irrel-

SSD 57.04 94.81 75.93 1.31

*Inference speed (fps) on NVIDIA T4 GPU.

mAP Versus Input Resolution

55 - evant components, the experiments
indicate that the “squared cropped” 832
50 - x 832 input produces the best results.*

Object density refers to the number
of objectsin ascene, which may impact
the speed of inference as the busyness
of the streets change through the day.
We explored the inference time for
ten 90-s videos where the number of

416 608 832
Input Resolution
The mAP for pedestrians and vehicles; nine cases of image resolution versus
aspect ratio.
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objects varied from 4,000 to 26,000.
The results show approximately 40%
increase in computational load from
the lowest to the highest density case.
This indicates that object density mea-
sure can be used to switch among
computational resources to obtain the
optimal power/accuracy balance.

APPLICATIONS

Advancesin video-based object detection
and tracking have enabled the deploy-
ment of a number of traffic intersection
applications, where one can identify the
locations of objects in the intersection
and classify them by type of vehicle,
pedestrian, bicycle,and soon They canbe
tracked as unique entities which persist
through the duration of traffic cycles, dif-
ferent cameraviews, and times of the day,
week, month, and year. Theabundance of
spatial, temporal, and visual data makes
it possible to perform data anonymiza-
tion, quantization of traffic trends, crowd
behavior surveillance, real-time inter-
section radar mapping, and more.

Privacy protection—face and
license plate anonymization
Collecting real-time images and videos
of public spaces from street level inad-
vertently involves capturing sensitive
information such as faces and license
plates. To avoid leaking private infor-
mation with our data sets, we gener-
ated a pipeline to automatically blur
these sensitive areas.!” We trained sev-
eral object detection models on a cus-
tom-labeled data set to detect faces and
licenses for subsequent anonymiza-
tion. When training with sequential
video data sets, it is important to leave
entire videos out of the training pro-
cess to use for validation. Stationary
objects—parked cars, seated pedes-
trians, chained bicycles, and so on—
occur identically in many frames, and

model evaluation on these stationary
objects yields biased results. This leads
to model overfitting and poor gener-
alization to new intersection scenes,
which has to be addressed.

Figure 7 shows an example input
and output frame of the anonymiza-
tion pipeline. For our face and license
detection model, we chose YOLOv4!!
for its compromise between detection
accuracy and inference speed. For pri-
vacy-critical applications, the most rele-
vant performance measure is recall, the
number of relevant faces and licenses
thatare detected out of the total number
that pass through the frame. False posi-
tives are less of an issue than false neg-
atives, as they result in an extra blurred
area of the frame, but not a privacy leak.
In our case, notall faces and licenses are
“relevant”—some are too far away and
too low resolution to be identifiable.
We exclude these instances from the
recall evaluation by defining pixel area
thresholds below which the objects are
ignored. We found that, below certain
thresholds, facial features and license
plate characters could not be reliably
identified. While there exist informa-
tion reconstruction techniques that
could potentially recover these fea-
tures, this is outside the scope of this
project. Furthermore, we would need to
reconsider our choice of anonymization

(@)

asany form of blurring becomes ineffec-
tive. In the visible object evaluation, our
pipeline blurs over 99% of visible faces
and licenses and in the total evaluation
it blurs over 96% of objects greater than
100 pixels.

To increase our confidence in the
anonymization pipeline, we performed
manual evaluations by inspecting ano-
nymized output videos for misses, where
amissisdefined as an object with more
than a quarter of the face or license
plate exposed. The results of the man-
ual evaluations confirmed the results
of the programmatic evaluations and
shed some light on edge cases where
our models consistently missed (Fig-
ure 8). Most edge cases were due to
occlusions, such as occluded borders of
license plates, pedestrian body occlu-
sion, and tree branch occlusion, result-
ing in consistent false negatives. More
data collection and training is needed
to rectify these edge cases.

Counting objects

An important goal for smart intersec-
tions is to analyze traffic flow in real
time. To this end, we use detection and
tracking to classify and count vehicles
and pedestrians and follow their paths
through the intersection. Accumulation
of the tracks provides sufficient data for
traffic trend analyses that can be used to

4 UL Ayt
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(b)

(a) The Input and (b) output of the face and license plate blurring pipeline.
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optimize traffic flow and improve pedes-
trian safety in the intersection.

To perform object tracking, we use
the detection-based (MOT) algorithm
DeepSORT. DeepSORT requires an
object detection model to provide the
localization and classification infor-
mation. Given detections of vehicles
and pedestrians, DeepSORT uses a Kal-
man filter and Hungarian algorithm to
map detections with similar sizes and
motions across frames of a video. In
this way, we can assign IDs to detected
objects that persist throughout multi-
ple video frames. Additionally, Deep-
SORT uses visual features of the object
to increase the reliability of the track-
ing. Even if the object is not detected in
consecutive frames, it can be assigned to
the correct track by the reidentification
model (reID) based on its visual features.

Though DeepSORT is a robust track-
ing system, it is still dependent on
high-quality object detection. If an
object is not detected or misclassified
for multiple consecutive frames, it will

be regarded by the algorithm as a “new
track”"—the old track disappears and a
new one is created upon redetection. For
vehicles, we achieve consistent high accu-
racy detection and corresponding high
accuracy tracking, but for pedestrians,
which have 4-5x smaller cross sections,
high accuracy detection is a more chal-
lenging task. Pedestrian tracking accu-
racy suffers as a result of lower accuracy
pedestrian detection. Data augmentation
techniques, such as the copy-paste pedes-
trian method shown in Figure 4(d) and
pretraining object detectors on small-
object data sets show improvement for
small-object detection, but pedestrian
detection and tracking accuracies are still
lower than for vehicles, with MOT accu-
racies (MOTA) of 75.16% and 18.23% for
vehicles and pedestrians, respectively.
The vehicle tracking performance
is sufficient for applications that quan-
tify traffic flow. For example, in an
automatic counting task we record
vehicles passing through the intersec-
tion as turning right, turning left, or

Successful blurring detections (top) versus edge cases (bottom).
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going straight from all four directions
with an accuracy of 95% evaluated
over 21 min of a video recording.

Social distancing in pandemics
Smart cities can assist in combating
global pandemics, such as COVID-19,
by providing means for monitoring,
analyzing, and potentially controlling
social distancing behavior. We proposed
several techniques and applied them to
video data sets collected at the COSMOS
pilotintersection.

The fundamental idea is to estimate
distances between pedestrians and com-
pare them against the recommended
minimal distance threshold. The first
step isto detect the pedestrians. The real-
world distance is then estimated by cal-
culating the pixel-wise distance between
pedestrians within one frame. The track-
ing of pedestrians between frames facili-
tates the calculation of higher order sta-
tistics, related to safe social distancing
groups, which are more meaningful than
an individual-to-individual social dis-
tancing violation rates. When acquain-
tances are walking together on the street
asa” safe group,” the intragroup distance
is often smaller than the social distanc-
ing threshold, which (incorrectly) trig-
gers the indication of the violation. To
solve this problem, we utilize the pedes-
trian trajectory similarity and stability,
which can evaluate the motion dynamic
between every pedestrian pair. This
group validation approach is able to sig-
nificantly reduce the number of false pos-
itive violations, achieving the F1 score of
0.92. Based on this approach, we built a
social distancing analysis (SDA) system
B-SDA'® for bird's eye view cameras, as
well as a complementary method Auto-
SDAY8 with ground-level cameras.

An example of the results obtained
with the bird’s eye video data set (Fig-
ure 9) shows the distribution of the
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duration of social distancing violations
during the Covid-19 pandemic. Fig-
ure 10 shows the social distancing vio-
lation rates for the street-level camera
data set 1) during the pandemic and 2)

latency minimization of the extreme
edge compute units or edge comput-
ing centers, requires rapid sensor
data acquisition and dynamic network
and resource control. This application

motivates research to optimize each
of the building blocks described in
previous sections of this article as
well latency-focused cross-module sys-
tem integration.

after the vaccine was widely available.
Detailed analyses and comparisons of
multiple statistics before the pandemic
and during the pandemic demonstrate
that the proposed systems can reliably
identify social distancing violations.

200

100

. M. L

Real-time “radar screen” 0 2 4 6 8 10
The “radar-screen” application aims to Social Distancing Rules Breaking Time (s)

infer positions and velocities of objects
within a traffic intersection and broad-
cast them to the participants in the
intersection in real time, as illustrated
in Figure 11. The information can be
distributed in raw or coded/meta for-
mat. The application intends to provide
a real-time service with latency of 1/30 s
between the observation of objects
and the wireless broadcast delivery. As
described previously, this is motivated
by the approximation of a 10-cm vehi-
cle movement with speed of 10 km/h.
The application includes the acquisi- 0
tion of videos from surrounding build-
ings, potential harvesting of videos (or
encoded data) from cameras within
vehicles, harvesting of IoT sensor data,
transmission via a high-speed network
totheinference computer, dataaggrega-
tion and preprocessing, DL-based object
detection and tracking, extraction of
information at a higher abstraction
level, and (in a more advanced version)
deduction of commands that may be
issued to individual vehicles after opti-
mizing the traffic flow. The final step is
the broadcasting of information. This
is an aspirational application in that
achieving the cumulative latency of
33.3msistechnologicallyvery challeng-
ing. Balancing between computational
capabilities, power consumption, and

No. of Violation

B-SDA: Distribution of the duration of social distancing violations.
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The "radar screen”: one frame of a video containing locations and velocities
of objects within an intersection.
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SMART AND CIRCULAR CITIES

Traffic management

Intelligent nodes located at individual
intersections provide powerful data acqui-
sition and intelligent edge-computing. On
a larger scale, smart cities require the
aggregation of data from multiple inter-
sections and mutual coordination. In
that vein, we have commenced collab-
orative studies with traffic engineering
experts on the definition of key param-
eters, such as timing resolution, sensor
locations, and application programming
interfaces for data exchange between
intelligent smart intersection nodes and
traffic optimization systems.19 We are
building simulators and defining digital
twins that will play predictive roles in
the behavior of individual traffic partici-
pants and in global optimization of traf-
fic management.

vision of the smart city inter-
section as the intelligence
node for future metropolises
has been presented. The proposed archi-
tecture is driven by societal needs to
preserve privacy, which strongly impli-
cate edge computing and intelligence as
the key paradigm for data management
and processing. Key technological com-
ponents have been reviewed, such as
sensors, networks, and edge Al comput-
ing. Real-time needs of future safety-crit-
ical systems have been examined, and
design considerations for the aspirational
“radar-screen” application, which closes
the loop from sensors to actuators, have
been summarized. The requirements for
low latency, based on the 33.3-ms target,
have been explored. System integration
challenges have been illustrated using the
examples from experiments performed
on the pilot node of the COSMOS testbed
in New York City.
Our research points to the following
exploration topics:
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1. State of the art DL-based object
detection models are comprised
of over 60 million parameters
and require passing more than
100 convolutional layers, where
each convolution has com-
plexity. Model optimization
techniques like weight prun-
ing, inference scheduling, and
neural algorithmic search strat-
egies?® need to be incorporated
into practical systems.

2. Reliance on supervised data sets
for video processing is not scalable
due to thelabeling cost and qual-
ity concerns. This necessitates
research on unsupervised learn-
ing methodologies which should
be based on continuous or active
learning and take advantage of
the peculiarities of the fixed scene
within a traffic intersection.?!

3. Data fusion from multiple cam-
erasis expected to yield notable
improvements in detection and
tracking accuracies.

4. Achieving low latency for low-
rate little-data applications is pos-
sible by using processing on the
“extreme edge,” but meeting the
requirements of 1/30-s latency for
high-resolution videos is a chal-
lenge. New video coding methods
and streaming protocols should be
explored with focus on localized
low-latency performance.
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