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This article explores city intersections as intelligence nodes 

using high-bandwidth, low-latency services for providing 

privacy-preserving smart city applications. COSMOS testbed 

experiments using edge-computing-based artificial-

intelligence techniques are reported, for monitoring of 

pedestrians, cloud-connected vehicles, and traffic management.

S
mart cities should be built with the primary goal 

of providing social good as defined by local 

communities.1,2 Contemporary technologies 

provide a plethora of components to support 

human-centered design of future metropolises. Privacy, 

security, and local data governance on one hand, and opti-

mization of bandwidth, computational resources, and 

latency on the other hand, implicate traffic intersections as 

excellent locations for smart city intelligence nodes.

Traffic intersections can support smart city features 

and traffic dynamics by utilizing available power supply 
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and communications infrastructure to 

enable interconnections and computa-

tional collaboration among neighbor-

ing intelligence nodes. The nodes will 

be equipped with artificial intelligence 

(AI)-enabled edge-computing3 and com-

munications equipment to facilitate 

automated low-latency data harvesting, 

inference, and decision making. This 

will enable the development of tech-

nologies like cloud connected vehicles, 

vehicle to infrastructure communica-

tions, and advanced sensor-based tools 

for alerting pedestrians and assisting 

handicapped individuals. Future appli-

cations will require intense AI-enabled 

computation, very high communication 

bandwidths, and ultralow latencies.

We report the results of research on 

low-latency real-time applications for 

smart city intersections in metropo-

lises and architectures, components, 

and methods for building intelligent 

intersection nodes. The research uti-

lizes COSMOS, an experimental test-

bed located in New York City.4

SMART CITY  
INTERSECTIONS
The focus of this article is low- latency 

high-bandwidth applications for smart 

city intersections. We explore techno-

logical components needed to support 

privacy-preserving real-time appli-

cations, such as collaborative control 

of cloud-connected vehicles and active 

pedestrian alert and assistance, where 

the primary sensors are multiple high- 

resolution surveillance cameras. One 

of the key tasks for video-based appli-

cations is to detect and track objects 

in an intersection with high accuracy. 

We explore methods to achieve real-time  

processing in smart city intersection 

applications defined by end-to-end laten-

cies under 33.3 ms. This includes 1) sen-

sor data acquisition, 2) communication 

among end-users, sensors, and edge 

cloud, 3) AI-based inference computa-

tion, and 4) providing feedback to partici-

pants in the intersection. The envisioned 

“radar-screen” application is intended 

to broadcast the positions and veloci-

ties of objects to intersection partici-

pants in real time.

Privacy
Smart-city implementations prior to 

year 2022 indicate that privacy and data 

security are the key concerns impeding 

successful large-scale deployments. Pri-

vacy concerns are amplified when video 

recordings are a part of data acquisition 

and processing. The COSMOS research 

program has a strong community out-

reach component, exemplified by mul-

tiyear activities on running National 

Science Foundation (NSF) Research 

Experience and Mentoring (REM) and 

Research Experiences for Teachers (RET) 

programs where teachers from Har-

lem and other New York City schools 

get training and participate in develop-

ing science, technology, engineering, 

and mathematics educational material 

for students in underprivileged schools 

(https://w w w.cosmos-lab.org/out-

reach/5). Our guiding approach to pri-

vacy is to integrate local communi-

ties into the data governance process. 

We plan to develop technologies that 

enable the communities to define and 

control data acquisition and processing 

supported by edge computing and tem-

porary data storage paradigms. This 

article describes some technological 

components which would need to be 

managed in collaboration with local 

communities, such as blurring of faces 

and license plates.

Real-time interactions
An important goal of smart city deploy-

ments is to improve the safety of pedes-

trians and other participants. Even in 

the most congested cities it is desirable 

to replace human drivers with safer 

self-driven vehicles. This motivates 

the concept of cloud-connected  vehicles 

that interact with city infrastructure 

to improve their ability to navigate 

and requires exceptionally low closed-

loop latencies associated with security- 

critical real-time actions. This article 

explores latencies which are inherent 

in camera-based sensor data acquisi-

tion and processing.

Real-time for safety-critical appli-

cations. Extracting intelligence that 

indicates a potential collision and pro-

viding feedback to vehicles or pedes-

trians presents computational and 

latency challenges. City street dynam-

ics are determined by vehicles traveling 

at velocities between 0 and 100 km/h. If 

we consider for example a vehicle travel-

ing at 10 km/h, an arguably reasonable 

speed within congested intersections, 

IF THE VEHICLE’S BRAKES COULD BE 
ACTIVATED WITHIN THAT TIME, IT IS 

CONCEIVABLE THAT LIFE-THREATENING 
TRAFFIC ACCIDENTS WOULD BE AVOIDED.
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the vehicle is moving at approximately 

3 m/s. If we divide 3  m/s by the stan-

dard frame rate of a conventional video 

equal to 30 fps, the result is a vehicle 

movement of 10 cm, the distance trav-

eled in 33.3 ms. If the vehicle’s brakes 

could be activated within that time, 

it is conceivable that life-threatening 

traffic accidents would be avoided. This 

approximate calculation motivated us 

to investigate what is needed to sup-

port latencies below 33 ms—this is an 

aggressive target, which is not achiev-

able by contemporary chain of sensing, 

video coding, communications, and 

computing technologies.

Sensor latencies. Smart city sensors 

will have a wide range of operational 

frequencies and data acquisition band-

widths. CO2 sensors may collect sev-

eral bytes per hour, whereas high-res-

olution cameras may stream data in 

compressed form at tens of megabits 

per second, or in uncompressed form 

at several gigabytes per second. Low-

cost CMOS imaging sensors have laten-

cies of several milliseconds, which are 

low enough not to obstruct the closed-

loop target of 1/30 s. Internet Protocol 

(IP) cameras use video encoding and 

streaming protocols that, because of 

interframe coding, may have buffers 

requiring hundreds of milliseconds to 

decode; this process severely impedes 

the ability to provide closed-loop ser-

vices faster than 33.3 ms.

Communications latencies. Commu-

nications and networking latencies 

are determined as much by speed of 

physical media as they are driven by 

protocols at the application layer. The 

COSMOS optical network can provide 

up to 100 Gb/s, offering almost unlim-

ited raw speed. On the other hand, 

conventional streaming of high-reso-

lution videos can create hundreds of 

milliseconds of latency. This suggests 

that video processing and inference 

are best done at the “extreme” edge—

right next to the video sensor. More 

interestingly, this motivates research 

on integrated coding and video trans-

mission protocols optimized for ultralow 

latency transmission of videos over 

high bandwidth edge communica-

tions infrastructure.

Inference and decision latencies. 

Inference latencies come from video 

preprocessing and deep learning (DL) 

algorithms for object detection and 

multiple-object tracking (MOT). The 

training of DL models is done offline 

and does not impact latencies for real-

time interactions. Both published work 

and our own studies indicate that con-

temporary GPUs within specialized 

pipelines such as NVIDIA TensorRT and 

DeepStream can deliver speeds above 

30 fps for object detection and tracking. 

We previously showed that inference 

speed varies as a function of input res-

olution and actual device capabilities, 

but we assess that inference computa-

tion will not be a bottleneck in meeting 

our real-time latency target.

The decision process is defined as a 

higher level of intelligence built on top 

of object detection and tracking. For 

example, this process would deduce the 

implications of a pedestrian being on 

a trajectory to intersect with a speedy 

vehicle and create a warning (or even a 

command) for the pedestrian or vehi-

cle. Computational needs for this type of 

processes are subject to ongoing studies, 

but it is expected that the corresponding 

latency would be less than a millisecond.

COSMOS experimental testbed
New York City is an example of a busy 

metropolis which provides formidable 

challenges for the deployment of smart 

city technologies. Busy urban traffic 

intersections have a large number of 

vehicles and pedestrians moving in 

many directions at various speeds, often 

with chaotic or unpredictable behavior. 

Furthermore, obstructions like building 

corners, parked vehicles, and construc-

tion equipment present difficulty to 

autonomous vehicle sensors requiring 

further advancements in traffic inter-

section-based automation of monitor-

ing, measuring, learning, and feedback.

The COSMOS testbed, NSF-funded 

Cloud Enhanced Open Software Defined 

Mobile Wireless Testbed for City-Scale 

Deployment,4 provides an experimen-

tation platform for applications and 

architectures to support intelligence 

nodes of future metropolises. For our 

research, we use the COSMOS pilot 

site located at Columbia University, 

CONVENTIONAL VIDEO STREAMING 
PROTOCOLS MAY BE INADEQUATE FOR 

ACCOMPLISHING VERY LOW LATENCIES, 
SO RESEARCH INTO EDGE-STREAMING 
PROTOCOLS IS AN APPEALING TOPIC.
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in New York City, at the intersection 

of the 120th Street and Amsterdam 

Avenue. The pilot node includes two 

street-level and two bird’s eye cameras, 

as illustrated in Figure 1. The COSMOS 

edge cloud servers can run real-time 

algorithms for detection and tracking 

of objects in the intersection to moni-

tor and manage traffic flow and pedes-

trian safety. The node is equipped 

with an optical x-haul transport sys-

tem that connects AI-enabled edge 

computing clusters. This allows for 

baseband processing with massively 

scalable CPU and GPU resources with 

field-programmable gate array assist, 

which can also support software-de-

fined radios. Four technology layers 

are provided for experimentation: the 

user device layer, radio hardware and 

front-haul network resources, radio 

cloud, and general-purpose cloud.

BUILDING BLOCKS OF 
INTELLIGENT NODES
As of 2022, individual technological 

modules for implementing the vision 

of smart cities exist in the form of low-

power chips, high-bandwidth modems, 

wired and wireless networks, and GPUs 

for machine learning (ML) and DL. 

However, major challenges exist in the 

domains of privacy preservation, secu-

rity, intelligent decision making, sys-

tem integration, and in the interactions 

between technology and social good.

Sensors
Sensors range from dozens of low-

rate Internet of Things (IoT)-based 

devices collecting data about pollution 

to several high-resolution lidars and 

cameras providing real-time feeds. 

Multimodal data aggregation and col-

laborative intelligence are research 

topics of notable importance to smart 

intersection nodes.6

Networking
For high-bandwidth applications, net-

working at one intersection has to 

support wireless and wired connectiv-

ity from half a dozen infrastructure- 

installed cameras. Whereas coded 

video from a conventional IP-camera 

may require subhundred Mb/s, exper-

imentation with ultra-low latency 

provides motivation to send raw video 

at several Gb/s per camera. Support 

for cloud-connected vehicles could 

require harvesting videos and other 

data from each vehicle wirelessly, 

in either raw or meta format. Con-

ventional video streaming protocols 

may be inadequate for accomplish-

ing very low latencies, so research 

into edge-streaming protocols is an 

appealing topic.

Edge computing
Smart city intersection applications 

require substantial computational 

resources, demand minimal laten-

cies, and their functionality can be 

constrained to a limited geographical 

area. Furthermore, data privacy, secu-

rity, and local data governance are 

of utmost importance. This strongly 

implicates edge computing as the right 

modality. Two forms of edge com-

puting can be used. In the extreme, 

AI-based computing can be done on 

devices located at the sensors, such 

as Nvidia Jetson Nanos or ML-enabled 

ARM M1-M4 processors integrated 

into IoT chips. On the other hand, a 

more powerful computing node can be 

located in a facilities room of a build-

ing at the intersection. The node is 

then connected to sensors by high-

speed wireless, wired, or optical infra-

structure. To support low latencies 

from sensors to actuators via AI com-

puting, an edge computing node has to 

be integrated tightly with the network 

communications infrastructure.

FIGURE 1. The COSMOS pilot site with cameras and edge-cloud nodes.
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AI-enabled data processing
Intelligent tasks supporting smart 

city intersections are varied in com-

plexity: CO2 sensors generate several 

bytes once per hour, whereas high-res-

olution cameras in our studies gen-

erate megabits per second to be ana-

lyzed by visual DL models for object 

detection, tracking, and intelligent 

decisions for actuators. Automation 

and AI are crucial to scale systems for 

highly congested traffic intersections. 

Off-the-shelf AI models must be modi-

fied and retrained to accommodate the 

peculiarities of smart city intersection 

applications—one example being the 

detection of tiny pedestrians when 

viewed from bird’s eye cameras.

Data preprocessing. Visual DL tools 

require data preparation, labeling, and 

augmentation. The COSMOS pilot node 

contains low-elevation cameras and 

high-elevation bird’s eye view cam-

eras, each requiring different type of 

preprocessing (Figure 2). The variation 

in angles and distances to the intersec-

tion, scale of objects, and overlapping 

field-of-views allow experimentation 

with the best view for a given applica-

tion. For example, street-level cameras 

are closer to traffic objects. They con-

sequently provide more visual details 

for applications such as multicamera 

object reidentification but are not as 

well suited to analyze large-scale traf-

fic patterns due to the scale distortion 

among objects at varying distances to 

the camera—the bird’s eye view cam-

eras offer a better perspective for this 

type of application.

High-elevation cameras allow us 

to perform calibration transforms to 

improve the effectiveness of DL mod-

els. See in Figure 2 and Figure 3 that 

the high-elevation camera view can be 

adjusted to appear perpendicular to the 

FIGURE 2. The COSMOS testbed camera views. (a) First-floor camera, 120th St. (b) Second- 

floor camera, Amsterdam Ave. (c) 12th-floor camera, Amsterdam Ave. (d) Calibrated 

12th-floor camera.

(a) (b)

(c) (d)

FIGURE 3. (a) Calibrated 16:9 native frame. (b) 16:9 frame squared using zero-padding. 

(c) Square cropped frame. 

(a)

(b)

(c)
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road by applying a homography trans-

formation, after which resizing and 

cropping of the frame create the square 

aspect ratio required by many DL mod-

els. In our traffic intersection use case, 

there are locations in the frame where 

relevant objects do not appear (that is, 

no cars on building walls or pedestri-

ans flying in the air). This motivates 

the creation of (black) masks overlayed 

on top of the frames, as seen in Figure 3 

and Figure 4.

Supervised object detection and 

tracking models require a large num-

ber of precisely annotated ground truth 

labels to train the algorithms. Producing 

accurate and consistent sets of labeled 

videos is difficult since both domain 

knowledge and significant amounts of 

time are needed. To support our exper-

iments, we annotated thousands of 

frames capturing the intersection in 

various weather, lighting, and conges-

tion conditions.

Object detection models typically 

struggle with small object detection. 

Tiny pedestrians in the bird’s eye camera 

view, as well as far-away license plates 

in the street-level camera view, convey 

very little information. This results in 

relatively poor detection and tracking 

accuracies. To improve the performance, 

we have deployed techniques of training 

the DL models with a small-object drone 

acquired data set7 and our COSMOS 

data sets and applying data augmenta-

tion techniques such as the copy/paste 

method illustrated in Figure 4(d).

Object detection and tracking. In 

smart traffic intersections, detecting 

pedestrians and vehicles and tracking 

their trajectories are the prerequisites 

for all downstream applications (Fig-

ure 5). This involves two computer vision 

tasks: object detection and MOT. The 

objective of object detection is to localize 

and classify objects within the frame. 

MOT aims to associate object identities 

across successive frames. State-of-the-

art methods rely on DL blocks such as 

convolutional neural networks (CNNs)8 

and vision transformers.9 These meth-

ods bring heavy computational cost, and 

the accuracy-speed tradeoff (the budget-

ing between computational complex-

ity and inference speed) is vital to the 

success of smart city applications. With 

this consideration in mind, we exper-

imented with a series of algorithms for 

detecting and tracking objects to find 

the best approach10 based on our cus-

tom annotated data set for bird’s eye 

videos. We choose YOLOv411 as the base 

detector for all downstream applica-

tions since it is able to provide accurate 

results in real time. Object detection 

performance is shown in Table 1, where 

the average precision (AP) and mean AP 

(mAP) are used as the evaluation met-

rics (Figure  6). On our bird’s eye view 

intersection data, YOLOv4 outperforms 

both RetinaNet12 and single-shot multi-

box detector (SSD)13 in terms of AP and 

inference speed, where inference speed 

FIGURE 4. (a) YOLOv4 detections of faces and license plates in street level video. 

(b) SORT tracking of vehicles and pedestrians in bird’s eye video. (c) Bird’s eye ground truth 

bounding box labels of intersection objects. (d) Pedestrian copy-paste data augmentation 

for improving detection of small objects.

(a) (b)

(c) (d)
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is measured as the average time for a 

forward pass through the model with 

batch size equal to 1. For MOT, different 

scenarios need to be considered sep-

arately. For bird’s eye cameras, object 

occlusions barely occur, so reidentifi-

cation (reID) calculation is not as nec-

essary as for the ground-level cameras. 

The reID calculation is often the compu-

tation bottleneck in MOT algorithms. 

“Simple online and real-time tracking” 

(SORT) and “simple online and real-time 

tracking with a deep association met-

ric” (DeepSORT) suffice for the bird’s eye 

view cameras. Illustrations for detec-

tion are shown in Figure 4.

Image resolution and object density. 

Highly elevated bird’s eye cameras 

have a good view of the overall scene, 

shown in Figure 2. Pedestrians, which 

appear small, become a problem for 

object detection and tracking. Intui-

tively, the higher the resolution of the 

input image, the more object features 

can be preserved. However, higher res-

olution leads to a larger computational 

cost, thus making the inference slow. 

We tested a dozen combinations of 

image input resolutions and aspect 

ratios to find the best balance between 

accuracy and speed, three of which 

are shown in Figure 3. Some DL mod-

els, like YOLOv4,11 perform better on 

input images with a fixed-sized, square 

aspect ratio. To maximize the preserva-

tion of important features of the inter-

section scene and to minimize the irrel-

evant components, the experiments 

indicate that the “squared cropped” 832 

× 832 input produces the best results.14

Object density refers to the number 

of objects in a scene, which may impact 

the speed of inference as the busyness 

of the streets change through the day. 

We explored the inference time for 

ten 90-s videos where the number of 

TABLE 1. Object detection performance.

Model Pedestrian AP (%) Vehicle AP (%) mAP (%) Inference Speed*

YOLOv4 66.31 97.58 81.95 34.99 

SSD 57.04 94.81 75.93 11.31 

RetinaNet 20.83 95.59 58.21 22.97 

*Inference speed (fps) on NVIDIA T4 GPU.

FIGURE 5. Pedestrian and vehicle detection on 120th Street and Amsterdam Avenue, 

fourth floor view.

FIGURE 6. The mAP for pedestrians and vehicles; nine cases of image resolution versus 

aspect ratio.
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objects varied from 4,000 to 26,000. 

The results show approximately 40% 

increase in computational load from 

the lowest to the highest density case. 

This indicates that object density mea-

sure can be used to switch among 

computational resources to obtain the 

optimal power/accuracy balance.

APPLICATIONS
Advances in video-based object detection 

and tracking have enabled the deploy-

ment of a number of traffic intersection 

applications, where one can identify the 

locations of objects in the intersection 

and classify them by type of vehicle, 

pedestrian, bicycle, and so on They can be 

tracked as unique entities which persist 

through the duration of traffic cycles, dif-

ferent camera views, and times of the day, 

week, month, and year. The abundance of 

spatial, temporal, and visual data makes 

it possible to perform data anonymiza-

tion, quantization of traffic trends, crowd 

behavior surveillance, real-time inter-

section radar mapping, and more.

Privacy protection—face and 
license plate anonymization
Collecting real-time images and videos 

of public spaces from street level inad-

vertently involves capturing sensitive 

information such as faces and license 

plates. To avoid leaking private infor-

mation with our data sets, we gener-

ated a pipeline to automatically blur 

these sensitive areas.15 We trained sev-

eral object detection models on a cus-

tom-labeled data set to detect faces and 

licenses for subsequent anonymiza-

tion. When training with sequential 

video data sets, it is important to leave 

entire videos out of the training pro-

cess to use for validation. Stationary 

objects—parked cars, seated pedes-

trians, chained bicycles, and so on—

occur identically in many frames, and 

model evaluation on these stationary 

objects yields biased results. This leads 

to model overfitting and poor gener-

alization to new intersection scenes, 

which has to be addressed.

Figure 7 shows an example input 

and output frame of the anonymiza-

tion pipeline. For our face and license 

detection model, we chose YOLOv411 

for its compromise between detection 

accuracy and inference speed. For pri-

vacy-critical applications, the most rele-

vant performance measure is recall, the 

number of relevant faces and licenses 

that are detected out of the total number 

that pass through the frame. False posi-

tives are less of an issue than false neg-

atives, as they result in an extra blurred 

area of the frame, but not a privacy leak. 

In our case, not all faces and licenses are 

“relevant”—some are too far away and 

too low resolution to be identifiable. 

We exclude these instances from the 

recall evaluation by defining pixel area 

thresholds below which the objects are 

ignored. We found that, below certain 

thresholds, facial features and license 

plate characters could not be reliably 

identified. While there exist informa-

tion reconstruction techniques that 

could potentially recover these fea-

tures, this is outside the scope of this 

project. Furthermore, we would need to 

reconsider our choice of anonymization 

as any form of blurring becomes ineffec-

tive. In the visible object evaluation, our 

pipeline blurs over 99% of visible faces 

and licenses and in the total evaluation 

it blurs over 96% of objects greater than 

100 pixels.

To increase our confidence in the 

anonymization pipeline, we performed 

manual evaluations by inspecting ano-

nymized output videos for misses, where 

a miss is defined as an object with more 

than a quarter of the face or license 

plate exposed. The results of the man-

ual evaluations confirmed the results 

of the programmatic evaluations and 

shed some light on edge cases where 

our models consistently missed (Fig-

ure 8). Most edge cases were due to 

occlusions, such as occluded borders of 

license plates, pedestrian body occlu-

sion, and tree branch occlusion, result-

ing in consistent false negatives. More 

data collection and training is needed 

to rectify these edge cases.

Counting objects
An important goal for smart intersec-

tions is to analyze traffic flow in real 

time. To this end, we use detection and 

tracking to classify and count vehicles 

and pedestrians and follow their paths 

through the intersection. Accumulation 

of the tracks provides sufficient data for 

traffic trend analyses that can be used to 

FIGURE 7. (a) The Input and (b) output of the face and license plate blurring pipeline.

(a) (b)
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optimize traffic flow and improve pedes-

trian safety in the intersection.

To perform object tracking, we use 

the detection-based (MOT) algorithm 

DeepSORT. DeepSORT requires an 

object detection model to provide the 

localization and classification infor-

mation. Given detections of vehicles 

and pedestrians, DeepSORT uses a Kal-

man filter and Hungarian algorithm to 

map detections with similar sizes and 

motions across frames of a video. In 

this way, we can assign IDs to detected 

objects that persist throughout multi-

ple video frames. Additionally, Deep-

SORT uses visual features of the object 

to increase the reliability of the track-

ing. Even if the object is not detected in 

consecutive frames, it can be assigned to 

the correct track by the reidentification 

model (reID) based on its visual features.

Though DeepSORT is a robust track-

ing system, it is still dependent on 

high-quality object detection. If an 

object is not detected or misclassified 

for multiple consecutive frames, it will 

be regarded by the algorithm as a “new 

track”—the old track disappears and a 

new one is created upon redetection. For 

vehicles, we achieve consistent high accu-

racy detection and corresponding high 

accuracy tracking, but for pedestrians, 

which have 4–5x smaller cross sections, 

high accuracy detection is a more chal-

lenging task. Pedestrian tracking accu-

racy suffers as a result of lower accuracy 

pedestrian detection. Data augmentation 

techniques, such as the copy-paste pedes-

trian method shown in Figure  4(d) and 

pretraining object detectors on small- 

object data sets show improvement for 

small-object detection, but pedestrian 

detection and tracking accuracies are still 

lower than for vehicles, with MOT accu-

racies (MOTA) of 75.16% and 18.23% for 

vehicles and pedestrians, respectively.

The vehicle tracking performance 

is sufficient for applications that quan-

tify traffic flow. For example, in an 

automatic counting task we record 

vehicles passing through the intersec-

tion as turning right, turning left, or 

going straight from all four directions 

with an accuracy of 95% evaluated 

over 21 min of a video recording.

Social distancing in pandemics
Smart cities can assist in combating 

global pandemics, such as COVID-19, 

by providing means for monitoring, 

analyzing, and potentially controlling 

social distancing behavior. We proposed 

several techniques and applied them to 

video data sets collected at the COSMOS 

pilot intersection.

The fundamental idea is to estimate 

distances between pedestrians and com-

pare them against the recommended 

minimal distance threshold. The first 

step is to detect the pedestrians. The real-

world distance is then estimated by cal-

culating the pixel-wise distance between 

pedestrians within one frame. The track-

ing of pedestrians between frames facili-

tates the calculation of higher order sta-

tistics, related to safe social distancing 

groups, which are more meaningful than 

an individual-to-individual social dis-

tancing violation rates. When acquain-

tances are walking together on the street 

as a” safe group,” the intragroup distance 

is often smaller than the social distanc-

ing threshold, which (incorrectly) trig-

gers the indication of the violation. To 

solve this problem, we utilize the pedes-

trian trajectory similarity and stability, 

which can evaluate the motion dynamic 

between every pedestrian pair. This 

group validation approach is able to sig-

nificantly reduce the number of false pos-

itive violations, achieving the F1 score of 

0.92. Based on this approach, we built a 

social distancing analysis (SDA) system 

B-SDA16 for bird’s eye view cameras, as 

well as a complementary method Auto-

SDA17,18 with ground-level cameras.

An example of the results obtained 

with the bird’s eye video data set (Fig-

ure 9) shows the distribution of the 
FIGURE 8. Successful blurring detections (top) versus edge cases (bottom).
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duration of social distancing violations 

during the Covid-19 pandemic. Fig-

ure 10 shows the social distancing vio-

lation rates for the street-level camera 

data set 1) during the pandemic and 2) 

after the vaccine was widely available. 

Detailed analyses and comparisons of 

multiple statistics before the pandemic 

and during the pandemic demonstrate 

that the proposed systems can reliably 

identify social distancing violations.

Real-time “radar screen”
The “radar-screen” application aims to 

infer positions and velocities of objects 

within a traffic intersection and broad-

cast them to the participants in the 

intersection in real time, as illustrated 

in  Figure  11. The information can be 

distributed in raw or coded/meta for-

mat. The application intends to provide  

a real-time service with latency of 1/30 s  

between the observation of objects 

and the wireless broadcast delivery. As 

described previously, this is motivated 

by the approximation of a 10-cm vehi-

cle movement with speed of 10 km/h. 

The application includes the acquisi-

tion of videos from surrounding build-

ings, potential harvesting of videos (or 

encoded data) from cameras within 

vehicles, harvesting of IoT sensor data, 

transmission via a high-speed network 

to the inference computer, data aggrega-

tion and preprocessing, DL-based object 

detection and tracking, extraction of 

information at a higher abstraction 

level, and (in a more advanced version) 

deduction of commands that may be 

issued to individual vehicles after opti-

mizing the traffic flow. The final step is 

the broadcasting of information. This 

is an aspirational application in that 

achieving the cumulative latency of 

33.3 ms is technologically very challeng-

ing. Balancing between computational 

capabilities, power consumption, and 

latency minimization of the extreme 

edge compute units or edge comput-

ing centers, requires rapid sensor 

data acquisition and dynamic network 

and resource control. This application 

motivates research to optimize each 

of the building blocks described in 

previous sections of this article as 

well latency-focused cross-module sys-

tem integration.

FIGURE 9. B-SDA: Distribution of the duration of social distancing violations.
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Traffic management
Intelligent nodes located at individual 

intersections provide powerful data acqui-

sition and intelligent edge-computing. On 

a larger scale, smart cities require the 

aggregation of data from multiple inter-

sections and mutual coordination. In 

that vein, we have commenced collab-

orative studies with traffic engineering 

experts on the definition of key param-

eters, such as timing resolution, sensor 

locations, and application programming 

interfaces for data exchange between 

intelligent smart intersection nodes and 

traffic optimization systems.19 We are 

building simulators and defining digital 

twins that will play predictive roles in 

the behavior of individual traffic partici-

pants and in global optimization of traf-

fic management.

A vision of the smart city inter-

section as the intelligence 

node for future metropolises 

has been presented. The proposed archi-

tecture is driven by societal needs to 

preserve privacy, which strongly impli-

cate edge computing and intelligence as 

the key paradigm for data management 

and processing. Key technological com-

ponents have been reviewed, such as 

sensors, networks, and edge AI comput-

ing. Real-time needs of future safety-crit-

ical systems have been examined, and 

design considerations for the aspirational 

“radar-screen” application, which closes 

the loop from sensors to actuators, have 

been summarized. The requirements for 

low latency, based on the 33.3-ms target, 

have been explored. System integration 

challenges have been illustrated using the 

examples from experiments performed 

on the pilot node of the COSMOS testbed 

in New York City.

Our research points to the following 

exploration topics:

1. State of the art DL-based object 

detection models are comprised 

of over 60 million parameters 

and require passing more than 

100 convolutional layers, where 

each convolution has com-

plexity. Model optimization 

techniques like weight prun-

ing, inference scheduling, and 

neural algorithmic search strat-

egies20 need to be incorporated 

into practical systems.

2. Reliance on supervised data sets 

for video processing is not scalable 

due to the labeling cost and qual-

ity concerns. This necessitates 

research on unsupervised learn-

ing methodologies which should 

be based on continuous or active 

learning and take advantage of 

the peculiarities of the fixed scene 

within a traffic intersection.21

3. Data fusion from multiple cam-

eras is expected to yield notable 

improvements in detection and 

tracking accuracies.

4. Achieving low latency for low-

rate little-data applications is pos-

sible by using processing on the 

“extreme edge,” but meeting the 

requirements of 1/30-s latency for 

high- resolution videos is a chal-

lenge. New video coding methods 

and streaming protocols should be 

explored with focus on  localized 

low-latency  performance. 

ACKNOWLEDGMENT

This work was supported in part by 

National Science Foundation grants 

CNS-1827923, CNS-1910757, OAC-2029295, 

CNS-2038984, CNS-2148128, EEC-2133516, 

and AT&T VURI award.

REFERENCES

1. L. Sánchez et al., “SmartSantander: 

IoT experimentation over a smart 

city testbed,” Comput. Netw., vol. 61, 

pp. 217–238, Mar. 2014, doi: 10.1016/ 

j.bjp.2013.12.020.

2. L. Belli et al., “IoT-enabled smart 

sustainable cities: Challenges and 

approaches,” Smart Cities, vol. 3, 

no. 3, pp. 1039–1071, Sep. 2020, doi: 

10.3390/smartcities3030052.

3. A. Y. Ding et al., “Roadmap for edge 

AI: A Dagstuhl perspective,” SIG-

COMM Comput. Commun. Rev., vol. 52, 

no. 1, pp. 28–33, Mar. 2022, doi: 

10.1145/3523230.3523235.

4. D. Raychaudhuri et al., “Challenge: 

COSMOS: A city-scale programma-

ble testbed for experimentation 

with advanced wireless,” in Proc. 

26th Annu. Int. Conf. Mobile Com-

put. Netw., Apr. 2020, pp. 1–13, doi: 

10.1145/3372224.3380891.

5. P. Skrimponis et al., “COSMOS edu-

cational toolkit: Using experimen-

tal wireless networking to enhance 

middle/high school stem education,” 

SIGCOMM Comput. Commun. Rev., 

vol. 50, no. 4, pp. 58–65, Oct. 2020, 

doi: 10.1145/3431832.3431839.

6. X. Xu, Q. Huang, X. Yin, M. Abbasi, 

M. R. Khosravi, and L. Qi, “Intelli-

gent offloading for collaborative 

smart city services in edge comput-

ing,” IEEE Internet Things J., vol. 7, 

no. 9, pp. 7919–7927, Sep. 2020, doi: 

10.1109/JIOT.2020.3000871.

7. P. Zhu et al., “VisDrone-DET2018: The 

vision meets drone object detection 

in image challenge results,” in Proc. 

ECCV Workshops, 2018, pp. 437–468.

8. L. Liu et al., “Deep learning for 

generic object detection: A survey,” 

Int. J. Comput. Vis., vol. 128, no. 2, 

pp. 261–318, Feb. 2020, doi: 10.1007/

s11263-019-01247-4.

9. A. Dosovitskiy et al., “An image is 

worth 16x16 words: Transformers for 

image recognition at scale,” 2020, 

arXiv:2010.11929.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 28,2022 at 02:44:08 UTC from IEEE Xplore.  Restrictions apply. 



 D E C E M B E R  2 0 2 2  85

10. S. Yang et al., “COSMOS smart inter-

section: Edge compute and communi-

cations for bird’s eye object tracking,” 

in Proc. IEEE Int. Conf. Pervasive Com-

put. Commun. Workshops (SmartEdge), 

2020, pp. 1–7, doi: 10.1109/PerCom 

Workshops48775.2020.9156225.

11. A. Bochkovskiy, C.-Y. Wang, and 

H.-Y. M. Liao, “YOLOv4: Optimal 

speed and accuracy of object detec-

tion,” 2020, arXiv:2004.10934.

12. T.-Y. Lin, P. Goyal, R. Girshick, K. He, 

and P. Dollár, “Focal loss for dense 

object detection,” in Proc. IEEE Int. 

Conf. Comput. Vis. (ICCV), 2017, pp. 

2999–3007, doi: 10.1109/ICCV.2017.324.

13. W. Liu et al., “SSD: Single shot 

 multibox detector,” in Proc. Eur. 

Conf. Comput. Vis., 2016, pp. 21–37.

14. Z. Duan et al., “Smart city traffic inter-

section: Impact of video quality and 

scene complexity on precision and 

inference,” in Proc. IEEE Smart City’21, 

2021, pp. 1521–1528, doi: 10.1109/ 

HPCC-DSS-SmartCity-DependSys 

53884.2021.00226.

15. A. Angus, Z. Duan, G. Zussman, and 

Z. Kostic, “Real-time video ano-

nymization in smart city intersec-

tions,” in Proc. 2022 IEEE 19th Int. Conf. 

Mobile Ad Hoc Smart Syst. (MASS), to 

be published. 

16. Z. Yang, M. Sun, H. Ye, Z. Xiong, 

G. Zussman, and Z. Kostic, “Bird’s-

eye view social distancing analysis 

 system,” in Proc. 2022 IEEE Int. Conf. 

Commun. Workshops (ICC Workshops), 

pp. 427–432, doi: 10.1109/ICCWorkshops 

53468.2022.9814627.

17. M. Ghasemi et al., “Demo: Vid-

eo-based social distancing evaluation 

in the COSMOS testbed pilot site,” in 

Proc. ACM MOBICOM’21, 2021, pp. 1–3, 

doi: 10.1145/3447993.3510590.

18. M. Ghasemi, Z. Kostic, J. Ghaderi, 

and G. Zussman, “Auto-SDA: Auto-

mated video-based social distancing 

analyzer,” in Proc. ACM HotEdgeVi-

deo, 2021, pp. 7–12.

19. G. Karagiannis et al., “Vehicular 

networking: A survey and tutorial on 

requirements, architectures, chal-

lenges, standards and solutions,” IEEE 

Commun. Surveys Tuts., vol. 13, no. 4, 

pp. 584–616, Fourth Quarter 2011, doi: 

10.1109/SURV.2011.061411.00019.

20. C. R. Banbury et al., “Benchmarking 

tinyML systems: Challenges and 

direction,” 2020, arXiv:2003.04821.

21. Z. Dai, G. Wang, S. Zhu, W. Yuan, and 

P. Tan, “Cluster contrast for unsuper-

vised person re-identification,” 2021, 

arXiv:2103.11568.

ABOUT THE AUTHORS

ZORAN KOSTIĆ is a professor of professional practice at 

Columbia University, New York, NY 10027 USA. His research 

interests include the Internet of Things, physical data analytics, 

and applications of deep learning in smart cities, medicine, and 

health. Kostić received a Ph.D. in electrical engineering from the 

University of Rochester. Contact him at zk2172@columbia.edu.

ALEX ANGUS is at Qualcomm, Inc., San Diego, CA 92121 USA. 

His interests include applications of deep learning in smart 

cities and parallel computing architectures. Angus received 

an M.S. in electrical engineering from Columbia University. 

Contact him at alexsugna@gmail.com.

ZHENGYE YANG is a doctoral student in electrical engineer-

ing at Rensselaer Polytechnic Institute, Troy, NY 12180 USA. 

His research interests include computer vision, multimodal 

learning, and deep learning. Yang received an M.S. in elec-

trical engineering from Columbia University. Contact him at 

yangz15@rpi.edu.

ZHUOXU DUAN is a Ph.D. student at Rensselaer Polytech-

nic Institute, Troy, NY 121180 USA. His research interests 

include computer vision, deep learning, natural language 

processing, and multimodal understanding. Duan received 

an M.S. in electrical engineering from Columbia University. 

Contact him at duanz2@rpi.edu.

IVAN SESKAR is the chief technologist at WINLAB, Rutgers 

University, North Brunswick, NJ 08902 USA. His research inter-

ests include wireless communications, large-scale networking 

research testbeds, and applications. Seskar received an M.S. in 

electrical engineering. He is a Senior Member of IEEE and the 

cochair of the IEEE Future Networks Testbed Working Group. 

Contact him at seskar@winlab.rutgers.edu.

GIL ZUSSMAN is a professor of electrical engineering and com-

puter science at Columbia University, New York, NY 10027 USA. 

Zussman received a Ph.D. in electrical engineering from the Tech-

nion. He is a Fellow of IEEE. Contact him at gil@ee.columbia.edu.

DIPANKAR RAYCHAUDHURI is at WINLAB, Rutgers University, 

North Brunswick, NJ 08902 USA. He is the PI for the COSMOS 

testbed. His research interests include future network architec-

tures and protocols, wireless systems and technology, dynamic 

spectrum access and cognitive radio, and experimental proto-

typing and network research testbeds. Raychaudhuri received 

a Ph.D. from the State University of New York at Stony Brook. 

He is a Fellow of IEEE. Contact him at ray@winlab.rutgers.edu.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 28,2022 at 02:44:08 UTC from IEEE Xplore.  Restrictions apply. 


