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Abstract

We present a discontinuous Galerkin (DG)–onite difference (FD) hybrid

scheme that allows high-order shock capturing with the DG method for general

relativistic magnetohydrodynamics. The hybrid method is conceptually quite

simple. An unlimited DG candidate solution is computed for the next time step.

If the candidate solution is inadmissible, the time step is retaken using robust

FD methods. Because of its a posteriori nature, the hybrid scheme inherits the

best properties of both methods. It is high-order with exponential convergence

in smooth regions, while robustly handling discontinuities. We give a detailed

description of howwe transfer the solution between the DG and FD solvers, and

the troubled-cell indicators necessary to robustly handle slow-moving disconti-

nuities and simulate magnetized neutron stars. We demonstrate the efocacy of

the proposed method using a suite of standard and very challenging 1D, 2D,

and 3D relativistic magnetohydrodynamics test problems. The hybrid scheme

is designed from the ground up to efociently simulate astrophysical problems

such as the inspiral, coalescence, and merger of two neutron stars.

Keywords: discontinuous Galerkin, onite difference, GRMHD, neutron star,

WENO
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1. Introduction

The discontinuous Galerkin (DG) method was orst presented by Reed and Hill [1] to solve

the neutron transport equation. Later, in a series of seminal papers, Cockburn and Shu applied

the DG method to nonlinear hyperbolic conservation laws [2–4]. A very important property of

the DG method is that it guarantees linear stability in the L2 norm for arbitrary high order,

which was proven for the scalar case in [5] and for systems in [6, 7]. While this means the

DG method is very robust, DG alone is still subject to Godunov9s theorem [8]: at high order it

produces oscillatory solutions. Accordingly, it requires some nonlinear supplemental method

for stability in the presence of discontinuities and large gradients. A large number of differ-

ent methods for limiting the DG solution to achieve such stability have been proposed. The

basic idea shared by all the limiters is to detect troubled cells or elements (i.e., those whose

solution is too oscillatory or has some other undesirable property), then apply some nonlinear

reconstruction using the solution from neighboring elements. This idea is largely an extension

of what has worked well for onite-volume (FV) and onite-difference (FD) shock-capturing

methods.

In this paper we follow a different avenue that, to the best of our knowledge, was orst

proposed in [9]. The idea is to supplement a high-order spectral-type method—such as pseu-

dospectral collocation or, in our case, DG—with robust FV or FD shock-capturing methods.

If the solution in an element is troubled or inadmissible, the solution is projected to a FV or

FD grid and evolved with existing robust shock-capturing methods. This approach has been

applied to DG supplemented with FV in [10–16]. The major breakthrough in [12] was apply-

ing the shock detection and physical realizability checks on the solution after the time step

is taken and redoing the step if the solution is found to be inadmissible. We follow this a

posteriori approach because it allows us to guarantee a physically realizable solution (e.g.,

positive density and pressure), as well as allowing us to prevent unphysical oscillations from

entering the numerical solution. This procedure is in strong contrast to classical limiting strate-

gies, where effectively a olter is applied to the DG solution in an attempt to remove spurious

oscillations.

High-order pseudospectralmethods have proven extremely useful in producing a large num-

ber of long and accurate gravitational waveforms from binary black hole merger simulations

[17–25] as well as other applications in relativistic astrophysics [26–31]. Since binary inspi-

rals emit gravitational radiation, the numerical solution in most of the computational domain is

smooth but non-constant, and so high-ordermethods are preferable. During the inspiral portion

of a binary neutron star merger, the only discontinuities present are at the stellar surfaces. This

suggests that high-order methods can be used in most of the computational domain. Specio-

cally, the hydro solution inside the star is smooth, andwhile outside the star the hydro evolution

is not necessary, the Einstein equations still need to be solved and have a smooth solution.

The use of high-order methods allows for a signiocant reduction in computational cost of the

simulation, which is especially important for reducing the computational cost of producing a

large gravitational waveform catalog for binary neutron star mergers.

We present a detailed derivation and description of our DG–FD hybrid scheme and how

we use it to solve the equations of general relativistic magnetohydrodynamics (GRMHD). To

the best of our knowledge, the algorithm is the orst to successfully evolve a 3D magnetized

Tolman–Oppenheimer–Volkoff (TOV) star using DG methods. In section 2 we brieny review

the equations of GRMHD. In section 3 we give a brief overview of DG and conservative FD

methods, provide a new simple form of the moving mesh evolution equations, and discuss the

time step size restrictions of the DG and FD methods. In section 4 we state our requirements
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from a DG limiter or DG hybrid scheme, and then give an overview of common limiters cur-

rently used, includingwhich of our requirements theymeet. The newDG–FD hybrid scheme is

described in section 5. Speciocally, we discuss how to handle the intercell nuxes between ele-

ments using DG and FD, the idea of applying the troubled-cell indicators (TCIs) a posteriori,

the TCIs we use, and a new perspective on howDG–FD hybrid schemes should be interpreted.

In section 6 we present numerical results from the open-source code SpECTRE [32, 33] using

our scheme and conclude in section 7.

2. Equations of GRMHD

We adopt the standard 3 + 1 form of the spacetime metric, (see, e.g., [34, 35]),

ds2 = gab dx
adxb = −α2 dt2 + γi j

�

dxi + βi dt
��

dx j + β j dt
�

, (1)

where α is the lapse, βi the shift vector, and γ i j is the spatial metric. We use the Einstein

summation convention, summing over repeated indices. Latin indices from the orst part of the

alphabet a, b, c, . . . denote spacetime indices ranging from 0 to 3, while Latin indices i, j, . . .
are purely spatial, ranging from 1 to 3. We work in units where c = G = M� = 1.

SpECTRE currently solves equations in nux-balanced and orst-order hyperbolic form. The

general form of a nux-balanced conservation law in a curved spacetime is

∂tu+ ∂iF
i
= S, (2)

where u is the state vector, Fi are the components of the nux vector, and S is the source vector.

We refer the reader to the literature [34, 36, 37] for a detailed description of the equations

of GRMHD. If we ignore self-gravity, the GRMHD equations constitute a closed system that

may be solved on a given background metric. We denote the rest-mass density of the nuid by

ρ and its four-velocity by ua, where uaua = −1. The dual of the Faraday tensor Fab is

∗Fab =
1

2
�abcdFcd, (3)

where �abcd is the Levi-Civita tensor. Note that the Levi-Civita tensor is deoned here with the

convention [38] that in nat spacetime �0123 = +1. The equations governing the evolution of

the GRMHD system are:

∇a(ρu
a) = 0 (rest-mass conservation), (4)

∇aT
ab

= 0 (energy–momentumconservation), (5)

∇a
∗Fab = 0 (homogeneousMaxwell equation). (6)

In the ideal MHD limit the stress tensor takes the form

Tab = (ρh)∗uaub + p∗gab − babb (7)

where

ba = −∗Fabub (8)

is the magnetic oeld measured in the comoving frame of the nuid, and (ρh)∗ = ρh+ b2 and

p∗ = p+ b2/2 are the enthalpy density and nuid pressure augmented by contributions of

magnetic pressure pmag = b2/2, respectively.
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We denote the unit normal vector to the spatial hypersurfaces as na, which is given by

na =
�

1/α,−βi/α
�T
, (9)

na = (−α, 0, 0, 0). (10)

The spatial velocity of the nuid as measured by an observer at rest in the spatial hypersurfaces

(8Eulerian observer9) is

vi =
1

α

�

ui

u0
+ βi

�

, (11)

with a corresponding Lorentz factorW given by

W = −uana = αu0 =
1

�

1− γi jviv j
(12)

=

�

1+ γ i juiu j =
�

1+ γ i jW2viv j. (13)

The electric and magnetic oelds as measured by an Eulerian observer are given by

Ei = Fiana = αF0i, (14)

Bi = −∗Fiana = −α∗F0i. (15)

Finally, the comoving magnetic oeld ba in terms of Bi is

b0 =
W

α
Bivi, (16)

bi =
Bi + αb0ui

W
, (17)

while b2 = baba is given by

b2 =
B2

W2
+ (Bivi)

2. (18)

We now recast the GRMHD equations in a 3 + 1 split by projecting them along and per-

pendicular to na [36]. One of the main complications when solving the GRMHD equations

numerically is preserving the constraint

∂i(
√
γBi) = 0, (19)

where γ = det(γi j) is the determinant of the spatial metric. Analytically, initial data evolved

using the dynamical Maxwell equations are guaranteed to preserve the constraint. However,

numerical errors generate constraint violations that need to be controlled. We opt to use the

generalized Lagrange multiplier or divergence cleaning method [39] where an additional oeld

Φ is evolved in order to propagate constraint violations out of the domain. Our version is very

close to the one in [40]. The augmented system can still be written in nux-balanced form,where

4



Class. Quantum Grav. 39 (2022) 195001 N Deppe et al

the conserved variables are

u =
√
γ

»

¼

¼

¼

¼

½

D

Si
τ
Bi

Φ

¾

¿

¿

¿

¿

À

=

»

¼

¼

¼

¼

½

D̃

S̃i
τ̃
B̃i

Φ̃

¾

¿

¿

¿

¿

À

=
√
γ

»

¼

¼

¼

¼

½

ρW
(ρh)∗W2vi − αb0bi

(ρh)∗W2 − p∗ −
�

αb0
�2 − ρW

Bi

Φ

¾

¿

¿

¿

¿

À

, (20)

with corresponding nuxes

Fi =

»

¼

¼

¼

¼

½

D̃vitr
S̃ jv

i
tr + α

√
γp∗δij − αb jB̃

i/W

τ̃ vitr + α
√
γp∗vi − α2b0B̃i/W

B̃ jvitr − αv jB̃i + αγ i jΦ̃

αB̃i − Φ̃βi

¾

¿

¿

¿

¿

À

, (21)

and corresponding sources

S =

»

¼

¼

¼

¼

½

0

(α/2)S̃kl∂iγkl + S̃k∂iβ
k − Ẽ∂iα

αS̃klKkl − S̃k∂kα
−B̃ j∂ jβ

i
+Φ∂k(α

√
γγ ik)

αB̃k∂k ln α− αKΦ̃− ακΦ̃

¾

¿

¿

¿

¿

À

. (22)

The transport velocity is deoned as vitr = αvi − βi and the generalized energy Ẽ and source S̃i j

are given by

Ẽ = τ̃ + D̃, (23)

S̃i j =
√
γ
�

(ρh)∗W2viv j + p∗γ i j − γ ikγ jlbkbl
�

. (24)

3. The DG and conservative FD methods

We are interested in solving nonlinear hyperbolic conservation laws of the form

∂aF
a
= ∂tu+ ∂iF

i
= S, (25)

where u are the evolved/conserved variables, Fi are the nuxes, and S are the source terms.

3.1. DG method

In the DG method the computational domain is divided up into non-overlapping elements or

cells, which we denote by Ωk. This allows us to write the conservation law (25) as a semi-

discrete system, where time remains continuous. In the DGmethod one integrates the evolution

equation (25) against spatial basis functions of degree N, which we denote by φı̆. We index the
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basis functions and collocation points of the DG scheme with breve Latin indices, e.g. ı̆, j̆, k̆.
The basis functions are deoned in the reference coordinates of each element, which we denote

by ξ ı̂. We use hatted indices to denote tensor components in the reference frame. The reference

coordinates are mapped to the physical coordinates using the general function

xi = xi(ξ ı̂). (26)

We will discuss making the mapping time-dependent in section 3.3 below.

In the DG method we integrate the basis functions against (25),
�

Ωk

d3x φı̆

�

∂tu+ ∂iF
i − S

�

= 0, (27)

where repeated indices are implicitly summed over. Note that we are integrating over the phys-

ical coordinates, not the reference coordinates ξ ı̂. Following the standard prescription where

we integrate by parts and replace the nux on the boundary niF
i with a boundary term G (a

numerical nux dotted into the normal to the surface), we obtain the weak form
�

Ωk

d3x φı̆[∂tu− S]−
�

Ωk

d3x Fi∂iφı̆+

�

∂Ωk

d2Σφı̆G = 0, (28)

where ∂Ωk is the boundary of the element and d2Σ is the surface element. Undoing the

integration by parts gives us the equivalent strong form
�

Ωk

d3x φı̆

�

∂tu+ ∂iF
i − S

�

+

�

∂Ωk

d2Σφı̆

�

G− niF
i
�

= 0, (29)

where ni is the outward-pointing unit normal covector in the physical frame. Next, we use a

nodal DG method and expand the various terms using the basis φı̆ as

u =

N
�

ı̆=0

uı̆φı̆. (30)

The weak form can be written as
�

Ωk

d3x φı̆φk̆
�

∂tuk̆ − Sk̆
�

−
�

Ωk

d3x Fi
k̆
φk̆∂iφı̆+

�

∂Ωk

d2Σφı̆φk̆Gk̆ = 0. (31)

The equivalent strong form is
�

Ωk

d3x φı̆φk̆
�

∂tuk̆ + (∂iF
i)k̆ − Sk̆

�

+

�

∂Ωk

d2Σφı̆φk̆
�

G− niF
i
�

k̆
= 0. (32)

In the strong form we have expanded ∂iF
i in the basis, which might lead to aliasing [41]. In

practice, we have not encountered any aliasing-driven instabilities that require oltering.

In order to simplify the scheme, we use a tensor-product basis of 1D Lagrange inter-

polating polynomials with Legendre–Gauss–Lobatto collocation points. We denote this DG

scheme with 1D basis functions of degree N by PN. A PN scheme is expected to converge

at order O(∆xN+1) for smooth solutions [42], where ∆x is the 1D size of the element.

The reference elements are intervals in 1D, squares in 2D, and cubes in 3D, where each

component of the reference coordinates ξ ı̂ ∈ [−1, 1]. We use the map xi(ξ ı̂) to deform the

squares and cubes into different shapes needed to produce an efocient covering of the domain.

For example, if spherical geometries are present, we use xi(ξ ı̂) to create a cubed-sphere

domain.
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3.2. Conservative FD methods

Conservative FD methods evolve the cell-center values, but the cell-face values (the midpoints

along each axis) are necessary for solving the Riemann problem and computing the FD deriva-

tives of the nuxes. Denoting the numerical nux by F̂i and the kth-order FD derivative operator

by D
(k)
ı̂ , we can write the semi-discrete evolution equations as

∂tui +

�

∂ξ ı̂

∂xi

�

i

�

D
(k)
ı̂ F̂

i
�

i
= Si , (33)

where we use underlined indices to label FD cells/grid points. Equation (33) can be rewritten

to more closely resemble the DG form since we actually use G as the numerical nux F̂i on the

cell boundary. Speciocally,

∂tui +
1

Ji

�

ı̂

�

D
(k)
ı̂

�

J

�

∂ξ ı̂

∂xi
γ i j

∂ξ ı̂

∂x j
G(̂ı)

��

i

= Si , (34)

where J is the determinant of the Jacobian matrix ∂xi/∂ξ ı̂. This form allows our implemen-

tation to reuse as much of the DG Riemann solvers as possible, and also makes interfacing

between the DG and FD methods easier. Ultimately, we use a nux-difference-splitting scheme,

where we reconstruct the primitive variables to the interfaces between cells. Which reconstruc-

tion method we use is stated for each test problem below.

3.3. Moving mesh formulation

Moving themesh to follow interesting features of the solution can greatly reduce computational

cost. A moving mesh is also essential for evolutions of binary black holes, one of our target

applications, where the interior of the black holes needs to be excised to avoid the singularities

[23, 43]. Here we present a new form of the movingmesh evolution equations that is extremely

simple to implement and derive. We assume that the velocity of the mesh is some spatially

smooth function, though this assumption can be removed if one uses the path-conservative

methods described in [44] based on Dal Maso–LeFloch–Murat theory [45]. We write the map

from the reference coordinates to the physical coordinates as

t = t̂, xi = xi(ξ ı̂, t̂). (35)

The spacetime Jacobian matrix is given by

∂xa

∂ξâ
=

»

¼

½

∂t

∂ t̂

∂t

∂ξ ı̂

∂xi

∂ t̂

∂xi

∂ξ ı̂

¾

¿

À
=

»

½

1 0

vig
∂xi

∂ξ ı̂

¾

À, (36)

where the mesh velocity of the physical frame is deoned as

vig =
∂xi

∂ t̂
. (37)

The inverse spacetime Jacobian matrix is given by

∂ξâ

∂xa
=

»

¼

½

∂ t̂

∂t

∂ t̂

∂xi
∂ξ ı̂

∂t

∂ξ ı̂

∂xi

¾

¿

À
=

»

½

1 0

v ı̂g

�

∂xi

∂ξ ı̂

�−1

¾

À, (38)
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where the mesh velocity in the reference frame is given by

v ı̂g ≡
∂ξ ı̂

∂t
= −∂ξ ı̂

∂xi
vig. (39)

When composing coordinate maps the velocities combine as:

vig =
∂xi

∂ t̂
=

∂xi

∂ t̃
+

∂xi

∂X ı̃

∂X ı̃

∂ t̂
, (40)

where a new intermediate frame with coordinates {̃t,X ı̃} is deoned and X ı̃ = X ı̃
�

ξ ı̂, t̂
�

.

To obtain the moving mesh evolution equations, we need to transform the time derivative

in (25) from being with respect to t to being with respect to t̂. Starting with the chain rule for

∂u/∂ t̂, we get

∂u

∂t
=

∂u

∂ t̂
− ∂xi

∂ t̂
∂iu = ∂t̂u− ∂i

�

vigu
�

+ u∂iv
i
g. (41)

Substituting (41) into (25) we get

∂t̂u+ ∂i
�

Fi − vigu
�

= S− u∂iv
i
g. (42)

This formulation of the moving mesh equations is simpler than the common arbitrary

Lagrangian–Eulerian formulation [46].

The same DG or FD scheme used to discretize (25) can be used to discretize (42). In the

case that vig is an evolved variable, the additional term should be treated as a nonconservative

product using the path-conservative formalism [44]. Finally, we note that the characteristic

oelds are unchanged by the mesh movement, but the characteristic speeds λ are changed to

λ→ λ− niv
i
g.

3.4. Time discretization

We evolve the semi-discrete system (be it the DG or FD discretized system) in time using a

method of lines. We use either a third-order strong-stability preserving Runge–Kutta method

[47] or a forward self-starting Adams–Bashforth time stepper [48, 49]. Which method is used

will be noted for each test case.

The DG method has a rather restrictive Courant–Friedrichs–Lewy (CFL) condition that

decreases as the polynomial degreeN of the basis is increased. The CFL number scales roughly

as 1/(2N+ 1) [50, 51], which can be understood as a growth in the spectrum of the spatial

discretization operator [52]. For a DG discretization in d spatial dimensions, the time step ∆t

must satisfy

∆t �
1

d(2N + 1)

h

|λmax|
, (43)

where h is the characteristic size of the element and λmax is the maximum characteristic speed

of the system being evolved. For comparison, FV and FD schemes have a time step restriction

of

∆t �
1

d

h

|λmax|
, (44)

where h is the characteristic size of the FV or FD cell. However, a DG element has N+ 1 grid

points per dimension, while FV or FD cells only have one, and so the CFL condition for DG

is partly offset by the increase in order that the algorithm provides.

8
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4. Limiting in the DG method

In this section we give an overview of what we require from a DG limiter, followed by a brief

discussion of existing limiters in the literature and which of our requirements they meet.

4.1. Requirements

We have several requirements that, when combined, are very stringent. However, we view these

as necessary for DG to live up to the promise of a high-order shock-capturing method. In no

particular order, we require that

Requirements 4.1

(a) Smooth solutions are resolved, i.e., smooth extrema are not nattened,

(b) Unphysical oscillations are removed,

(c) Physical realizability of the solution is guaranteed,

(d) Sub-cell or sub-element resolution is possible, i.e., discontinuities are resolved inside the

element, not just at boundaries,

(e) Curved hexahedral elements are supported,

(f ) Slow-moving shocks are resolved,

(g) Moving meshes are supported,

(h) Higher than fourth-order DG can be used.

Requirement 4.1(d) is necessary to justify the restrictive time step size, (43). That is, if discon-

tinuities are only resolved at the boundaries of elements, the DG scheme results in excessive

smearing. In such a scenario it becomes difocult to argue for using DG over FV or FD meth-

ods. While in principle it is possible to use adaptive mesh reonement or hp-adaptivity to switch

to low-order DG at discontinuities, effectively switching to a low-order FV method, we are

unaware of implementations that are capable of doing so for high-order DG.

We note that achieving higher-than-fourth order is especially challenging with many of

the existing limiters. Since FV and FD methods of fourth or higher order are becoming more

common, we view high order as being crucial for DG to be competitive with existing FV and

FD methods, especially given the restrictive time step size.

4.2. Overview of existing DG limiters

Aside from the FV subcell limiters [10–12], DG limiters operate on the solution after a time

step or substep is taken so as to remove spurious oscillations and sometimes also to correct

unphysical values. This is generally achieved by some nonlinear reconstruction using the solu-

tion in neighboring elements. How exactly this reconstruction is done depends on the specioc

limiters, but all limiters involve two general steps:

(a) Detecting whether or not the solution in the element is 8bad9 (TCIs),

(b) Correcting the degrees of freedom/solution in the element.

A good TCI avoids triggering the limiter where the solution is smooth while still preventing

spurious unphysical oscillations. Unfortunately, making this statement mathematically rigor-

ous is challenging and the last word is yet to be written on which TCIs are the best. Since

the TCI may trigger in smooth regions, ideally the limiting procedure does not natten local

extrema when applied in such regions. In a companion paper [53] we have experimented with

the (admittedly quite dated but very robust) minmod family of limiters [3, 4, 54], the hier-

archical limiter of Krivodonova [55, 56], the simple WENO limiter [57], and the Hermite

9
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WENO (HWENO) limiter [58]. While this does not include every limiter applicable to struc-

tured meshes, it covers the common ones. We will discuss each limiter in turn, reporting what

we have found to be good and bad.

The minmod family of limiters [3, 4, 54] linearize the solution and decrease the slope

if the slope is deemed to be too large. This means that the minmod limiters quickly nat-

ten local extrema in smooth regions, do not provide sub-element resolution, and are not

higher-than-fourth order. While they are extremely robust and tend to do a good job of main-

taining physical realizability of the solution despite not guaranteeing it, the minmod limiters

are simply too aggressive and low-order to make DG an attractive replacement for shock-

capturing FD methods. Furthermore, generalizing the minmod limiters to curved elements in

the naïve manner makes them very quickly destroy any symmetries of the domain decom-

position and solution. Overall, we ond that the minmod limiters satisfy only requirements

4.1(b), (f ), and (g).

The hierarchical limiter of Krivodonova [55, 56] works by limiting the coefocients of the

solution9s modal representation, starting with the highest coefocient then decreasing in order

until nomore limiting is necessary.We ond that in 1D theKrivodonova limiter works quitewell,

even using fourth-order elements. However, in 2D and 3D and for increasingly complex phys-

ical systems, the limiter fails. Furthermore, it is nontrivial to extend to curved elements since

comparing modal coefocients assumes the Jacobian matrix of the map xi(ξ ı̂) is spatially uni-

form. The Krivodonova limiter satisoes requirements 4.1(a), (f ), and (g).We ond that howwell

the Krivodonova limiter works at removing unphysical oscillations depends on the physical

system being studied.

The simpleWENO [57] and the HWENO [58] limiters are quite similar to each other.When

limiting is needed, these limiters combine the element9s solutionwith a set of solution estimates

obtained from the neighboring elements9 solutions. An oscillation indicator is applied on each

solution estimate to determine the convex nonlinear weights for the reconstruction. Overall,

the WENO limiters are, by design, very similar to WENO reconstruction used in FV and FD

methods. We have found that the WENO limiters are generally robust for second- and third-

orderDG, but start producing unphysical solutions at higher orders. TheWENO limiters satisfy

our requirements 4.1(a), (b), (f ), and (g). When supplemented with a positivity-preserving

limiter [59], the WENO schemes are also able to satisfy requirement 4.1(c).

In short, none of the above limiters satisfy even half of our requirements 4.1. Furthermore,

they all have parameters that need to be tuned for them to work well on different problems.

This is unacceptable in realistic astrophysics simulations, where a large variety of complex

nuid interactions are occurring simultaneously in different parts of the computational domain,

and it is impossible to tune parameters such that all nuid interactions are resolved.

The subcell limiters [10–12] are much more promising and we will extend them to meet

all the requirements 4.1. We will focus on the scheme proposed in [12] since it satisoes most

of requirements 4.1. The basic idea behind the DG-subcell scheme is to switch to FV or, as

proposed here, FD if the high-order DG solution is inadmissible, either because of excessive

oscillations or violation of physical requirements on the solution. This idea was orst presented

in [9], where a spectral scheme was hybridized with a WENO scheme. In [10, 11] the decision

whether to switch to a FV scheme is made before a time step is taken. In contrast, the scheme

presented in [12] undoes the time step (or substep if using a Runge–Kutta substep method)

and switches to a FV scheme. The advantage of undoing the time (sub) step is that physical

realizability of the solution can be guaranteed as long as the FV or FD scheme guarantees phys-

ical realizability. The scheme of [12] is often referred to as an a posteriori limiting approach,

where the time step is redone using the more robust method. Given a TCI that does not allow
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unphysical oscillations and a high-order positivity-preserving FV/FD method, the subcell lim-

iters as presented in the literature meet all requirements except 4.1(e) (curved hexahedral

elements), (f ) (slow-moving shocks), and (g) (moving mesh), limitations that we will address

below. The key feature that makes the DG-subcell scheme a very promising candidate for a

generic, robust, and high-ordermethod is that the limiting is not based on polynomial behavior

alone but considers the physics of the problem. By switching to a low-order method to guar-

antee physical realizability, the DG-subcell scheme guarantees that the resulting numerical

solution satisoes the governing equations, even if only at a low order locally in space and time.

Moreover, the DG-subcell scheme can guarantee that unphysical solutions such as negative

densities never appear.

5. DG–FD hybrid method

In this section we present our DG–FD hybrid scheme. The method is designed speciocally to

address all requirements 4.1, and means in particular that the method is a robust high-order

shock-capturing method. We orst discuss how to switch between the DG and FD grids. Then

we explain how neighboring elements communicate nux information if one element is using

DG while the other is using FD. Next we review the a posteriori idea and discuss the TCIs

we use, when we apply them, and how we handle communication between elements. Finally,

we discuss the number of subcells to use and provide a new perspective on the DG–FD hybrid

scheme that makes the attractiveness of such a scheme clear. In appendix A we provide an

example of how curved hexahedral elements can be handled.

5.1. Projection and reconstruction between DG and FD grids

Wewill denote the solution on the DG grid by uı̆ and the solution on the FD grid by ui . We need

to determine how to project the solution from the DG grid to the FD grid and how to reconstruct

the DG solution from the FD solution. For simplicity, we assume an isotropic number of DG

collocation points (N+ 1)d and FD cells (Ns)
d. Since FD schemes evolve the solution value at

the cell-center, one method of projecting the DG solution to the FD grid is to use interpolation.

However, interpolation is not conservative and so we opt for an L2 projection, which is conser-

vative if projecting to a grid with equal or more degrees of freedom. That is, we assume that

Ns � N+ 1. The L2 projection minimizes the integral

� 1

−1

(u− u)2 dx =

� 1

−1

(u− u)2J dξ (45)

with respect to u, where u is the solution on the FD subcells. While we derive the projec-

tion matrix in 1D, generalizing to 2D and 3D is straightforward for our tensor product basis.

Substituting the nodal basis expansion into (45) we obtain

� 1

−1

�

uı̆�̆ı(ξ)uj̆�j̆(ξ)+ ui�i(ξ)u j� j(ξ)− 2ui�i(ξ)uı̆�̆ı(ξ)
�

J dξ, (46)

where � j(ξ) are the Lagrange interpolating polynomials on the subcells (i.e. � j(ξi ) = δ ji).
Varying (46) with respect to the coefocients ui and setting the result equal to zero we get

� 1

−1

�

u j�i(ξ)� j(ξ)− uı̆�i(ξ)�̆ı(ξ)
�

δuiJ dξ = 0. (47)
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Since (47) must be true for all variations δui we see that

� 1

−1

�

u j�i(ξ)� j(ξ)− uı̆�i(ξ)�̆ı(ξ)
�

J dξ = 0. (48)

By expanding the determinant of the Jacobian on the basis we can simplify (48) to get

uiJi

� 1

−1

�i(ξ)� j(ξ) dξ = uı̆J̆ı

� 1

−1

�̆ı(ξ)� j(ξ) dξ. (49)

Note that expanding uJ on the basis instead of u creates some decrease in accuracy and can

cause aliasing if uJ is not fully resolved by the basis functions. However, this procedure allows

us to cache the projection matrices to make the methodmore efocient. Furthermore, expanding

the Jacobian on the basis means interpolation and projection are equal when Ns � N+ 1. We

solve for uiJi in (49) by inverting the matrix
� 1

−1
�i(ξ)� j(ξ) dξ and ond that

uiJi =

�� 1

−1

�i(ξ)� j(ξ) dξ

�−1� 1

−1

�l̆ (ξ)� j(ξ) dξul̆ Jl̆

= �l̆ (ξi)ul̆ Jl̆ = Pi l̆ ul̆ Jl̆ , (50)

where Pi l̆ is the L2 projection matrix.

Reconstructing the DG solution from the FD solution is a bit more involved. Denoting the

projection operator by P and the reconstruction operator byR, we desire the property

R(P(uı̆J̆ı)) = uı̆J̆ı. (51)

We also require that the integral of the conserved variables over the subcells is equal to the

integral over the DG element. That is,

�

Ω

u d3x =

�

Ω

u d3x =⇒
�

Ω

uJ d3ξ =

�

Ω

uJ d3ξ. (52)

Since Ns � N+ 1 we need to solve a constrained linear least squares problem.

We will denote the weights used to numerically evaluate the integral over the subcells by Ri
and the weights for the integral over the DG element bywl. To ond the reconstruction operator

we need to solve the system

�

l̆

Pi l̆ ul̆ Jl̆ = uiJi , (53)

subject to the constraint

�

l̆

wl̆ ul̆ Jl̆ =
�

i

RiuiJi . (54)

We do so by using the method of Lagrange multipliers. Denoting the Lagrange multiplier by

λ, we must minimize the functional

f =
�

Pi l̆ ul̆ Jl̆ − uiJi

�

�

Pi j̆uj̆Jj̆ − uiJi
�

− λ
�

wl̆ ul̆ Jl̆ − RiuiJi
�

(55)
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with respect to ul̆ Jl̆ and λ. Doing so we obtain the Euler–Lagrange equations

�

2Pil̆Pi j̆ −wl̆

wl̆ δl̆ j̆ 0

��

uj̆Jj̆
λ

�

=

�

2Pil̆

Ri

�

�

uiJi
�

. (56)

Inverting the matrix on the left side of (56), we obtain

�

uj̆Jj̆
λ

�

=

�

2Pil̆Pi j̆ −wl̆

wl̆ δl̆ j̆ 0

�−1�
2Pil̆

Ri

�

�

uiJi
�

. (57)

To make the notation less cumbersome we suppress indices by writing wl̆ as �w and wl̆ δl̆ j̆ as
w. Treating the matrix as a partitioned matrix, we invert it to ond

�

2PP −�w
w 0

�−1

=

�

Π−Π�wWwΠ Π�wW
−WwΠ W

�

. (58)

Here we have deoned

Π = (2PP)−1, W =
�

w(2PP)−1�w
�−1

. (59)

Substituting (58) into (57) and performing the matrix multiplication we get

�

uj̆Jj̆
λ

�

=

�

Π2P −Π�wWwΠ2P +Π�wW�R

−WwΠ2P +W�R

�

j̆i

uiJi , (60)

where �R is short for Ri . We can see that the orst row of (60) gives

uj̆Jj̆ =
�

Π2P −Π�wWwΠ2P +Π�wW�R
�

j̆i
uiJi , (61)

and so the reconstruction matrix used to obtain the DG solution from the FD solution is given

by

Rj̆i =

�

Π2P −Π�wWwΠ2P +Π�wW�R
�

j̆i
. (62)

To show that the reconstruction matrix (62) satisoes (51) we start by substituting (62) into

(51):

RPuJ =
�

Π2P −Π�wWwΠ2P +Π�wW�R
�

PuJ

=

�

ÿ−Π�wWw+Π�wW�RP
�

uJ

= {ÿ−Π�wWw+Π�wWw}uJ
= uJ, (63)

where we used the constraintwuJ = �RPuJ. Thus, the matrix given in (62) is the reconstruction

matrix for obtaining the DG solution from the FD solution on the subcells and is the pseudo-

inverse of the projection matrix. Note that since the reconstruction matrices also only depend

on the reference coordinates, they can be precomputed for all elements and cached.
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We now turn to deriving the integration weights Ri on the subcells. One simple option is

using the extended midpoint rule:
�

Ω

u d3x ≈ ∆ξ∆η∆ζ
�

i

uiJi , (64)

which means Ri = ∆ξ∆η∆ζ. However, this formula is only second-order accurate. To obtain

a higher-order approximation, we need to ond weights Ri that approximate the integral

� b

a

f (x) dx ≈
n
�

i=0

Ri f (xi).

We provide the weights Ri in appendix B.

5.2. Intercell fluxes

One approach to dealing with the intercell nuxes is to use the mortar method [60–63]. In the

mortar method, the boundary correction terms and numerical nuxes are computed on a new

mesh whose resolution is the greater of the two elements sharing the boundary. In practice,

we have found this not to be necessary to achieve a stable scheme. This can be understood

by noting that from a shock capturing perspective, violating conservation is only an issue at

discontinuities.Wherever the solution is smooth, conservation violations converge away. Since

the hybrid scheme switches from DG to FD before a shock enters an element by retaking

the time (sub) step, and since discontinuities are inevitably always somewhat smeared in any

shock capturing scheme, we have found that exact conservation is not required between a DG

and FD grid. The lack of conservation arises from reconstructing the FD variables to the DG

element9s interface before computing G, rather than computing G on the FD cell faces and

then reconstructing G. Note that not enforcing exact conservation at boundaries is merely an

implementation convenience.

First, let us describe the element using FD. In this case, the neighbor input data to the

boundary correction from the DG grid is projected onto the FD grid on the interface. Then the

Riemann solver computes the boundary correction G, which is then used in the FD scheme.

On the DG grid the FD scheme is used to reconstruct the neighboring data on the common

interface from the subcell data. The reconstructed FD data is then reconstructed to the DG

grid, that is, it is transferred from the FD to the DG grid on the interface. Finally, the boundary

correction is computed on the DG grid. It is the reordering of the reconstruction and projection

with the Riemann solver that violates conservation at the truncation error level. Note that the

DG and FD solvers must use the same Riemann solver.

5.3. The a posteriori idea

In this section we will discuss how the a posteriori idea is implemented. For now, we will not

concern ourselves with which TCI is used, just that one is used to detect troubled cells. We

have several criteria that drive the design decision. Speciocally,

• Only one communication between nearest neighbors is necessary per time (sub) step;

• Switching between DG and FD does not require additional communication and neighbor

information;

• Exact conservation between neighboring elements can be enforced;

• Both substep (Runge–Kutta) and multi-step (Adams–Bashforth) time integrators are

supported;
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Figure 1. A schematic description of the proposed DG–FD hybrid method. We use
superscripts n and n+ 1 to denote variables at time tn and tn+1. The unlimited DG loop,
projection to and reconstructions from the FD subcells, and the FD loop are boxed to
highlight how the hybrid scheme can be split into the unlimited DG and FD schemes
with transformations (projection and reconstruction) that allow switching between the
two methods. Steps that exchange data with neighboring elements are highlighted in
light gray and have a dashed border. Speciocally, these are 8exchange ghost cells and
nuxes9 and 8exchange ghost cells9.

• Physical realizability of the solution can be guaranteed.

We present a schematic of our DG–FD hybrid scheme in ogure 1. The schematic has the

unlimitedDG loop on the left and the positivity-preservingFD loop on the right. Between them

are the projection and reconstruction operations that allow the two schemes to work together

and communicate data back and forth. The scheme starts in the 8unlimited DG loop9 in the top

left with a computation of the volume candidate. If the TCI onds the solution admissible the

8passed9 branch is taken, otherwise the 8failed9 branch is taken.

The algorithm proceeds as follows. We orst compute a candidate solution u�(tn+1) at time

tn+1 using an unlimitedDG scheme. The TCI is then used to checkwhether or not the candidate

solution u�(tn+1) is admissible. The TCI may depend on the candidate solution, the solution

at the current time u(tn) within the element, and the solution in neighboring elements at time

tn. In order to minimize communication between elements, the TCI may not depend on the

candidate solution in neighboring elements. If the candidate solution is found to be admissi-

ble by the TCI, we use it as the solution at tn+1. That is, u(tn+1) = u�(tn+1). If the candidate

solution is inadmissible, then we redo the time step using the FD subcells. In this case, the

solution at tn and the time stepper history (the time derivatives ∂tu(t
n−1), etc) are projected

onto the subcells, FD reconstruction is performed, data for the boundary correction/Riemann

solver at the element boundaries is overwritten by projecting the DG solution to the FD grid
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on the element boundaries, and the FD scheme takes the time step. Overwriting the FD recon-

structed data uinterfaceFD with the projected DG solution P(uinterfaceDG ) on the interfaces makes the

scheme conservative when retaking the time step. Since the scheme is switching from DG to

FD, it is likely a discontinuity is present and conservation is important. This ultimately means

that neighboring elements are not aware that the element switched from DG to FD between

times tn and tn+1 until boundary data for time tn+1 is exchanged. Since the DG solution at time

tn is admissible, projecting it to the FD interface grid will be acceptable in nearly all cases.

In cases where this projection leads to an unphysical solution, all elements sharing the inter-

face can detect this and switch to FD; however, we have not yet implemented this. We now

describe in detail how the algorithm is implemented in terms of communication patterns and

parallelization.

First consider an element using DG. We start by computing the local contributions to the

time derivative, the nuxes, source terms, non-conservative terms, and nux divergence.We store

∂tu, compute local contributions to the boundary correction G, and then send our contribu-

tions to the boundary correction as well as the ghost cells of the primitive variables used for

FD reconstruction to neighboring elements, as well as the interface mesh used to inform the

neighbor that we are using DG. By sending both the inputs to the boundary correction and the

data for FD reconstruction, we reduce the number of times communication is necessary. This

is important since generally it is the number of times data is communicated not the amount of

data communicated that causes a bottleneck. Once all contributions to the Riemann problem

are received from neighboring elements, we compute the boundary correction and compute the

candidate solution u�(tn+1). We then apply the TCI described in section 5.4 below. If the cell

is marked as troubled we undo the last timestep/substep and retake the timestep/substep using

the FD method3. FD reconstruction is performed, but the projected boundary correction from

the DG solve is used to ensure conservation between neighboring elements using FD. If the

cell was not marked as troubled, we accept the candidate solution as being valid and take the

next timestep/substep.

The FD solver starts by sending the data necessary for FD reconstruction to neighbor-

ing elements, including the interface mesh used to inform the neighbor that FD is being

used. This means any neighboring elements doing DG need to reconstruct the inputs into

the boundary correction using FD reconstruction. However, this allows us to maintain a sin-

gle communication per time step, unlike traditional limiting strategies which inherently need

two communications per time step. Once all FD reconstruction and boundary correction data

has been received from neighboring elements, a FD time step is taken. Any DG boundary

correction data is projected to the FD grid in order to reduce conservation violations at ele-

ment boundaries. With the FD time step complete, we apply a TCI to see if the DG solution

would be admissible. In both Runge–Kutta and multi-step methods, care is taken so as to not

introduce discontinuities into the solution because they were present in past timesteps or sub-

steps. In the case of Runge–Kutta time stepping we only switch back to DG at the end of

a complete time step in order to avoid reconstructing discontinuities in the time stepper his-

tory to the DG grid. When multi-step methods are used, we wait until the TCI has marked

enough time steps as being representable on the DG grid so that any discontinuities have

cleared the time stepper history. For example, when using a third-order multi-step method

the TCI needs to deem three time steps as representable on the DG grid before we switch to

DG. For the multi-step method we apply the reconstruction operator R to the time stepper

history (∂tu(t
n−1) etc).

3Note that only the most recent substep is retaken if a substep time integrator is being used.
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5.4. Troubled-cell indicators

One of the most important parts of the DG–FD hybrid method is the TCI that determines when

to switch from DG to FD. In [12] a numerical indicator based on the behavior of the polyno-

mials representing the solution was used as well as physical indicators such as the density or

pressure becoming negative.We believe that the combination of numerical and physical indica-

tors is crucial, since it enables the development of non-oscillatory methods that also guarantee

physical realizability of the solution.Wewill orst outline the numerical indicator in this section.

Then we will give a detailed description of the TCIs we use with the GRMHD system for the

initial data, determining when to switch from DG to FD, and when to switch from FD back

to DG.

The numerical indicator used in [12] is a relaxed discrete maximum principle (RDMP). The

RDMP is a two-time-level indicator in the sense that it compares the candidate at tn+1 to the

solution at time tn. The RDMP requires that

min
N

�

u(tn)
�

− δ � u�(tn+1) � max
N

�

u(tn)
�

+ δ, (65)

whereN are either the Neumann or Voronoi neighbors plus the element itself, δ is a parameter

deoned below that relaxes the discrete maximum principle, and u are the conserved variables4.

When computing max(u) and min(u) over an element using DG, we orst project the DG solu-

tion to the subcells and then compute the maximum and minimum over both the DG solution

and the projected subcell solution. However, when an element is using FD we compute the

maximum and minimum over the subcells only. Note that the maximum and minimum values

of u� are computed in the same manner as those of u. The parameter δ used to relax the discrete
maximum principle is given by:

δ = max

�

δ0, �

�

max
N

�

u(tn)
�

−min
N

�

u(tn)
�

��

, (66)

where, as in [12], we take δ0 = 10−7 and � = 10−3.

We have found that the RDMP TCI is not able to handle slow-moving shocks. This is pre-

cisely because it is a two-time-level TCI andmeasures the change in the solution from one time

step to the next. Since discontinuities are inevitably still somewhat smeared with a FD scheme,

a discontinuitymoving slowly enough gradually generates large oscillations inside the element

it is entering. The RDMP, measuring relative changes, does not react quickly enough or at all,

and so the DG method ends up being used in elements with discontinuities. We demonstrate

this below in the simple context of a 1D Burgers step solution with the mesh moving at nearly

the speed of the discontinuity.

Since using the RDMPmeans we are unable to satisfy requirements 4.1(f) and (g), we seek

a supplementary TCI to deal with these cases. We use the TCI proposed in [64], which we

will refer to as the Persson TCI. This TCI looks at the falloff of the spectral coefocients of

the solution, effectively comparing the power in the highest mode to the total power of the

solution. Consider a discontinuity sensing quantity U, which is typically a scalar but could be

a tensor of any rank. Let U have the 1D spectral decomposition:

U(x) =

N
�

i=0

ciPi(x), (67)

4Any choice of quantities can be monitored.
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where in our case Pi(x) are Legendre polynomials, and ci are the spectral coefocients5. We

then deone a oltered solution Û as

Û(x) = cNPN(x). (68)

The main goal of Û is to measure how much power is in the highest mode, which is the mode

most responsible for Gibbs phenomenon. In 2D and 3D we consider Û on a dimension-by-

dimension basis, taking the L2 norm over the extra dimensions, reducing the discontinuity

sensing problem to always being 1D. We deone the discontinuity indicator sΩ as

sΩ = log10

�

(Û, Û)

(U,U)

�

, (69)

where (·, ·) is an inner product, which we take to be the Euclidean L2 norm (i.e. we do not

divide by the number of grid points since that cancels out anyway).

We must now decide what values of sΩ are large and therefore mean the DG solution is

inadmissible. For a spectral expansion, we would like the solution to be at least continuous

and so the spectral coefocients should decay at least as 1/N2 [65]. Since our sensor depends

on the square of the coefocients, we expect at least 1/N4 decay for smooth solutions. With this

in mind, we have found that requiring

sΩ < se = −αN log10(N + 1), (70)

with αN = 4 works well for detecting oscillations and switching to the FD scheme. In order to

prevent rapid switching between the DG and FD schemes, we use αN + 1 for the TCI when

deciding whether to switch back to DG.

5.4.1. Initial data TCI for GRMHD. We set the initial data on the DG grid, and then check a

series of conditions to see if the initial data is representable on the DG grid. We require:

(a) That min(D̃) over both the DG grid and the subcells is above a user-specioed threshold.

This is essentially a positivity check on D̃.

(b) That min(τ̃ ) over both the DG grid and the subcells is above a user-specioed threshold.

This is essentially a positivity check on τ̃ .

(c) That for all conserved variables their max and min on the subcells satisoes an RDMP

compared to the max and min on the DG grid. The tolerances chosen are typically the

same as those used for the two-level RDMP during the evolution.

(d) That D̃ and τ̃ pass the Persson TCI.

(e) That if max

�

�

B̃iδi jB̃ j

�

is above a user-specioed threshold,

�

B̃iδi jB̃ j satisoes the

Persson TCI.

If all requirements are met, then the DG solution is admissible.

5.4.2. TCI on DG grid for GRMHD. On the DG grid we require:

(a) That the RDMP TCI passes.

(b) That min(D̃) is above a user-specioed threshold. This is essentially a positivity check. This

is done over both the DG and projected subcell solution.

5When a olter is being used to prevent aliasing-driven instabilities, lower modes need to be included in Û. Û should

generally be the highest unoltered mode.
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(c) That min(τ̃ ) is above a user-specioed threshold. This is essentially a positivity check. This
is done over both the DG and projected subcell solution.

(d) That B̃2 � 1.0− �B2τ̃
√
γ at all grid points in the DG element.

(e) That primitive recovery is successful.

(f ) That if we are in the atmosphere, we stay on DG. Since we have now recovered the

primitive variables, we are able to say with certainty whether or not we are in atmosphere.

(g) That D̃ and τ̃ pass the Persson TCI.

(h) That if max

�

�

B̃iδi jB̃ j

�

is above a user-specioed threshold,

�

B̃iδi jB̃ j satisoes the

Persson TCI.

If all requirements are met, then the DG solution is admissible.

5.4.3. TCI on FD grid for GRMHD. In order to switch to DG from FD, we require:

(a) That the RDMP TCI passes.

(b) That no conserved variable oxing was necessary. If the conserved variables needed to be

adjusted in order to recover the primitive variables, then even the FD solution is inaccurate.

(c) That min(D̃) is above a user-specioed threshold. This is essentially a positivity check.

(d) That min(τ̃ ) is above a user-specioed threshold. This is essentially a positivity check.

(e) That D̃ and τ̃ pass the Persson TCI.

(f) That if max

�

�

B̃iδi jB̃ j

�

is above a user-specioed threshold,

�

B̃iδi jB̃ j satisoes the

Persson TCI.

If all the above checks are satisoed, then the numerical solution is representable on the DG

grid.

5.5. On the number of subcells to use

The only hard requirement on the number of subcells used in 1D is Ns � N+ 1 so that there

are at least as many degrees of freedom to represent the solution on the subcells as there are in

the DG scheme. However, the more optimal choice, as is argued in [12], is Ns = 2N+ 1. This

arises from comparing the time step size allowed when using a DG method, (43), to the time

step size allowed when using a FV or FDmethod, (44). ChoosingNs > 2N+ 1 is not desirable

since that would result in having to take smaller time steps when switching from DG to FD.

We refer the reader to section 4.5 of [12] for a more detailed discussion of the optimal number

of subcells to use.

5.6. Perspective on DG–FD hybrid method

Given the complexity of the DG–FD hybrid scheme and the relative expense of FD schemes

compared to the DG scheme, the DG–FD hybrid scheme might seem like a poor choice. We

argue that this is not the case and that the hybrid scheme is actually a good choice. Consider

needing a resolution of 130d (very modest) to solve a problem using a FD scheme to a desired

accuracy. The equivalent DG–FD hybrid scheme would use ten seventh-order elements so that

in the worst case, where there are large discontinuities everywhere in the domain, the scheme

is as accurate as the FD scheme. However, wherever the solution is smooth enough to be rep-

resentable using DG, roughly 2d fewer grid points are necessary. In 3D this makes a signiocant

difference, especially if the numerical solution is representable using DG in much of the com-

putational domain. For example, consider the case where half the elements are using FD. In
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this case the DG–FD hybrid scheme uses ∼ 0.58 times as many grid points as the equivalent

FD scheme. Furthermore, the DG scheme only needs to solve the Riemann problem on ele-

ment boundaries, and does not need to perform the expensive reconstruction step necessary

in FD and FV schemes. Thus, the decrease in the number of grid points is a lower bound on

the performance improvement the DG–FD hybrid scheme has to offer. Ultimately, we believe

that the more useful view of the DG–FD hybrid scheme is that it is a FD scheme that uses DG

as a way to compress the representation of the solution in smooth regions in order to increase

efociency.

6. Numerical results

6.1. Burgers equation: a slowly moving discontinuity

While extremely simple, Burgers equation allows us to easily test how well the RDMP and

Persson TCI are able to handle slowly-moving discontinuities. Burgers9 equation is given by

∂tU + ∂x

�

U2

2

�

= 0. (71)

Whenever we use the Persson TCI we use the evolved variable U as the discontinuity sensing

quantity.

We evolve the solution

U(x, t) =

�

2 if x � 0.25+ 1.5t

1 otherwise
(72)

on a moving mesh. The mesh has a velocity vxg = 1.4, while the discontinuity moves at speed

1.5. Thus, the discontinuitymoves relatively slowly across the grid, allowing us to test howwell

each TCI handles such discontinuities.We integrate (71) using a third-orderAdams–Bashforth

time stepper, on an initial domain x ∈ [−1, 1] with eight P5 elements. We compare the RDMP

TCI and the Persson TCI in ogure 2 at a onal time of tf = 1.5. The top row uses a time

step of ∆t = 2.5× 10−3 and the bottom row uses ∆t = 5× 10−4. In all cases a third-order

weighted compact nonlinear scheme is used for FD reconstruction. We use a Rusanov or local

Lax–Friedrichs numerical nux/boundary correction.

The leftmost plot in the top row of ogure 2 uses the Persson TCI with αN = 3, the center

plot in the top row uses the Persson TCI with αN = 4, and the rightmost plot in the top row uses

the RDMP TCI. We see that, in agreement with what is expected from a convergence analysis

of Legendre polynomials [65], using αN = 4 to switch to the FD scheme is most robust as an

indicator.We see that both the Persson TCI with αN = 3 and the RDMP TCI struggle to switch

to the FD scheme quickly enough to prevent unphysical oscillations from entering the solution.

In the bottom row of ogure 2 we use a smaller time step size,∆t = 5× 10−4, to make the rela-

tive change inU from one time step to the next smaller. From left to right we show results using

the Persson TCI with αN = 4, the RDMP TCI, and the Persson TCI with αN = 3 alongside the

RDMP TCI. In general, the RDMP is much better at preventing oscillations from appearing

on the left of the discontinuity, while the Persson TCI does a better job on the right of the

discontinuity. While interesting, it is unclear how this translates to more complex systems and

nows. Although we cannot completely discount the RDMP, the Persson indicator does have

an advantage in all cases, but using both TCIs together gives the best results. We ran the Pers-

son TCI with αN = 4 alongside the RDMP TCI for the smaller time step case and found that
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Figure 2. The step Burgers problem at tf = 1.5 using a DG–P5 scheme hybridized with
a WCNS3 FD scheme. A third-order Adams–Bashforth time stepper is used and the
mesh ismoving at velocity vxg = 1.4. Results in the top row are obtained using a time step

size of∆t = 2.5× 10−3 and in the bottom row using a time step size of∆t = 5× 10−4.
Going from left to right in the top row, the TCI used is the Persson TCI with αN = 3, the
Persson TCI with αN = 4, and the RDMP TCI. Going from left to right in the bottom
row, the TCI used is the Persson TCI with αN = 3, the RDMP TCI, and Persson TCI
with αN = 4 along with the RDMP TCI.

no unphysical oscillations are visible, just as in the top middle plot of ogure 2.We have verioed

that our results are the same whether using the SSP RK3 time stepper or the Adams–Bashforth

time stepper.

6.2. General relativistic magnetohydrodynamics

In this section we present results of our DG–FD hybrid scheme when applied to various

GRMHD test problems. The onal test problem in this section is that of a singlemagnetized neu-

tron star, demonstrating that our hybrid scheme is capable of simulating interesting relativistic

astrophysics scenarios. We always use an HLL Riemann solver and typically the third-order

strong-stability preserving Runge–Kutta (SSP RK3) time stepper [42]. However, we also com-

pare a ofth-order Dormand–Prince method [66] to the RK3 method for some test problems.

We mainly use the SSP RK3 stepper since this is a commonly used method when comparing

shock capturing schemes. We also reconstruct the variables {ρ, p,Wvi,Bi,Φ} using a mono-

tonised central reconstruction scheme. We choose the resolution for the different problems

by having the number of FD grid points be approximately equal to the number of grid points

used by current production FD codes. Unless stated otherwise, we do not monitor B̃i with the

Persson indicator since in most of the test cases we look at the magnetic oeld has disconti-

nuities at or near the same place the nuid variables have discontinuities. All simulations use

SpECTRE v2022.04.04 [33] and the input oles are available as part of the arXiv version of

this paper.
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Table 1. The errors and local convergence order for the smooth now problem using dif-
ferent limiting strategies. Note that the limiter is not applied if the TCI determines the
DG solution to be valid. We observe the expected convergence rate except when the solu-
tion is underresolved because too few elements are used or when the error is no longer
dominated by the truncation error of the DG scheme.

Method Nx L2(E(ρ)) L2 order

DG–FD P3 2 3.50 983 × 10−1

4 1.22 554 × 10−1 1.52

8 3.72 266 × 10−4 8.36

16 1.61 635 × 10−5 4.53

32 9.76 927 × 10−7 4.05

DG–FD P4 2 3.62 426 × 10−1

4 3.79 759 × 10−4 9.90

8 1.15 193 × 10−5 5.04

16 3.73 055 × 10−7 4.95

DG–FD P5 2 3.45 679 × 10−1

4 2.23 822 × 10−5 13.91

8 3.18 504 × 10−7 6.13

16 5.08 821 × 10−9 5.97

Table 2. The initial conditions for Riemann problems 1, 3, and 4 of [67]. The domain
is x ∈ [−0.5, 0.5], the onal time is tf = 0.4, and an ideal nuid equation of state is used
with an adiabatic index of 2 for Riemann problem 1 and 5/3 for Riemann problems 3
and 4.

Problem ρ p vi Bi

RP 1 x < 0 1.0 1.0 (0.0, 0, 0) (0.5, 1.0, 0.0)
x � 0 0.125 0.1 (0.0, 0, 0) (0.5,−1.0, 0.0)

RP 3 x < 0 1.0 1000.0 (0.0, 0, 0) (10.0, 7.0, 7.0)
x � 0 1.0 0.1 (0.0, 0, 0) (10.0, 0.7, 0.7)

RP 4 x < 0 1.0 0.1 (0.999, 0, 0) (10.0, 7.0, 7.0)
x � 0 1.0 0.1 (−0.999, 0, 0) (10.0,−7.0,−7.0)

6.2.1. 1D smooth flow. We consider a simple 1D smooth now problem to test which of the

limiters and TCIs are able to solve a smooth problem without degrading the order of accuracy.

A smooth density perturbation is advected across the domain with a velocity vi. The analytic
solution is given by

ρ = 1+ 0.7 sin[ki(xi − vit)], (73)

vi = (0.8, 0, 0), (74)

ki = (1, 0, 0), (75)

p= 1, (76)

Bi = (0, 0, 0), (77)
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Figure 3. Results from Riemann problem 1 of [67] using a P5 (64 elements) and P2

(128 elements) DG–FD hybrid scheme with an SSP RK3 and Dormand–Prince ove
time stepper. All results are at the onal time t = 0.4. The top left panel shows the rest
mass density ρ, the bottom left the magnetic oeld By, and the right panels show the
difference between the analytic and numerical solution. The P5 scheme is able to resolve
the discontinuities just as well as the P2 scheme, while also admitting fewer unphysical
oscillations away from the discontinuities.

and we close the system with an adiabatic equation of state,

p= ρ�(Γ− 1), (78)

where Γ is the adiabatic index, which we set to 1.4. We use a domain given by [0, 2π]3, and
apply periodic boundary conditions in all directions. The time step size is ∆t = 2π/5120 so

that the spatial discretization error is larger than the time stepping error for all resolutions that

we use.

We perform convergence tests at different DG orders and present the results in table 1. We

show both the L2 norm of the error and the convergence rate. The L2 norm is deoned as

L2(u) =

�

�

�

�

1

M

M−1
�

i=0

u2i , (79)

where M is the total number of grid points and ui is the value of u at grid point i and the

convergence order is given by

L2 order = log2

�

L2(ENx/2)
L2(ENx )

�

. (80)
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Figure 4. Results from Riemann problem 3 of [67] using a P5 (64 elements) and P2

(128 elements) DG–FD hybrid scheme with an SSP RK3 and Dormand–Prince ove
time stepper. All results are at the onal time t = 0.4. The top left panel shows the rest
mass density ρ, the bottom left the magnetic oeld By, and the right panels show the
difference between the analytic and numerical solution. The P5 scheme is able to resolve
the discontinuities just as well as the P2 scheme, while also admitting fewer unphysical
oscillations away from the discontinuities.

We ond that when very few elements are used, the TCI decides the solution is not well rep-

resented on the DG grid. Although if we disable the FD scheme completely, we ond the DG

method is stable, we ond it acceptable that the TCI switches to FD in order to ensure robustness.

Ultimately we observe the expected rate of convergence for smooth problems.

6.2.2. 1DRiemann problems. One-dimensionalRiemann problems are a standard test for any

scheme that must be able to handle shocks.We will focus on the orst, third, and fourth Riemann

problems (RP1, RP3, RP4) of [67]. The setup is given in table 2. We perform simulations using

an SSP RK3 and a Dormand–Prince ove method with ∆t = 5× 10−4. In the top left panels

of ogures 3–5 we show the rest mass density ρ at tf = 0.4, the bottom left panels show By,

while the right panels show the difference between the analytic and numerical solution. The

thin black curve is the analytic solution obtained using the Riemann solver of [68]. An ideal

nuid equation of state (78) is used.

Impressively, the DG–FD hybrid scheme actually has fewer oscillations when going to

higher order. In the right panels of ogures 3–5 we plot the error of the numerical solution

using a P2 DG–FD scheme with 128 elements and a P5 DG–FD scheme with 64 elements.

We see that the P5 hybrid scheme actually has fewer oscillations than the P2 scheme, while

resolving the discontinuities equally well. We attribute this to the TCIs triggering earlier when
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Figure 5. Results from Riemann problem 4 of [67] using a P5 (64 elements) and P2

(128 elements) DG–FD hybrid scheme with an SSP RK3 and Dormand–Prince ove
time stepper. All results are at the onal time t = 0.4. The top left panel shows the rest
mass density ρ, the bottom left the magnetic oeld By, and the right panels show the
difference between the analytic and numerical solution. The P5 scheme is able to resolve
the discontinuities just as well as the P2 scheme, while also admitting fewer unphysical
oscillations away from the discontinuities.

a higher polynomial degree is used since discontinuities entering an element rapidly dump

energy into the high modes. While the optimal order is almost certainly problem-dependent,

given that current numerical relativity codes are mostly second order, achieving sixth order

in the smooth regions is promising. The SSP RK3 time stepper seems to generally result in

fewer oscillations than the Dormand–Prince ove time stepper. This could stem from the Dor-

mand–Prince stepper not being strong stability preserving. We leave a detailed comparison of

different time integration schemes to future work.

6.2.3. 2D cylindrical blast wave. A standard test problem for GRMHD codes is the cylindri-

cal blast wave [69, 70] where a magnetized nuid initially at rest in a constant magnetic oeld

along the x-axis is evolved. The nuid obeys the ideal nuid equation of state with Γ = 4/3. The
nuid begins in a cylindrically symmetric conoguration, with hot, dense nuid in the region with

cylindrical radius r < 0.8 surrounded by a cooler, less dense nuid in the region r > 1. The

initial density ρ and pressure p of the nuid are

ρ(r < 0.8) = 10−2, (81)

ρ(r > 1.0) = 10−4, (82)

p(r < 0.8) = 1, (83)
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Figure 6. Cylindrical blast wave ρ at t = 4 showing the results of the using the DG–FD
hybrid scheme with 64 × 64 P2 elements (left) and 32× 32 P5 elements (right). The
regions surrounded by maroon squares have switched from DG to FD.

p(r > 1.0) = 5× 10−4. (84)

In the region 0.8 � r � 1, the solution transitions continuously and exponentially (i.e., transi-

tions such that the logarithms of the pressure and density are linear functions of r). The nuid

begins threaded with a uniform magnetic oeld with Cartesian components

(Bx,By,Bz) = (0.1, 0, 0). (85)

The magnetic oeld causes the blast wave to expand non-axisymmetrically. For all simulations

we use a time step size ∆t = 10−2 and an SSP RK3 time integrator.

We evolve the blast wave to time t = 4.0 on a grid of 64× 64× 1 elements covering a cube

of extent [−6, 6]3 using a P2 DG–FD scheme and on a grid of 32× 32× 1 using a P5 DG–FD

scheme. With these choices the resolution when using FD everywhere is comparable to what

FD codes use for this test. We apply periodic boundary conditions in all directions, since the

explosion does not reach the outer boundary by t = 4.0. Figure 6 shows the logarithm of the

rest-mass density at time t = 4.0, at the end of evolutions using the P2 (left) and P5 (right)

DG–FD schemes. The increased resolution of a high-order scheme is clear when comparing

the P2 and P5 solutions in the interior region of the blast wave. It is not clear that going to

even higher order would be useful in this problem since to maintain the same time step size

we would need to decrease the number of elements. Furthermore, as we can already see by

comparing the P2 and P5 schemes, a greater area of the P5 solution is using FD, though it

is difocult to determine what overall effect this has, especially since high-order FD schemes

could be used. We show the percentage of elements using FD instead of DG at the onal time in

table 3. As expected, the percentage of elements using FD decreases as the number of elements

is increased.

6.2.4. 2D magnetic rotor. The second two-dimensional test problemwe study is the magnetic

rotor problemoriginally proposed for non-relativisticMHD [71, 72] and later generalized to the
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Table 3. The percentage of elements using FD at the onal time of the cylindrical blast
wave simulation.

Method Domain Percent using FD (%)

DG–FD P2 322 36.7

642 22.9

1282 7.9

DG–FD P5 162 57.8

322 35.9

642 21.8

relativistic case [73, 74]. A rapidly rotating dense nuid cylinder is inside a lower density nuid,

with a uniform pressure and magnetic oeld everywhere. The magnetic braking will slow down

the rotor over time, with an approximately 90 degree rotation by the onal time t = 0.4. We

use a domain of [−0.5, 0.5]3 and a time step size∆t = 10−3 and an SSP RK3 time integrator.

An ideal nuid equation of state with Γ = 5/3 is used, and the following initial conditions are

imposed:

p= 1 (86)

Bi = (1, 0, 0) (87)

vi =

�

(−yΩ, xΩ, 0), if r � Rrotor = 0.1

(0, 0, 0), otherwise,
(88)

ρ =

�

10, if r � Rrotor = 0.1

1, otherwise,
(89)

with angular velocity Ω = 9.95. The choice of Ω and Rrotor = 0.1 guarantees that the maxi-

mum velocity of the nuid (0.995) is less than the speed of light. We impose periodic boundary

conditions.

We show the results of our evolutions using 64× 64 P2 elements (left) and 32× 32 P5

elements (right) in ogure 7. Again, the DG–FD hybrid scheme is robust and accurate, though

a fairly large number of cells end up being marked as troubled in this problem. However, using

FD in more elements is not something we view as inherently bad, since we favor robustness

in realistic simulations. The process of tweaking parameters and restarting simulations is both

time consuming and frustrating, and so giving up some efociency for robustness is preferable

in general.

6.2.5. 2D magnetic loop advection. The last two-dimensional test problem we study is mag-

netic loop advection problem [75]. A magnetic loop is advected through the domain until it

returns to its starting position. We use an initial conoguration very similar to [40, 76–78],

where

ρ = 1 (90)

p = 3 (91)

vi = (1/1.2, 1/2.4, 0) (92)
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Figure 7. Magnetic rotor ρ at t = 0.4 showing the results of the using the DG–FD hybrid
scheme with 64 × 64 P2 elements (left) and 32× 32 P5 elements (right). The regions
surrounded by maroon squares have switched from DG to FD.

Bx =

⎧

⎪

⎪

«

⎪

⎪

¬

−Aloopy/Rin, if r � Rin

−Aloopy/r, if Rin < r < Rloop

0, otherwise,

(93)

By =

⎧

⎪

⎪

«

⎪

⎪

¬

Aloopx/Rin, if r � Rin

Aloopx/r, if Rin < r < Rloop

0, otherwise,

(94)

with Rloop = 0.3, Rin = 0.001, and an ideal gas equation of state with Γ = 5/3. The compu-

tational domain is [−0.5, 0.5]3 with 64× 64× 1 elements and periodic boundary conditions

being applied everywhere. The onal time for one period is t = 2.4. For all simulations we use a

time step size∆t = 10−3 and an SSP RK3 time integrator. Since the nuid variables are smooth

in this problem, we apply the Persson TCI to the Euclidean magnitude of B̃i in elements where

the maximum value of the magnitude is above 10−5.

In ogure 8 we plot the magnetic oeld component Bx at t = 0 on the left half of each plot

and after one period t = 2.4 on the right half of each plot. In the left panel of ogure 8 we show
the result using a P2 DG–FD scheme and in the right panel of ogure 8 using a P5 DG–FD

scheme. The P5 scheme resolves the smooth parts of the solution more accurately than the

P2 scheme, as is to be expected. Finally, in ogure 9 we plot the divergence cleaning oeld Φ

at the onal time t = 2.4. We do not observe any artifacts appearing in the divergence clean-

ing oeld at the interfaces between the DG and FD solvers, demonstrating that the divergence

cleaning properties of the system are not adversely affected by using two different numerical

methods.

6.2.6. TOV star. A rigorous 3D test case in general relativity is the evolution of a TOV star

[79, 80]. In this section we study evolutions of both non-magnetized and magnetized TOV

stars. We adopt the same conoguration as in [81]. Speciocally, we use a polytropic equation of
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Figure 8. Bx for the magnetic loop advection problem. The left half of each plot is at
the initial time, while the right half is after one period (t = 2.4). We show the results of
the using the DG–FD hybrid scheme with 64× 64 P2 elements (left) and 32× 32 P5

elements (right). The regions surrounded by black squares have switched from DG to
FD.

Figure 9. The divergence cleaning oeldΦ for the magnetic loop advection problem after
one period (t = 2.4). We show the results of the using the DG–FD hybrid scheme with
64× 64 P2 elements (left) and 32× 32 P5 elements (right). The regions surrounded by
black squares have switched from DG to FD.

state,

p(ρ) = KρΓ (95)

with the polytropic exponent Γ = 2, polytropic constant K = 100, and a central density

ρc = 1.28× 10−3. For the magnetized case, we choose a magnetic oeld given by a vector

potential
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Aφ = Ab
�

x2 + y2
�

max (p− pcut, 0)
ns , (96)

with Ab = 2500, pcut = 0.04pmax, and ns = 2. This conoguration yields a magnetic oeld

strength in CGS units

|BCGS| =
√
b2 × 8.352× 1019 G, (97)

of |BCGS| = 1.03× 1016G. Themagnetic oeld is only a perturbation to the dynamics of the star,

since (pmag/p)(r = 0) ∼ 5× 10−5. However, evolving the oeld stably and accurately can be

challenging. The magnetic oeld corresponding to the vector potential in (96) in the magnetized

region is given by

Bx =
1√
γ

xz

r
Abns(p− pcut)

ns−1∂rp, (98)

By =
1√
γ

yz

r
Abns(p− pcut)

ns−1∂rp, (99)

Bz = − Ab√
γ

�

2(p− pcut)
ns +

x2 + y2

r
ns(p− pcut)

ns−1∂rp

�

, (100)

and at r = 0 is

Bx = 0, (101)

By = 0, (102)

Bz = − Ab√
γ
2(p− pcut)

ns . (103)

We perform all evolutions in full 3D with no symmetry assumptions and in the Cowling

approximation, i.e., we do not evolve the spacetime. To match the resolution usually used in

FD/FV numerical relativity codes, we use a domain [−20, 20]3 with a base resolution of six P5

DG elements. This choice means we have approximately 32 FD grid points covering the star9s

diameter at the lowest resolution, 64 when using twelve P5 elements, and 128 grid points when

using 24 P5 elements. In all cases we set ρatm = 10−15 and ρcutoff = 1.01× 10−15. We do not

run any simulations using a P2 DG–FD hybrid scheme since the P5 scheme has proven to be

more accurate and robust in all test cases so far.

In the left panel of ogure 10 we show the maximum rest mass density over the grid divided

by the maximum density at t = 0 for the non-magnetized TOV star. The six-element simula-

tion uses FD throughout the interior of the star because the corners of the inner elements are

in vacuum. In comparison, the 12- and 24-element simulations use the unlimited P5 DG solver

throughout the star interior. The increased 8noise9 in the 12- and 24-element data actually stems

from the higher oscillation modes in the star [82] that are induced by numerical error. In the

right panel of ogure 10 we plot the power spectrum using data at the three different resolu-

tions. The six-element simulation only has one mode resolved, while 12 elements resolve two

modes well, and the 24-element simulation resolves three modes well. Additionally, we plot

the power spectrum from a 24-element simulation using a ofth-order Dormand–Prince time

stepper instead of the strong stability preserving third-order Runge–Kutta method. Increasing

the time stepper order does not increase the number of radial modes resolved, demonstrating

that it is the spatial resolution that is the limiting factor.
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Figure 10. A plot of max[ρ(t)]/max[ρ(0)] at three different resolution (left panel) for the
non-magnetized TOV star. The six-element simulation uses FD throughout the interior
of the star, while 12- and 24-element simulations use DG. The maximum density in
the six-element case drifts down at early times because of the low resolution and the
relatively low accuracy of using FD at the center. The power spectrum of the maximum
density for the three different resolution is plotted in the right panel. The vertical dashed
lines correspond to the known frequencies in the Cowling approximation [82]. When the
high-order DG scheme is used, more oscillation frequencies are resolved. We also show
the spectrum from a simulation using a ofth-order Dormand–Prince time stepper.

We show the normalized maximum rest mass density over the grid for the magnetized TOV

star in the left panel of ogure 11. Overall the results are nearly identical to the non-magnetized

case. One notable difference is the decrease in the 12-element simulation between 7.5 ms and

11 ms, which occurs because the code switches from DG to FD at the center of the star at

7.5 ms and back to DG at 11 ms. Nevertheless, the frequencies are resolved just as well for the

magnetized star as for the non-magnetized case, as can be seen in the right panel of ogure 11

where we plot the power spectrum. Speciocally, we are able to resolve the three largest modes

with ourP5DG–FDhybrid scheme. To the best of our knowledge, these are the orst simulations

of a magnetized neutron star using high-order DG methods.

6.2.7. Rotating neutron star. As a onal test case we simulate a uniformly rotating neutron

star with ratio of polar to equatorial radius of 0.7, similar to that of [82]. The initial data is

constructed using the method described in [83, 84]. We use the same polytropic equation of

state as for the TOV star evolution. In the left panel of ogure 12 we show the maximum of the

rest mass density for the same three resolutions used for the TOV star simulations. The lowest

resolution uses FD throughout the star and sees a rapid decay in the density. The 12-element

simulation uses DG throughoutmost of the interior of the star and so sees signiocant less decay

in the density. The 24-element simulation uses DG everywhere in the interior of the star and

sees less than a 0.1% decay in the density over 20 ms. To further test convergence we plot the

maximum density of a 1 ms long 24-element and 48-element simulation in the right panel of

ogure 12. The oscillations continue to decrease with increasing resolution. We attribute the

decay in the maximum density at lower resolutions to the dissipative nature of FD schemes,

consistent with the rapid reduction in decay of the maximum density when switching to DG

and increasing the resolution. These are also the orst simulations of a rotating neutron star

using high-order DG methods.
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Figure 11. A plot of max[ρ(t)]/max[ρ(0)] at three different resolution (left panel) for
the magnetized TOV star. The six-element simulation uses FD throughout the interior
of the star, while 12- and 24-element simulations use DG. The maximum density in
the six-element case drifts down at early times because of the low resolution and the
relatively low accuracy of using FD at the center. The power spectrum of the maximum
density for the three different resolution is plotted in the right panel. The vertical dashed
lines correspond to the known frequencies in the Cowling approximation (which are the
same as the non-magnetized case as the magnetic oeld is a small perturbation on the
dynamics). When the high-order DG scheme is used, more oscillation frequencies are
resolved.

Figure 12. The left panel shows max[ρ(t)]/max[ρ(0)] at three different resolution for
the uniformly rotating neutron star. The six-element simulation uses FD throughout the
interior of the star, the 12-element simulation uses mostly DG in the stellar interior, and
the 24-element simulations use DG everywhere except the stellar surface. The right panel
shows max[ρ(t)]/max[ρ(0)] for a shorter period of time but at very high resolutions, 24
elements and 48 elements. Increasing from 24 to 48 elements further reduces oscillations
in the maximum density.

7. Conclusions

In this paper we gave a detailed description of our DG–FD hybridmethod that can successfully

solve challenging relativistic astrophysics test problems like the simulation of a magnetized or

rotating neutron star. Our method combines an unlimited DG solver with a conservative FD

solver. Alternatively, this can be thought of as taking a standard FD code in numerical relativity

and compressing the data to a DG grid wherever the solution is smooth. The DG solver is

more efocient than the FD solver since no reconstruction is necessary and fewer Riemann
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problems need to be solved. In theory a speedup of about eight is achievable, though we have

not optimized our code SpECTRE [33] enough and so we ond in practice a speedup of about

two to three when comparing the hybrid method to using FD everywhere. The basic idea of the

hybrid scheme is similar to [10–13]. An unlimited DG solver is used wherever a TCI deems

the DG solution admissible, while a FD solver is used elsewhere. Unlike classical limiting

strategies like WENO which attempt to olter out unphysical oscillations, the hybrid scheme

prevents spurious oscillations from entering the solution. This is achieved by retaking any time

step using a robust high-resolution shock-capturing conservative FD where the DG solution

was inadmissible, either because the DG scheme produced unphysical results like negative

densities or because a numerical criterion like the percentage of power in the highest modes

deemed the DG solution bad. Our DG–FD hybrid scheme was used to perform what is to

the best of our knowledge the orst ever simulations of a magnetized TOV star and rotating

neutron star using DG methods. In the future we plan to extend the hybrid scheme to curved

meshes, simulations in full general relativity where the metric is evolved, and to use positivity-

preserving adaptive-order FD methods in order to maintain the highest order possible even

when using FD instead of DG.
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Appendix A. Curved hexahedral elements and moving meshes

We have not yet implemented support for curved hexahedral meshes into SpECTRE. How-

ever, we have given careful consideration on how they could be implemented. In this appendix

we discuss two possible implementations, one that requires many additional ghost cells with

dimension-by-dimension reconstruction, and one that requires multidimensional reconstruc-

tion but no additional ghost cells.

Support for curved hexahedral or rectangular meshes can be achieved by combining the DG

scheme with a multipatch or multidomain FD scheme. We will discuss only the 2D case, since

the 3D case has more tedious bookkeeping, but otherwise is a straightforward extension. As

a concrete example, we consider a 2D disk made out of a square surrounded by four wedges

as shown in ogure A1. We focus on an element at the top right corner of the central square

and its neighbors, highlighted by the dashed squared in ogure A1. We will orst discuss how to

handle the boundaries when a pair of neighboring elements are using the FD scheme, and then

consider the case when one element is using DG and the other FD.
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FigureA1. A2D diskmade out of a central square surrounded by four wedges. In the text
we describe the method of handling intercell nuxes for the elements inside the dashed
square.

In ogure A2 we illustrate the domain setup, showing the subcell center points as circles in

the two elements of interest. The diamonds in left panel of ogure A2 represent the ghost cells

needed for reconstruction to the element boundary in the element on the right.We use diagonal

dotted lines to trace out lines of constant reference coordinates in the element on the right and

dashed lines in the element on the left. Notice that the dashed and dotted lines intersect on the

element boundary. This is because the mapping from the reference frame is continuous across

element boundaries and allows us to have a conservative scheme using centered stencils even

in the multipatch case.

Since we are unable to interpolate to the ghost cells shown in the left panel of ogure A2 with

centered stencils, one option is to use non-centered stencils. Using non-centered stencils was

explored in reference [91], which did not ond any instabilities from the use of such stencils

in their test cases. Another option is to use reconstruction methods for unstructured meshes

(see, for example, [92–97] and references therein), though this adds signiocant conceptual

and technical overhead. Another option is adding additional subcells that overlap with the

neighboring elements to allow the use of centered reconstruction schemes to interpolate to the

ghost cells. These additional subcells are shown as triangles in the middle panel of ogure A2.

We can now do two reconstructions to reconstruct the ghost cells. First, we reconstruct along

one reference axis of the central element as shown by the squares in the right panel of ogureA2.

Next we reconstruct along the other direction, which is illustrated by the dotted vertical line in

the right panel of ogure A2.

In order tomaintain conservation between elements, we need to deone a unique left and right

state at the boundary of the elements. A unique state can be obtained by using the average of

the reconstructed variables from the diagonal and horizontal stencils in ogure A2. That is, we

use the average of the result obtained from reconstruction in each element for the right and

left states when updating any subcells that need the numerical nux on the element boundaries.

Recall that when using a second-order FD derivative the semi-discrete evolution equations are

(we only show 1D for simplicity since it is sufocient to illustrate our point)

∂tu+
∂ξ

∂x

�

F̂x
i+1/2, j − F̂x

i−1/2, j

∆ξ

�

= S. (A.1)

Thus, as long as all cells that share the boundary on which the numerical nuxes are deoned

use the same numerical nux, the scheme is conservative. When using higher-order derivative
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Figure A2. An illustration of the multipatch or multidomain FD reconstruction needed
to support curved meshes.We show a 2D example for simplicity. The 3D case is a tedious
but otherwise straightforward generalization.

approximations the nuxes away from the cell boundaries are also needed. In the case of the

element boundaries we are considering, we do not have a unique solution in the region of over-

lap (e.g. the region covered by the purple triangles in the middle panel of ogure A2) where we

compute the nuxes. As a result, we do not know if using high-order FD derivatives would vio-

late conservation at the element boundaries. However, if the solution is smooth in this region,

small violations of conservation are not detrimental, and if a discontinuity is passing through

the boundary a second-order FD derivative should be used anyway.

Another method of doing reconstruction at locations where the coordinate axes do not align

is described in [98] for FV methods. This same approach should be applicable to FD methods.

Whether adding ghost zones or using unstructured mesh reconstruction is easier to implement

and more efocient is unclear and will need to be tested.

35



Class. Quantum Grav. 39 (2022) 195001 N Deppe et al

Table B1. Weights for a fourth-order approximation to an integral using stencils sym-
metric about the center. Only the orst half of the coefocients are shown, the second half
are such that the stencil is symmetric. The number of points in the stencil is shown in
the orst column.

Number of cells x1/2 x3/2 x5/2 x7/2 x9/2

3 9
8

3
4

— — —

4 13
12

11
12

— — —

5 13
12

21
24

13
12

— —

6 9
8

3
4

9
8

— —

7 9
8

3
4

7
6

11
12

—

8 9
8

3
4

7
6

23
24

—

9+ 9
8

3
4

7
6

23
24

1

Table B2. Weights for a sixth-order approximation to an integral using stencils symmet-
ric about the center. Only the orst half of the coefocients are shown, the second half are
such that the stencil is symmetric. The number of points in the stencil is shown in the
orst column.

Number of cells x1/2 x3/2 x5/2 x7/2 x9/2 x11/2 x13/2 x15/2

5 1375
1152

125
288

335
192

— — — — —

6 741
640

417
640

381
320

— — — — —

7 741
640

3547
5760

8111
5760

611
960

— — — —

8 1663
1440

227
360

323
240

139
160

— — — —

9 1663
1440

227
360

1547
1152

245
288

3001
2880

— — —

10 1375
1152

125
288

335
192

125
288

1375
1152

— — —

11 1375
1152

125
288

335
192

2483
5760

7183
5760

863
960

— —

12 1375
1152

125
288

335
192

2483
5760

3583
2880

2743
2880

— —

13 1375
1152

125
288

335
192

2483
5760

3583
2880

1823
1920

2897
2880

—

14 1375
1152

125
288

335
192

2483
5760

3583
2880

1823
1920

5777
5760

—

15+ 1375
1152

125
288

335
192

2483
5760

3583
2880

1823
1920

5777
5760

1

Appendix B. Integration weights

The standard weights available in textbooks assume the abscissas are distributed at the bound-

aries of the subcells, not the subcell centers, and so do not apply. The weights Ri are given by

integrals over Lagrange polynomials:

Ri =

� b

a

n
�

j=0

j �=i

(x − x j)

(xi − x j)
dx. (B.1)

The integration coefocients are not unique since there are choices on how to handle points near

the boundaries and how to stitch the interior solution together. Rather than using one-sided or

low-order centered stencils near the boundaries, we choose to integrate from 0 to 3∆x for the
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fourth-order stencil and from 0 to 5∆x for the sixth-order stencils. The fourth-order stencil at

the boundary is

� 3∆x

0

f (x)dx ≈ ∆x

�

9

8
f 1/2 +

3

4
f 3/2 +

9

8
f 5/2

�

, (B.2)

and the sixth-order stencil is
� 5∆x

0

f (x)dx ≈ ∆x

�

1375

1152
f 1/2 +

125

288
f 3/2 +

335

192
f 5/2 +

125

288
f 7/2 +

1375

1152
f 9/2

�

. (B.3)

If we have more than three (ove) points we need to stitch the formulas together. We do this by

integrating from xk to xk+1. For the fourth-order stencil we get

� xk+1

xk

f (x)dx ≈ ∆x

�

1

24
fk−1/2 +

11

12
fk+1/2 +

1

24
fk+3/2

�

(B.4)

and for the sixth-order stencil we get

� xk+1

xk

f (x)dx ≈ ∆x

�−17

5760
fk−3/2 +

308

5760
fk−1/2 +

5178

5760
fk+1/2

+
308

5760
fk+3/2 −

17

5760
fk+5/2

�

. (B.5)

We present the weights for a fourth-order approximation to the integral in table B1 and for a

sixth-order approximation to the integral in table B2. The weights are obtained by using (B.2)

and (B.3) at the boundaries and (B.4) and (B.5) on the interior. The stencils are symmetric

about the center and so only half the coefocients are shown.
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