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Abstract

We present a discontinuous Galerkin (DG)—finite difference (FD) hybrid
scheme that allows high-order shock capturing with the DG method for general
relativistic magnetohydrodynamics. The hybrid method is conceptually quite
simple. An unlimited DG candidate solution is computed for the next time step.
If the candidate solution is inadmissible, the time step is retaken using robust
FD methods. Because of its a posteriori nature, the hybrid scheme inherits the
best properties of both methods. It is high-order with exponential convergence
in smooth regions, while robustly handling discontinuities. We give a detailed
description of how we transfer the solution between the DG and FD solvers, and
the troubled-cell indicators necessary to robustly handle slow-moving disconti-
nuities and simulate magnetized neutron stars. We demonstrate the efficacy of
the proposed method using a suite of standard and very challenging 1D, 2D,
and 3D relativistic magnetohydrodynamics test problems. The hybrid scheme
is designed from the ground up to efficiently simulate astrophysical problems
such as the inspiral, coalescence, and merger of two neutron stars.
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1. Introduction

The discontinuous Galerkin (DG) method was first presented by Reed and Hill [1] to solve
the neutron transport equation. Later, in a series of seminal papers, Cockburn and Shu applied
the DG method to nonlinear hyperbolic conservation laws [2—4]. A very important property of
the DG method is that it guarantees linear stability in the L, norm for arbitrary high order,
which was proven for the scalar case in [5] and for systems in [6, 7]. While this means the
DG method is very robust, DG alone is still subject to Godunov’s theorem [8]: at high order it
produces oscillatory solutions. Accordingly, it requires some nonlinear supplemental method
for stability in the presence of discontinuities and large gradients. A large number of differ-
ent methods for limiting the DG solution to achieve such stability have been proposed. The
basic idea shared by all the limiters is to detect troubled cells or elements (i.e., those whose
solution is too oscillatory or has some other undesirable property), then apply some nonlinear
reconstruction using the solution from neighboring elements. This idea is largely an extension
of what has worked well for finite-volume (FV) and finite-difference (FD) shock-capturing
methods.

In this paper we follow a different avenue that, to the best of our knowledge, was first
proposed in [9]. The idea is to supplement a high-order spectral-type method—such as pseu-
dospectral collocation or, in our case, DG—with robust FV or FD shock-capturing methods.
If the solution in an element is troubled or inadmissible, the solution is projected to a FV or
FD grid and evolved with existing robust shock-capturing methods. This approach has been
applied to DG supplemented with FV in [10—16]. The major breakthrough in [12] was apply-
ing the shock detection and physical realizability checks on the solution after the time step
is taken and redoing the step if the solution is found to be inadmissible. We follow this a
posteriori approach because it allows us to guarantee a physically realizable solution (e.g.,
positive density and pressure), as well as allowing us to prevent unphysical oscillations from
entering the numerical solution. This procedure is in strong contrast to classical limiting strate-
gies, where effectively a filter is applied to the DG solution in an attempt to remove spurious
oscillations.

High-order pseudospectral methods have proven extremely useful in producing a large num-
ber of long and accurate gravitational waveforms from binary black hole merger simulations
[17-25] as well as other applications in relativistic astrophysics [26—31]. Since binary inspi-
rals emit gravitational radiation, the numerical solution in most of the computational domain is
smooth but non-constant, and so high-order methods are preferable. During the inspiral portion
of a binary neutron star merger, the only discontinuities present are at the stellar surfaces. This
suggests that high-order methods can be used in most of the computational domain. Specifi-
cally, the hydro solution inside the star is smooth, and while outside the star the hydro evolution
is not necessary, the Einstein equations still need to be solved and have a smooth solution.
The use of high-order methods allows for a significant reduction in computational cost of the
simulation, which is especially important for reducing the computational cost of producing a
large gravitational waveform catalog for binary neutron star mergers.

We present a detailed derivation and description of our DG—FD hybrid scheme and how
we use it to solve the equations of general relativistic magnetohydrodynamics (GRMHD). To
the best of our knowledge, the algorithm is the first to successfully evolve a 3D magnetized
Tolman—Oppenheimer—Volkoff (TOV) star using DG methods. In section 2 we briefly review
the equations of GRMHD. In section 3 we give a brief overview of DG and conservative FD
methods, provide a new simple form of the moving mesh evolution equations, and discuss the
time step size restrictions of the DG and FD methods. In section 4 we state our requirements
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from a DG limiter or DG hybrid scheme, and then give an overview of common limiters cur-
rently used, including which of our requirements they meet. The new DG—FD hybrid scheme is
described in section 5. Specifically, we discuss how to handle the intercell fluxes between ele-
ments using DG and FD, the idea of applying the troubled-cell indicators (TCIs) a posteriori,
the TCIs we use, and a new perspective on how DG—FD hybrid schemes should be interpreted.
In section 6 we present numerical results from the open-source code SpECTRE [32, 33] using
our scheme and conclude in section 7.

2. Equations of GRMHD

We adopt the standard 3 + 1 form of the spacetime metric, (see, e.g., [34, 35]),
ds* = g dx“dx” = —a? A + 7;;(dx’ + B dt) (dx/ + B/ dt), (1)

where « is the lapse, 3 the shift vector, and 7, ; 18 the spatial metric. We use the Einstein
summation convention, summing over repeated indices. Latin indices from the first part of the
alphabet a, b, c, . . . denote spacetime indices ranging from O to 3, while Latin indices i, j, . . .
are purely spatial, ranging from 1 to 3. We work in units where c = G = My = 1.

SpECTRE currently solves equations in flux-balanced and first-order hyperbolic form. The
general form of a flux-balanced conservation law in a curved spacetime is

O+ O;F =S, (2)

where u is the state vector, F' are the components of the flux vector, and S is the source vector.

We refer the reader to the literature [34, 36, 37] for a detailed description of the equations
of GRMHD. If we ignore self-gravity, the GRMHD equations constitute a closed system that
may be solved on a given background metric. We denote the rest-mass density of the fluid by

p and its four-velocity by u®, where u“u, = —1. The dual of the Faraday tensor F is
1
*Fab — _GHdech’ (3)
2
where ¢?¢? is the Levi-Civita tensor. Note that the Levi-Civita tensor is defined here with the

convention [38] that in flat spacetime €p;23 = +1. The equations governing the evolution of
the GRMHD system are:

Va(pu®) =0 (rest-mass conservation), 4)
V. T% =0 (energy—momentum conservation), (5)
V.'F® =0 (homogeneous Maxwell equation). (6)

In the ideal MHD limit the stress tensor takes the form

T — (phy*us® + p*g® — bb® 7)
where

b = —*Fby, (8)

is the magnetic field measured in the comoving frame of the fluid, and (ph)* = ph + b* and
p* = p+b*/2 are the enthalpy density and fluid pressure augmented by contributions of
magnetic pressure p,, = b* /2, respectively.
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We denote the unit normal vector to the spatial hypersurfaces as n, which is given by
a i T
n'=(1/a,=f'/a), 9
n, = (—a,0,0,0). (10)

The spatial velocity of the fluid as measured by an observer at rest in the spatial hypersurfaces
(‘Eulerian observer’) is

vi=l<Z—;+5i>, (11)

!
with a corresponding Lorentz factor W given by

0 1

W= —u'n, = o = ——— (12)
V1 =il
= /1 iy = \J1+ W2 (13)

The electric and magnetic fields as measured by an Eulerian observer are given by

E' = F%, = aF", (14)
B = —*Fp, = —aF". (15)

Finally, the comoving magnetic field b* in terms of B’ is

= KB"U,-, (16)
(0%
i 0,,i
bi:B—&—abu’ (17)
w
while b* = b%b, is given by
2 .
b* + (B'vy)*. (18)

:W

We now recast the GRMHD equations in a 3 + 1 split by projecting them along and per-
pendicular to n [36]. One of the main complications when solving the GRMHD equations
numerically is preserving the constraint

(/7B = 0, (19)

where v = det(v;;) is the determinant of the spatial metric. Analytically, initial data evolved
using the dynamical Maxwell equations are guaranteed to preserve the constraint. However,
numerical errors generate constraint violations that need to be controlled. We opt to use the
generalized Lagrange multiplier or divergence cleaning method [39] where an additional field
® is evolved in order to propagate constraint violations out of the domain. Our version is very
close to the one in [40]. The augmented system can still be written in flux-balanced form, where
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the conserved variables are

D D
Si S
u=\y|7|=1|T
B’ B
i )
pW
(ph)*W?v; — ab’b;
= V3| oy W? — 5 — (ab®) — oW |, (20)
Bl
)
with corresponding fluxes
i Dvl,
[ S+ ayAp S - abBW
F' = | 70l + ay/Ap v’ — 2°B /W |, (21
By, — ?‘_UJBH_Q"W(I)
aB' — o
and corresponding sources
0
()2)S" 0y + 510,8° — Edix
S = aS"Ky — S* O . (22)

—BI0;3 + (/™).
aB*oy In a — aK® — akd

The transport velocity is defined as v, = av’ — ' and the generalized energy E and source S*/
are given by

E=7+D, (23)

Swij _ ﬁ[(ph)*Wzvivj + p*'}/ij _ ’yik’}/ﬂbkb[] . (24)

3. The DG and conservative FD methods

We are interested in solving nonlinear hyperbolic conservation laws of the form
0,F" = Ou + O,F = 8, (25)
where u are the evolved/conserved variables, F' are the fluxes, and S are the source terms.

3.1. DG method

In the DG method the computational domain is divided up into non-overlapping elements or
cells, which we denote by ). This allows us to write the conservation law (25) as a semi-
discrete system, where time remains continuous. In the DG method one integrates the evolution
equation (25) against spatial basis functions of degree N, which we denote by ¢;. We index the
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v

basis functions and collocation points of the DG scheme with breve Latin indices, e.g. 7, }, k.
The basis functions are defined in the reference coordinates of each element, which we denote
by £'. We use hatted indices to denote tensor components in the reference frame. The reference
coordinates are mapped to the physical coordinates using the general function

x'=x(E. (26)

We will discuss making the mapping time-dependent in section 3.3 below.
In the DG method we integrate the basis functions against (25),

/ x|+ OF — 5] = 0, @7)
Q

where repeated indices are implicitly summed over. Note that we are integrating over the phys-
ical coordinates, not the reference coordinates £'. Following the standard prescription where
we integrate by parts and replace the flux on the boundary n;F’ with a boundary term G (a
numerical flux dotted into the normal to the surface), we obtain the weak form

/ &x pi[Ou — S — / &Ex F o+ f d*Y ¢:G =0, (28)
Qk Qk 0Qk

where 0€); is the boundary of the element and d’Y is the surface element. Undoing the
integration by parts gives us the equivalent strong form

/ &’x ¢ [Ou + OF — S|+ 7{ 4’2 ¢ (G — miF') =0, (29)
N oy
where n; is the outward-pointing unit normal covector in the physical frame. Next, we use a
nodal DG method and expand the various terms using the basis ¢y as

N
u=> upr (30)
=0

The weak form can be written as

/ dx (257(]57( [6,147{ — SI;] — / d*x Fi(}ﬁ,}@,(]ﬁﬁ-% d’s d);d)%G,; =0. 31
Q Q Is}

Qy

The equivalent strong form is

/ & x ¢ioy [Ouy + (OiF ) — S|+ ﬂ{ d°S ¢ig (G — miF'), = 0. (32)
o)) (497"

In the strong form we have expanded 9;F' in the basis, which might lead to aliasing [41]. In
practice, we have not encountered any aliasing-driven instabilities that require filtering.

In order to simplify the scheme, we use a tensor-product basis of 1D Lagrange inter-
polating polynomials with Legendre—Gauss—Lobatto collocation points. We denote this DG
scheme with 1D basis functions of degree N by Py. A Py scheme is expected to converge
at order O(AxM*1) for smooth solutions [42], where Ax is the 1D size of the element.
The reference elements are intervals in 1D, squares in 2D, and cubes in 3D, where each
component of the reference coordinates £ € [—1, 1]. We use the map x'(¢?) to deform the
squares and cubes into different shapes needed to produce an efficient covering of the domain.
For example, if spherical geometries are present, we use x'(¢’) to create a cubed-sphere
domain.
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3.2. Conservative FD methods

Conservative FD methods evolve the cell-center values, but the cell-face values (the midpoints
along each axis) are necessary for solving the Riemann problem and computing the FD deriva-
tives of the fluxes. Denoting the numerical flux by F' and the kth-order FD derivative operator
by D;k), we can write the semi-discrete evolution equations as

(9N (pwp) _s
Ouu; + (axl),.(Df F)i =5 (33)

where we use underlined indices to label FD cells/grid points. Equation (33) can be rewritten
to more closely resemble the DG form since we actually use G as the numerical flux F* on the
cell boundary. Specifically,

DY (J

8,14!- + Jll;

where J is the determinant of the Jacobian matrix dx’/O¢’. This form allows our implemen-
tation to reuse as much of the DG Riemann solvers as possible, and also makes interfacing
between the DG and FD methods easier. Ultimately, we use a flux-difference-splitting scheme,
where we reconstruct the primitive variables to the interfaces between cells. Which reconstruc-
tion method we use is stated for each test problem below.

=S, (34)

¢ iﬁfi 0
3xﬂj3fo

i

3.3. Moving mesh formulation

Moving the mesh to follow interesting features of the solution can greatly reduce computational
cost. A moving mesh is also essential for evolutions of binary black holes, one of our target
applications, where the interior of the black holes needs to be excised to avoid the singularities
[23, 43]. Here we present a new form of the moving mesh evolution equations that is extremely
simple to implement and derive. We assume that the velocity of the mesh is some spatially
smooth function, though this assumption can be removed if one uses the path-conservative
methods described in [44] based on Dal Maso—LeFloch—Murat theory [45]. We write the map
from the reference coordinates to the physical coordinates as

=1, x'=x(,0. (35)
The spacetime Jacobian matrix is given by
ot Ot
Ox® oi  ag 10
g — | ox' ox | T v, g)ﬁ ’ (36)
oF o ¢
where the mesh velocity of the physical frame is defined as
. Ox
o= (37)
The inverse spacetime Jacobian matrix is given by
. ot o 1 0
g o oxi N
=log e | =y (™ : (38)
oe =008 | (G)

ot

ox!
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where the mesh velocity in the reference frame is given by
0

_og _og
S T9r T T on e
When composing coordinate maps the velocities combine as:
. O0xt oxt ox'oX’
i —_~ — —~—~ = > 40
Y T o ot * oxX* Ot “0)
where a new intermediate frame with coordinates {7, X} is defined and X' = X*(¢', 7).
To obtain the moving mesh evolution equations, we need to transform the time derivative
in (25) from being with respect to ¢ to being with respect to 7. Starting with the chain rule for
du/0t, we get
ou_ou_ox
ot of  of
Substituting (41) into (25) we get

(39)

O = O — 0; (v;u) + u@ivé. 41)

O+ 0;(F' — v;,u) =5- u@iv(f;,. (42)

This formulation of the moving mesh equations is simpler than the common arbitrary
Lagrangian—Eulerian formulation [46].

The same DG or FD scheme used to discretize (25) can be used to discretize (42). In the
case that vé is an evolved variable, the additional term should be treated as a nonconservative
product using the path-conservative formalism [44]. Finally, we note that the characteristic
fields are unchanged by the mesh movement, but the characteristic speeds A are changed to
A— A — n,-vé.
3.4. Time discretization

We evolve the semi-discrete system (be it the DG or FD discretized system) in time using a
method of lines. We use either a third-order strong-stability preserving Runge—Kutta method
[47] or a forward self-starting Adams—Bashforth time stepper [48, 49]. Which method is used
will be noted for each test case.

The DG method has a rather restrictive Courant—Friedrichs—Lewy (CFL) condition that
decreases as the polynomial degree N of the basis is increased. The CFL number scales roughly
as 1/(2N + 1) [50, 51], which can be understood as a growth in the spectrum of the spatial
discretization operator [52]. For a DG discretization in d spatial dimensions, the time step At
must satisfy

1 h
At < JART T 1N s
d2N + 1) [Amax|

(43)

where 4 is the characteristic size of the element and A, is the maximum characteristic speed
of the system being evolved. For comparison, FV and FD schemes have a time step restriction
of

1 h

At < B TEE]
d |>\max|

(44)

where £ is the characteristic size of the FV or FD cell. However, a DG element has N + 1 grid
points per dimension, while FV or FD cells only have one, and so the CFL condition for DG
is partly offset by the increase in order that the algorithm provides.

8
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4. Limiting in the DG method

In this section we give an overview of what we require from a DG limiter, followed by a brief
discussion of existing limiters in the literature and which of our requirements they meet.

4.1. Requirements

We have several requirements that, when combined, are very stringent. However, we view these
as necessary for DG to live up to the promise of a high-order shock-capturing method. In no
particular order, we require that

Requirements 4.1

(a) Smooth solutions are resolved, i.e., smooth extrema are not flattened,

(b) Unphysical oscillations are removed,

(c) Physical realizability of the solution is guaranteed,

(d) Sub-cell or sub-element resolution is possible, i.e., discontinuities are resolved inside the
element, not just at boundaries,

(e) Curved hexahedral elements are supported,

(f) Slow-moving shocks are resolved,

(g) Moving meshes are supported,

(h) Higher than fourth-order DG can be used.

Requirement 4.1(d) is necessary to justify the restrictive time step size, (43). That is, if discon-
tinuities are only resolved at the boundaries of elements, the DG scheme results in excessive
smearing. In such a scenario it becomes difficult to argue for using DG over FV or FD meth-
ods. While in principle it is possible to use adaptive mesh refinement or zp-adaptivity to switch
to low-order DG at discontinuities, effectively switching to a low-order FV method, we are
unaware of implementations that are capable of doing so for high-order DG.

We note that achieving higher-than-fourth order is especially challenging with many of
the existing limiters. Since FV and FD methods of fourth or higher order are becoming more
common, we view high order as being crucial for DG to be competitive with existing FV and
FD methods, especially given the restrictive time step size.

4.2. Overview of existing DG limiters

Aside from the FV subcell limiters [10—12], DG limiters operate on the solution after a time
step or substep is taken so as to remove spurious oscillations and sometimes also to correct
unphysical values. This is generally achieved by some nonlinear reconstruction using the solu-
tion in neighboring elements. How exactly this reconstruction is done depends on the specific
limiters, but all limiters involve two general steps:

(a) Detecting whether or not the solution in the element is ‘bad’ (TCIs),
(b) Correcting the degrees of freedom/solution in the element.

A good TCI avoids triggering the limiter where the solution is smooth while still preventing
spurious unphysical oscillations. Unfortunately, making this statement mathematically rigor-
ous is challenging and the last word is yet to be written on which TCIs are the best. Since
the TCI may trigger in smooth regions, ideally the limiting procedure does not flatten local
extrema when applied in such regions. In a companion paper [53] we have experimented with
the (admittedly quite dated but very robust) minmod family of limiters [3, 4, 54], the hier-
archical limiter of Krivodonova [55, 56], the simple WENO limiter [57], and the Hermite
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WENO (HWENO) limiter [58]. While this does not include every limiter applicable to struc-
tured meshes, it covers the common ones. We will discuss each limiter in turn, reporting what
we have found to be good and bad.

The minmod family of limiters [3, 4, 54] linearize the solution and decrease the slope
if the slope is deemed to be too large. This means that the minmod limiters quickly flat-
ten local extrema in smooth regions, do not provide sub-element resolution, and are not
higher-than-fourth order. While they are extremely robust and tend to do a good job of main-
taining physical realizability of the solution despite not guaranteeing it, the minmod limiters
are simply too aggressive and low-order to make DG an attractive replacement for shock-
capturing FD methods. Furthermore, generalizing the minmod limiters to curved elements in
the naive manner makes them very quickly destroy any symmetries of the domain decom-
position and solution. Overall, we find that the minmod limiters satisfy only requirements
4.1(b), (f), and (g).

The hierarchical limiter of Krivodonova [55, 56] works by limiting the coefficients of the
solution’s modal representation, starting with the highest coefficient then decreasing in order
until no more limiting is necessary. We find thatin 1D the Krivodonova limiter works quite well,
even using fourth-order elements. However, in 2D and 3D and for increasingly complex phys-
ical systems, the limiter fails. Furthermore, it is nontrivial to extend to curved elements since
comparing modal coefficients assumes the Jacobian matrix of the map x(¢') is spatially uni-
form. The Krivodonova limiter satisfies requirements 4.1(a), (f), and (g). We find that how well
the Krivodonova limiter works at removing unphysical oscillations depends on the physical
system being studied.

The simple WENO [57] and the HWENO [58] limiters are quite similar to each other. When
limiting is needed, these limiters combine the element’s solution with a set of solution estimates
obtained from the neighboring elements’ solutions. An oscillation indicator is applied on each
solution estimate to determine the convex nonlinear weights for the reconstruction. Overall,
the WENO limiters are, by design, very similar to WENO reconstruction used in FV and FD
methods. We have found that the WENO limiters are generally robust for second- and third-
order DG, but start producing unphysical solutions at higher orders. The WENO limiters satisfy
our requirements 4.1(a), (b), (f), and (g). When supplemented with a positivity-preserving
limiter [59], the WENO schemes are also able to satisfy requirement 4.1(c).

In short, none of the above limiters satisfy even half of our requirements 4.1. Furthermore,
they all have parameters that need to be tuned for them to work well on different problems.
This is unacceptable in realistic astrophysics simulations, where a large variety of complex
fluid interactions are occurring simultaneously in different parts of the computational domain,
and it is impossible to tune parameters such that all fluid interactions are resolved.

The subcell limiters [10—12] are much more promising and we will extend them to meet
all the requirements 4.1. We will focus on the scheme proposed in [12] since it satisfies most
of requirements 4.1. The basic idea behind the DG-subcell scheme is to switch to FV or, as
proposed here, FD if the high-order DG solution is inadmissible, either because of excessive
oscillations or violation of physical requirements on the solution. This idea was first presented
in [9], where a spectral scheme was hybridized with a WENO scheme. In [10, 11] the decision
whether to switch to a FV scheme is made before a time step is taken. In contrast, the scheme
presented in [12] undoes the time step (or substep if using a Runge—Kutta substep method)
and switches to a FV scheme. The advantage of undoing the time (sub) step is that physical
realizability of the solution can be guaranteed as long as the FV or FD scheme guarantees phys-
ical realizability. The scheme of [12] is often referred to as an a posteriori limiting approach,
where the time step is redone using the more robust method. Given a TCI that does not allow

10
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unphysical oscillations and a high-order positivity-preserving FV/FD method, the subcell lim-
iters as presented in the literature meet all requirements except 4.1(e) (curved hexahedral
elements), (f) (slow-moving shocks), and (g) (moving mesh), limitations that we will address
below. The key feature that makes the DG-subcell scheme a very promising candidate for a
generic, robust, and high-order method is that the limiting is not based on polynomial behavior
alone but considers the physics of the problem. By switching to a low-order method to guar-
antee physical realizability, the DG-subcell scheme guarantees that the resulting numerical
solution satisfies the governing equations, even if only at a low order locally in space and time.
Moreover, the DG-subcell scheme can guarantee that unphysical solutions such as negative
densities never appear.

5. DG-FD hybrid method

In this section we present our DG—FD hybrid scheme. The method is designed specifically to
address all requirements 4.1, and means in particular that the method is a robust high-order
shock-capturing method. We first discuss how to switch between the DG and FD grids. Then
we explain how neighboring elements communicate flux information if one element is using
DG while the other is using FD. Next we review the a posteriori idea and discuss the TCIs
we use, when we apply them, and how we handle communication between elements. Finally,
we discuss the number of subcells to use and provide a new perspective on the DG—FD hybrid
scheme that makes the attractiveness of such a scheme clear. In appendix A we provide an
example of how curved hexahedral elements can be handled.

5.1. Projection and reconstruction between DG and FD grids

We will denote the solution on the DG grid by u; and the solution on the FD grid by u;. We need
to determine how to project the solution from the DG grid to the FD grid and how to reconstruct
the DG solution from the FD solution. For simplicity, we assume an isotropic number of DG
collocation points (N + 1)? and FD cells (N,)?. Since FD schemes evolve the solution value at
the cell-center, one method of projecting the DG solution to the FD grid is to use interpolation.
However, interpolation is not conservative and so we opt for an L, projection, which is conser-
vative if projecting to a grid with equal or more degrees of freedom. That is, we assume that
N; > N + 1. The L, projection minimizes the integral

1 1
/ (U — P dx = / (u— wPJ dé 45)
—1 —1

with respect to u, where u is the solution on the FD subcells. While we derive the projec-
tion matrix in 1D, generalizing to 2D and 3D is straightforward for our tensor product basis.
Substituting the nodal basis expansion into (45) we obtain

1
[ [m6mts0 + mtimt©) — byt ©] g (46)

where £;(&) are the Lagrange interpolating polynomials on the subcells (i.e. £;(§;) = dj;).
Varying (46) with respect to the coefficients u; and setting the result equal to zero we get

1
/ 1 (16O — usly(OEE) | du dg = 0. 47)

1
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Since (47) must be true for all variations du; we see that

1
/ [uti©1© —wt© )]s ag = 0. (48)

By expanding the determinant of the Jacobian on the basis we can simplify (48) to get

1 1
il / O dE = / OO, (49)

Note that expanding uJ on the basis instead of u creates some decrease in accuracy and can
cause aliasing if uJ is not fully resolved by the basis functions. However, this procedure allows
us to cache the projection matrices to make the method more efficient. Furthermore, expanding
the Jacobian on the basis means interpolation and projection are equal when Ny > N + 1. We
solve for u;J; in (49) by inverting the matrix fjléi(g ) ;(§) d¢ and find that

1 -1
uli = (/lég(ﬁ)ﬁj(f)dé“) /lﬁi(f)éj(g)dguiji
= (EDupy = Piyuply, (50)

where P;; is the L, projection matrix.
Reconstructing the DG solution from the FD solution is a bit more involved. Denoting the
projection operator by P and the reconstruction operator by R, we desire the property

R(P(unty)) = uzly. (5D

We also require that the integral of the conserved variables over the subcells is equal to the
integral over the DG element. That is,

/ud3x = /gd3x = /u]d3§ = /yd%. (52)
Q Q Q Q

Since Ny > N + 1 we need to solve a constrained linear least squares problem.

We will denote the weights used to numerically evaluate the integral over the subcells by R;
and the weights for the integral over the DG element by wy;. To find the reconstruction operator
we need to solve the system

> Pauid; = uil;, (53)
i

subject to the constraint
> wpupdy =y Riuil;. (54)
I i

We do so by using the method of Lagrange multipliers. Denoting the Lagrange multiplier by
A, we must minimize the functional

f= (7’;7'47]7 - usz) (Puguesly = widi) = MwyupJy = RiugJy) (55)

12
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with respect to u;J; and \. Doing so we obtain the Euler—Lagrange equations

2PyPiy —wp\ (w3 _ (2P, .
(wi577 0 )( v )= Uk ) o

Inverting the matrix on the left side of (56), we obtain

-1
uildy\ _ (2PiPy  —wy 2P\,
( A ) - ( widy; 0 R ) ) oD

To make the notation less cumbersome we suppress indices by writing wy as 1 and wy 577 as
w. Treating the matrix as a partitioned matrix, we invert it to find

<2PP —17;)1 _ (H — ILGWwIL wa>. 58)
w 0 —Wwll w
Here we have defined

n=0PP)y', W= [wePP)'a] . (59)
Substituting (58) into (57) and performing the matrix multiplication we get

<uj j> B (HZP — HWwII2P + ywwié) T 60)

A —WwIIR2P + WR i

where R is short for R;. We can see that the first row of (60) gives

ujdy = { 2P — I@WWII2P + HzﬁWﬁ}ﬁuiJi, 61)

and so the reconstruction matrix used to obtain the DG solution from the FD solution is given
by

Ry = {HZP ~ HdWwIRP + waﬁ} . (62)

Ji
To show that the reconstruction matrix (62) satisfies (51) we start by substituting (62) into
(51):
RPuJ = {H27> — [WwIRP + waﬁ}PuJ

- {n ~ MeWw + waﬁp}uJ

= {1 — MdWw + ITdWw tuJ

=ul, (63)
where we used the constraint wuJ = RPuJ. Thus, the matrix givenin (62) is the reconstruction
matrix for obtaining the DG solution from the FD solution on the subcells and is the pseudo-

inverse of the projection matrix. Note that since the reconstruction matrices also only depend
on the reference coordinates, they can be precomputed for all elements and cached.

13
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We now turn to deriving the integration weights R; on the subcells. One simple option is
using the extended midpoint rule:

/4d3x ~ AfAnACZg,-Ji, (64)
Q —

which means R; = A{AnA(. However, this formula is only second-order accurate. To obtain
a higher-order approximation, we need to find weights R; that approximate the integral

b n
/ fdx = Rif(xy).
a iZO

We provide the weights R; in appendix B.

5.2. Intercell fluxes

One approach to dealing with the intercell fluxes is to use the mortar method [60—63]. In the
mortar method, the boundary correction terms and numerical fluxes are computed on a new
mesh whose resolution is the greater of the two elements sharing the boundary. In practice,
we have found this not to be necessary to achieve a stable scheme. This can be understood
by noting that from a shock capturing perspective, violating conservation is only an issue at
discontinuities. Wherever the solution is smooth, conservation violations converge away. Since
the hybrid scheme switches from DG to FD before a shock enters an element by retaking
the time (sub) step, and since discontinuities are inevitably always somewhat smeared in any
shock capturing scheme, we have found that exact conservation is not required between a DG
and FD grid. The lack of conservation arises from reconstructing the FD variables to the DG
element’s interface before computing G, rather than computing G on the FD cell faces and
then reconstructing G. Note that not enforcing exact conservation at boundaries is merely an
implementation convenience.

First, let us describe the element using FD. In this case, the neighbor input data to the
boundary correction from the DG grid is projected onto the FD grid on the interface. Then the
Riemann solver computes the boundary correction G, which is then used in the FD scheme.
On the DG grid the FD scheme is used to reconstruct the neighboring data on the common
interface from the subcell data. The reconstructed FD data is then reconstructed to the DG
grid, that is, it is transferred from the FD to the DG grid on the interface. Finally, the boundary
correction is computed on the DG grid. It is the reordering of the reconstruction and projection
with the Riemann solver that violates conservation at the truncation error level. Note that the
DG and FD solvers must use the same Riemann solver.

5.3. The a posteriori idea

In this section we will discuss how the a posteriori idea is implemented. For now, we will not
concern ourselves with which TCI is used, just that one is used to detect troubled cells. We
have several criteria that drive the design decision. Specifically,

e Only one communication between nearest neighbors is necessary per time (sub) step;

e Switching between DG and FD does not require additional communication and neighbor
information;

e Exact conservation between neighboring elements can be enforced;

e Both substep (Runge—Kutta) and multi-step (Adams—Bashforth) time integrators are
supported;

14
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Figure 1. A schematic description of the proposed DG-FD hybrid method. We use
superscripts 7 and 1 + 1 to denote variables at time ¢ and 7+, The unlimited DG loop,
projection to and reconstructions from the FD subcells, and the FD loop are boxed to
highlight how the hybrid scheme can be split into the unlimited DG and FD schemes
with transformations (projection and reconstruction) that allow switching between the
two methods. Steps that exchange data with neighboring elements are highlighted in
light gray and have a dashed border. Specifically, these are ‘exchange ghost cells and
fluxes” and ‘exchange ghost cells’.

e Physical realizability of the solution can be guaranteed.

We present a schematic of our DG—FD hybrid scheme in figure 1. The schematic has the
unlimited DG loop on the left and the positivity-preserving FD loop on the right. Between them
are the projection and reconstruction operations that allow the two schemes to work together
and communicate data back and forth. The scheme starts in the ‘unlimited DG loop’ in the top
left with a computation of the volume candidate. If the TCI finds the solution admissible the
‘passed’ branch is taken, otherwise the ‘failed’ branch is taken.

The algorithm proceeds as follows. We first compute a candidate solution u*(#**!) at time
! using an unlimited DG scheme. The TCI is then used to check whether or not the candidate
solution u*(#**') is admissible. The TCI may depend on the candidate solution, the solution
at the current time u(#") within the element, and the solution in neighboring elements at time
". In order to minimize communication between elements, the TCI may not depend on the
candidate solution in neighboring elements. If the candidate solution is found to be admissi-
ble by the TCI, we use it as the solution at #**!. That is, u(#'t') = u*(#"*"). If the candidate
solution is inadmissible, then we redo the time step using the FD subcells. In this case, the
solution at #* and the time stepper history (the time derivatives Ju(#""!), etc) are projected
onto the subcells, FD reconstruction is performed, data for the boundary correction/Riemann
solver at the element boundaries is overwritten by projecting the DG solution to the FD grid
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on the element boundaries, and the FD scheme takes the time step. Overwriting the FD recon-
structed data w3 with the projected DG solution P(u5™) on the interfaces makes the
scheme conservative when retaking the time step. Since the scheme is switching from DG to
FD, it is likely a discontinuity is present and conservation is important. This ultimately means
that neighboring elements are not aware that the element switched from DG to FD between
times ¢ and #*! until boundary data for time "*! is exchanged. Since the DG solution at time
1" is admissible, projecting it to the FD interface grid will be acceptable in nearly all cases.
In cases where this projection leads to an unphysical solution, all elements sharing the inter-
face can detect this and switch to FD; however, we have not yet implemented this. We now
describe in detail how the algorithm is implemented in terms of communication patterns and
parallelization.

First consider an element using DG. We start by computing the local contributions to the
time derivative, the fluxes, source terms, non-conservative terms, and flux divergence. We store
O,u, compute local contributions to the boundary correction G, and then send our contribu-
tions to the boundary correction as well as the ghost cells of the primitive variables used for
FD reconstruction to neighboring elements, as well as the interface mesh used to inform the
neighbor that we are using DG. By sending both the inputs to the boundary correction and the
data for FD reconstruction, we reduce the number of times communication is necessary. This
is important since generally it is the number of times data is communicated not the amount of
data communicated that causes a bottleneck. Once all contributions to the Riemann problem
are received from neighboring elements, we compute the boundary correction and compute the
candidate solution «*(#"+'). We then apply the TCI described in section 5.4 below. If the cell
is marked as troubled we undo the last timestep/substep and retake the timestep/substep using
the FD method?. FD reconstruction is performed, but the projected boundary correction from
the DG solve is used to ensure conservation between neighboring elements using FD. If the
cell was not marked as troubled, we accept the candidate solution as being valid and take the
next timestep/substep.

The FD solver starts by sending the data necessary for FD reconstruction to neighbor-
ing elements, including the interface mesh used to inform the neighbor that FD is being
used. This means any neighboring elements doing DG need to reconstruct the inputs into
the boundary correction using FD reconstruction. However, this allows us to maintain a sin-
gle communication per time step, unlike traditional limiting strategies which inherently need
two communications per time step. Once all FD reconstruction and boundary correction data
has been received from neighboring elements, a FD time step is taken. Any DG boundary
correction data is projected to the FD grid in order to reduce conservation violations at ele-
ment boundaries. With the FD time step complete, we apply a TCI to see if the DG solution
would be admissible. In both Runge—Kutta and multi-step methods, care is taken so as to not
introduce discontinuities into the solution because they were present in past timesteps or sub-
steps. In the case of Runge—Kutta time stepping we only switch back to DG at the end of
a complete time step in order to avoid reconstructing discontinuities in the time stepper his-
tory to the DG grid. When multi-step methods are used, we wait until the TCI has marked
enough time steps as being representable on the DG grid so that any discontinuities have
cleared the time stepper history. For example, when using a third-order multi-step method
the TCI needs to deem three time steps as representable on the DG grid before we switch to
DG. For the multi-step method we apply the reconstruction operator R to the time stepper
history (9,u("~") etc).

3 Note that only the most recent substep is retaken if a substep time integrator is being used.
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5.4. Troubled-cell indicators

One of the most important parts of the DG—FD hybrid method is the TCI that determines when
to switch from DG to FD. In [12] a numerical indicator based on the behavior of the polyno-
mials representing the solution was used as well as physical indicators such as the density or
pressure becoming negative. We believe that the combination of numerical and physical indica-
tors is crucial, since it enables the development of non-oscillatory methods that also guarantee
physical realizability of the solution. We will first outline the numerical indicator in this section.
Then we will give a detailed description of the TCIs we use with the GRMHD system for the
initial data, determining when to switch from DG to FD, and when to switch from FD back
to DG.

The numerical indicator used in [12] is a relaxed discrete maximum principle (RDMP). The
RDMRP is a two-time-level indicator in the sense that it compares the candidate at #'*! to the
solution at time #*. The RDMP requires that

min [u()] - 0 < u () < max [u()] + 6, (65)

where A\ are either the Neumann or Voronoi neighbors plus the element itself, § is a parameter
defined below that relaxes the discrete maximum principle, and u are the conserved variables®.
When computing max(u«) and min(z) over an element using DG, we first project the DG solu-
tion to the subcells and then compute the maximum and minimum over both the DG solution
and the projected subcell solution. However, when an element is using FD we compute the
maximum and minimum over the subcells only. Note that the maximum and minimum values
of u* are computed in the same manner as those of u. The parameter ¢ used to relax the discrete
maximum principle is given by:

§ = max <50, e{mj\s}x [u(")] — n}\i/n [u(?")] }), (66)

where, as in [12], we take 6y = 1077 and e = 1073.

We have found that the RDMP TCI is not able to handle slow-moving shocks. This is pre-
cisely because it is a two-time-level TCI and measures the change in the solution from one time
step to the next. Since discontinuities are inevitably still somewhat smeared with a FD scheme,
a discontinuity moving slowly enough gradually generates large oscillations inside the element
it is entering. The RDMP, measuring relative changes, does not react quickly enough or at all,
and so the DG method ends up being used in elements with discontinuities. We demonstrate
this below in the simple context of a 1D Burgers step solution with the mesh moving at nearly
the speed of the discontinuity.

Since using the RDMP means we are unable to satisfy requirements 4.1(f) and (g), we seek
a supplementary TCI to deal with these cases. We use the TCI proposed in [64], which we
will refer to as the Persson TCI. This TCI looks at the falloff of the spectral coefficients of
the solution, effectively comparing the power in the highest mode to the total power of the
solution. Consider a discontinuity sensing quantity U, which is typically a scalar but could be
a tensor of any rank. Let U have the 1D spectral decomposition:

N
U =Y eiPi(x), (67)
i=0

4 Any choice of quantities can be monitored.
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where in our case P;(x) are Legendre polynomials, and ¢; are the spectral coefficients®. We
then define a filtered solution U as

U(x) = cyPy(x). (68)

The main goal of U is to measure how much power is in the highest mode, which is the mode
most responsible for Gibbs phenomenon. In 2D and 3D we consider U on a dimension-by-
dimension basis, taking the L, norm over the extra dimensions, reducing the discontinuity

sensing problem to always being 1D. We define the discontinuity indicator s** as

Q (U’ U)
s° =log, ((U, U))’ (69)
where (-, ) is an inner product, which we take to be the Euclidean L, norm (i.e. we do not
divide by the number of grid points since that cancels out anyway).
We must now decide what values of s’ are large and therefore mean the DG solution is
inadmissible. For a spectral expansion, we would like the solution to be at least continuous
and so the spectral coefficients should decay at least as 1/N? [65]. Since our sensor depends

on the square of the coefficients, we expect at least 1 /N* decay for smooth solutions. With this
in mind, we have found that requiring

s < 5 = —aylog,o(N + 1), (70)

with ay = 4 works well for detecting oscillations and switching to the FD scheme. In order to
prevent rapid switching between the DG and FD schemes, we use ay + 1 for the TCI when
deciding whether to switch back to DG.

5.4.1. Initial data TCI for GRMHD. We set the initial data on the DG grid, and then check a
series of conditions to see if the initial data is representable on the DG grid. We require:

(a) That min(D) over both the DG grid and the subcells is above a user-specified threshold.
This is essentially a positivity check on D.

(b) That min(7) over both the DG grid and the subcells is above a user-specified threshold.
This is essentially a positivity check on 7.

(c) That for all conserved variables their max and min on the subcells satisfies an RDMP
compared to the max and min on the DG grid. The tolerances chosen are typically the
same as those used for the two-level RDMP during the evolution.

(d) That D and 7 pass the Persson TCI.

(e) That if max(«/EiéijBJ'> is above a user-specified threshold, \/Bio;;B/ satisfies the

Persson TCIL.
If all requirements are met, then the DG solution is admissible.
5.4.2. TCl on DG grid for GRMHD. On the DG grid we require:

(a) That the RDMP TCI passes.

(b) That min(D) is above a user-specified threshold. This is essentially a positivity check. This
is done over both the DG and projected subcell solution.

5 When a filter is being used to prevent aliasing-driven instabilities, lower modes need to be included in U. U should
generally be the highest unfiltered mode.
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(c) That min(7) is above a user-specified threshold. This is essentially a positivity check. This
is done over both the DG and projected subcell solution.

(d) That B*> < 1.0 — €527,/7 at all grid points in the DG element.

(e) That primitive recovery is successful.

(f) That if we are in the atmosphere, we stay on DG. Since we have now recovered the
primitive variables, we are able to say with certainty whether or not we are in atmosphere.

(g) That D and 7 pass the Persson TCI.

(h) That if max<,/éi5i jBJ) is above a user-specified threshold, \/Bio;;B/ satisfies the

Persson TCI.

If all requirements are met, then the DG solution is admissible.

5.4.3. TCl on FD grid for GRMHD. In order to switch to DG from FD, we require:

(a) That the RDMP TCI passes.

(b) That no conserved variable fixing was necessary. If the conserved variables needed to be
adjusted in order to recover the primitive variables, then even the FD solution is inaccurate.

(c) That min(D) is above a user-specified threshold. This is essentially a positivity check.

(d) That min(7) is above a user-specified threshold. This is essentially a positivity check.

(e) That D and 7 pass the Persson TCI.

(f) That if max<./Bi5ijBJ> is above a user-specified threshold, \/Bi0;;B/ satisfies the

Persson TCI.

If all the above checks are satisfied, then the numerical solution is representable on the DG
grid.

5.5. On the number of subcells to use

The only hard requirement on the number of subcells used in 1D is Ny > N + 1 so that there
are at least as many degrees of freedom to represent the solution on the subcells as there are in
the DG scheme. However, the more optimal choice, as is argued in [12], is Ny = 2N + 1. This
arises from comparing the time step size allowed when using a DG method, (43), to the time
step size allowed when using a FV or FD method, (44). Choosing Ny > 2N + 1 is not desirable
since that would result in having to take smaller time steps when switching from DG to FD.
We refer the reader to section 4.5 of [12] for a more detailed discussion of the optimal number
of subcells to use.

5.6. Perspective on DG-FD hybrid method

Given the complexity of the DG—FD hybrid scheme and the relative expense of FD schemes
compared to the DG scheme, the DG-FD hybrid scheme might seem like a poor choice. We
argue that this is not the case and that the hybrid scheme is actually a good choice. Consider
needing a resolution of 130¢ (very modest) to solve a problem using a FD scheme to a desired
accuracy. The equivalent DG—FD hybrid scheme would use ten seventh-order elements so that
in the worst case, where there are large discontinuities everywhere in the domain, the scheme
is as accurate as the FD scheme. However, wherever the solution is smooth enough to be rep-
resentable using DG, roughly 2¢ fewer grid points are necessary. In 3D this makes a significant
difference, especially if the numerical solution is representable using DG in much of the com-
putational domain. For example, consider the case where half the elements are using FD. In
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this case the DG—FD hybrid scheme uses ~ 0.58 times as many grid points as the equivalent
FD scheme. Furthermore, the DG scheme only needs to solve the Riemann problem on ele-
ment boundaries, and does not need to perform the expensive reconstruction step necessary
in FD and FV schemes. Thus, the decrease in the number of grid points is a lower bound on
the performance improvement the DG—FD hybrid scheme has to offer. Ultimately, we believe
that the more useful view of the DG—FD hybrid scheme is that it is a FD scheme that uses DG
as a way to compress the representation of the solution in smooth regions in order to increase
efficiency.

6. Numerical results

6.1. Burgers equation: a slowly moving discontinuity

While extremely simple, Burgers equation allows us to easily test how well the RDMP and
Persson TCI are able to handle slowly-moving discontinuities. Burgers’ equation is given by

2
a,U+ax<lé> =0. (71)

Whenever we use the Persson TCI we use the evolved variable U as the discontinuity sensing
quantity.
We evolve the solution

2 if x <025+ 1.5¢
Ulx,0) = (72)

1 otherwise

on a moving mesh. The mesh has a velocity v, = 1.4, while the discontinuity moves at speed
1.5. Thus, the discontinuity moves relatively slowly across the grid, allowing us to test how well
each TCI handles such discontinuities. We integrate (71) using a third-order Adams—Bashforth
time stepper, on an initial domain x € [—1, 1] with eight Ps elements. We compare the RDMP
TCI and the Persson TCI in figure 2 at a final time of # = 1.5. The top row uses a time
step of At =2.5 x 1073 and the bottom row uses At =5 x 10~#. In all cases a third-order
weighted compact nonlinear scheme is used for FD reconstruction. We use a Rusanov or local
Lax—Friedrichs numerical flux/boundary correction.

The leftmost plot in the top row of figure 2 uses the Persson TCI with ay = 3, the center
plot in the top row uses the Persson TCI with ay = 4, and the rightmost plot in the top row uses
the RDMP TCI. We see that, in agreement with what is expected from a convergence analysis
of Legendre polynomials [65], using aiy = 4 to switch to the FD scheme is most robust as an
indicator. We see that both the Persson TCI with ay = 3 and the RDMP TCI struggle to switch
to the FD scheme quickly enough to prevent unphysical oscillations from entering the solution.
In the bottom row of figure 2 we use a smaller time step size, At = 5 x 1074, to make the rela-
tive change in U from one time step to the next smaller. From left to right we show results using
the Persson TCI with ay = 4, the RDMP TCI, and the Persson TCI with ay = 3 alongside the
RDMP TCI. In general, the RDMP is much better at preventing oscillations from appearing
on the left of the discontinuity, while the Persson TCI does a better job on the right of the
discontinuity. While interesting, it is unclear how this translates to more complex systems and
flows. Although we cannot completely discount the RDMP, the Persson indicator does have
an advantage in all cases, but using both TClIs together gives the best results. We ran the Pers-
son TCI with ay = 4 alongside the RDMP TCI for the smaller time step case and found that
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Figure 2. The step Burgers problem at #y = 1.5 using a DG—Ps scheme hybridized with
a WCNS3 FD scheme. A third-order Adams—Bashforth time stepper is used and the
mesh is moving at velocity v, = 1.4. Results in the top row are obtained using a time step
size of At = 2.5 x 1073 and in the bottom row using a time step size of At = 5 x 107%.
Going from left to right in the top row, the TCI used is the Persson TCI with ay = 3, the
Persson TCI with ay = 4, and the RDMP TCI. Going from left to right in the bottom
row, the TCI used is the Persson TCI with ay = 3, the RDMP TCI, and Persson TCI
with ay = 4 along with the RDMP TCI.

no unphysical oscillations are visible, just as in the top middle plot of figure 2. We have verified
that our results are the same whether using the SSP RK3 time stepper or the Adams—Bashforth
time stepper.

6.2. General relativistic magnetohydrodynamics

In this section we present results of our DG—FD hybrid scheme when applied to various
GRMHD test problems. The final test problem in this section is that of a single magnetized neu-
tron star, demonstrating that our hybrid scheme is capable of simulating interesting relativistic
astrophysics scenarios. We always use an HLL Riemann solver and typically the third-order
strong-stability preserving Runge—Kutta (SSP RK3) time stepper [42]. However, we also com-
pare a fifth-order Dormand—Prince method [66] to the RK3 method for some test problems.
We mainly use the SSP RK3 stepper since this is a commonly used method when comparing
shock capturing schemes. We also reconstruct the variables {p, p, WV, B, ®} using a mono-
tonised central reconstruction scheme. We choose the resolution for the different problems
by having the number of FD grid points be approximately equal to the number of grid points
used by current production FD codes. Unless stated otherwise, we do not monitor B’ with the
Persson indicator since in most of the test cases we look at the magnetic field has disconti-
nuities at or near the same place the fluid variables have discontinuities. All simulations use
SPECTRE v2022.04.04 [33] and the input files are available as part of the arXiv version of
this paper.
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Table 1. The errors and local convergence order for the smooth flow problem using dif-
ferent limiting strategies. Note that the limiter is not applied if the TCI determines the
DG solution to be valid. We observe the expected convergence rate except when the solu-
tion is underresolved because too few elements are used or when the error is no longer

dominated by the truncation error of the DG scheme.

Method Ny Lr(E(p)) L, order
DG-FD P; 2 3.50983 x 107!
4 1.22554 x 107! 1.52
8 3.72266 x 1074 8.36
16 1.61635 x 107 4.53
32 9.76927 x 1077 4.05
DG-FD P, 2 3.62426 x 107!
4 3.79759 x 10~ 9.90
8 1.15193 x 107 5.04
16 3.73055 x 1077 4.95
DG-FD Ps 2 3.45679 x 107!
4 2.23822 x 107 13.91
8 3.18504 x 1077 6.13
16 5.08821 x 107 5.97
Table 2. The initial conditions for Riemann problems 1, 3, and 4 of [67]. The domain
is x € [—0.5,0.5], the final time is # = 0.4, and an ideal fluid equation of state is used
with an adiabatic index of 2 for Riemann problem 1 and 5/3 for Riemann problems 3
and 4.
Problem p P vl B
RP 1 x <0 1.0 1.0 (0.0,0,0) (0.5,1.0,0.0)
x>0 0.125 0.1 (0.0,0,0) (0.5,—1.0,0.0)
RP3 x <0 1.0 1000.0 (0.0,0,0) (10.0,7.0,7.0)
x=0 1.0 0.1 (0.0,0,0) (10.0,0.7,0.7)
RP 4 x <0 1.0 0.1 (0.999,0,0) (10.0,7.0,7.0)
x=0 1.0 0.1 (—0.999,0,0) (10.0, —=7.0, —7.0)

6.2.1. 1D smooth flow. We consider a simple 1D smooth flow problem to test which of the
limiters and TCIs are able to solve a smooth problem without degrading the order of accuracy.
A smooth density perturbation is advected across the domain with a velocity v'. The analytic
solution is given by

p=140.7 sin[k'(x' — v'1)],

v' = (0.8,0,0),
kK =(1,0,0),
r=1

B' = (0,0,0),
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Figure 3. Results from Riemann problem 1 of [67] using a Ps (64 elements) and P,
(128 elements) DG—FD hybrid scheme with an SSP RK3 and Dormand—Prince five
time stepper. All results are at the final time # = 0.4. The top left panel shows the rest
mass density p, the bottom left the magnetic field B”, and the right panels show the
difference between the analytic and numerical solution. The Ps scheme is able to resolve
the discontinuities just as well as the P, scheme, while also admitting fewer unphysical
oscillations away from the discontinuities.

and we close the system with an adiabatic equation of state,
p=pel’ = 1), (78)

where I' is the adiabatic index, which we set to 1.4. We use a domain given by [0, 27]%, and
apply periodic boundary conditions in all directions. The time step size is At = 27/5120 so
that the spatial discretization error is larger than the time stepping error for all resolutions that
we use.

We perform convergence tests at different DG orders and present the results in table 1. We
show both the L, norm of the error and the convergence rate. The L, norm is defined as

(79)

where M is the total number of grid points and u; is the value of u at grid point i and the
convergence order is given by

Lz(ng/z)} . (80)

L, order = log, [ L)
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Figure 4. Results from Riemann problem 3 of [67] using a Ps (64 elements) and P,
(128 elements) DG—FD hybrid scheme with an SSP RK3 and Dormand—Prince five
time stepper. All results are at the final time ¢ = 0.4. The top left panel shows the rest
mass density p, the bottom left the magnetic field B, and the right panels show the
difference between the analytic and numerical solution. The P5 scheme is able to resolve
the discontinuities just as well as the P, scheme, while also admitting fewer unphysical
oscillations away from the discontinuities.

We find that when very few elements are used, the TCI decides the solution is not well rep-
resented on the DG grid. Although if we disable the FD scheme completely, we find the DG
method is stable, we find it acceptable that the TCI switches to FD in order to ensure robustness.
Ultimately we observe the expected rate of convergence for smooth problems.

6.2.2. 1D Riemann problems. One-dimensional Riemann problems are a standard test for any
scheme that must be able to handle shocks. We will focus on the first, third, and fourth Riemann
problems (RP1, RP3, RP4) of [67]. The setup is given in table 2. We perform simulations using
an SSP RK3 and a Dormand—Prince five method with Az = 5 x 10~*. In the top left panels
of figures 3—5 we show the rest mass density p at #; = 0.4, the bottom left panels show B,
while the right panels show the difference between the analytic and numerical solution. The
thin black curve is the analytic solution obtained using the Riemann solver of [68]. An ideal
fluid equation of state (78) is used.

Impressively, the DG-FD hybrid scheme actually has fewer oscillations when going to
higher order. In the right panels of figures 3—5 we plot the error of the numerical solution
using a P, DG-FD scheme with 128 elements and a Ps DG-FD scheme with 64 elements.
We see that the Ps hybrid scheme actually has fewer oscillations than the P, scheme, while
resolving the discontinuities equally well. We attribute this to the TCIs triggering earlier when
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Figure 5. Results from Riemann problem 4 of [67] using a Ps (64 elements) and P,
(128 elements) DG—FD hybrid scheme with an SSP RK3 and Dormand—Prince five
time stepper. All results are at the final time ¢ = 0.4. The top left panel shows the rest
mass density p, the bottom left the magnetic field B”, and the right panels show the
difference between the analytic and numerical solution. The Ps scheme is able to resolve
the discontinuities just as well as the P, scheme, while also admitting fewer unphysical
oscillations away from the discontinuities.

a higher polynomial degree is used since discontinuities entering an element rapidly dump
energy into the high modes. While the optimal order is almost certainly problem-dependent,
given that current numerical relativity codes are mostly second order, achieving sixth order
in the smooth regions is promising. The SSP RK3 time stepper seems to generally result in
fewer oscillations than the Dormand—Prince five time stepper. This could stem from the Dor-
mand—Prince stepper not being strong stability preserving. We leave a detailed comparison of
different time integration schemes to future work.

6.2.3. 2D cylindrical blast wave. A standard test problem for GRMHD codes is the cylindri-
cal blast wave [69, 70] where a magnetized fluid initially at rest in a constant magnetic field
along the x-axis is evolved. The fluid obeys the ideal fluid equation of state with ' = 4 /3. The
fluid begins in a cylindrically symmetric configuration, with hot, dense fluid in the region with
cylindrical radius r < 0.8 surrounded by a cooler, less dense fluid in the region r > 1. The
initial density p and pressure p of the fluid are

p(r < 0.8) =102, (81)
p(r>1.0) =104, (82)
p(r<0.8) =1, (83)
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Figure 6. Cylindrical blast wave p at t = 4 showing the results of the using the DG-FD
hybrid scheme with 64 x 64 P, elements (left) and 32 x 32 Ps elements (right). The
regions surrounded by maroon squares have switched from DG to FD.

p(r>1.0)=5x10"* (84)

In the region 0.8 < r < 1, the solution transitions continuously and exponentially (i.e., transi-
tions such that the logarithms of the pressure and density are linear functions of r). The fluid
begins threaded with a uniform magnetic field with Cartesian components

(B*,B", B%) = (0.1,0,0). (85)

The magnetic field causes the blast wave to expand non-axisymmetrically. For all simulations
we use a time step size At = 1072 and an SSP RK3 time integrator.

We evolve the blast wave to time t = 4.0 on a grid of 64 x 64 x 1 elements covering a cube
of extent [—6, 6]° using a P, DG-FD scheme and on a grid of 32 x 32 x 1 using a Ps DG-FD
scheme. With these choices the resolution when using FD everywhere is comparable to what
FD codes use for this test. We apply periodic boundary conditions in all directions, since the
explosion does not reach the outer boundary by ¢ = 4.0. Figure 6 shows the logarithm of the
rest-mass density at time # = 4.0, at the end of evolutions using the P, (left) and Ps (right)
DG-FD schemes. The increased resolution of a high-order scheme is clear when comparing
the P, and Ps solutions in the interior region of the blast wave. It is not clear that going to
even higher order would be useful in this problem since to maintain the same time step size
we would need to decrease the number of elements. Furthermore, as we can already see by
comparing the P, and Ps schemes, a greater area of the Ps solution is using FD, though it
is difficult to determine what overall effect this has, especially since high-order FD schemes
could be used. We show the percentage of elements using FD instead of DG at the final time in
table 3. As expected, the percentage of elements using FD decreases as the number of elements
is increased.

6.2.4. 2D magnetic rotor. The second two-dimensional test problem we study is the magnetic
rotor problem originally proposed for non-relativistic MHD [71, 72] and later generalized to the
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Table 3. The percentage of elements using FD at the final time of the cylindrical blast
wave simulation.

Method Domain Percent using FD (%)
DG-FD P, 32? 36.7

642 22.9

1282 7.9
DG-FD P;s 162 57.8

322 35.9

642 21.8

relativistic case [73, 74]. A rapidly rotating dense fluid cylinder is inside a lower density fluid,
with a uniform pressure and magnetic field everywhere. The magnetic braking will slow down
the rotor over time, with an approximately 90 degree rotation by the final time r = 0.4. We
use a domain of [—0.5,0.5]° and a time step size At = 10~ and an SSP RK3 time integrator.
An ideal fluid equation of state with I' = 5/3 is used, and the following initial conditions are
imposed:

p=1 (86)
B' = (1,0,0) (87)
. (_yQ’ x€, 0), if 7 < Ryotor = 0.1
v = (33)
(0,0,0), otherwise,
10, if ¥ < Riotor = 0.1
p= ] (89)
1, otherwise,

with angular velocity 2 = 9.95. The choice of 2 and R,y = 0.1 guarantees that the maxi-
mum velocity of the fluid (0.995) is less than the speed of light. We impose periodic boundary
conditions.

We show the results of our evolutions using 64 x 64 P, elements (left) and 32 x 32 Ps
elements (right) in figure 7. Again, the DG—FD hybrid scheme is robust and accurate, though
a fairly large number of cells end up being marked as troubled in this problem. However, using
FD in more elements is not something we view as inherently bad, since we favor robustness
in realistic simulations. The process of tweaking parameters and restarting simulations is both
time consuming and frustrating, and so giving up some efficiency for robustness is preferable
in general.

6.2.5. 2D magnetic loop advection. The last two-dimensional test problem we study is mag-
netic loop advection problem [75]. A magnetic loop is advected through the domain until it
returns to its starting position. We use an initial configuration very similar to [40, 76-78],
where

p=1 (90)
p=3 on
o' =(1/1.2,1/2.4,0) (92)
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Figure 7. Magnetic rotor p at# = 0.4 showing the results of the using the DG—FD hybrid
scheme with 64 x 64 P, elements (left) and 32 x 32 Ps elements (right). The regions
surrounded by maroon squares have switched from DG to FD.

—AloopY/Rins if r < Rip

B* = —Aioopy/ 1> if Rin < 7 < Rigop 93)
0, otherwise,

AloopX/Rin, if r <Ry,

B}’ = Alonpx/r, lf Rin <r< RlOOp (94)

0, otherwise,

with Rioep = 0.3, Riy = 0.001, and an ideal gas equation of state with I" = 5/3. The compu-
tational domain is [—0.5,0.5]* with 64 x 64 x 1 elements and periodic boundary conditions
being applied everywhere. The final time for one period is t = 2.4. For all simulations we use a
time step size At = 1072 and an SSP RK3 time integrator. Since the fluid variables are smooth
in this problem, we apply the Persson TCI to the Euclidean magnitude of B’ in elements where
the maximum value of the magnitude is above 1075.

In figure 8 we plot the magnetic field component B* at t = 0 on the left half of each plot
and after one period r = 2.4 on the right half of each plot. In the left panel of figure 8 we show
the result using a P, DG-FD scheme and in the right panel of figure 8 using a Ps DG-FD
scheme. The Ps scheme resolves the smooth parts of the solution more accurately than the
P, scheme, as is to be expected. Finally, in figure 9 we plot the divergence cleaning field ¢
at the final time # = 2.4. We do not observe any artifacts appearing in the divergence clean-
ing field at the interfaces between the DG and FD solvers, demonstrating that the divergence
cleaning properties of the system are not adversely affected by using two different numerical
methods.

6.2.6. TOV star. A rigorous 3D test case in general relativity is the evolution of a TOV star
[79, 80]. In this section we study evolutions of both non-magnetized and magnetized TOV
stars. We adopt the same configuration as in [81]. Specifically, we use a polytropic equation of
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Figure 8. B* for the magnetic loop advection problem. The left half of each plot is at
the initial time, while the right half is after one period (r = 2.4). We show the results of
the using the DG-FD hybrid scheme with 64 x 64 P, elements (left) and 32 x 32 Ps
elements (right). The regions surrounded by black squares have switched from DG to
FD.
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Figure 9. The divergence cleaning field ® for the magnetic loop advection problem after
one period (r = 2.4). We show the results of the using the DG—FD hybrid scheme with
64 x 64 P, elements (left) and 32 x 32 Ps elements (right). The regions surrounded by
black squares have switched from DG to FD.

state,
p(p) =Kp" (95)

with the polytropic exponent I" = 2, polytropic constant K = 100, and a central density
p. = 1.28 x 1073, For the magnetized case, we choose a magnetic field given by a vector
potential
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Ay = Ap(x* 4+ y*) max (p — peu. 00", (96)

with A, = 2500, p., = 0.04p,. and n; = 2. This configuration yields a magnetic field
strength in CGS units

|Beas| = Vb? x 8.352 x 10" G, (97)

of [Bcgs| = 1.03 x 10'® G. The magnetic field is only a perturbation to the dynamics of the star,
SINCe (Ppyaq /p)(r =0) ~ 5 x 1075, However, evolving the field stably and accurately can be
challenging. The magnetic field corresponding to the vector potential in (96) in the magnetized
region is given by

I xz 1
B'=-——A s\P — Pcul s ar p 98
A p1s(P — Peut) P (98)
' 1 yz )
B = —=Ayn(p — pe)™ 'O, 9
i p1s(p — peu)™ ™ Orp 99)
Z Ap n x? +y2 ng—1
B =—— 2(]7 - pCut) S+ nx(p - pCut) N arp 5 (100)
NGl
and atr = 01is
B*=0, (101)
B =0, (102)
Ap
B = ——=2(p— peu)™- (103)
VA t

We perform all evolutions in full 3D with no symmetry assumptions and in the Cowling
approximation, i.e., we do not evolve the spacetime. To match the resolution usually used in
FD/FV numerical relativity codes, we use a domain [—20, 20]? with a base resolution of six Ps
DG elements. This choice means we have approximately 32 FD grid points covering the star’s
diameter at the lowest resolution, 64 when using twelve Ps elements, and 128 grid points when
using 24 Ps elements. In all cases we set p,,, = 107" and p o = 1.01 x 10715, We do not
run any simulations using a P, DG—FD hybrid scheme since the Ps scheme has proven to be
more accurate and robust in all test cases so far.

In the left panel of figure 10 we show the maximum rest mass density over the grid divided
by the maximum density at t = 0 for the non-magnetized TOV star. The six-element simula-
tion uses FD throughout the interior of the star because the corners of the inner elements are
in vacuum. In comparison, the 12- and 24-element simulations use the unlimited Ps DG solver
throughout the star interior. The increased ‘noise’ in the 12- and 24-element data actually stems
from the higher oscillation modes in the star [82] that are induced by numerical error. In the
right panel of figure 10 we plot the power spectrum using data at the three different resolu-
tions. The six-element simulation only has one mode resolved, while 12 elements resolve two
modes well, and the 24-element simulation resolves three modes well. Additionally, we plot
the power spectrum from a 24-element simulation using a fifth-order Dormand—Prince time
stepper instead of the strong stability preserving third-order Runge—Kutta method. Increasing
the time stepper order does not increase the number of radial modes resolved, demonstrating
that it is the spatial resolution that is the limiting factor.
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Figure 10. A plot of max[p(#)]/max[p(0)] at three different resolution (left panel) for the
non-magnetized TOV star. The six-element simulation uses FD throughout the interior
of the star, while 12- and 24-element simulations use DG. The maximum density in
the six-element case drifts down at early times because of the low resolution and the
relatively low accuracy of using FD at the center. The power spectrum of the maximum
density for the three different resolution is plotted in the right panel. The vertical dashed
lines correspond to the known frequencies in the Cowling approximation [82]. When the
high-order DG scheme is used, more oscillation frequencies are resolved. We also show
the spectrum from a simulation using a fifth-order Dormand—Prince time stepper.

We show the normalized maximum rest mass density over the grid for the magnetized TOV
star in the left panel of figure 11. Overall the results are nearly identical to the non-magnetized
case. One notable difference is the decrease in the 12-element simulation between 7.5 ms and
11 ms, which occurs because the code switches from DG to FD at the center of the star at
7.5 ms and back to DG at 11 ms. Nevertheless, the frequencies are resolved just as well for the
magnetized star as for the non-magnetized case, as can be seen in the right panel of figure 11
where we plot the power spectrum. Specifically, we are able to resolve the three largest modes
with our Ps DG—FD hybrid scheme. To the best of our knowledge, these are the first simulations
of a magnetized neutron star using high-order DG methods.

6.2.7. Rotating neutron star. As a final test case we simulate a uniformly rotating neutron
star with ratio of polar to equatorial radius of 0.7, similar to that of [82]. The initial data is
constructed using the method described in [83, 84]. We use the same polytropic equation of
state as for the TOV star evolution. In the left panel of figure 12 we show the maximum of the
rest mass density for the same three resolutions used for the TOV star simulations. The lowest
resolution uses FD throughout the star and sees a rapid decay in the density. The 12-element
simulation uses DG throughout most of the interior of the star and so sees significant less decay
in the density. The 24-element simulation uses DG everywhere in the interior of the star and
sees less than a 0.1% decay in the density over 20 ms. To further test convergence we plot the
maximum density of a 1 ms long 24-element and 48-element simulation in the right panel of
figure 12. The oscillations continue to decrease with increasing resolution. We attribute the
decay in the maximum density at lower resolutions to the dissipative nature of FD schemes,
consistent with the rapid reduction in decay of the maximum density when switching to DG
and increasing the resolution. These are also the first simulations of a rotating neutron star
using high-order DG methods.
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Figure 11. A plot of max[p(r)]/max[p(0)] at three different resolution (left panel) for
the magnetized TOV star. The six-element simulation uses FD throughout the interior
of the star, while 12- and 24-element simulations use DG. The maximum density in
the six-element case drifts down at early times because of the low resolution and the
relatively low accuracy of using FD at the center. The power spectrum of the maximum
density for the three different resolution is plotted in the right panel. The vertical dashed
lines correspond to the known frequencies in the Cowling approximation (which are the
same as the non-magnetized case as the magnetic field is a small perturbation on the
dynamics). When the high-order DG scheme is used, more oscillation frequencies are
resolved.
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Figure 12. The left panel shows max[p(f)]/max[p(0)] at three different resolution for
the uniformly rotating neutron star. The six-element simulation uses FD throughout the
interior of the star, the 12-element simulation uses mostly DG in the stellar interior, and
the 24-element simulations use DG everywhere except the stellar surface. The right panel
shows max[p(#)]/max[p(0)] for a shorter period of time but at very high resolutions, 24
elements and 48 elements. Increasing from 24 to 48 elements further reduces oscillations
in the maximum density.

7. Conclusions

In this paper we gave a detailed description of our DG—FD hybrid method that can successfully
solve challenging relativistic astrophysics test problems like the simulation of a magnetized or
rotating neutron star. Our method combines an unlimited DG solver with a conservative FD
solver. Alternatively, this can be thought of as taking a standard FD code in numerical relativity
and compressing the data to a DG grid wherever the solution is smooth. The DG solver is
more efficient than the FD solver since no reconstruction is necessary and fewer Riemann
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problems need to be solved. In theory a speedup of about eight is achievable, though we have
not optimized our code SpECTRE [33] enough and so we find in practice a speedup of about
two to three when comparing the hybrid method to using FD everywhere. The basic idea of the
hybrid scheme is similar to [10—13]. An unlimited DG solver is used wherever a TCI deems
the DG solution admissible, while a FD solver is used elsewhere. Unlike classical limiting
strategies like WENO which attempt to filter out unphysical oscillations, the hybrid scheme
prevents spurious oscillations from entering the solution. This is achieved by retaking any time
step using a robust high-resolution shock-capturing conservative FD where the DG solution
was inadmissible, either because the DG scheme produced unphysical results like negative
densities or because a numerical criterion like the percentage of power in the highest modes
deemed the DG solution bad. Our DG-FD hybrid scheme was used to perform what is to
the best of our knowledge the first ever simulations of a magnetized TOV star and rotating
neutron star using DG methods. In the future we plan to extend the hybrid scheme to curved
meshes, simulations in full general relativity where the metric is evolved, and to use positivity-
preserving adaptive-order FD methods in order to maintain the highest order possible even
when using FD instead of DG.
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Appendix A. Curved hexahedral elements and moving meshes

We have not yet implemented support for curved hexahedral meshes into SpECTRE. How-
ever, we have given careful consideration on how they could be implemented. In this appendix
we discuss two possible implementations, one that requires many additional ghost cells with
dimension-by-dimension reconstruction, and one that requires multidimensional reconstruc-
tion but no additional ghost cells.

Support for curved hexahedral or rectangular meshes can be achieved by combining the DG
scheme with a multipatch or multidomain FD scheme. We will discuss only the 2D case, since
the 3D case has more tedious bookkeeping, but otherwise is a straightforward extension. As
a concrete example, we consider a 2D disk made out of a square surrounded by four wedges
as shown in figure A1. We focus on an element at the top right corner of the central square
and its neighbors, highlighted by the dashed squared in figure A1. We will first discuss how to
handle the boundaries when a pair of neighboring elements are using the FD scheme, and then
consider the case when one element is using DG and the other FD.
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Figure A1. A 2D disk made out of a central square surrounded by four wedges. In the text
we describe the method of handling intercell fluxes for the elements inside the dashed
square.

In figure A2 we illustrate the domain setup, showing the subcell center points as circles in
the two elements of interest. The diamonds in left panel of figure A2 represent the ghost cells
needed for reconstruction to the element boundary in the element on the right. We use diagonal
dotted lines to trace out lines of constant reference coordinates in the element on the right and
dashed lines in the element on the left. Notice that the dashed and dotted lines intersect on the
element boundary. This is because the mapping from the reference frame is continuous across
element boundaries and allows us to have a conservative scheme using centered stencils even
in the multipatch case.

Since we are unable to interpolate to the ghost cells shown in the left panel of figure A2 with
centered stencils, one option is to use non-centered stencils. Using non-centered stencils was
explored in reference [91], which did not find any instabilities from the use of such stencils
in their test cases. Another option is to use reconstruction methods for unstructured meshes
(see, for example, [92-97] and references therein), though this adds significant conceptual
and technical overhead. Another option is adding additional subcells that overlap with the
neighboring elements to allow the use of centered reconstruction schemes to interpolate to the
ghost cells. These additional subcells are shown as triangles in the middle panel of figure A2.
We can now do two reconstructions to reconstruct the ghost cells. First, we reconstruct along
one reference axis of the central element as shown by the squares in the right panel of figure A2.
Next we reconstruct along the other direction, which is illustrated by the dotted vertical line in
the right panel of figure A2.

In order to maintain conservation between elements, we need to define a unique left and right
state at the boundary of the elements. A unique state can be obtained by using the average of
the reconstructed variables from the diagonal and horizontal stencils in figure A2. That is, we
use the average of the result obtained from reconstruction in each element for the right and
left states when updating any subcells that need the numerical flux on the element boundaries.
Recall that when using a second-order FD derivative the semi-discrete evolution equations are
(we only show 1D for simplicity since it is sufficient to illustrate our point)

o0& F'gx-s-l/z,z - ﬁf—l/z’l _
O+ 5> ( e =s. (A.1)

Thus, as long as all cells that share the boundary on which the numerical fluxes are defined
use the same numerical flux, the scheme is conservative. When using higher-order derivative
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Figure A2. An illustration of the multipatch or multidomain FD reconstruction needed
to support curved meshes. We show a 2D example for simplicity. The 3D case is a tedious
but otherwise straightforward generalization.

approximations the fluxes away from the cell boundaries are also needed. In the case of the
element boundaries we are considering, we do not have a unique solution in the region of over-
lap (e.g. the region covered by the purple triangles in the middle panel of figure A2) where we
compute the fluxes. As a result, we do not know if using high-order FD derivatives would vio-
late conservation at the element boundaries. However, if the solution is smooth in this region,
small violations of conservation are not detrimental, and if a discontinuity is passing through
the boundary a second-order FD derivative should be used anyway.

Another method of doing reconstruction at locations where the coordinate axes do not align
is described in [98] for FV methods. This same approach should be applicable to FD methods.
Whether adding ghost zones or using unstructured mesh reconstruction is easier to implement
and more efficient is unclear and will need to be tested.
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Table B1. Weights for a fourth-order approximation to an integral using stencils sym-
metric about the center. Only the first half of the coefficients are shown, the second half
are such that the stencil is symmetric. The number of points in the stencil is shown in
the first column.

Number of cells X1/2 X3/2 X5/2 X7/2 X9/2
; : ; - - -
' 3 b — ~ ~
5 : 5 : - -
6 z : z - -
7 5 3 § = —
8 5 3 ‘ u -
o+ 5 i ; g !

Table B2. Weights for a sixth-order approximation to an integral using stencils symmet-
ric about the center. Only the first half of the coefficients are shown, the second half are
such that the stencil is symmetric. The number of points in the stencil is shown in the
first column.

Number of cells X1/2 X3/2 X5/2 X7/2 X9/2 X11/2 X132 X15/2

5 1375 125 335 _ _ _ _ _
1152 288 192

6 741 417 381 _ _ _ _ _
640 640 320

7 741 3547 8111 611 _ _ _ _
640 5760 5760 960

8 1663 27 2 139 _ _ _ _
1440 360 240 160

9 1663 227 1547 245 3001 o o o
1440 360 1152 288 2880

10 1375 125 335 125 1375 o o o
1152 288 192 288 1152

11 1375 125 335 2483 7183 863 o o
1152 288 192 5760 5760 960

12 1375 125 335 2483 3583 2743 o o
1152 288 192 5760 2880 2880

13 1375 125 335 2483 3583 1823 2897 o
1152 288 192 5760 2880 1920 2880

14 1375 125 335 2483 3583 1823 5777 o
1152 288 192 5760 2880 1920 5760

154 1375 125 335 2483 3583 1823 57717 1
1152 288 192 5760 2880 1920 5760

Appendix B. Integration weights

The standard weights available in textbooks assume the abscissas are distributed at the bound-
aries of the subcells, not the subcell centers, and so do not apply. The weights R; are given by
integrals over Lagrange polynomials:

b n oy
Rl-:/ Hudx. (B.1)
a j=o

(xi — xj)
J#E

The integration coefficients are not unique since there are choices on how to handle points near
the boundaries and how to stitch the interior solution together. Rather than using one-sided or
low-order centered stencils near the boundaries, we choose to integrate from 0 to 3Ax for the
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fourth-order stencil and from 0 to 5Ax for the sixth-order stencils. The fourth-order stencil at
the boundary is

3Ax

9 3 9
fo)dx ~ AX(gfl/z + é_lf3/2 + §f5/2>, (B.2)
0

and the sixth-order stencil is

335
192

125 1375

288f7/2 + f9/2> . (B.3)

5Ax
1375 125
/ f(x)dx%AX<f1/2+f3/2+ 1152
0

1152 288 Fspp +

If we have more than three (five) points we need to stitch the formulas together. We do this by
integrating from x;, to x; . For the fourth-order stencil we get

Tt 1 11 1
dx ~ Ax| — fi_ — — B.4
/xk Sf(x)dx X<24fk 12+ 12fk+1/2+ 24fk+3/2> (B.4)
and for the sixth-order stencil we get
Hht1 —17 308 5178
dx ~ Ax| ——fi_ — fi —
. S(x)dx x<5760fk 32+ 5760fk 12 + 5760fk+1/2
308 17

+ %fkw/z - 5760fk+5/2>- (B.5)

We present the weights for a fourth-order approximation to the integral in table B1 and for a
sixth-order approximation to the integral in table B2. The weights are obtained by using (B.2)
and (B.3) at the boundaries and (B.4) and (B.5) on the interior. The stencils are symmetric
about the center and so only half the coefficients are shown.
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