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We propose two frequency-domain filters to analyze ringdown signals of binary black hole mergers. The
first rational filter is constructed based on a set of (arbitrary) quasinormal modes (QNMs) of the remnant
black holes, whereas the second full filter comes from the transmissivity of the remnant black holes. The
two filters can remove corresponding QNMs from original time-domain ringdowns, while changing early
inspiral signals in a trivial way—merely a time and phase shift. After filtering out dominant QNMs we can
visualize the existence of various subdominant effects. For example, by applying our filters to a
GW150914-like numerical relativity (NR) waveform, we find second-order effects in the
ðl ¼ 4; m ¼ 4Þ; ðl ¼ 5; m ¼ 4Þ, and ðl ¼ 5; m ¼ 5Þ harmonics; the spherical-spheroidal mixing mode
in the ðl ¼ 2; m ¼ 2Þ harmonic; and a mixing mode in the ðl ¼ 2; m ¼ 1Þ harmonic due to a gravitational
recoil. In another NR simulation where two component spins are antialigned with the orbital angular
momentum we also find retrograde modes. The filters are sensitive to the remnant properties (i.e., mass and
spin) and thus have a potential application to future data analyses and parameter estimations. We also
investigate the stability of the full filter. Its connection to the instability of QNM spectra is discussed.
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I. INTRODUCTION

Ringdown is the final stage of a gravitational wave (GW)
signal emitted by a binary black hole (BBH) coalescence. It
is associated with the oscillations of the remnant black hole
(BH), and contains rich information of the system. With an
increasing number of GW events [1–4] observed by
ground-based detectors [5–7], comprehensive studies of
the ringdown signal and its rich features become crucial to
understanding the geometry of extreme spacetimes and
testing General Relativity (GR).
A standard description of the ringdown comes from the

BH perturbation (BHP) theory. The perturbation of a single
BH has been an important topic for decades [8–11]. GWs
emitted by the BH during ringdown are characterized by a
set of quasinormal modes (QNMs),1 which are complex
and dissipative by their nature. As a consequence, the time-
domain evolution of each QNM is a damped sinusoid. Due
to the no-hair theorem [14–17], QNMs predicted by GR are

completely determined by the mass and spin of the BH.
Therefore, measuring the frequency and decay rate of a
QNM from a ringdown signal would allow people to infer
the mass and spin of the BH, as pointed out by Echeverria
[18]. This method is dubbed BH spectroscopy. The idea
was then generalized by Dreyer et al. [19] and Berti et al.
[20,21], and they showed that one could test the no-hair
theorem if multiple modes are observed at the same time.
Subsequently, a lot of effort has been made to investigate
BH spectroscopy under different scenarios [22–41]. In
particular, the studies by Cardoso et al. [10,42,43], Foit
et al. [44], and Laghi et al. [45] implied that QNMs could
reflect the quantum nature of BHs or other exotic compact
objects (ECOs); hence, one can use this fact to test GR and
constrain modified gravity [46–49]. Since the detection of
GW150914 [50], BH spectroscopy with real observational
data has become available. Carullo et al. [51] studied the
late-time portion of the ringdown of GW150914 and found
no evidence for the presence of more than one QNM. Then
Isi et al. [52] extended the analysis to the peak of the strain
and showed evidence of at least one overtone, with 3.6σ
confidence. This led to a test of the no-hair theorem at the
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1Except for the late gravitational tail [12,13].
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∼20% level. Recently, Cotesta et al. [53] raised an oppos-
ing viewpoint that the search for the first overtone in the
ringdown of GW150914 might be impacted by noises and
therefore the conclusion still remains controversial [54,55].
On the other hand, Capano et al. [56] studied the QNM
spectrum of GW190521 [57] and found the l ¼ m ¼ 3

harmonic. More GW events were used to perform BH
spectroscopy in Refs. [58–60].
The inspiral-merger-ringdown (IMR) consistency test is

another important extension of BH spectroscopy. One can
infer the properties of binaries separately from the inspiral
waves and the ringdown waves, and check whether they are
consistent with the predictions of GR. The idea was
proposed originally by Hughes et al. [61], and more careful
analyses were carried out later [62–65]. So far, no deviation
from GR has been found in observational data [66–69]. In
addition, Refs. [70,71] used this method to test Hawking’s
area law [72].
An essential ingredient for BH spectroscopy is to

understand how QNMs are excited at merger [73–86]
and when the ringdown starts [87–89]. An accurate inves-
tigation for a BBH system during a highly nonlinear regime
was not available until the numerical relativity (NR)
breakthrough was made in 2005 by Pretorius [90]. Since
then, a usual method to study the ringdown of a numerical
waveform has been fitting it to the prediction of BHP
theory. For example, Buonanno et al. [91] decomposed the
ringdown signal into a sum of the fundamental mode and
several overtones. Berti et al. [92,93] and Kamaretsos et al.
[79] fit the ringdown of unequal-mass, nonspinning sys-
tems with only the fundamental mode. London et al. [94]
carried out a more systematic study for various nonspinning
BBHs and identified overtones within the NR waveforms.
On the other hand, the fitting was also an important step to
calibrate the effective one-body model [95–99]. Later,
given the motivation of BH spectroscopy with real
observational data, Thrane et al. [100] fit the ringdown
of a GW150914-like NR simulation without any overtone,
and they found some inconsistency between the QNM
model (with fundamental modes only) and the NR wave-
form. This puzzle was resolved by Giesler et al. [101],
where the authors found that the inclusion of overtones
could extend the linear regime to the peak strain amplitude.
This work sparked another wave for ringdown modeling,
including the study for multimode-ringdown fitting [102],
and the impacts of other effects on ringdown signals, such
as retrograde modes2 [103], more overtones [104], precess-
ing systems [105], angular emission patterns [106], and the
Bondi-van der Burg-Metzner-Sachs freedom [107].
It is surprising that the linear BHP theory is good enough

to explain the waveform beyond the peak of the strain,
given that the dynamics at the merger are believed to still be

violent. Okounkova [89] provided a possible explanation
based on previous Kerrness tests [87], most of the near-
zone nonlinearities3 are absorbed by the event horizon and
barely escape to infinity. Nonetheless, it still seems elusive
to draw an incontrovertible conclusion, since recent studies
[110,111] showed that multipole moments of dynamical
horizon are also compatible with the superposition of linear
QNMs soon after the formation of the common horizon.
Furthermore, it was shown that applying second-order BHP
theory to the close-limit approximation could improve the
agreement between the ringdown model and the full
numerical waveform—the improvement was not only
limited to the regime near the peak, but also extended to
the late portion of the ringdown signal [112]. Then it is
natural to ask where are the second-order effects? In the
past, the second-order perturbation of a Schwarzschild BH
was used by Tomita et al. [113,114] in the process of a
gravitational collapse to investigate the stability of the
horizon. Cunningham et al. [115] treated the spin as a small
perturbation during the Oppenheimer-Snyder collapse and
studied its second-order effect. Later on, second-order
perturbation theory was motivated by the close-limit
approximation [116], including the metric perturbation
of a Schwarzschild BH [112,117–122] and the perturbation
of a Kerr BH within the Newman-Penrose formalism [123].
Recently, more comprehensive treatments were used to deal
with the perturbation of a Kerr BH and its metric
reconstruction [124–126]. An important feature of sec-
ond-order BHP theory is that the master equation has the
same potential as the first-order theory, while the source
term is quadratic in terms of the first-order perturbations.
Accordingly, the time evolution of the second-order per-
turbations can be influenced by the second-order QNMs,
known as “sum tones” and “difference tones” [127–131].
For instance, Nakano et al. [129] found the existence of a
component twice the ðl ¼ 2; m ¼ 2Þ QNM in the ðl ¼ 4;
m ¼ 4Þ harmonic by looking at a perturbed Schwarzschild
BH. So far, very few studies have been done on the
second-order effects within the ringdown of a BBH
waveform. London et al. [94] investigated 68 NR wave-
forms and presented the evidence of the second-order
mode ðl1; m1; n1Þ × ðl2; m2; n2Þ ¼ ð2; 2; 0Þ × ð2; 2; 0Þ in
the ðl ¼ 4; m ¼ 4Þ harmonic via time-domain fitting.
Beyond the second-order effect, Sberna et al. [132] showed
that the growth of BH mass due to the absorption of the
linear QNMs can induce a third-order secular effect.
The time-domain fitting proves to be powerful to extract

the physics from ringdown signals. However, one always
has to be careful of overfitting as including more QNMs
(e.g., overtones or retrograde modes) may act as additional
basis functions to misinterpret other effects. Taking this
caveat into consideration, in this paper we propose a

2The author of Ref. [103] used the name “mirror mode”
instead. In this work we will always use “retrograde mode”.

3Here we do not consider the wave-zone nonlinearities, say the
memory effect, which has been obtained from NR [108,109].
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complementary tool to analyze a ringdown waveform; we
define two frequency-domain filters that are able to remove
any particular QNM from the ringdown. After the dominant
mode is filtered out, we can visualize the existence of
subdominant effects, including mode mixing, second-order
modes, and retrograde modes.
This paper is organized as follows. In Sec. II we

introduce two types of filters and show their properties.
Then in Sec. III we apply the two filters to NR waveforms
and discuss the results. Section IV focuses on the stability
of the filter under perturbations. Next, in Sec. V, we discuss
how the filter depends on the remnant BH’s mass and spin.
We also investigate the possibility to use the filter for
parameter estimation. Finally, we summarize the results
in Sec. VI.
Throughout this paper, we use the geometric units with

G ¼ c ¼ 1. We always use the notation ωlmn to refer to the
ðl; m; nÞ QNM.

II. QNM FILTERS

In this section we introduce two types of filters for
QNMs. In Sec. II A we first review briefly the QNM
decomposition model of a ringdown signal. Then in Sec. II
B we describe a rational filter, which can remove any
particular QNM from a ringdown signal. Two toy models
are used to explore the effect of this filter. In Sec. II C, after
understanding the effects of the rational filter, we argue that
the inverse of the remnant BH’s transmissivity can also
serve as a filter. Remarkably, we find that the waveform
filtered by this filter has a physical meaning.

A. Decomposing late waveforms into QNMs

It has been widely accepted that the late part of the GW
emitted by binary black-hole mergers can be described as a
linear combination of QNMs and a power-law tail, which
arise from different features of the retarded gravitational
Green’s function Glm; the QNMs correspond to poles of
Glm, while the power-law tail arises from integrating along
a branch-cut Glm [133].
In the special case of a high-mass ratio merger, which

can be modeled as an orbiting and then plunging particle,
QNM excitations at late times have been computed
[77,78,80] and further analyzed in terms of multipole
and overtone excitations [82,84,85,134]. As an example,
in linear perturbation theory, the gravitational waveform at
infinity sourced by the particle can be described by

hðt;r�Þ¼
X

lm

Z

dω

2π
e−iωt

Z

dyGlmðr�;y;ωÞSlmðy;ωÞ; ð1Þ

where Slmðy;ωÞ is the source term, and it has the general
form of

Slmðy;ωÞ ¼ eiωTðyÞPðω; yÞ; ð2Þ

where ðTðyÞ; yÞ parametrizes the radial trajectory of the
particle, and Pðω; yÞ is a rational function of ω. For each y,
as long at t > TðyÞ one can close the ω-contour from the
lower-half complex plane, hence only collect the poles of
the Green’s function Glm and a branch-cut contribution
which corresponds to power-law tails. Even though the
particle’s TðyÞ becomes infinity for y → −∞, the source
term Pðω; yÞ exponentially decays to zero, soon after y
becomes negative, i.e., when the particle plunges across the
light ring and approaches the horizon.
Gravitational waveforms from collapsing stars and

merging comparable-mass BHs were argued to have similar
late-stage properties [18,115,135–139]. The regime of
QNM decomposition is often referred to as the “linear
regime”, although the decomposition requires both linearity
and homogeneity (i.e., the QNMs are homogeneous sol-
utions to the linearized Einstein’s equations).
Now assuming that a ringdown signal hðθ;ϕ; tÞ is a

linear combination of QNMs, starting from t0, namely

hðθ;ϕ; tÞ ¼ ðhþ − ih×Þðθ;ϕ; tÞ
¼

X

kmn

½Akmne
−iωkmnðt−t0Þ

−2Skmnðaωkmn; θ;ϕÞ

þA0
kmne

iω�
kmn

ðt−t0Þ
−2S

�
kmnðaωkmn; π − θ;ϕÞ�; ð3Þ

where ×;þ refer to two polarization states of the GW, a is
the dimensional spin of the BH, ωkmn are the frequencies of
QNMs,

−2Skmnðaωkmn; θ;ϕÞ are the spin-weighted sphe-
roidal harmonics [140], and ðAkmn; A

0
kmnÞ are the mode

amplitudes. It is usually more convenient to decompose the
waveform in terms of spin-weighted spherical harmonics

−2Ylmðθ;ϕÞ

hðθ;ϕ; tÞ ¼
X

lm

hlmðtÞ−2Ylmðθ;ϕÞ; ð4Þ

with hlm being the ðl; mÞ spherical multipole harmonic. The
mode mixing between the two bases,

−2Skmnðaωlmn; θ;ϕÞ
and

−2Ylmðθ;ϕÞ, is given by [141,142]

−2Skmnðaωlmn; θ;ϕÞ ¼
X

l

μ�mlknðaωlmnÞ−2Ylmðθ;ϕÞ: ð5Þ

By combining Eqs. (3), (4), and (5), we obtain the QNM
decomposition model for hlm,

hlm ¼
X

k;n

½Cmlkne
−iωkmnðt−t0Þ þ C0

mlkne
iω�

k−mn
ðt−t0Þ�: ð6Þ

Explicit relations between Cmlkn and Akmn [Eq. (3)] can be
found in Ref. [85]. Note that the second term in Eq. (6)
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corresponds to the retrograde modes, which are also
dubbed “mirror modes” in Refs. [103,143].

B. The rational filter and two toy models

For simplicity’s sake we consider a single QNM signal in
the time domain,

hðtÞ ¼ e−iωlmnðt−t0ÞΘðt − t0Þ; ð7Þ

where ωlmn is the complex frequency of a specific QNM,
Θðt − t0Þ is the Heaviside step function, and t0 refers to the
start time of the mode. If we are interested in the regime of
t > t0 and want to annihilate the mode contentωlmn therein,
a natural choice is to use a time-domain operator

�

d

dt
þ iωlmn

�

hðtÞ ¼ δðt − t0Þ; ð8Þ

with δðt − t0Þ being the Dirac function. However, this
operation can lead to additional numerical noises. Instead,
we first transform the signal hðtÞ in Eq. (7) to the frequency
domain

h̃ðωÞ ¼ 1
ffiffiffiffiffiffi

2π
p

Z

hðtÞeiωtdt; ð9Þ

and obtain

h̃ðωÞ ¼ i
ffiffiffiffiffiffi

2π
p eiωt0

ω − ωlmn

: ð10Þ

Then we define a frequency-domain filter F lmn,

F lmn ¼
ω − ωlmn

ω − ω�
lmn

; ð11Þ

where � represents the complex conjugate. We remark that
the numerator of F lmn corresponds to the annihilation
operator [Eq. (8)] in the frequency domain, while the
denominator is introduced to make jF lmnj ¼ 1 (when ω is
real valued) and therefore ensures that the filter does not
diverge at high frequency. Finally, we impose the filter via

h̃filterðωÞ ¼ F lmnh̃ðωÞ; ð12Þ

and transform the filtered signal to the time domain again

hfilterðtÞ ¼ 1
ffiffiffiffiffiffi

2π
p

Z

h̃filterðωÞe−iωtdω; ð13Þ

which yields

hfilterðtÞ ¼ −e−iω
�
lmn

ðt−t0ÞΘðt0 − tÞ: ð14Þ

Notice that the sign of the argument in the Heaviside
step function Θ has changed. This can be understood in
terms of the impact of the filter on the pole of the
waveform, as shown in Fig. 1. The pole of the original
waveform h̃ðωÞ (in blue) lies in the lower-half plane,
implying its excitation after t0. After imposing the rational
filter F lmn, the pole is lifted to the upper panel (in orange).
Therefore, the filtered waveform becomes a ring-up signal
prior to t0, whereas the original ringdown is removed after
that moment.
To be specific, we consider a toy model in Fig. 2 to

illustrate the effect of the filter. We pick the fundamental
ðl ¼ 2; m ¼ 2ÞQNM of a Kerr BH with dimensionless spin
χ ¼ 0.69. The QNM frequencies are obtained from the
PYTHON package qnm [144]. The start time t0 is set to 0.
Indeed, we can see that within our interested regime t > t0,
the filter is able to remove the mode content ωlmn

completely. Meanwhile, the ring-up signal (“flipped ring-
down”) is introduced before t0. As we will see, this feature
can contaminate GWs at merger, but it will not affect our
analysis as long as we focus on the regime t > t0. As for an
early, low-frequency inspiral signal, since its frequency ω is
small compared to ωlmn, we can perform a Taylor expan-
sion around ω ¼ 0

F lmn ¼ exp½−iϕlmn − iωtlmn þOðω2Þ�; ð15Þ

FIG. 1. The pole of the original waveform h̃ðωÞ (in blue) and
the filtered one h̃filterðωÞ (in orange). The contour is closed from
the upper (lower) plane when t < t0 (t > t0).
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where the two real constants tlmn and ϕlmn are given by

ϕlmn ¼ −2tan−1
ωi
lmn

ωr
lmn

; tlmn ¼ −
2ωi

lmn

jωlmnj2
; ð16Þ

with ωr
lmn and ωi

lmn being the real and imaginary part of
ωlmn ¼ ωr

lmn þ iωi
lmn, respectively. Consequently, impos-

ing the filter F lmn to the low-frequency inspiral signal is
equivalent to shifting the original signal in phase and
backward in time.4 For a Kerr BH with χ ¼ 0.69, the ðl ¼
2; m ¼ 2Þ fundamental mode leads to tlmn ∼ 0.57Mf,
which can be neglected for most of ringdown analyses.
However, if we want to remove a series of QNMs, we need
to apply

F tot ¼
Y

lmn

F lmn; ð17Þ

where n stands for the overtone index. Then the time shift
tlmn may not be negligible anymore.
We then switch our attention to a more realistic case; a

Schwarzschild BH perturbed by an even-parity Gaussian
pulse. The Zerilli equation [145] is solved numerically.
Figure 3 shows the waveform h22 at future null infinity. We
see h22 (the black curve) consists of the excitation, ring-
down, and tail regime. After applying the filter F 220 (the

red curve), the ringdown oscillations are completely
removed from the tail beyond a certain time around the
merger, yet a few wiggles appear prior to that time. This is
due to the nonphysical “flipped ringdown” (see the red
curve in Fig. 2). The difference between the original h22
and the filtered waveform, as shown in the lower panel of
Fig. 3, corresponds to the combination of the “flipped
ringdown” and the real ringdown (namely the combination
of the black and red curves in Fig. 2). Note that here we
have undone the time shift induced by the filter by aligning
two waveforms in the early regime. The peak of the
difference (the vertical green dashed line) represents the
start time of the ringdown t0 [see Eq. (7)]. In addition, we
see a generic feature; a new damped sinusoid that
decays backward in time shows up before the onset of
the original signal. For a BBH waveform, it appears before
the entire inspiral regime, thus it does not impact our
analysis.

C. The full filter: The inverse of BH transmissivity

Following Teukolsky’s approach for the linear perturba-
tion of a Kerr BH with dimensional spin a [146,147], we
first write

FIG. 2. The effect of the frequency-domain filter in Eq. (11) on
a single QNM signal. The mode is chosen to be the fundamental
ðl ¼ 2; m ¼ 2Þ QNM of a Kerr BH with dimensionless spin 0.69.
The signal starts at t ¼ 0, and it is padded with 0 for t < 0. After
applying the filter, the original signal (its real part is shown as the
black curve) is removed from the regime of interest (t > 0),
whereas an undesired “flipped ringdown” is introduced for t < 0

(red curve). This “flipped ringdown” resembles the original
signal, but decays backwards in time.

FIG. 3. The impact of the filter F 220 on the GW emitted by a
single, perturbed Schwarzschild BH. In the upper panel, the real
part of the filtered waveform (red curve) is compared with the
original h22 (black curve). Note that here we have undone the
time shift induced by the filter by aligning two waveforms in the
early regime. In the lower panel, the difference between the two
waveforms corresponds to the combination of the “flipped
ringdown” and the real ringdown (see the black and red curves
in Fig. 2). Its peak (the vertical dashed line) represents the start
time of the ringdown.

4Strictly speaking, Eq. (16) is for zero frequency components.
An accurate estimation for other low frequencies is not needed in
this paper.
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Ψ ¼ ρ−4ψ4 ¼ Rlmðr;ωÞ−2Slmðaω; θ;ϕÞeiωt; ð18Þ

where ρ ¼ −ðr − ia cos θÞ−1, ðt; r; θ;ϕÞ is the Boyer-
Lindquist coordinate system, and ψ4 is the Weyl scalar.
The radial function Rlmðr;ωÞ satisfies the radial Teukolsky
equation [146,147]. The up-mode solution R

up
lm to the

homogeneous Teukolsky equation is of particular interest
to us. Its asymptotic behavior near future null infinity and
the horizon is given by [148]

R
up
lm ∼

�

r3eiωr� ; r� → þ∞;

Dout
lm e

iωr� þ Δ2Din
lme

−iωr� ; r� → −∞;
ð19Þ

with Δ ¼ r2 − 2rþ a2 and r� being the tortoise radius.
Figure 4 exhibits the physical meaning of the up-mode—a
wave is emitted from the past horizon H− and it gets
reflected and transmitted by the BH potential. The

transmissivity and reflectivity are given by 1=Dout
lm and

Din
lm=D

out
lm , respectively. As for a QNM of the BH, its mode

frequency ωlmn satisfies

Dout
lm ðωlmnÞ ¼ 0: ð20Þ

Therefore, we can write

Dout
lm ∼

Y

n

ðω − ωlmnÞ: ð21Þ

Comparing Eq. (21) with the filter in Eq. (17) [also
Eq. (11)], we see Dout

lm serves the same role as F tot; it
can remove all ωlmn’s that are associated with the indices
ðl; mÞ at once. In practice, since Dout

lm diverges as ω → 0

[149], we instead define a filter

FD
lm ¼ Dout

lm

Dout�
lm

; ð22Þ

which is a direct analog of Eq. (11) to ensure jFD
lmj ¼ 1

when ω is real valued. Below we will call FD
lm the full

filter.
Interestingly, unlike the filter in Eq. (11) that was

introduced purely phenomenologically, the current filtered
waveform h̃Dout

lm bears a physical meaning. To be concrete,
in Ref. [150], some use the hybrid approach [137,138] to
reconstruct the spacetime near merging compact objects
based on NR waveforms at future null infinity Iþ. Below
we give a brief introduction and refer the interested readers
to Refs. [137,138,150] for more details. The hybrid method
is an approximated, ab initio waveform mode. For a BBH
merger spacetime in Fig. 4, the spacetime is split by a
timelike world tube ΣShell into an inner strong-gravity
region II and an outer weak-gravity region I, where the
strong-gravity metric in II is given by the post-Newtonian
(PN) theory while the one in I is provided by BHP theory.
The hybrid method evolves two metrics jointly and they
communicate via boundary conditions on the world tube
ΣShell. Note that close to the merger, the PN theory may
break down, but the errors stay within the BH potential as
long as the shell ΣShell falls rapidly enough into the future
horizon Hþ. As a result, the hybrid method was able to
predict a reasonable inspiral-merger-ringdown waveform
for a BBH system [137,138].
In Ref. [150], on the other hand, we reversed the process

—we started with a NR waveform at Iþ and evolved it
backward into the bulk (the region I) using BHP theory.
This process allows us to construct the entire spacetime as
if the world tube were not there. It turns out that the solution
is proportional to the up-mode solution in Eq. (19), and the
coefficient is determined by the NR waveform h̃ at Iþ. As
shown in Fig. 4, the process leads to an outgoing wave
h̃Dout

lm at the past horizonH−, although it is not real because
the entire H− lies inside the strong-gravity region, where
BHP theory does not apply. Nevertheless, we can think of

FIG. 4. The physical meaning of FD
lm based on the hybrid

approach. The spacetime is split by a timelike world tube ΣShell
(red line) into an inner PN regime II and an outer BHP regime I.
During the spacetime reconstruction, we take a waveform from
NR at null infinity Iþ, and evolve it backwards into the bulk
using BHP theory as if ΣShell were not there. The result is
proportional to the up-mode solution to the homogeneous
Teukolsky equation. In particular, an image wave h̃Dout

lm needs
to appear at the past horizon H−, and it is proportional to the
filtered waveform. The image wave is spurious since the entire
H− lies inside the PN regime II, where the BHP theory does not
apply. It exists there as a source to drive the wave in regime I.
During the ringdown phase of h̃, the linear QNMs are free ringing
of the remnant BH and hence can be annihilated byDout

lm , whereas
nonlinear pieces are driven by some sources and thus cannot be
removed.
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the filtered waveform h̃Dout
lm as an image wave, which is

akin to the image charge in electrodynamics. The image
wave exists there to drive the signal in region I—acting as a
source—by providing a desired boundary condition on
ΣShell. In particular, during the ringdown phase of h̃, a linear
QNM corresponds to the free ringing of the BH, and thus
there is no corresponding source term. Consequently, it can
be annihilated by Dout

lm , which is consistent with our
phenomenological construction in Sec. II B. In contrast,
second-order effects (during the ringdown phase)
[117,125,126] are driven by sources, and hence cannot
be removed by Dout

lm . The filtered waveform h̃Dout
lm repre-

sents the image wave (an effective source) for the second-
order effects.

III. APPLICATIONS OF THE FILTERS

In this section, we use three NR simulations, SXS:
BBH:0305, 1107, and 1936, in the Simulating eXtreme
Spacetimes (SXS) catalog [151] as examples to demon-
strate the applications of the filters. As summarized in
Table I, these three waveforms are for nonprecessing
systems; the initial individual spins χz1;2 are (anti)aligned
with the orbital angular momentum (along the z-axis), and
the mass ratio between the primary BH and the secondary
BH is denoted by q, i.e., q > 1. The systems undergo Ncycle
quasicircular orbits before the merger. The remnants are
Kerr BHs with mass Mf and spin χf. In particular, SXS:
BBH:0305 is a GW150914-like system [50]. We want to
emphasize again that our rational filter leads to a time
shift backwards in time. For the sake of comparison, in
this section we always undo the time shift by aligning the
early portions of waveforms (i.e., minimizing their
mismatch).

A. The GW150914-like system: SXS:BBH:0305

In this subsection, we investigate several ðl; mÞ harmon-
ics of SXS:BBH:0305. Section III A 1 focuses on h22,
where we show that the ω320 QNM mixes into h22 due to
the spherical-spheroidal mixing [141,143,152]. Section III

A 2 focuses on second-order effects in h44, h54, and h55
contributed by the quadratic couplings h222 and h22h33,
respectively. Finally, in Sec. III A 3, we study the leakage of
theω220 mode into the harmonic h21 due to the gravitational
recoil [152,153].

1. h22: The spherical-spheroidal mixing

It was found that the harmonic h22 of SXS:BBH:0305
can be modeled as a superposition of ω22;n¼0…7 up to the
peak strain amplitude [101]. To compare our analysis
results using the new method with theirs, we first apply
a filter F l¼2;m¼2;n¼0 [Eq. (11)] to h22. As shown in Fig. 5,
the filtered waveform (the red curve) has a smaller
amplitude than h22 in the late ringdown regime, and we
see that the main residual oscillation is consistent with the
frequency and the decay rate of the first overtone ω221

(blue). Here the blue dashed curve is obtained by fitting the
filtered waveform within the window of ½12; 28�Mf; and the
mode amplitude and phase of the first overtone are 0.08 rad
and −0.57 rad at t ¼ 12Mf. We note that the amplitude of
the first overtone is reduced by F 220 [154]. One needs to
take the reduction factor into account while comparing with
the original amplitude, and we leave this comparison for
future work. On the other hand, the result serves as strong
evidence to support that F lmn is indeed able to annihilate
the corresponding ðl; m; nÞ QNM.
Next we continue to remove ω22;n¼1…7 based on the

conclusion in Ref. [101], and obtain the green curve in
Fig. 5. We can see that the oscillation is consistent withω320

(cyan) in the window of ½16; 65�Mf, whose amplitude and
phase are ∼4.4 × 10−4 and −0.79 rad at t ¼ 16Mf after the
filters. To ensure the oscillation is physical rather than
numerical artifacts, we compute the numerical (truncation)
error of this NR simulation by taking the difference
between two adjacent numerical resolutions. We see that
the residual in the filtered waveform is still above the
numerical noise floor. Therefore, this piece of the dominant
residual signal corresponds to the spherical-spheroidal
mixing in the remnant Kerr spacetime5 [141,143,152].
Meanwhile, we find the filter shifts the waveform
backwards in time by ∼14.1Mf, close to the prediction
given by Eq. (16)

X

n¼7

n¼0

tl¼2;m¼2;n ∼ 12.9Mf: ð23Þ

In Fig. 5 we have aligned the early inspiral portion between
the original signal h22 (the black curve) and the filtered
waveforms for comparisons.

TABLE I. A list of NR simulations (nonprecessing) used in this
paper. The first column is the SXS identifier [151]. The second
column is the mass ratio q > 1. The third column gives the
number of quasicirular orbits that the systems undergo before the
merger. The fourth and fifth columns correspond to the initial spin
components along the direction of the orbital angular momentum
(the z-axis). The remnant mass ðMfÞ, as a fraction of the total
system massMtot, and spin ðχfÞ are in the final two columns. The
waveform SXS:BBH:0305 is a GW150914-like system.

ID SXS:BBH: q Ncycle χz1 χz2
Mf

Mtot
χf

0305 1.2 15.2 0.33 −0.44 0.952 0.692
1107 10.0 30.4 ∼10−6 ∼10−8 0.992 0.261
1936 4.0 16.5 −0.8 −0.8 0.985 0.022

5The supertranslation can also make h32 leak into h22, e.g.,
Eq. (8) of Ref. [152]. We have checked that the presence of the
mode ω320 is due to the spherical-spheroidal mixing by trans-
forming the waveform to the superrest frame using the technique
presented in Ref. [155]. For more on this, see Ref. [107,155,156].
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Then in Fig. 6 we investigate the effect of the full
filter FD

lm [Eq. (22)], where the value of Dout
lm is obtained

from the Black Hole Perturbation Toolkit [157]. The result
is almost identical to that of the rational filter F tot up to
t ∼ 10Mf, but it is less accurate to reveal the spherical-
spheroidal mixing. We attribute the inaccuracy to the
numerical noise when we interpolate the value ofDout

lm from
the Black Hole Perturbation Toolkit, and we leave a more
precise calculation ofDout

lm for future studies. In addition, we
find a nice property of the full filterFD

lm; it does not give rise

to any time shift, as opposed to the rational filter. One could
benefit from this feature in real data analyses.

2. h44, h55, h54: The second-order QNMs

London et al. [94] found evidence for the second-order
mode in the h44 harmonic, contributed by a quadratic
coupling ∼h222. Therefore, it is expected to see the sum tone
2ω220 in the ringdown of h44. In the upper panel of Fig. 7,
we first remove the linear QNMs ω44;n¼0…3 from h44, and

FIG. 5. The effect of the filter F lmn on h22 of SXS:BBH:0305. Here we have aligned the early inspiral portion between the original
signal h22 (black) and the filtered waveforms. After removing ω220 from the original waveform, the oscillation in the ringdown of the
filtered waveform (red) is consistent with the QNM ω221 (blue). If we further remove ω22;n¼1…7, the residual shows the existence of the
QNM ω320 (cyan), which is caused by the spherical-spheroidal mixing. For comparison, we evaluate the numerical error of this
waveform (gray) by taking the difference between two adjacent numerical resolutions.
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then fit the filtered waveform with 2ω220 in the window of
½12; 30�Mf. We can see a decent agreement. The corre-
sponding mode amplitude and phase are 7.9 × 10−4 and
3.1 rad at t ¼ 12Mf after the filters. In addition, the signal
is larger than the numerical (truncation) error, which is
evaluated by computing the difference between two adja-
cent numerical resolutions. This result shows that the
second-order mode does exist in the ringdown regime.
Furthermore, we find evidence for the presence of
ω220 þ ω221 and 2ω221 in the ringdown of h44 as well,
and we leave more discussions in our follow-up work
[158]. On the other hand, while we are preparing our
manuscript, we notice that Ref. [159] also carries out
comprehensive studies on the second-order modes with a
different approach, so we refer the interested reader to
Ref. [159] for more details.
In addition, it is also expected that h55, h54 can be

sourced by h22h33 and h222, respectively. In this case, we
find that one has to map the waveforms to the superrest
frame [107,156] to reveal these second-order effects. We do
this using the technique presented in Ref. [155], based on
the SpECTRE code [160,161]. In the bottom left panel of
Fig. 7, after removing the linear QNMs ω54;n¼0…3, as well
as ω44;n¼0…3 and ω64;n¼0…3 caused by the spherical-
spheroidal mixing, we find the residual signal of h54 is
consistent with the sum tone 2ω220 in the window of
½10; 40�Mf, with an amplitude of 1.2 × 10−5 and a phase
of −2.9 rad at t ¼ 10Mf. As for h55, the bottom right panel
of Fig. 7 shows the existence of ω220 þ ω330 in ½8; 28�Mf,
whose amplitude and phase are 1.9 × 10−5 and −1.96 rad
at t ¼ 8Mf. Nevertheless, we see the amplitudes of

these two second-order effects are on the same order of
the numerical noise, therefore their existence is not
conclusive.
Finally, we want to remark again that the amplitudes of

the second-order effects are reduced by the filters. In
consequence, the amplitudes obtained from our approach
are smaller than their original values.

3. h21: The mode mixing due to a gravitational recoil

We repeat our process for the harmonic h21 of SXS:
BBH:0305. As shown in Fig. 8, after removing the linear
QNMs ω21;n¼0…2 and the spherical-spheroidal mixing
modes ω31;n¼0;1, we find the remaining oscillation is
consistent with the mode ω220 (the red and yellow dashed
curves). We then use ω220 to fit the filtered waveform in the
window of ½55; 92�Mf. The result is shown as the yellow
dashed curves. The corresponding mode amplitude and
phase are 9.5 × 10−6 and −0.62 rad at t ¼ 55Mf. This
leakage is caused by a boost in the orbital plane, and this
phenomenon has been discussed by Kelly et al. [152] and
Boyle [153]. To verify this, we transform the waveform to
the superrest frame (the blue curve) [107,156], where the
remnant BH is in the center-of-mass frame. After applying
the same filter, we can see the mixing is completely
removed (the green curve), while the other portion of
the waveform remains unchanged.
We note that the leakage of ω220 into h21 is a common

phenomenon, especially for high mass-ratio events whose
kick velocities are relatively large. Failing to take this effect
into account may misinterpret the mixing mode ω220 as
retrograde modes [103,143]. We will explain more details
in Sec. III B.

B. The retrograde modes

It was found that taking into account the
retrograde modes [e.g., the second term of Eq. (6)] would
expand the linear perturbation regime. To partially address
the debate on overfitting, we use our rational filter as a
complementary tool to visualize the presence of the
retrograde modes.
We first take SXS:BBH:1936 with non-negligible retro-

grade modes (see Appendix A of Ref. [150]). In the top
panel of Fig. 9, we remove the prograde modes ω22;n¼0…3

and the spherical-spheroidal mixing mode ω320 from the
original harmonic h22 (the black curve), then the red curve
shows the existence of −ω�

2−20 in the residual. In the plot,
the green dashed curve is obtained by fitting the filtered
waveform with −ω�

2−20 in the window of ½28; 60�Mf. Its
mode amplitude and phase are 3.9 × 10−4 and 2.6 rad at
t ¼ 28Mf. To further support our result, we investigate the
phase evolution of the waveforms. For a prograde mode, its
phase should decrease monotonically over time due to the
term e−iωlmnt [see the first term of Eq. (6)], whereas a
retrograde mode’s phase should increase due to the term
eiω

�
l−mn

t [see the second term in Eq. (6)]. In the bottom panel

FIG. 6. A comparison between the full filter FD
lm [Eq. (22)] and

the rational filter F tot [Eq. (17)] associated with ω22;n¼0…7. The
latter one is more accurate to reveal the existence of the QNM
ω320 in h22 of SXS:BBH:0305. We attribute the inaccuracy of the
full filter to the numerical noise when we interpolate the value of
Dout

lm from the Black Hole Perturbation Toolkit.
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of Fig. 9, we see the phase of the original waveform (the
black curve) decreases with time, indicating that the
progrades are more dominant. After applying the filter,
the decreasing trend terminates at ∼16Mf after the peak
and the phase starts to grow at the same time that the
residual oscillations in the top panel appear. This obser-
vation confirms the physical origin of the residual
oscillations.
Then we look into the case of SXS:BBH:1107 inves-

tigated by Dhani [103]. As shown in Fig. 10, there are a few
cycles in the filtered residual waveform h22 (the red curve)
that are consistent with the retrograde mode −ω�

2−20.
Meanwhile, the phase of the filtered waveform also grows

within that regime, which serves as more evidence.
Nevertheless, the retrograde mode in this case is weaker
and noisier than that of SXS:BBH:1936. Furthermore, we
find applying retrograde filters (not only the fundamental
mode but also overtones) has little impact on the early
portion (t≲ 0) of the red curve in Fig. 10, meaning there is
no strong evidence for the existence of retrograde modes
within that regime. As for the harmonic h21, we find it has a
mixing component from the mode ω220 due to the gravita-
tional recoil, similar to the case discussed in Sec. III A 3.
This effect was not taken into consideration by Dhani [103],
sowe speculate that this could be the cause for the crests and
troughs in the mismatch of h21, e.g., Fig. 3 of Ref. [103].

FIG. 7. Second-order modes in h44 (top), h54 (bottom left), h55 (bottom right) of SXS:BBH:0305. After removing linear QNMs and
relevant spherical-spheroidal mixing modes from original waveforms (black curves), filtered waveforms (red curves) contain
oscillations that are consistent with the sum tone of 2ω220 or ω220 þ ω330 (green dashed curves). As for the harmonics h55 and
h54, the comparison is done in the superrest frame to avoid other mixing modes.
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Finally, we want to note that the vertical dashed lines in
Figs. 9 and 10 do not necessarily correspond to the start
time of the retrograde mode −ω�

2−20 in the original wave-
forms (the black curves), because of the time shift induced
by our rational filter. To undo the time shift, here we simply
align the early inspiral portion of the filtered waveforms
with the original ones, making the location of the dashed
lines less informative.

IV. THE STABILITY OF THE FULL FILTER FD
lm

The QNM spectra of BHs have been found to be unstable
[162–166]. In particular, Cheung et al. [166] classified the
instability into two categories; “migration instability” and
“overtaking instability”. For migration instability, the
fundamental QNM drifts drastically from its unperturbed
value when the perturbation is distant from the BH. This
kind of instability is related to the asymptotic behavior of
the eigenfunction near the horizon ðe−iωlmnr�Þ and infinity
ðeiωlmnr�Þ. Recalling that Imωlmn < 0, the eigenfunction of
the QNM increases exponentially as jr�j → ∞, any small
perturbation of the BH potential at a large jr�j will lead to a
significant change of ωlmn. For overtaking instability, a
family of new modes appears near a bumpy BH, trapped
between two potential barriers.6 One of the new modes
might have a smaller decay rate than the unperturbed
fundamental mode when the perturbation is at a large

distance. Consequently, this new mode overtakes the
original fundamental mode.
The spectral instability, however, may have a limited

effect on observational results (e.g., time-domain responses
of a BH), as discussed in Refs. [43,162–164,167,168].
Nollert [162] and Barausse et al. [163,164] showed that the
prompt time-domain response is independent of perturba-
tions when the perturbations are far from the system, even
though the QNMs of the perturbed system are completely
different from the ones of an isolated BH. Cardoso et al.

[43] drew a similar conclusion while considering near-
horizon perturbations. In fact, as pointed out by Hui et al.
[169] and Berti et al. [167], despite the nonlocality of
QNMs, one needs to appreciate the causal structure of the
system while considering the time-domain signals—a time
response reflects the nature of each single potential bump that
is causally connected to the observer, e.g., the prompt
ringdown of a regular BH. The QNMs of the perturbed
system do not show up until very late times as “echoes” [170]

FIG. 8. Leakage of the ω220 mode into the h21 harmonic due to
the gravitational recoil. After removing ω21;n¼0…2 and ω31;n¼0;1

from the original h21 waveform (black curve), the red curve
exhibits the presence of the ω220 mode (yellow dashed curve). If
we transform the waveform to the superrest frame (blue curve)
and repeat our filtering process, the mixing mode ω220 will be
completely removed (green curve).

FIG. 9. Retrograde mode −ω�
2−20 in the ringdown of SXS:

BBH:1936. Top panel: After removing the ω22;n¼0…3 modes and
the spherical-spheroidal mixing mode ω320 from the original
harmonic h22 (black curve), we reveal the presence of −ω�

2−20

(green dashed curve) in the residual waveform (red curve).
Bottom panel: The phase evolution of the original waveform
(black curve) and the filtered waveform (the red curve). The
phase of the original waveform decreases monotonically, indicat-
ing that the prograde modes are dominant. However, the phase of
the filtered waveform starts to grow at the same time as the
residual oscillations in the top panel appear, which demonstrates
that the residual oscillations are retrograde modes.

6They are called “matter-driven” modes by Barausse et al.
[163,164].
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when the initial Cauchy data travels and experiences the
entire potential.7 Therefore, the time-domain signal is stable
in the sense that the original waveform remains unchanged,
whereas the additional perturbation appears only as echoes
that are well separated from the original signal in time.
The instability of the QNM spectra implies that QNMs

may not be the most natural basis for ringdowns. One
might need to rearrange QNMs into new subsets and sum
each subset to form a new basis, in either time or
frequency domain. In fact, the backwards one-body
(BOB) model [175] is an inspiring example, where the
contributions of overtones associated with the same ðl; mÞ
harmonic are rearranged and summed into a single time-
domain function ∼sechγt, where γ is a constant. One may
further postulate that the time-domain function could be
treated as the leading term of a new set of basis and
the term ∼sechγt provided by the BOB model contains
most power of the ringdown. Another relevant time-
domain basis was discussed by some of us for superkick
systems [176]; it was found that the time-domain basis
can even be extended to the inspiral regime for the
superkick systems. A direct consequence is the collective

excitation of QNMs; the amplitudes of different QNMs
are correlated as a result of the time-domain basis being
projected to the QNM basis. In fact, such a correlation
(universality) has been found in not only the superkick
systems [176], but also extreme mass-ratio inspirals
[82–85,134].
Based on the above discussions, we want to ask: Do the

filters reflect the nature of the system? Can we distinguish a
BH from other objects (e.g., a bumpy BH or an exotic
compact object) using our filters? In particular, since the
full filter FD

lm contains a collection of the corresponding
QNMs ωlmn’s as a result of Eq. (21), is the filter stable or
not under perturbations in the BH potential, given the
spectral instability? In fact, a similar topic has been
investigated recently by Kyutoku et al. [168]. The “phase
shift” introduced by the authors is essentially the phase of
our full filter in Eq. (22), and they showed that the phase
shift of a Schwarzschild BH is stable when it is perturbed
by a small Pöschl-Teller bump. In this work, we continue
their studies and adopt another simple model to provide a
qualitative answer. More sophisticated discussions are left
for future work.
In Fig. 11, we consider an exotic compact object (ECO)

whose surface is close to the would-be horizon. The
surface can partially reflect GWs and the reflectivity R

is given by

R ¼ ϵe−2ib; ð24Þ

where ϵ is a constant, and r� ¼ −b is the location of the
ECO surface with the factor of two representing the round
trip between the ECO surface and the BH potential. By
imposing a physical boundary condition based on the

FIG. 10. Same as Fig. 9, the retrograde mode −ω�
2−20 in the h22

of SXS:BBH:1107.

FIG. 11. The up-mode solution of an ECO. We assume that a
GW emerges from the horizon ðr� ¼ −∞Þ and its amplitude is
unity. It bounces back and forth within the cavity formed by the
ECO surface and the BH potential. The GW seen by an observer
at infinity consists of the main transmissive wave 1=Dout

lm and a
series of echoes.

7We note that QNMs can become complete under some
conditions [171–173] (see also Refs. [162,174] for relevant
discussions). In particular, Beyer [171] showed the completeness
of QNMs of the Poeschl-Teller potential at a late time—a regime
where solutions can be expanded with respect to its QNMs.
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membrane paradigm at the ECO surface [177], we obtain
the up-mode solution [in parallel with Eq. (19)],

R
upECO
lm ∼

�

r3eiωr� ; r� → þ∞;

D̃out
lm e

iωr� þ Δ2D̃in
lme

−iωr� ; r� → −∞;
ð25Þ

with

D̃out
lm ¼ Dout

lm

�

1 − ð−1Þlþmþ1R
Dlm

4Clm

Din
lm

Dout
lm

�

; ð26Þ

where the factor Dlm=Clm comes from the Teukolsky-
Starobinsky (TS) relation [148,178]. We refer interested
readers to Appendix A for derivation. Note that Eq. (26)
takes a similar form to the Wronskian in Eq. (5.2) of
Ref. [169].
We then define the filter FDECO

lm for the ECO system,

FDECO
lm ¼ D̃out

lm

D̃out�
lm

: ð27Þ

To transform the filter to the time domain, we first need to
apply the Planck-taper filter F ðωÞ [179] to remove the
high-frequency contribution,

F ðω;ω1;ω1Þ ¼

8

>

>

<

>

>

:

0; ω < ω1;

1
ezþ1

; ω1 < ω < ω2;

1; ω > ω2;

ð28Þ

with

z ¼ ω2 − ω1

ω − ω2

þ ω2 − ω1

ω − ω1

: ð29Þ

Figure 12 shows a nonspinning ECO case. The filters for a
spinning ECO have the same qualitative feature so we refer
readers to Appendix B for results. In the absence of
perturbations, we see that the black curve assembles the
Dirac function δðtÞ near t ¼ 0 because of the fact that
jFDECO

22 ðωÞj ¼ 1. Most of the signals (i.e., the damped
sinusoids) lie on the left side of the Dirac function (t < 0),
and the reason is exactly the same as the flipped
ringdown in Fig. 2. We also see the tail-like feature at
an earlier time.
Next, we turn to the perturbation. Since Cheung et al.

[166] found the spectral instability with b varied, in
Fig. 12a, we first compute the filter with two choices of
b, while fixing ϵ ¼ 0.1. We find the modification to the
original signal is negligible. The major change is a series of
echoes with an interval of Δt ∼ 2b—well separated from
the original signal (in the plot we only show the first one or
two echoes). Meanwhile the amplitude of the echo is

independent of b. We remark that the δ function is removed
from echoes since the TS coefficient jDlm=Clmj → 0 as
ω→ ∞. Then in Fig. 12b, we fix the value of b to 200Mf

but vary ϵ. Again, the perturbation has little impact on the
original signal, and the amplitude of the echo scales linearly
with ϵ. Compared to the recent work by Berti et al. [167],
our studies include not only the fundamental mode, as Berti
et al. [167] did, but also more overtones. Nevertheless, the
qualitative features in our results are the same as theirs.
Finally, Fig. 13 shows the real part of FDECO

22 ðωÞ in the
frequency domain for completeness.

V. INFERRING REMNANT PROPERTIES FROM

THE RATIONAL FILTER

We have shown that our rational filter F lmn is able to
remove a specific QNM ωlmn from the ringdown regime
and reduce the root sum square (RSS) of the ringdown. In
particular, the ringdown signal can be almost completely
removed if we apply a filter with a series of corresponding
modes. Since the mode frequencies ωlmn are determined by
the massMf and spin χf of the remnant BH, in this section,
we investigate how the ringdown RSS decreases depending
on the choices of Mf and χf.
We define the RSS of a filtered harmonic hflmðtÞ within a

time interval ½t0; t1� to be

RSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z

t1

t0

jhflmðtÞj2dt
s

: ð30Þ

We still take the GW150914-like waveform SXS:
BBH:0305 as an example. We fix t1 to 100Mf and let
t0 vary. Then we apply a filter,

FNðMf; χfÞ ¼ F 320ðMf; χfÞ
Y

N

n¼0

F 22nðMf; χfÞ; ð31Þ

to the harmonic h22. The filter FN is a function of remnant
massMf and spin χf. It also depends on how many ðl ¼ 2;
m ¼ 2Þ overtones we want to remove. We want to
emphasize that our rational filter leads to a time shift,
and in Sec. III we undid it by aligning early inspiral
waveforms. However, in this case we find the alignment
can pull some nonringdown signals into the regime that
we are interested in ðt > t0Þ and make our analyses fail.
To avoid this, here we do not perform this alignment. A
caveat of this compromise is that the time shift itself
can reduce the RSS, even though it is a subdominant
effect. In this paper, we ignore the contribution due to this
time shift, and leave more self-contained studies for
future work.
In Fig. 14, we vary the value of χf with different choices

of N and t0 while keepingMf fixed at the true value. When
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FIG. 12. The filter FDECO
lm of a nonspinning ECO in the time domain. In the top panel, we set b to 200Mf (blue) and 300Mf (red),

while fixing the value of ϵ to 10−1. They are compared with that of a Schwarzschild BH (black). In the bottom panel, we choose
ϵ ¼ 10−1; 10−2; 10−3 (blue, red, and yellow) and set b to 200Mf . In both cases, the original signal (around t ∼ 0) remains unchanged.
The perturbation appears as periodic echoes with the time interval 2b. The amplitude of the nth echo is proportional to ϵn.
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t0 is large ð∼50MfÞ, we see the true value χtruef ¼ 0.692
leads to the smallest RSS (namely the ringdown is mostly
removed) regardless of the value of N. This is because in
the regime of t≳ 50Mf, the signal is dominated by the
fundamental mode ω220, and removing ω220 alone is

enough to reduce the RSS down to roughly the numerical
noise level. However, if we push t0 to an early time, failing
to filter out enough modes will result in incorrect values of
χf when RSS achieves its local minimum; the value χf is
degenerate with the choice of t0. Especially, in the first

FIG. 13. Same as Fig. 12. The real part of FD
22 in the frequency domain.
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FIG. 14. The ringdown RSS of the filtered waveform as a function of χf. The SXS:BBH:0305 waveform is used. The six panels
correspond to different choices of the start time, i.e., t0 in Eq. (30). In each panel, different colors indicate the results from removing
different numbers of overtones. When t0 is large ð∼50MfÞ, the true value of the spin χtruef ¼ 0.692 leads to the smallest RSS no matter
how many overtones are removed. However, if we push t0 to an early time, enough overtones need to be removed to obtain the true
value. On the other hand, the RSS depends strongly on χf; a 2% change in χf can result in around two orders of magnitude change in the
RSS, when t0 and N are fixed to their true values.
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panel of Fig. 14, we see that the ringdown RSS depends
monotonically on χf when t0 ¼ 0 and N ¼ 0, but the local
minimum of the RSS does converge to the true value of χf
after we include enough overtones. If we continue to go to
an earlier regime, such as t0 ¼ −10Mf in Fig. 15, we can
see that the inferred spin is biased even when enough
overtones are included, because of the presence of non-
ringdown signals (e.g., late inspiral and merger). On the
other hand, we also investigate the effect of Mf. We find
that varying the value ofMf (with χf fixed to the true value)
leads to a similar impact on the ringdown RSS, and the
results are summarized in Appendix C.
Our results shown in Figs. 14 and 21 are closely related

to Fig. 7 of Ref. [88], in which the authors show how the
mismatch varies with deviations from GR and the start time
of analyses. Similarly, our results indicate that the residual
RSS depends strongly on the choice of ðMf; χfÞ. In our
case, a 2% change in χf can result in around two orders of
magnitude change in the RSS, when t0 and N are fixed to
their “true” values.
After studying the effects of Mf and χf separately, in

Fig. 16 we provide contours of RSS with varying them
together. To avoid redundancy, we set t0 to 0 and focus on
two cases: N ¼ 2 and N ¼ 7, respectively. If we restrict
ourselves to the region near the true remnant properties
[Figs. 16(a) and 16(b)], the N ¼ 2 one leads to biases in
extractingMf and χf, whereas the latter one can recover the
remnant properties (marked with a cross) accurately. In
addition, we notice that the effects of Mf and χf are
partially degenerated—their difference ∼Mf − χf is more
constrained than their sum ∼Mf þ χf. This is consistent
with Figs. 10 and 11 of Ref. [101]. On the other hand, if we
explore a larger parameter space (zoom out), we find there
is a second local minimum in Fig. 16(c). To explore the

reason, in Fig. 17 we compare two filtered waveforms with
χf andMf chosen at their true values (red curve) and at the
second local minimum (black curve), respectively. Recall
that the amplitudes of adjacent overtones are out of phase,
e.g., Refs. [101,176], they contribute destructively to the
final ringdown waveform. Removing some overtones can
increase the value of the filtered waveform at an early stage.
On the contrary, when χf and Mf are at the second local
minimum, even though the corresponding QNMs are not
removed, the amplitude of the filtered waveform is reduced
by around one order of magnitude. As a result, both cases
lead to comparable RSS.
So far, we take ðMf; χfÞ as two independent variables.

The QNM frequencies are obtained by assuming Kerr BHs
with GR gravity. In Fig. 18, we relax this assumption and
use the real and imaginary parts of a QNM as two
independent variables. Here we restrict ourselves to the
fundamental mode alone for simplicity, and take
t0 ¼ 50Mf. We find the qualitative feature remains the
same—there is a second local minimum, and the reason is
exactly the same as that of Fig. 16(c).
Our discussions indicate that the filter could serve as a

new tool to infer the remnant properties from actual
detection data, and we refer the interested reader to our
follow-up work [154] for more discussions.

VI. CONCLUSION

We have proposed two types of frequency-domain filters
that are able to remove QNM(s) from ringdown signals.
Our new method serves as a complementary tool to
previous studies where the ringdown was analyzed in
terms of time-domain fitting (e.g., Ref. [101]); it allows
visualizing the existence of subdominant modes without
the risk of overfitting. By applying our filter to the
waveform of SXS:BBH:0305, we find the spherical-sphe-
roidal mixing mode ω320 in harmonic h22, the presence of
ω220 in h21 due to the gravitational recoil, and second-order
effects in h44, h54 and h55 due to the quadratic coupling h222
and h22h33. We also find the existence of retrograde modes
in waveform SXS:BBH:1936. Our filter leads to an
unphysical flipped ringdown prior to the start time of
the real ringdown. Consequently, the late-inspiral and
merger signals are contaminated.
Although the rational filter in Eq. (17) is constructed

purely empirically, the full filter FD
lm in Eq. (22) reflects the

nature of the BH, and the filtered waveform corresponds to
the image wave on the past horizon (Fig. 4). Furthermore,
in spite of the unstable nature of QNM spectra [165,166],
we find that the filterFD

lm is stable in the time domain under
the perturbations of the BH potential, in the sense that the
original response remains unmodified, while the major
correction appears as periodic echoes well separated from
the original BH response. The time interval and amplitude
of the echoes depend linearly on the parameters of the
perturbation.

FIG. 15. Continuation of Fig. 14, except that the onset of the
ringdown window t0 is set to −10Mf .
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Additionally, the rational filter takes the mass and spin
of the remnant BH as free parameters. The residual ring-
down RSS depends strongly on the choice of these
two parameters. The true remnant properties could be
recovered accurately from the ringdown of h22 as long as
one consider a proper number of overtones and the start time
of the analysis.
In this paper, we demonstrate that this new approach is

powerful in ringdown analyses and outline a few applica-
tions. Future studies could be focused on:

(i) Nonlinearity due to the quadratic couplings. We
focused exclusively on a few harmonics of SXS:

BBH:0305, and exhibited the existence of second-
order effects only qualitatively. A more systematic
study [158] is needed to investigate quadratic
couplings in other BBH systems. We also refer
the interested reader to Ref. [159] for relevant
discussions.

(ii) Second-order effects in the multipole moments of
dynamical horizons. Although Refs. [110,111] have
shown that the multipole moments might be con-
sistent with the superposition of linear QNMs soon
after the formation of the common horizon, it is
expected that a majority of nonlinearities are

FIG. 16. Contours of RSS with varying Mf and χf. To avoid redundancy, we set t0 to 0 and choose N ¼ 2 (left panels) and N ¼ 7

(right panels). In the top row we explore the parameter space near the true remnant properties, whereas in the bottom row we investigate
a larger area. The true remnant mass and spin are marked with a cross. The effects ofMf and χf are degenerate; their difference is more
constrained than their sum. In addition, we find there is a second local minimum in Fig. 16(c).
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swallowed by horizons [89], which in turn should
leave imprints on dynamical horizons. It is interest-
ing to study these cases by applying our filters.

(iii) The stability of the two filters. In this work, we
considered the stability of the full filter under a
simple scenario: the perturbation arising only
through a reflective boundary condition at the
ECO surface that is very close to the would-be
horizon. More sophisticated perturbations, e.g., the
ones in Ref. [165,166], could be investigated. In
addition, it might also be interesting to study the (in)
stability of the rational filter. This requires high-
precision calculations of QNMs of the new system.
The goal of this trend is to answer how to distinguish
a BH from its mimicker via our filters and how do
the filters reflect the nature of the system?

(iv) Inferring remnant properties from real observational
data. Here we restricted ourselves to a particular

harmonic h22 and found that the remnant properties
could be recovered accurately. A possible avenue for
future work is to investigate the impact of our filters
on the strain that is emitted toward a single angular
direction. More importantly, one could apply our
filter to real BBH events [154] and see whether we
could place a tighter constraint on the remnant mass,
spin, and also the no-hair theorem [52].

(v) Other filters. In this work, we have studied two
related filters. One undesired feature of the rational
filter is that it leads to a backward time shift, which
makes it difficult to define the start time of the
ringdown in the filtered waveform.8 The full filter
does not have this problem but is more computa-
tionally expensive to obtain. Therefore, it might be
interesting to look for other new filters with better
properties.
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APPENDIX A: THE UP-MODE SOLUTION

OF AN ECO

Near the ECO surface, Chen et al. [177] proposed a
physical boundary condition via a family of zero-angular-
momentum fiducial observers (FIDOs). The tidal tensor
field within the rest frame of the FIDOs is given by [180]

Eij ¼ hai h
c
jCabcdU

bUd; ðA1aÞ

where Cabcd is the Weyl tensor, Ub is the four-velocity of
the FIDOs, and hai ¼ δai þ UaUi is the projection operator.
Chen et al. argues that the tidal response of the ECO,

namely the reflection of incident GWs, is proportional to
the transverse component of the tidal field,

Etransverse ∼ −
Δ

4r2
ψ0 −

r2

Δ
ψ�
4; ðA1bÞ

where ψ0 and ψ4 are the Weyl scalars. The coefficient
depends on the nature of the ECO, such as the reflectivity
R in Eq. (24). By adopting this type of boundary condition,
Xin et al. [181] shows that the ratio between the reflective
wave and the incident wave reads9 [Eq. (56) of [181]],

Reflective wave
Incident wave

¼ ð−1Þlþmþ1

4
R

Dlm

Clm

; ðA1cÞ

with

Dlm ¼ 64ð2rþÞ4ikðk2 þ 4ϵ2Þ
�

−ikþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p

rþ

�

; ðA1dÞ

jClmj2 ¼ ðQ2 þ 4χωm − 4χ2ω2Þ½ðQ − 2Þ2 þ 36χωm − 36χ2ω2� þ 144ω2ð1 − χ2Þ
þ ð2Q − 1Þð96χ2ω2

− 48χωmÞ; ðA1eÞ

ImClm ¼ 12ω; ðA1fÞ

Q ¼ λþ sðsþ 1Þ ¼ λþ 2; ðA1gÞ

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p

4rþ
; ðA1hÞ

k ¼ ω −mΩþ; ðA1iÞ

where λ is the eigenvalue of spin-weighted spheroidal
harmonics and Ωþ ¼ χ=ð2rþÞ is the horizon frequency.
As shown in Fig. 11, if we consider a GWemerging from

the horizon with a unity amplitude (ignoring any r�
dependent coefficient), it will bounce back and forth within
the cavity formed by the ECO surface and the BH potential.
In particular, the observer at infinity will see a main
transmissive wave with amplitude 1=Dout

lm , followed by a
series of echoes. Using the boundary condition in
Eq. (A1c), it is straightforward to obtain the amplitude
of the nth echo,

1

Dout
lm

�ð−1Þlþmþ1

4
R

Dlm

Clm

Din
lm

Dout
lm

�

n

: ðA2Þ

By summing them together, we obtain the total trans-
missive amplitude,

X

n

1

Dout
lm

�ð−1Þlþmþ1

4
R

Dlm

Clm

Din
lm

Dout
lm

�

n

¼ 1

Dout
lm

1

1 −
ð−1Þlþmþ1

4
R

Dlm

Clm

Din
lm

Dout
lm

: ðA3Þ

The inverse of the total amplitude corresponds to D̃out
lm

in Eq. (25).

APPENDIX B: FDECO
22 FOR A SPINNING ECO

Figures 19 and 20 show the filter FDECO
22 in the time and

frequency domain. The spin of the ECO is χf ¼ 0.692. It
has the same qualitative features as that of the nonspinning
ECO (Fig. 12).

9The additional factor ð−1Þl is due to the assumption that the
system is invariant under reflection across the x − y plane [182].
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FIG. 19. Same as Fig. 12, but for a spinning ECO with χf ¼ 0.692.
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FIG. 20. Same as Fig. 13, but for a spinning ECO with χf ¼ 0.692.
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APPENDIX C: Mf AND RSS

In Fig. 21, we plot the ringdown RSS of the filtered waveform as a function of the remnant mass Mf, using waveform
SXS:BBH:0305.

FIG. 21. Same as Fig. 14, but with varying Mf and fixed χf.
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