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We study quark and gluon jets separately using public collider data from the CMS experiment.
Our analysis is based on 2.3 fb−1 of proton-proton collisions at

√
s = 7 TeV, collected at the Large

Hadron Collider in 2011. We define two non-overlapping samples via a pseudorapidity cut—central
jets with |η| ≤ 0.65 and forward jets with |η| > 0.65—and employ jet topic modeling to extract
individual distributions for the maximally separable categories. Under certain assumptions, such as
sample independence and mutual irreducibility, these categories correspond to “quark” and “gluon”
jets, as given by a recently proposed operational definition. We consider a number of different
methods for extracting reducibility factors from the central and forward datasets, from which the
fractions of quark jets in each sample can be determined. The greatest stability and robustness to
statistical uncertainties is achieved by a novel method based on parametrizing the endpoints of a
receiver operating characteristic (ROC) curve. To mitigate detector effects, which would otherwise
induce unphysical differences between central and forward jets, we use the OmniFold method to
perform central value unfolding. As a demonstration of the power of this method, we extract
the intrinsic dimensionality of the quark and gluon jet samples, which exhibit Casimir scaling, as
expected from the strongly-ordered limit. To our knowledge, this work is the first application of full
phase space unfolding to real collider data (albeit without a full systematics analysis), and the first
application of topic modeling using a machine-learned classifier to extract separate quark and gluon
distributions at the LHC.
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I. INTRODUCTION

Despite being fundamental ingredients in quantum
chromodynamics (QCD), quarks and gluons are ambigu-
ous categories experimentally. While one can cluster
sprays of hadrons into jets and use them as proxies
for short-distance partons, one cannot definitively say
whether a jet was initiated by a quark or gluon due to
color confinement. Nevertheless, one can use an oper-
ational definition of “quarks” and “gluons” to extract
interesting jet information from experimental data, as
advocated in Ref. [1]. This approach, which is based on
the statistical framework of jet topic modeling [2], has
been applied by the ATLAS experiment to measured jet
samples [3] and explored in phenomenological studies [4–
7]. See Refs. [8–10] for related topic modeling studies in
particle physics.

Because this quark/gluon definition is operational, it
depends on the detailed choice of topic modeling algo-
rithm. This is especially true when dealing with finite
data samples and their associated statistical uncertain-
ties. The approach described in Ref. [2] was based on
histogramming observables and therefore sensitive to the
choice of binning, as studied in Ref. [4]. This in turn im-
pacts the uncertainties of the results, since the statistical
noise scales roughly with the inverse square root of the
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number of events in the most constraining bin. To deal
with low-statistics datasets, Ref. [5] introduced a more
robust method based on functional fitting, though this
approach is sensitive to the choice of priors. In addition
to these statistical issues, one always has to confront sys-
tematic uncertainties in any experimental context.

In this paper, we develop two new approaches to
topic modeling that exhibit more stable behavior and
apply them to jets extracted from the 2011 CMS Open
Data [11–13]. Jets are divided by pseudorapidity into
forward and central datasets, which can be disentan-
gled into “quark” and “gluon” categories using various
topic modeling procedures. We compare the quark and
gluon fractions obtained from different jet observables,
including those based on machine learning [14], and em-
phasize the relative statistical uncertainties of the dif-
ferent approaches. Using our most robust topic model-
ing method—based on analyzing the endpoints of the re-
ceiver operator characteristic (ROC) curve of a machine-
learned classifier—we then present various quark and
gluon observables, including their intrinsic dimensional-
ity [15–18]. As a cross check, we compare results from
the CMS Open Data to those obtained from the parton
shower generator Pythia 6.4.25 [19]. This Pythia 6
sample was provided as part of the CMS Open Data re-
lease.

Because the jet substructure response of the CMS de-
tector [20] depends on the jet pseudorapidity, we find
that detector effects have a big impact on topic model-
ing. Specifically, a necessary condition for topic model-
ing is sample independence, which means that the under-
lying quark and gluon distributions must be the same
in each mixed jet sample. Though a complete study
of experimental systematics is beyond the scope of this
work, we do implement central value unfolding using
OmniFold [21, 22], which mitigates these detector ef-
fects. Weights from this unfolding are publicly avail-
able at Ref. [23]. The results of topic modeling on un-
folded particle-level CMS Open Data are comparable to
those from Pythia, after accounting for differences in the
quark/gluon fractions.

Our two new topic modeling algorithms show better
robustness to statistical noise and training imperfections
than the anchor bin method used in Refs. [1–4]. Anchor
bins correspond to maximally pure regions of phase space
with very high background rejection but correspondingly
low signal efficiency. These anchor bins therefore ex-
hibit large statistical uncertainties due to low count rates.
To mitigate these uncertainties, we first introduce a log-
likelihood ratio fit procedure based on probability distri-
bution functions and quantile binning. We then show
how to sidestep binning through a ROC curve fit defined
by cumulative distribution functions. Using a sample of
2 million jets, we find consistent results from all three
methods, but better stability from the two fitting proce-
dures.

The remainder of this paper is organized as follows.
In Sec. II, we discuss the motivation behind our new

topic modeling methods from a statistical perspective
and introduce the machine learning models we use. We
discuss the features of the CMS Open Data dataset in
Sec. III, and we justify the application of central value
unfolding to mitigate sample dependence. In Sec. IV, we
apply our topic modeling procedures to the CMS Open
Data dataset and compare the extracted reducibility fac-
tors. We then present separate quark and gluon distribu-
tions in Sec. V, including ROC curves, rapidity spectra,
and the intrinsic dimensionality of quark and gluon jets,
which are our main results. We conclude in Sec. VI with
a discussion of possible extensions of these methods.

II. JET TOPIC MODELING

In this section, we review the framework of jet topic
modeling as well as the anchor bin method used in previ-
ous studies. We then introduce our log-likelihood ratio fit
(L-fit) and ROC curve fit (R-fit) methods, which exhibit
better stability. We then discuss machine-learned clas-
sification and regression as inputs to the topic modeling
procedure.

A. Review of Mixtures and Reducibility Factors

The following discussion uses the notation and termi-
nology from the original jet topics paper [2], which is
based on the Demix algorithm of Ref. [24]. Assume you
have two mixed samples of jets, denoted as M1 and M2,
which can be decomposed into their quark (q) and gluon
(g) components. This means that for some jet observable
O, the observable distributions for the two mixtures can
be written as:

pM1(O) = f1 pq(O) + (1− f1) pg(O), (1)

pM2(O) = f2 pq(O) + (1− f2) pg(O), (2)

where pq(O) and pg(O) are the quark and gluon distribu-
tions for O, and f1 ∈ [0, 1] and f2 ∈ [0, 1] are the quark
fractions in M1 and M2, respectively. We further assume
that the mixtures are different and take f1 > f2, such
that M1 is more quark enriched than M2.

The above equations are valid under the assumption
of sample independence. This means that the observable
distributions for quark and gluon jets are the same in
the phase space regions defined by M1 and M2, such
that the two mixtures differ only by their quark fractions.
In principle, soft color correlations and non-perturbative
effects can introduce sample dependence for quarks and
gluons, though the analysis in Ref. [1] found this to be
a small effect (see also Refs. [25, 26]). As we will see
in Sec. III C, detector effects will introduce large sample
dependence, which we must mitigate for our analysis.

Making the further assumption that quarks and gluons
are mutually irreducible in O (see Eq. (8) below), we can
invert Eqs. (1) and (2) and solve for the quark and gluon
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distributions. Defining the likelihood ratio

LA/B(O) =
(
LB/A(O)

)−1
=
pA(O)

pB(O)
, (3)

the reducibility factors are the maximum amount of one
mixture that can be subtracted from the other and still
leave a valid probability density:

κ21 ≡ min
O

LM2/M1
(O) , κ12 ≡ min

O
LM1/M2

(O) , (4)

In particular, the quark and gluon distributions are given
by

pq(O) =
pM1(O)− κ12 pM2(O)

1− κ12
, (5)

pg(O) =
pM2(O)− κ21 pM1(O)

1− κ21
, (6)

which are non-negative distributions by construction.
We emphasize that the mutual irreducibility of quarks

and gluons is an assumption, but a powerful one since
it allows us to operationally define what we mean by
“quarks” and “gluons” [1]. To state the assumption more
explicitly, we can define the reducibility factors for the
quark and gluon distributions themselves as:

κgq ≡ min
O

(
Lg/q (O)

)
, κqg ≡ min

O

(
Lq/g (O)

)
. (7)

With this notation, mutual irreducibility corresponds to
the assumption that

κgq = κqg = 0. (8)

In various limits of quantum chromodynamics, one can
prove that this relation holds [2, 6, 27], which is why
we are motivated to use it for our studies, despite its
potential limitations [28].

A useful consequence of Eq. (8) is that we can derive
the quark fractions for M1 and M2 by plugging Eqs. (5)
and (6) into Eqs. (1) and (2), yielding:

f1 =
1− κ12

1− κ12 κ21
, f2 =

κ21 (1− κ12)

1− κ12 κ21
. (9)

Via Eq. (9), we can extract the quark fractions in a given
dataset only knowing κ21 and κ12. Via Eqs. (5) and
(6), we can also extract the distributions of quark and
gluon jets for any observable, even one that was not used
to extract the reducibility factors in the first place. In
this way, jet topic modeling boils down to determining
the reducibility factors in Eq. (4), and we present three
different strategies for their extraction in the next three
subsections.

B. Anchor Bin Method

The anchor bin method is the most direct interpreta-
tion of Eq. (4) and was used in Refs. [1–4]. If one only

has access to finite samples drawn from the probability
densities pM1

(O) and pM2
(O), then one needs some way

to estimate the likelihood ratio. One way to do so is to
bin the data into histograms, yielding the probabilities
pM1

(Oi) and pM2
(Oi), where i is the bin number. The

anchor bin method therefore depends on the choice of
binning, as discussed further in Sec. IV B.

Because it is more convenient to work with log-
likelihood ratios, we define the anchor values as:

a21 ≡ min
i

lnLM2/M1
(Oi), a12 ≡ max

i
lnLM2/M1

(Oi).

(10)
We refer to the corresponding arguments of the mini-
mum/maximum as the anchor bins. The reducibility fac-
tors are then given by

κ21 = exp[a21], κ12 = exp[−a12]. (11)

In practice, Eq. (10) is modified to account for statis-
tical uncertainties as described in Sec. IV B. With the
reducibility factors in hand, we can use Eq. (9) to ex-
tract the quark fractions and Eqs. (5) and (6) to extract
the quark and gluon distributions for any observable.

The main advantage of the anchor bin method is its
conceptual simplicity, since it is just a binned version of
Eq. (4). The main drawback is that it depends sensitively
on the end points of the probability densities, where bin
counts can be low. The next two methods aim to mitigate
this issue by taking into account information from the
whole distribution.

C. Log-Likelihood Ratio Fit Method

The log-likelihood ratio fit (L-fit) method is a more sta-
tistically robust way to extract reducibility factors. Like
the anchor bin method, it depends on the choice of his-
togram binning. Unlike the anchor bin method, it takes
advantage of data from the whole observable domain, not
only from the neighborhoods around the maximum and
minimum values.

After estimating the log-likelihood ratio lnLM2/M1
, we

fit it to a polynomial of degree K:

f(O; b) =
K∑

k=0

bk fk(O), (12)

where bk are fit coefficients, and fk(O) is a polynomial of
degree k from some polynomial basis. To avoid sensitiv-
ity to possible changes of variables, we find it convenient
in Sec. IV C to characterize O in terms of its quantiles
(strictly speaking, fractiles), such that the argument of
f ranges from 0 to 1. Quantile binning makes it such
that different observables have similar shapes to their
log-likelihood ratios, simplifying the fitting procedure.

Assuming that the function f(O; b) faithfully repre-
sents LM2/M1

(O) when b = bopt, the anchor values can
be extracted via:

a21 = min
O

f(O; bopt), a12 = max
O

f(O; bopt), (13)
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and the reducibility factors are given by Eq. (11) as be-
fore. In the special case that the quark/gluon likelihood
ratio is a monotonic function of the observable O, with
smaller values corresponding to more quark-like, Eq. (13)
simplifies to

a21 = f(Omin; bopt), a12 = f(Omax; bopt). (14)

where Omin = min(O) and Omax = max(O). When char-

acterizing O in terms of its quantiles, Oquant
min = 0 and

Oquant
max = 1.
The main advantage of the L-fit method is that it al-

lows for a better accounting of statistical noise and is
less dependent on binning than the anchor bin method.
The main drawback is that it has residual binning de-
pendence, especially if one does not use the quantile
parametrization of the observable. It also depends on the
precise choice of functional fit form, though this depen-
dence can be assessed as an uncertainty in the method.

D. ROC Curve Fit Method

The ROC curve fit (R-fit) method allows us to ex-
tract the reducibility factors without needing to bin the
observable. The method assumes that the quark/gluon
likelihood ratio is a monotonic function of the observable,
which will be the case for the observables studied in this
paper.

The R-fit method starts from the cumulative probabil-
ities P (Ocut), defined as

P (Ocut) =

∫ Ocut

Omin

dO p(O), (15)

where Omin is the minimum value of the observable. For
the mixtures M1 and M2, the ROC curve is the para-
metric curve traced out by the value of the upper cut
Ocut:

{PM1
(Ocut), PM2

(Ocut)}. (16)

Assuming that the ROC curve is single valued, it tells us
the efficiency for selecting the “background” (M2, more
gluon-like) as a function of the efficiency for selecting the
“signal” (M1, more quark-like):

PM2(PM1). (17)

In the statistics language, this is the false positive rate
as a function of the true positive rate.1

Since the cumulative probabilities PM1
(Ocut) and

PM2
(Ocut) contain the same information as the probabil-

ity densities, we can use them to extract the reducibility

1 This definition of the ROC curve is standard in the HEP litera-
ture. In the statistics literature, it is more common to plot the
true positive rate as a function of the false positive rate.

factors κ21 and κ12. Perhaps less obvious is that the ROC
curve built from PM1

and PM2
contains sufficient infor-

mation for this extraction. Assuming the quark/gluon
likelihood ratio is a monotonic function of the observ-
able, then as discussed around Eq. (14), the anchor bins
are located at the end points of the observable. One end-
point has PM1 → 0 and PM2 → 0, and the slope of the
ROC curve is:

lim
PM1
→0

dPM2

dPM1

= lim
Ocut→Omin

dPM2

dOcut

dOcut

dPM1

=
pM2(Omin)

pM1
(Omin)

= κ21, (18)

where we have used the fundamental theorem of calcu-
lus in the second line. Similarly, the other endpoint has
PM1 → 1 and PM2 → 1, and the slope of the ROC curve
is:

lim
PM1
→1

d(1− PM2
)

d(1− PM1)
=
pM2

(Omax)

pM1(Omax)
=

1

κ12
. (19)

We emphasize that these relations assume the monotonic-
ity of the (log-)likelihood ratio as a function of the ob-
servable. In this way, the slopes of the ROC curve at the
endpoints directly yield the reducibility factors.

With finite statistics datasets, we can fit the ROC
curve to a polynomial and extract the slopes from the
obtained functional fit. To ensure the fit intersects the
points {0, 0} and {1, 1}, we use the form:

f(r) = r + r (1− r)

(
K∑

k=0

bk fk(r)

)
, (20)

where bk are the fit coefficients and fk (x) are polynomials
of degree k defined on the interval [0, 1].

Like the L-fit method, the R-fit method is robust to
statistical noise since it uses information from the whole
observable range. That said, the procedure for account-
ing for statistical uncertainties with the R-fit method
is more involved, as discussed in Sec. IV D. The main
caution when using this method is that it relies on the
quark/gluon likelihood ratio being a monotonic func-
tion of the observable. Fortunately, this is a quite com-
mon property (for example, constituent multiplicity and
mass), and this also turns out to be the case for the
machine-learned classifiers that we use for our default
reducibility factor extraction.

E. Machine-Learned Classification

Jet topic modeling can be applied to any observable,
but as advocated in Ref. [1], it is particularly power-
ful when applied to a machine-learned classifier. As re-
viewed below, such classifiers are monotonically related
to the likelihood ratio Lg/q(O) in the asymptotic limit,
and therefore well suited for extracting reducibility fac-
tors.
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Using the classification without labels (CWoLa) tech-
nique [29], we can train a classifier to distinguish M1

and M2, and this yields a function that defines optimal
decision boundaries between quark and gluon jets. For
concreteness, we use the binary cross entropy loss func-
tional to train a classifier c(x) over the full phase space
x:

L[c] =

∫
dx
(
p(M1) pM1(x) ln c(x)

+ p(M2) pM2
(x) ln[1− c(x)]

)
, (21)

where p(Ma) is the proportion of the events drawn from
sample a. This functional is minimized when

1− c(x)

c(x)
=
p(M2)

p(M1)
LM2/M1

(x), (22)

so c(x) is indeed a monotonic function of LM2/M1
in the

limit of infinite training data. Following Ref. [29], it is
straightforward to show that it is also a monotonic func-
tion of Lg/q. Therefore, the classifier c(x) is a suitable
observable for extracting reducibility factors using the L-
fit method with Eq. (14) or using the R-fit method with
Eqs. (18) and (19).

The specific classifiers we use for our study are energy
flow networks (EFNs) and particle flow network (PFNs)
[14], based on the Deep Sets formalism [30]. The distinc-
tive feature of EFNs is that they have an infrared-and-
collinear-safe (IRC-safe) latent space:

c(x) = F

(∑
i

ziΦ(p̂i)

)
, (23)

where the sum is taken over all the particles in the jet,
zi is the energy of particle i, and p̂i is the direction of
particle i. For a latent space of dimension `, Φ is a per-
particle trainable function with ` outputs, and F is a
per-jet trainable function with ` inputs. Relaxing the
requirement of IRC safety yields PFNs:

c(x) = F

(∑
i

Φ(pi)

)
, (24)

where pi is the full information about particle i, includ-
ing possible charge/flavor labels. Both EFNs and PFNs
can handle variable sized inputs and respect particle per-
mutations, both of which are desirable properties for an-
alyzing jets. For the observables in Sec. III B, we omit
charge/flavor information, since otherwise we would be
sensitive to the relative fraction of up-type versus down-
type quarks as a function of jet rapidity.

F. Machine-Learned Regression

CWoLa is actually a special case of a more general
strategy to extract discriminants from mixed training

data. Instead of defining two jet mixtures M1 and M2

and performing binary classification, we can instead la-
bel jets via a continuous parameter η and regress η on
the jet properties. This strategy requires that the frac-
tion of quark and gluon jets change as a function of η,
but the properties of the jets themselves are unaffected.
(While η can be any observable that satisfies the require-
ment above, in the scope of this paper we will constrain
ourself to η be a jet pseudorapidity.) This implies the
factorized probability structure:

p(η, x) = f pq(η) pq(x) + (1− f) pg(η) pg(x), (25)

where 0 < f < 1 is the total quark fraction of the sample,
and the probability densities in the above expression each
integrate to 1.

We perform regression with the mean squared error
loss functional:

L[h] =

∫
dη dx p(η, x)

(
η − h(x)

)2
, (26)

where h(x) is the regression function to be learned. This
loss functional is minimized for

h(x) =

∫
dη η p(η, x)∫
dη p(η, x)

, (27)

such that h(x) learns the expectation value of η as a
function of x.

To see that h(x) is monotonically related to Lg/q, we
can plug Eq. (25) into Eq. (27):

r(x) =
f〈η〉q + (1− f)〈η〉g Lg/q(x)

f + (1− f)Lg/q(x)
, (28)

where 〈η〉a =
∫
dη η pa(η). As long as 〈η〉q and 〈η〉g differ,

this is a monotonic function of Lg/q and therefore defines
optimal decision boundaries.

In the studies below, we show jet topics results using
both classification and regression observables, where we
find consistent results within uncertainties. Note that if
a change of variables is applied to η, then the extracted
h(x) will change by a Jacobian factor. With finite train-
ing data, there is an optimal change of variables that min-
imizes the statistical uncertainty on the inferred Lg/q(x),
though we leave an investigation of that to future work.

III. JETS IN THE CMS OPEN DATA

In this section, we describe the real and synthetic
datasets used in our study, which derive from a public
release by the CMS experiment [11]. We list the observ-
ables used as inputs for topic modeling and demonstrate
the challenge of sample dependence induced by the CMS
detector. Going further than previous studies with CMS
Open Data, we perform full phase-space, central-value
unfolding using the OmniFold technique [21, 22]. Our
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Sample Forward (f1) Central (f2) Equation

Pythia Parton 0.689 0.510 Eq. (30)

Pythia Parton with CVU 0.711 0.543 Eq. (31)

CMS 2011 with OmniFold: CVU Jet Topics 0.708± 0.025 0.561± 0.033 Eq. (55)

Pythia Jet Topics 0.649± 0.012 0.466± 0.011 Eq. (A1)

TABLE I. Various quark fractions used in this analysis. The first row correspond to parton labels, as determined by Pythia.
The second row is also from Pythia but includes weights from central value unfolding; this is a parton-level reference that can
be compared to our jet topics result. The third row (in bold) is the main result from our study, using jet topics to extract
an operational definition of “quark” fractions in the central-value-unfolded CMS 2011 Open Data. The fourth row, studied in
App. A, comes from performing the jet topics procedure on the Pythia Monte Carlo samples.

ability to validate the unfolding is limited due to our hav-
ing only a single Monte Carlo (MC) dataset with CMS
full detector simulation, but we check for detector-level
closure in several distributions of interest and find that
the unfolding works well at a qualitative level.

A. Review of CMS 2011A Jet Primary Dataset

The CMS 2011 Open Data release corresponds to
2.3 fb−1 of proton-proton collisions at center-of-mass en-
ergy

√
s = 7 TeV [31]. Related trigger streams [32] are

grouped together into primary datasets, and our analy-
sis is based on the Jet Primary Dataset for CMS Run
2011A [11], which includes single jet and dijet triggers.
Each event from CMS has full particle-flow reconstruc-
tion [33–35]. This dataset was extensively studied, pro-
cessed, and simplified in Ref. [12], which applied event ge-
ometry techniques based on the energy mover’s distance
[18] to explore the space of jets in real collider data. Our
current study is based on the reprocessed “MIT Open
Data” (MOD) formatted HDF5 files from Ref. [12], which
were publicly released on the Zenodo platform [13]. See
Ref. [36] for a recent analysis of multipoint correlators
with this dataset.

The CMS 2011 release also has associated MC datasets
for a variety of physics processes, simulated with a model
of CMS based on Geant 4 [37]. Relevant for our analy-
sis, there is a sample of hard QCD scattering events gen-
erated by Pythia 6.4.25 [19] with tune Z2 [38]. These
generated events are further processed using the CMS
simulation and reconstruction software [39–46]. Both
generator-level truth particles and simulation-level recon-
structed objects are available in the same MOD HDF5
format on Zenodo [47–54].

For both the real and synthetic datasets, we keep up
to the two jets in an event with the highest pT . Jets
are clustered by CMS using the anti-kt algorithm with
R = 0.5 [55, 56]. As a baseline, jets are selected if their
transverse momentum and pseudorapidity satisfy:

pT ∈ [475, 525] GeV, |η| < 1.9. (29)

Jet substructure observables are computed using all truth
particles (for generator-level data) or all particle flow
candidates (PFCs, for simulation-level data). For the

measured dataset, we applied CMS-provided jet energy
correction (JEC) factors [57] (which include area-median
pileup subtraction [58]) and imposed the “medium” jet
quality criteria [59, 60] (quality ≥ 2 in the MOD format).
For this simulated dataset, we only use events that corre-
spond to generated parton-level pT greater than 300 GeV
and less than 1800 GeV, divided into six independent
event samples [48–53]. Note that there is a very small tail
of events from the p̂T ∈ [170, 300] GeV and p̂T ≥ 1800
GeV samples [47, 54] that satisfy our selection criteria
but are ignored for this study. Unlike the analysis in
Ref. [12], we place no further cuts on the pT values of
the PFCs, nor do we separate out charged from neutral
PFCs.

B. Choice of Mixtures and Observables

To define the two mixtures for topic modeling, we split
the pT ∈ [475, 525] GeV jet sample into two mixtures of
roughly equal sizes:

• Forward (M1, quark-enriched): |η| ∈ [0.65, 1.9],

• Central (M2, gluon-enriched): |η| < 0.65.

A related strategy of considering the more for-
ward/central jet was pursued by ATLAS in Refs. [3, 61,
62]. As defined by Pythia 6.4.25 parton-level informa-
tion, forward (central) jets have a quark fraction of:

Pythia Parton:
f1 ' 0.689,

f2 ' 0.510.
(30)

This relatively modest difference in quark fraction is nev-
ertheless sufficient for topic extraction. For reference, we
summarize the various quark fractions we encounter in
this study in Table I.

Following the analysis of Ref. [1], we consider a suite
of six well-studied jet substructure observables as inputs
to topic modeling:

• Nconst: Number of jet constituents,

• N95: Image activity [63]; i.e. number of pixels in a
33× 33 jet image that contain 95% of the jet pT ,
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• pDT : Transverse momentum dispersion [64];

i.e.
∑

i p
2
T,i/ (

∑
i pT,i)

2
,

• τ2: 2-subjettiness [65, 66] with β = 1 and kt-axes,

• τ1: 1-subjettiness with β = 1 and kt-axes,

• mjet: Jet mass.

The first observable (Nconst) is known to be good
quark/gluon discriminant. The middle three observables
(N95, pDT , and τ2) yield moderate quark/gluon separa-
tion power. The last two observables (τ1 and mjet) ex-
hibit Casimir scaling in their quark/gluon separation [67],
limiting their usefulness for jet topic modeling.

We also consider four machine-learned observables, as
discussed in Secs. II E and II F:

• EFNcls: classification of forward versus central jets
with an EFN,

• PFNcls: classification of forward versus central jets
with a PFN,

• EFNreg: regression for jet pseudorapidity |η| with
an EFN,

• PFNreg: regression for jet pseudorapidity |η| with
a PFN.

For the PFNs, we input the full particle four-vector in-
formation, but exclude charge/flavor information since
we do not wish to distinguish up-type from down-type
quarks. Apart from the input and output values, the
network architectures are the same, with a latent space
dimension of ` = 128, 2 hidden layers of 100 nodes for the
per-particle function Φ, and 3 hidden layers of 100 nodes
for the per-jet function F . The activation functions are
ReLU for classification and Leaky ReLU for regression.
Networks are built using the EnergyFlow package [68]
based on Keras [69] and trained using the Adam opti-
mizer [70].

To avoid training complications associated with the
real CMS datasets, we trained these four observables on
the particle-level Pythia 6.4.25 samples. This is valid
from the perspective of jet topics, since any observable
(even a machine-learned observable trained on imperfect
synthetic data) can be used as an input to the jet topics
procedure. Of course, such a suboptimal observable will
not provide as good of an estimate of the true likelihood
ratio, generically resulting in residual mixing between the
categories. We checked that similar results could be ob-
tained by training on the central-value-unfolded samples
described below in Sec. III D, though the results were
not as stable as we would have liked between different
numbers of unfolding iterations.2

2 Because topic modeling is sensitive to the very high and very
low purity regions of phase space, instabilities can arise if the

C. The Challenge of Sample Dependence

A key requirement for jet topic modeling is sample
independence, which means that each mixture distribu-
tion should be a linear combination of the same underly-
ing quark and gluon distributions. To test this, we can
use the MC samples, where we have quark/gluon labels
based on Pythia truth parton information. As shown
in Fig. 1, sample independence holds to an excellent ap-
proximation for generator-level jets, with forward quarks
and central quarks having nearly identical distributions,
and similarly for gluons.

At detector-level, though, we see considerable sample
dependence in Fig. 2. This sample dependence is due to
a number of factors, including changes in the detector ge-
ometry and granularity, changes to object reconstruction
efficiencies, and differing response to pileup and other
sources of noise. In general, forward jets have more re-
constructed constituents and therefore larger values of
N95, τ2, τ1, and mjet. (More constituents typically im-
plies smaller values of pDT .) This dependence of the CMS
detector response on the overall jet kinematics introduces
undesirable sample dependence in our mixed samples,
motivating the need for (central value) unfolding.

D. Central Value Unfolding with OmniFold

In a full experimental analysis, one would perform de-
tector unfolding to mitigate the impact of detector ef-
fects. Such an unfolding would also account for var-
ious sources of systematic uncertainties, including the
choice of generator used to extract the response matrix.
See Ref. [71] for a review of jet substructure measure-
ments. For this study, we perform central value unfold-
ing (CVU), where we correct detector effects based on
the response matrix derived from a single MC sample
without assigning systematic uncertainties.3 This is suf-
ficient to address the issues of sample dependence, though
not sophisticated enough to derive distributions suitable
for quantitative studies, e.g. comparisons to theoretical
calculations or tunings of event generators. The statis-
tical uncertainties on the unfolding are estimated in a
naive way through the variance of the unfolded weights
(i.e. the usual way one would account for uncertainties
in a weighted event sample). We checked that these un-

machine-learning algorithm picks up on small changes near the
endpoints of the classifier. These instabilities can be amplified
in the presence of large weight variations, which we encounter in
Fig. 3 below. It would be interesting to see if these instabilities
could be reduced if the unfolding were explicitly regularized, as
opposed to implicitly regularized by the number of unfolding
iterations.

3 We use the term “central value” to refer to the central value with
respect to systematic variations. This differs from the central
value associated with statistical or initialization variations.
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FIG. 1. Distributions in Pythia 6.4.25 for the six substructure observables from Sec. III B: (a) constituent multiplicity, (b)
image activity, (c) momentum dispersion, (d) 2-subjettiness, (e) 1-subjettiness, and (f) jet mass. Using parton truth labels
from the Pythia event record, the distributions for quark (blue) and gluon (red) are compared between forward jets (solid,
|η| ∈ [0.65, 1.9]) and central jets (dashed, |η| < 0.65). As expected from leading-power factorization, the differences are modest
such that sample independence holds to an excellent approximation.

certainties are comparable in size to the statistical uncer-
tainties associated with the prior distribution.

Because the absence of systematic uncertainties will
be viewed as anathema to some readers (especially the
authors of Refs. [3, 72]), we want to explain more about
our philosophy. We will leverage a full phase space un-
folding strategy called OmniFold [21, 22], which assigns
each MC event a weight at the truth particle level.4 With
these per-event weights, one can in principle compute the

4 See Ref. [73] for an application of OmniFold by the H1 collabo-
ration on an eight-dimensional phase space, with proper uncer-
tainty quantification. See Ref. [74] for a preliminary analysis by
the H1 collaboration to unfold six jet substructure observables
in step 2 of OmniFold by using the full phase space at step 1.

unfolded distribution for any observable, including ones
not envisioned at the time of the unfolding. Full phase
space unfolding is a great opportunity for the field, and
there are already discussions about how to release per-
event unfolded data in a suitable format [75]. It is also a
great challenge, though, since it is not clear how to val-
idate the unfolding for arbitrary down-stream analyses,
nor is it clear what the best strategy would be to assign
per-event systematic uncertainties. Furthermore, Om-
niFold is based on neural networks, which introduces
additional sources of uncertainties from the initialization
and training paradigms. For these reasons, we feel it is
prudent to perform a proof-of-concept study that shows
how unfolding can indeed mitigate the issue of sample
dependence, without attempting to make a quantitative
claim about the degree of mitigation or the systematic
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FIG. 2. Similar to Fig. 1 but now for detector-level distributions after Pythia events are passed through the CMS detector
simulation. We see that quark jets (cyan) and gluon jets (orange) look different in the forward and central parts of the CMS
detector, which violates the assumption of sample independence and necessitates the use of unfolding.
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FIG. 3. The weight distribution produced by central value unfolding after (a) step 1 and (b) step 2 of the OmniFold algorithm.
The initial weights from the CMS Open Data are shown in blue, where the spikes arise because there are six independent samples
that have been individually unweighted. The results in this paper correspond to using weights from iteration 4, after step 2.

uncertainties on the final distributions.

With that apologia, we apply the OmniFold al-
gorithm to all reconstructed jets in the range pT ∈
[375, 700] GeV and |η| < 2.4. OmniFold can be viewed
as an unbinned version of iterated Bayesian unfold-
ing [76]. In step 1 of the algorithm, event weights are
computed such that the detector-level full phase-space
density of the simulated sample match that of the ob-
served data. In step 2 of the algorithm, the event weights
are refined such that the weights can be expressed as a
function of the particle-level inputs. For this analysis,
we do not account for migration of events out of the jet
selection range [22], though we later restrict our atten-
tion to a smaller pT range to avoid edge complications.
The weights distributions are shown in Fig. 3, where one
can see that the starting weights for the six initial sam-
ples are smeared out in each OmniFold iteration. These
weights are publicly available at Ref. [23].

We use four iterations of OmniFold as the default,
and checked that the qualitative features were robust
with one more or one fewer iteration. More iterations
lead to a better fit to the data, at the expense of larger
fluctuations. The unfolding weights are computed using a
PFN, as parametrized in Eq. (24). The model takes as in-
put a tuple of all particle 4-vectors, experimentally acces-
sible particle-type information (“PFN-Ex”, see Ref. [14]),
and four global features: jet pT , jet η, jet φ, and jet mass.
For step 1, we use a latent space with ` = 256, where the
per-particle Φ function has 2 hidden layers of 128 nodes
each, and the per-jet F function has 3 hidden layers of

128 nodes each. For step 2, we use ` = 192, where Φ has
2 hidden layers of 100 nodes, and F has 3 hidden layers
of 100 nodes. The ReLU function is used as an activation
function on each layer besides the output layer that uses
softmax.

We emphasize that, after step 2 of OmniFold, the un-
folded weights are assigned to the truth particle-level in-
formation. Combining the weights with Pythia parton-
level information, we can derive the effective quark and
gluon fraction of the central-value-unfolded sample:

Pythia Parton with CVU:
f1 ' 0.711,

f2 ' 0.543.
(31)

These fractions are unphysical for two reasons. First,
they correspond to parton-level information that only
have meaning at leading logarithmic accuracy. Second,
the OmniFold weights are derived from particle-level
alone, without reference to parton-level information, so
these fractions do not correspond to a true generative
model in the sense of Eqs. (1) and (2). Nevertheless,
Eq. (31) is a useful benchmark to guide the eye in inter-
preting the jet topic modeling results.

E. Unfolding Validation at Detector Level

To validate the unfolding, we compare detector-level
distributions before and after OmniFold. For all of the
plots in this subsection, we emphasize that distributions
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FIG. 4. Validation of central value unfolding with OmniFold applied to the CMS 2011 Open Data. Shown are distributions
for (a) jet pT , (b) jet azimuth, and (c) jet pseudorapidity. The detector-level distributions after using the unfolding weights
(green) match better to the CMS measured distributions (black) than to Pythia run through the CMS detector simulation
(orange). Note the smaller jet pT range for the azimuth and pseudorapidity plots. The error bars on the open data/simulation
correspond to statistical uncertainties, while the green band corresponds to using 3 or 5 iterations of OmniFold compared to
the default of 4.

are shown at detector level, and we only use unfolding
to determine the event weights (particle-level distribu-
tions are shown later in Secs. IV and V). In Fig. 4a,
we show the result of using the unfolding weights on
the overall jet transverse momentum, in the range of
pT ∈ [375, 700] GeV and |η| < 2.4. The spectrum
from the MC (orange dots) differs from that of the CMS
data (black dots) by upwards of 10%, but the simulation
spectrum with unfolding weights (green line) successfully
matches the spectrum seen in the CMS data. The shaded
green region is the envelope from considering three, four,
or five OmniFold iterations, with four being the default.
The weights are obtained after step 2 of OmniFold.

To reduce pT edge effects, we further restrict to pT ∈
[425, 575] GeV for the remaining distributions. Using the
unfolding weights has a negligible effect on the azimuthal
spectrum in Fig. 4b, which suggests that the CMS sim-
ulation does not match the detailed azimuthal structure
of the CMS detector.

For the pseudorapidity spectrum in Fig. 4c, there is
a slight cliff-like feature at around |η| ≈ 1.4, which is
roughly where the detector barrel meets the detector end-
cap. Using the unfolding weights adjusts the truth-level
pseudorapidity spectrum in the vicinity of this cliff such
that the detector-level pseudorapidity structure better
matches the data. This is an example of a potential sys-
tematic issue that requires a detailed understanding of jet
reconstruction at CMS. If the barrel/endcap interface is
incorrectly modeled in the CMS simulation or if there are
sources of contamination not captured in simulation and
not mitigated by the jet quality criterion, then unfolding
could erroneously modify the truth-level pseudorapidity
spectrum. This is particularly important for our analy-

sis, because quark/gluon composition of the samples are
affected by the pseudorapidity spectrum. Note that this
issue is potentially present with any unfolding algorithm,
not just OmniFold, and requires expert experimental
knowledge to assess.

To study the substructure of jets, we now restrict our
attention to the detector-level jet kinematic range of

pT ∈ [475, 525] GeV, |η| < 1.9. (32)

The tightening of the pseudorapidity range is because
the tracker extends only out to |η| < 2.4, so we want to
make sure that all charged particles within the jet ra-
dius of R = 0.5 have a chance to be reconstructed. In
Fig. 5, we show detector-level distributions for the six
observables from Sec. III B. Overall, unfolding improves
the agreement between the detector-level distributions in
regions of phase space with sufficient numbers of events,
particularly for N95, pDT , τ1, and mjet. Using the un-
folding weights improves the agreement for τ2, though
there are still noticeable discrepancies. Using the unfold-
ing weights makes comparatively little impact on Nconst,
suggesting that the response of this observable may not
be perfectly modeled by the CMS simulation or that there
are correlations in the Pythia sample that cannot be cor-
rected via unfolding.

At a qualitative level, we conclude that using the un-
folding weights satisfies this basic detector-level closure
test. In the context of a complete measurement, de-
viations from closure would be assessed as a system-
atic uncertainty. Though not shown, we checked that
the particle-level distributions exhibit the same degree of
sample independence as seen in Fig. 1.
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FIG. 5. Similar to Fig. 4, but for the six substructure observables from Sec. III B. Here, we are using a narrower jet pT and
pseudorapidity range to mitigate edge effects in the unfolding.
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FIG. 6. Particle-level distributions for forward (purple) and central (pink) jets for the six substructure observables from
Sec. III B. We compare central-value-unfolded results from the CMS 2011 Open Data (data points) to Pythia 6.4.25 (solid
curve), where the differences are subtle but noticeable. The CVU distributions are inputs for the subsequent jet topics analyses.
See App. A for results obtained from the Pythia distributions. The error bars correspond to statistical uncertainties only.

IV. EXTRACTING REDUCIBILITY FACTORS

In this section, we apply the methods described in
Sec. II to extract reducibility factors and determine the
quark fractions of the forward/central CMS Open Data
jet samples. All studies are based on the CVU dataset
obtained in Sec. III D. All plots in the remainder of this
paper are based on particle-level information.

A. Unfolded Forward/Central Distributions

The starting point for the jet topics analysis is particle-
level observable distributions. After central value unfold-
ing, we have a sample of forward jets (|η| ∈ [0.65, 1.9])
and central jets (|η| < 0.65) with full particle-level kine-
matic information. We restrict our attention to the

particle-level jet kinematic range of:

pT ∈ [475, 525] GeV, |η| < 1.9. (33)

This yields a sample of 3.25 millions jets for analysis.
In Fig. 6, we plot the six observables from Sec. III B

for these two samples. While the forward and central dis-
tributions are rather similar, the differences are enough
to yield a non-trivial result from jet topic modeling. As
expected, the forward jets are more quark-like than the
central jets, with fewer jet constituents and smaller in-
variant masses.

The unfolding induces 10%-20% differences from the
baseline Pythia distributions, which will have a notice-
able impact on the results below. The unfolding pri-
marily affects the constituent multiplicity and jet mass
distributions, with more modest differences in the other
observables. In App. A, we repeat the jet topics analysis
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FIG. 7. Similar to Fig. 6, but for the four machine-learned observables from Sec. III B: (a) PFN classification, (b) PFN
regression, (c) EFN classification, and (d) EFN regression. The uncertainties include fully correlated uncertainties from the
training. For an individual training, there is better separation power than implied here. For visual clarity, we have omitted the
Pythia distributions from the top panels.
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on the Pythia samples for comparison.
In Fig. 7, we show distributions for the four machine-

learned observables from Sec. III B. We emphasize that
these observables were trained on the Pythia samples
but the distributions in the top panel are derived from the
CVU samples. The uncertainties in these distributions
include both statistical uncertainties and fully-correlated
variance from doing 10 different training runs. While the
training uncertainties are large in the bulk of the distribu-
tion, they are small (and correlated) near the endpoints,
which is why we get relatively small uncertainties on the
extracted reducibility factors. We again see 10%-20%
differences from the Pythia baseline in the core of the
distribution, which will show up in the jet topics results.

B. Anchor Bin Method

As our first method to extract reducibility factors, we
apply the anchor bin method from Sec. II B. This method
requires choosing a histogram binning for the observable
distributions pMa

(O). We use a quantile-based binning
to address the statistical noise of the samples. Specifi-
cally, we chose the bins to minimize the number of events
per bin, while simultaneously ensuring that no fewer than
1.0% of central jets and 1.0% of forward jets are contained
in each bin. For continuous observables, this variable bin-
ning yields approximately the same number of events per
bin. For discrete observables like constituent multiplic-
ity, this forces larger bin widths in the endpoint regions
where statistical noise would otherwise dominate.

With around 15k events from each sample per bin, the
Poisson uncertainty in the bin occupancy is around 1%.
To compute the statistical uncertainties, we use the stan-
dard formulae for weighted events. Letting Bi be the set
of all events assigned to the i-th histogram bin and pi be
the probability in that bin, we have:

pi =
∑
x∈Bi

ω(x), (34)

Var[pi] =
∑
x∈Bi

ω(x)2, (35)

where x represents the full kinematics, and ω(x) is the
event weight. These uncertainties are computed for the
forward and central mixtures separately. For the log-
likelihood ratio f(O) = lnLM2/M1

(O), we use standard
error propagation in the Gaussian limit for each bin:

∆f(O) =

√(
∆pM1

(O)

pM1
(O)

)2

+

(
∆pM2

(O)

pM2
(O)

)2

. (36)

In Fig. 8, we show a typical log-likelihood ratio, in this
case for constituent multiplicity. To account for statisti-
cal noise, we use a slightly different procedure to deter-
mine the anchor bins from the one described in Sec. II B.
Following Refs. [1, 2], instead of directly searching for
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FIG. 8. Demonstration of the anchor bin method on the CMS
2011 Open Data with central value unfolding. After binning
the data into quantiles, we plot the log-likelihood ratio be-
tween the central and forward samples. The anchor bins,
shown in red, are at the extrema of this ratio after account-
ing for uncertainties. The horizontal dashed lines correspond
to the Pythia parton-level expectation in Eq. (31). The error
bars correspond to statistical uncertainties only.

minimum and maximum values of f(O), we choose the
anchor bins based on values adjusted for uncertainty:

κ21 = min
O

(f(O) + ∆f(O)) , (37)

κ12 = max
O

(f(O)−∆f(O)) . (38)

The red dots in Fig. 8 correspond to the anchor bins.
Their values match reasonably well to the horizontal
dashed lines, which are the expected reducibility factors
given the quark fractions estimated in Eq. (31). Full
results from the anchor bin method are summarized in
Fig. 11 below.

C. Log-Likelihood Ratio Fit Method

We now turn to the log-likelihood ratio fit (L-fit)
method from Sec. II C. Like the anchor bin method, it
is based on the log-likelihood ratio of the two mixtures,
but it uses curve fitting to a functional form.

This method still has some dependence on the choice
of binning, though the binning impact is much smaller
than for the anchor bin method. Because of the reduced
binning sensitivity, we use finer bins than in Sec. IV B,
such that each bin contains at least 0.1% of jets from the
central and forward mixtures. We use the same central
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FIG. 9. Demonstration of the L-fit method on the CMS 2011 Open Data with central value unfolding. (a) The same likelihood
ratio as Fig. 8 but now fit to a K = 7 degree polynomial. The anchor values (red) are at the extrema of the fitted curve. (b)
Extracted anchor values as a function of the degree of the fit polynomial. The red point indicates the optimum determined
from the AIC in Eq. (42). The error bars correspond to statistical uncertainties only.

value and statistical uncertainty estimates from Eqs. (34)
and (35).

When expressed in quantiles, the log-likelihood ratio
f(Oquant) = lnLM2/M1

(Oquant) is fit to a polynomial of
the form:

f(Oquant; b) =

K∑
k=0

bk Lk(Oquant), (39)

where K is the maximum degree used in the fit and
Lk(Oquant) is a Legendre polynomial of degree k as a
function of (2Oquant − 1), such that the Legendre poly-
nomial domain [−1, 1] is mapped to the quantile domain
[0, 1]. The fit coefficients are determined by minimizing
the χ2 statistic:

χ2 =

|B|∑
i,j=1

(
f̄i − f(Oi; b)

)
Wij

(
f̄j − f(Oj ; b)

)
, (40)

where f̄i is the bin value, Wij is the inverse covariance
matrix, and |B| is the total number of bins. Because
the bins are uncorrelated (up to normalization effects),
the covariance matrix is diagonal, with diagonal elements
corresponding to the bin variances:

Wij =
1

∆f2i
δij . (41)

To implement χ2 minimization, we use the curve fit()

algorithm from the SciPy Python library [77] to per-
form gradient descent on the bk coefficients.

The L-fit method depends on the maximum polyno-
mial degree K of the fit. Following Ref. [78], we use the
Akaike Information Criterion (AIC) [79] to choose the
optimal model that minimizes:

χ2 + 2 (K + 1), (42)

where K+1 is the number of fit parameters. To compute
the reducibility factors, we evaluate the optimal model at
the endpoints. Because the rescaled Legendre polynomi-
als are either 1 or −1 at Oquant

min = 0 and Oquant
max = 1, this

yields relatively simple expressions for the anchor values:

a21 =
K∑

k=0

boptk (−1)k, (43)

a12 =
K∑

k=0

boptk , (44)

which can be converted into reducibility factors using
Eq. (11).

The χ2 minimization method not only allows us to ex-
tract optimal coefficients bopt, but also their covariance
matrix near the optimum point Cov[bopti , boptj ]. This ma-
trix contains information about the statistical uncertain-
ties associated with the method and allows us to compute
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FIG. 10. Demonstration of the R-fit method on the CMS 2011 Open Data with central value unfolding. (a) ROC curve for
distinguishing the central from forward samples, along with a polynomial fit of modified degree K. The tangent lines (red)
determine the anchor values. (b) Extracted anchor values as a function of the degree of the fit polynomial. The red point
indicates the optimum determined from the AIC in Eq. (42). The error bars correspond to statistical uncertainties only.

the uncertainties of the anchor values via:

∆a221 =
K∑

i,j=0

(−1)i+jCov[bopti , boptj ], (45)

∆a212 =
K∑

i,j=0

Cov[bopti , boptj ]. (46)

An example of the L-fit method is shown in Fig. 9. In
Fig. 9a, we show the optimal polynomial fit for the case of
multiplicity. The anchor values, which are indicated by
the red horizontal line, are comparable to the estimated
values from Eq. (31) In Fig. 9b, we show the extracted
anchor values as a function of the maximum degree K,
where the red dots indicate the choice that minimizes the
AIC expression in Eq. (42).

In addition to the statistical uncertainty, we assess
a systematic uncertainty from model selection. Specif-
ically, we minimize two alternative version of Eq. (42),
where the proportionality coefficient of 2 in front of K+1
is replaced by either 1 or 4. The half-difference between
the minimum and maximum of the anchor value pro-
duced by these three models is used to estimate the sys-
tematic uncertainty, which is added to the statistical un-
certainty in quadrature. Typically the anchor values are
quite robust to this coefficient change. Full results from
the L-fit method are summarized in Fig. 11 below.

D. ROC Curve Fit Method

Our last method for extracting reducibility factors is
the ROC curve fit (R-fit) method from Sec. II D. In this
approach, we build a ROC curve using observable cu-
mulative probability distributions and then fit this curve
to a functional form to determine its slope at the end-
points. While the R-fit method does not require binning
the data, for reasons of computational efficiency we use
the same binning procedure as in Sec. IV C for continu-
ous observables. For discrete observables, we use the full
set of bins.

Unlike for the probability distribution function (PDF),
mean values for the cumulative distribution function
(CDF) are correlated. Therefore, to assess statistical un-
certainties, we need to compute a full covariance matrix
for the CDF. For cumulative bin Ci, the cumulative prob-
ability P i is estimated in the standard way:

P i =
∑
x∈Ci

ω(x). (47)

The covariance between cumulative bins Ci and Cj with
i ≤ j (i.e. bin i is fully contained by bin j) is:

Cov[Pi, Pj ] =
∑
x∈Ci

ω2(x)− 1

N
P iP j , (48)

where N is the total number of events. Note that the
symmetry between i and j is broken because the sum in
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the first term only goes over entries in bin i. Unlike for
Eq. (35), here we are keeping track of the 1/N correction
to the covariance.

Evaluating the statistical uncertainty for a ROC curve
is more complex than for the methods in Secs. IV B and
IV C. The ROC curve expresses the CDF for M2 as a
function of the CDF for M1. Thus, there are statistical
uncertainties in the x-coordinate of the ROC curve that
need to be converted to an additional effective noise in the
y-coordinate in order to do error propagation on the fit
form. Let ri be the y value of the ROC curve associated
with the i-th cumulative bin, and let superscripts (a) refer
to the mixture Ma. The covariance between ri and rj is:

Cov[ri, rj ] = Cov[P
(2)
i , P

(2)
j ] +

p
(2)
i p

(2)
j

p
(1)
i p

(1)
j

Cov[P
(1)
i , P

(1)
j ],

(49)
where p(a) are the PDFs of the mixture distributions
(i.e. the slopes of the CDFs). With this derivation, we
are assuming that there are no correlations between the
two mixtures.

To extract the anchor values, we fit the ROC curve to

f(r) = r + r(1− r)

(
K∑

k=0

bk Lk(r)

)
, (50)

where Lk (x) is again a rescaled Legendre polynomial of
degree k defined on the interval [0, 1]. Like in Sec. IV C,
we perform χ2 minimization with covariances given by
Eq. (49), with the optimal maximum degree K and as-

sociated fit coefficients boptk determined by the AIC in
Eq. (42).

As shown in Eqs. (18) and (19), the reducibility factors
are related to the slopes at the endpoint of the ROC
curve:

κ21 =
df

dr

∣∣∣∣
r=0

= 1 +
K∑

k=0

boptk (−1)k, (51)

1

κ12
=

df

dr

∣∣∣∣
r=1

= 1 +
K∑

k=0

boptk . (52)

The associated uncertainties are:

∆κ12 =
K∑

i,j=0

(−1)i+jCov[bopti , boptj ] (53)

∆

(
1

κ21

)
=

K∑
i,j=0

Cov[bopti , boptj ], (54)

where Cov[bopti , boptj ] is determined from the χ2 fit.
An example of the R-fit methods is shown in Fig. 10.

In Fig. 10a we show an example ROC curve, with the
fitted form and the extracted slope values. The change
in reducibility factors as a function of K is shown in
Fig. 10b, where the red dot is the one corresponding to
the AIC optimum. Full results from the R-fit method are
summarized in Fig. 11 below.

E. Summary of Results

We now summarize and compare results obtained from
the anchor bin, L-fit, and R-fit methods. In Fig. 11, we
show the extracted reducibility factors and their statis-
tical uncertainties for the six fixed substructure observ-
ables and the four machine-learned observables. We also
checked that the same statistical uncertainties could be
obtained through the bootstrap procedure [80] applied to
10k pseudo-experiments.

For a fixed observable, we see that the three methods
yield similar results with comparable uncertainties on the
reducibility factors. That said, this conclusion is sensi-
tive to our choice of binning, and the agreement can be
significantly worse with different binning schemes. The
L-fit method is robust to making the bins finer, but the
results degrade substantially with coarser bins. For the
anchor bin method, the results degrade if the bins are
either too fine or too coarse. So while one can adjust the
binning in the L-fit and anchor bin methods to get sen-
sible results, the R-fit method works well out of the box,
as long as the bins are fine enough to yield a reasonably
smooth ROC curve. Thus, our recommended method is
the R-fit method, since it yields results that almost en-
tirely independent of the binning choice.

As expected, the reducibility factors depend sensitively
on the choice of observable used for jet topic modeling.
In Fig. 11a, we see that the better the observable is for
quark/gluon discrimination, the larger the difference is
between the two extracted reducibility factors. Among
the fixed observables, the best quark/gluon discriminant
is constituent multiplicity, so it is encouraging that the
reducibility factors match the expectations from Eq. (31).
Mass is a poor quark/gluon discriminant, so not surpris-
ingly, it yields relatively poor results for jet topics.

In Fig. 11b, we show the results from the machine-
learned observables. Here, the uncertainties include both
the statistical variance within each training run and the
variance from 10 different training runs, which are added
in quadrature. The PFNs, which can in principle exploit
all of the information available in the jet, yield excellent
separation power, for both the classification and regres-
sion strategies. The EFNs, which restrict their attention
to IRC-safe information, yield worse separation power, in
agreement with the expectations from Ref. [1]. Note that
the PFNs and EFNs agree on the value of κ21, which is
a general expectation from the fact that quarks are irre-
ducible with respect to gluons (but not vice versa), even
when considering just IRC-safe information [2, 27].

For the results in Sec. V, we focus on PFN classification
with the R-fit method as our benchmark approach for
extracting reducibility factors. See Fig. 18 in App. A for
reducibility factors extracted from the Pythia samples.
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FIG. 11. Comparing the extracted anchor values between the anchor bin method (blue), L-fit method (azure), and R-fit method
(cyan). Shown are results for the (a) six substructure and (b) four machine-learned observables from Sec. III B, applied to the
CMS 2011 Open Data with central value unfolding. Our benchmark method using the R-fit method with PFN classification is
indicated in red. The error bars correspond to statistical uncertainties combined with the AIC uncertainty in quadrature.

V. QUARK AND GLUON FRACTIONS AND
DISTRIBUTIONS

With reducibility factors in hand, we can now isolate
separate “quark” and “gluon” properties from the 2011
CMS Open Data. The reason for the quotes is that
our definition of jet flavor is based on the operational
procedure described in Sec. IV, which may differ from
other definitions of jet flavor that have been proposed
(see Ref. [28] for a review).

A. Quark and Gluon Fractions

We first need to convert reducibility factors into quark
fractions of the forward and central mixtures. This con-
version is straightforward using Eq. (9), and we use stan-
dard Gaussian error propagation to translate the uncer-
tainties on the reducibility factors into uncertainties on
the quark fractions. The results are shown in Fig. 12
for the four best discriminants: constituent multiplicity,
image activity (N95), PFN classification, and PFN re-
gression. Interestingly, even though the reducibility fac-
tors for N95 in Fig. 11a do not match the CVU expec-
tations from Eq. (31), the quark fractions approximately
do, within uncertainties.

In Fig. 13, we show the statistical correlations between
extracted f1 and f2 values for selected methods. By con-
struction, the anchor bin method assumes no correlation

between the anchor bin values, so the tilt of the ellipses is
driven entirely by the correlations in Eq. (9). The L-Fit
and R-fit methods have a non-trivial correlation in the
anchor bin values, but this correlation is relatively small
compared to those induced by the {κ12, κ21} → {f1, f2}
mapping. See Figs. 19 and 20 in App. A for the quark
factors extracted from the Pythia samples.

With all of the methods in Fig. 12 showing similar
behavior, we choose the R-fit method with the PFN clas-
sifier as our benchmark. As already discussed, the R-fit
method is the most statistically robust, and the PFN
method has somewhat more conservative uncertainties,
due to fluctuations from the different machine learning
training runs. The extracted fractions are:

CMS 2011 CVU Jet Topics:
f1 ' 0.708± 0.025,

f2 ' 0.561± 0.033.
(55)

We emphasize that these uncertainties do not include
any experimental systematics nor uncertainties from the
unfolding.

B. Individual Substructure Distributions

Given the quark fractions, we can use Eqs. (5) and (6)
to extract the “quark” and “gluon” distributions for any
observable. We emphasize that we do not need to use
the same observable for extracting fractions and for de-
riving distributions. We use standard error propagation
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FIG. 12. Extracted quark fractions from the CMS 2011 Open Data with central value unfolding in the forward (M1) and
central (M2) samples. We focus on the four observables with the best quark/gluon classification performance and compare the
anchor bin (blue), L-fit (azure), and R-fit (cyan) methods. The benchmark method is indicated in red.
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FIG. 13. Statistical correlations for the extracted quark fractions by (a) fixing the PFN observable and sweeping over the
reducibility factor method and (b) fixing the R-fit method and sweeping over the four observables in Fig. 12. The diagonal
alignment of the ellipses is primarily due to the correlations induced from the {κ12, κ21} → {f1, f2} mapping in Eq. (9). For the
benchmark method in red, the extracted fractions match the CVU expectation in Eq. (31) within the statistical uncertainties
(combined with AIC).
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FIG. 14. Extracted “quark” (yellow, topic 1) and “gluon” (green, topic 2) distributions for the six substructure observables
from Sec. III B. These are obtained by mixing the CMS 2011 Open Data CVU distributions from Fig. 6 according the quark
fractions from Eq. (55). For comparison, we show the same Pythia truth-parton-labeled quark (blue dashed) and gluon (red
dashed) distributions from Fig. 6. The error bars correspond to statistical uncertainties on the distributions combined with
the reducibility factor uncertainties in quadrature.
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to compute the uncertainties on individual flavor distri-
butions, which depends on the uncertainties on the quark
fractions from Eq. (55) and the statistical uncertainties
on the binned mixture distributions.

We show jet topics results on the CMS 2011 CVU sam-
ple for six substructure distributions in Fig. 14. These
are compared against distributions from parton truth
labels in Pythia. The constituent multiplicity distri-
butions are remarkably similar between the CMS 2011
CVU jet topics analysis and Pythia. For image activity,
the gluon jets look similar, but our extracted quark jets
exhibit more radiation. For momentum dispersion, the
quark and gluon jets change in opposite directions. For
2-subjettiness, both types of jets show a suppression of
the Sudakov peak. For 1-subjettiness and jet mass, both
types of jets exhibit more radiation. We conclude that a
full analysis, with unfolding uncertainties, has the poten-
tial to tell us detailed information about modeling quark
and gluon jets in parton showers.

In App. A, we repeat the jet topics procedure on
Pythia directly. Because jet topics is an operational
procedure, there is no guarantee that the resulting dis-
tributions will match those from parton truth labels. In-
deed, we find that the extracted quark fraction from the
Pythia samples is systematically lower than the esti-
mate from parton truth labels.

C. Tagging Performance

From the individual “quark” and “gluon” substructure
distributions, we can present the tagging performance of
each observable in the form of ROC curves. Following
Eqs. (5) and (6), the cumulative distributions are

Pq(O) =
PM1(O)− κ12 PM2(O)

1− κ12
, (56)

Pg(O) =
PM2

(O)− κ21 PM1
(O)

1− κ21
. (57)

When plotting uncertainties below, we ignore statistical
correlations between the reducibility factors and the cu-
mulative distributions. The ROC curve for each observ-
able is defined by the set of points

{Pq(Ocut), Pg(Ocut)}, (58)

in analogy with Eq. (16). The statistical uncertainties
in these ROC curves are dominated by those of the re-
ducibility factors κ12 and κ21.

In Fig. 15, we show the ROC curves for four representa-
tive discriminants: jet mass, 2-subjettiness, constituent
multiplicity, and PFN classification. Recall from Sec. II D
that the slopes of the ROC curve at its endpoints are re-
lated to the reducibility factors associated with the cor-
responding observable. In the case of jet mass, the re-
ducibility factors at leading-logarithmic order are [2]:

κmass
gq = 0, κmass

qg =
Cq

Cg
=

4

9
, (59)
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FIG. 15. Extracted ROC curves from the CMS 2011 Open
Data. We consider four discriminants that span the range of
quark/gluon tagging performance: jet mass, 2-subjettiness,
constituent multiplicity, and PFN classification. The fact
that the ROC curves slopes are close to 0 and ∞ at the end-
points imply that the jet topics are mutually irreducible, as
desired. For jet mass, the dashed black slope corresponds
to the leading-logarithmic prediction in Eq. (59). The er-
ror band corresponds to statistical uncertainties propagated
through Eqs. (56) and (57).

where in the last step, we used Cg = CA = 3 and Cq =
CF = 4/9. This expected behavior is reflected in the
1/κmass

qg ≈ 9/4 slope at the right endpoint of the jet mass
ROC curve.

In the case of the PFN, we effectively have a self-
calibrating classifier, since the PFN R-fit method was
used to operationally define quarks and gluons. As ex-
pected, the slopes of the PFN ROC curve are approxi-
mately 0 and ∞ at the respective endpoints, since the
samples are, by construction, mutually irreducible.

D. Rapidity Spectrum

The analysis thus far has focused on two wide rapidity
regions, forward and central separated by the boundary
|η| = 0.65. With the quark and gluon topics in hand,
we can revisit Eq. (25) and try to determine the rapidity
spectrum for the quark and gluon jets separately. The
idea, adapted from Ref. [2], is to bin the data into smaller
rapidity slices, and fit the observable distribution in each
slice to a linear combination of topics.

For this analysis, we use the PFN R-fit method to de-
termine the jet topics and then fit linear combinations
of the constituent multiplicity distribution. The result-
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|η| = 0.65. Compared to the Pythia baseline, there is an
overall increase in the “quark” content across the spectrum.
The error band corresponds to statistical uncertainties in the
fitted distribution.

ing quark and gluon fractions in rapidity slices of size
∆η = 0.2 are shown in Fig. 16. Here, the uncertainties
are dominated by the those of the overall quark fractions.
The slight η → −η asymmetry is within the expectation
from statistical uncertainties. The kink in the rapidity
spectrum around |η| = 1.4 mirrors that of Fig. 4c, so
it would be interesting to investigate potential detector
mismodeling near that transition region.

E. Correlation Dimension

As our final application of the quark fractions in
Eq. (55), we compute separate correlation dimensions for
the quark and gluon samples. The correlation dimen-
sion is a scale-dependent measure of the number of effec-
tive degrees of freedom describing a dataset [15–17], and
it can be computed knowing just pairwise distances be-
tween data points, without needing explicit coordinates.
This analysis was presented for a mixed sample of quark
and gluon jets in Ref. [12], which contains more details
about the analysis procedure.

As our pairwise distance measure between jets, we
use the energy mover’s distance (EMD), which quanti-
fies the amount of “work” to rearrange one energy distri-
bution into another [18]. It is based on the well-known
earth mover’s distance from computer vision [81–85], also

known as the Wasserstein metric [86, 87]. The EMD has
units of energy, and angular distances are normalized
such that they are measured in units of the jet radius.
By computing all pairwise distances,

Dk` ≡ EMD(Jk,J`), (60)

one can triangulate the “space” of jets and derive a va-
riety of geometric quantities [88]. See Refs. [89–92] for
related EMD studies in particle physics.

One such geometric quantity is the correlation dimen-
sion [15–17] defined as:

dim(Q) =
∂ lnN(Q)

∂ lnQ
, (61)

where

N(Q) =
∑
k`

wkw` Θ
[
Dk` < Q

]
(62)

is the “bi-cross section” of the jet pairs within an EMD
of Q from each other, where we have accounted for jet
weights wi in the case of weighted distributions. For un-
weighted events (i.e. wi = 1), the bi-cross section simply
reduces to the number of jet pairs. For a uniform distri-
bution in a compact domain of Rn, we have dim(Q) = n
as long as Q is small compared to the size of the domain.

To address the case of quark/gluon mixtures, we can
modify Eq. (62) to handle the case of multiple samples:

NAB(Q) =
∑

k∈A,`∈B
wkw` Θ

[
Dk` < Q

]
. (63)

The correlation dimension derived from NAB(Q) has the
interpretation of the dimensionality of the B manifold at
a scale Q averaged over the A manifold, and is symmetric
between A and B.

In practice, we choose a binning in Q and work with
the number of jet pairs falling into each EMD bin. Con-
cretely, let {Q0, Q1, . . . , QS} be the edges of S bins in
Q, and

nAB(s) =
∑

k∈A, `∈B
wkw` Θ[Qs−1 ≤ Dk` < Qs] (64)

be the number of jet pairs in bin s = 1, . . . , S. Note that
nAB(s) = nBA(s) due to the symmetry of the EMD. We
can relate this expression to Eq. (63) via

NAB(Qs) =
s∑

t=1

nAB(t). (65)

For two mixed samples M1 and M2 with known quark
fractions f1 and f2, the three quantities:

nM1M1(s), nM1M2(s), nM2M2(s), (66)

can be inverted bin by bin to determine the quark/gluon
values:

nqq(s), nqg(s), ngg(s), (67)



24

0

2

4

6

8

10

12
C

o
rr

el
a
ti

on
D

im
en

si
o
n

CMS 2011 Open Data

PFN R-Fit Fractions

AK5 Jets, |η| < 1.9

pjet
T ∈ [495, 505] GeV

CVU Topics

Pythia Parton

Gluon-Gluon

Quark-Gluon

Quark-Quark

10 20 40 80 160 250 500

Energy Scale Q [GeV]

0.8
1.0
1.2
1.4

R
a
ti

o
to

P
y
th

ia

(a)

10 20 40 80 160 250 500

Energy Scale Q [GeV]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
or

re
la

ti
on

D
im

en
si

on
R

at
io

CMS 2011 Open Data

PFN R-Fit Fractions

AK5 Jets, |η| < 1.9

pjet
T ∈ [495, 505] GeV

CVU Topics

Pythia Parton

LL Theory

GG/QQ

(GG+QQ)/2QG

(b)

FIG. 17. (a) Correlation dimensions for three different types of jet pairs: gluon-gluon, quark-gluon, and quark-quark. The
Pythia baseline uses parton-level labels. For the CMS Open Data result with CVU, the quark fractions are given by Eq. (55).
These fractions are used in in Eq. (68) to unmix the bi-cross sections of the central and forward jet combinations into quark
and gluon combinations. (b) Ratios of the correlation dimension from Eqs. (72) and (73), compared to first-principles QCD
calculations in the strongly-ordered limit.

and subsequently the correlation dimension for the
quark-quark, quark-gluon, and gluon-gluon samples, re-
spectively, via Eqs. (65) and (61). The equations relating
the quantities in Eq. (66) to those in Eq. (67) can be de-

rived by ensuring bi-cross sectional consistency with the
known fractions f1 and f2 and total cross section of M1

and M2:



nM1M1
(s)

σ2
1

nM1M2(s)

σ1σ2

nM2M2
(s)

σ2
2


=


f21 2f1(1− f1) (1− f1)2

f1f2 f1(1− f2) + f2(1− f1) (1− f1)(1− f2)

f22 2f2(1− f2) (1− f2)2





nqq(s)(
f1σ1 + f2σ2

)2
nqg(s)

(f1σ1 + f2σ2)
(
(1− f1)σ1 + (1− f2)σ2

)
ngg(s)(

(1− f1)σ1 + (1− f2)σ2
)2


, (68)

where the total cross section of the mixed samples are:

σ1 =
∑
i∈M1

wi, σ2 =
∑
i∈M2

wi. (69)

One can easily solve Eq. (68) for nqq(s), ngg(s), and
nqg(s) for each s given nM1M1

(s), nM2M2
(s), nM1M2

(s),
σ1, σ2, f1, and f2.

The results of this analysis are shown in Fig. 17a,
comparing the OmniFold CVU results to those ob-
tained from the parton-level labels in Pythia. Here,
we have restricted our attention to a narrow jet range of

pT ∈ [495, 505] GeV, and we rescale the jet constituents
such that the jet pT is always 500 GeV. At the scale
Q = 250 GeV, the correlation dimensional is zero, since
at this resolution scale (Q ≈ pT /2), a jet looks like a sin-
gle parton. As the Q scale decreases, the dimensionality
increases logarithmically as one resolves more features
within the jet, with higher dimensionalities associated
with the gluon samples compared to the quark ones.

We can gain additional insight into the correlation di-
mension by performing a first-principles calculation of
this quantity in the strongly-ordered limit. For simplicity
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of presentation, we ignore running of the strong coupling
constant αs. Consider the EMD between two jets i ∈ I
and j ∈ J with color factors CI and CJ . In the strongly-
ordered limit, we need only consider the case where one
jet has emitted a soft-collinear gluon, whereas the other
jet still looks like a single parton. In that case, the EMD
reduces to the β = 1 jet angularity [93–95] between one
of the jets and the jet axis. Considering an ensemble of
such jet pairs, the cumulative distribution for the EMD
is:

NIJ(Q) = exp
[
− αs(CI + CJ)

π
log2 pT /2

Q

]
. (70)

Here, the exponential is the Sudakov factor for neither
of the two jets to have an emission above the scale Q
(i.e. the product of the Sudakov factors for the individual
jets). The factor of pT /2 in the logarithm is because this
is approximately the maximum EMD achievable between
two anti-kt jets.

Taking the logarithmic derivative in Eq. (61), the
(mixed) correlation dimension is:

dimIJ(Q) =
2αs(CI + CJ)

π
log

pT /2

Q
. (71)

From this, we can predict that the ratio between the
gluon-gluon and quark-quark correlation dimensions is:

dimgg(Q)

dimqq(Q)
=
Cg

Cq
=

9

4
, (72)

where we have used Cg = CA = 3 and Cq = CF = 4/3.
Intriguingly, this means that the correlation dimensions
exhibit Casimir scaling. We can also predict that the
correlation dimensions satisfy the following relation:

dimgg(Q) + dimqq(Q)

2 dimqg(Q)
=

2Cg + 2Cq

2(Cg + Cq)
= 1. (73)

The two analytic predictions in Eqs. (72) and (73) are
plotted in Fig. 17b, along with the CMS Open Data re-
sults with CVU. We see quite good agreement, especially
given the relatively simplicity of the strongly-ordered
analysis. Interestingly, the tilt in these predictions, which
are minimally expected from running coupling effects and
subleading terms in the splitting function, are smaller in
the CMS Open Data than in Pythia. We hope that this
encourages future precision calculations of the correlation
dimensions of quark, gluon, and other types of jets.

VI. CONCLUSIONS

In this paper, we disentangled “quark” and “gluon” jet
substructure distributions in the CMS 2011 Open Data
using the operational approach advocated in Ref. [1]. We
improved the statistical robustness of jet topics by in-
troducing two new methods to extract reducibility fac-
tors: the L-fit method based on the log-likelihood ratio

and the R-fit method based on the ROC curve. In or-
der to mitigate sample dependence from inhomogeneities
in the CMS detector response, we implemented central
value unfolding with OmniFold. We found noticeable
differences in both the quark/gluon fractions and the
quark/gluon distributions compared to the Pythia base-
line, which would be interesting to investigate further in
future work.

There are a number of directions to extend the proof-
of-concept study presented here. At minimum, one could
apply our improved jet topics procedures to the unfolded
ATLAS measurements from Ref. [3] and the unfolded
CMS measurements from Ref. [72]. Binned distributions
from these studies are available at HEPData [96, 97],
which is sufficient for the anchor bin method already
implemented by ATLAS. Note that Ref. [97] and v2 of
Ref. [96] have covariance matrices, which is essential for
this kind of analysis. To make the most of the L-fit or
R-fit methods, though, it would be beneficial to have re-
sults with finer binning (or unbinned [75]). Similarly, it
would be exciting to go beyond central value unfolding
and account for systematic uncertainties in the context
of OmniFold. This would require a more detailed un-
derstanding of the CMS detector response to make sure
that the unfolding does not erroneously adjust the truth
distributions to account for potential detector mismod-
eling. Finally, one could apply jet topics to observables
designed to isolate pure quark and gluon samples [6].

Our analysis focused on a narrow jet pT range, but
with more pT slices, one could study the evolution of
the quark and gluon distributions as a function of en-
ergy scale. This would be particularly interesting in the
context of the correlation dimension analysis, to test the
strongly-ordered prediction in Eq. (71) that the dimen-
sion depends on the ratio of Q/pT . Similarly, it would
be interesting to augment this two-sample analysis with
more jet samples, either to test the prediction of sam-
ple independence (see Ref. [1] for a quantification strat-
egy) or to try to identify additional jet categories (e.g.
up-type versus down-type quarks). For the latter, one
would want to apply machine learning techniques sensi-
tive to the charge and flavor of the jet constituents, such
as the PFN-ID approach [14]. We look forward to fu-
ture developments of the jet topics method, to improve
the (operational) connection between long-distance mea-
surements and short-distance QCD dynamics.
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Appendix A: Comparison to Monte Carlo Results

In this appendix, we repeat the analyses from Secs. IV
and V, but applied to the Pythia Monte Carlo samples.
This is a cross check of our new jet topics procedures on
a sample without any unfolding complications.

In Fig. 18, we show results for the extraction of the
anchor values. Like in Fig. 11, we see that the better
quark/gluon discriminants yield more separation in the
anchor values. Unlike in Fig. 11, the smaller anchor value
is shifted systematically downward compared to the ex-
pectation from Pythia parton labels in Eq. (30).

This downward shift is reflected in Figs. 19 and 20.
Here, the quark fractions extracted from constituent mul-
tiplicity, image activity, PFN classification, and PFN re-
gression are consistent with each other but smaller than
the fraction of quark-parton-labeled jets in Pythia. Be-
cause the jet topics procedure acts at the level of dis-
tributions, we cannot identify which parton-level quark
jets are being categorized as topics-level gluon jets. One
way this mismatch can happen is if a quark parton in
Pythia arises from a gluon splitting via g → qq̄. Be-
cause the g → qq̄ splitting function is universal in the

collinear limit, it would be “correct” to assign quarks
from this splitting process to the gluon sample, though
we were not able to find direct evidence that this is ac-
tually happening. Interestingly, this mismatch did not
show up in the CMS Open Data result in Fig. 12, so it is
also possible that there is a more subtle issue with how
Pythia generates phase space configurations.

Like in the main text, we use the R-fit method with
PFN classification as our default strategy to extract
quark fractions:

Pythia jet topics:
f1 ' 0.649± 0.012,

f2 ' 0.466± 0.011.
(A1)

In Fig. 21, we show the separate “quark” and “gluon”
distributions using these fractions. The difference be-
tween jet topics and parton-truth-labeled samples is most
apparent in the IRC-unsafe observables, where the ex-
tracted gluon distributions are more quark-like than the
partonic expectation. Interestingly, the mismatch is
much less evident, though still present, in the IRC-safe
observables. This motivates further studies with ad-
ditional samples taken from different regions of phase
space, to see if these quark/gluon trends persist.

We show plots of the extracted ROC curve in Fig. 22,
which agree qualitatively with the results from the CMS
Open Data. We show plots of the rapidity spectrum and
correlation dimension in Figs. 23 and 24, respectively.
The difference between the topics-labeled curves and the
parton-labeled curve highlights the ambiguity of quark
and gluon labels beyond leading-logarithmic accuracy,
motivating further studies using operational definitions
that are well defined in data.
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FIG. 18. Same as Fig. 11 but applied to the Pythia 6.4.25 dataset. Interestingly, the extracted anchor values for the benchmark
method in red does not match the horizontal dashed Pythia parton-level expectation from Eq. (30).
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