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Abstract

Graph embeddings have been tremendously successful at producing node representations that
are discriminative for downstream tasks. In this paper, we study the problem of graph transfer
learning: given two graphs and labels in the nodes of the first graph, we wish to predict the
labels on the second graph. We propose a tractable, non-combinatorial method for solving
the graph transfer learning problem by combining classification and embedding losses with
a continuous, convex penalty motivated by tractable graph distances. We demonstrate that
our method successfully predicts labels across graphs with almost perfect accuracy; in the
same scenarios, training embeddings through standard methods leads to predictions that are
no better than random.

Keywords Graph mining - Transfer learning - Graph distance

1 Introduction

We consider a graph transfer learning problem, illustrated by the following motivating exam-
ple. An epidemic spreading through a graph is observed by an analyst. The statistics governing
the epidemic propagation are a priori unknown; nevertheless, the analyst wishes to use this
trace to predict how the epidemic would spread over a new graph, potentially modeling a
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different population. More broadly speaking, we wish to solve the following abstract prob-
lem. A learner is presented with two structurally similar (but distinct) graphs G4 and G p.
Node labels, such as infection probabilities and community membership, are provided only
for nodes on G 4. A learner wishes to use the labels on G 4 to predict the labels on G p.

Intuitively, the success of such a transfer learning task relies on the fact that many interest-
ing labels depend on structural or topological features of nodes. For example, membership in
acluster, susceptibility to an infection during a cascade and pagerank scores, are all properties
that depend on the relative position (w.r.t. clusters, weakly connected components, central-
ity,...) nodes have in a graph. A classifier trained over such labels in G 4 should be transferable
to a new, structurally similar graph G g. In the extreme, when graphs G4 and G are iso-
morphic, G p’s labels should be fully recoverable; conversely, one expects transferability to
degrade over highly dissimilar graphs.

A natural challenge that arises in this setting is in how to abstract (and transfer) topologi-
cal information across the two graphs. In this paper, we address this challenge by leveraging
graph embeddings [1-3]. Graph embeddings have been tremendously successful at producing
compact representations of nodes in a graph, and have become a true workhorse of graph min-
ing. In short, graph embeddings map nodes of a graph into a lower-dimensional space (e.g.,
R?, for some small d); this mapping concisely captures node connectivity, recovered from
embeddings through an appropriate link function. Embeddings therefore naturally abstract
structural information through the node’s position in this lower-dimensional space. In addi-
tion, embeddings reduce graph transfer learning to classic transfer learning [4]: a classifier
trained over labels and embeddings of nodes in graph G 4 can be transferred to a new feature
domain, namely the embeddings of G p’s nodes.

Unfortunately, successfully transferring knowledge via state-of-the-art embeddings poses
significant challenges. A classifier trained on embeddings of one graph is generally no better
than random guessing when applied to embeddings of another graph: we provide a theoretical
justification for this in Sect. 4.1, and demonstrate it also experimentally in Sect. 6.2. In short,
classifiers catastrophically fail to transfer across embeddings of different graphs because of an
embedding misalignment: as designed, none of the popular graph embedding methods ensure
that nodes of two distinct graphs are embedded over the same lower-dimensional subspace or
manifold. In general, embeddings capture only the relative, rather than the absolute, position
of nodes in R?. This is sufficient for inference tasks on nodes of the same graph (e.g., link
prediction) but disastrous when transferring knowledge across graphs: the same embedding
algorithms applied to two isomorphic graphs may generate vastly different embeddings that
are distorted via arbitrary shifts, rotations, or other transforms. This severely hampers the
ability to transfer structural classifiers across graphs.

We directly address this issue by producing a tractable, non-combinatorial methodology
for solving the graph transfer learning problem. We do so by learning joint embeddings
across the two graphs. This allows us to successfully transfer a classifier trained on labels of
one graph to another. We make the following contributions:

e We introduce novel methodology for solving the graph transfer learning problem in a
non-combinatorial fashion. Our method is general, and can be applied to a broad array of
graph embedding algorithms. Moreover, it combines classification and embedding losses
with a continuous, convex coupling penalty motivated by tractable graph distances [5].

e Our continuous and convex coupling penalty seamlessly integrates with deep embedding
methods. We propose and implement an alternating minimization algorithm that jointly
embeds the two graphs. Our algorithm does so without solving the combinatorial (and
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hard) problem of aligning the two graphs: instead, it alternates between using SGD and
solving a convex optimization problem constrained over the Birkhoff polytope [6].

e We extensively evaluate our proposed graph transfer learning methodology over sev-
eral synthetic and real-life datasets. We demonstrate that it successfully predicts labels
across graphs with almost perfect accuracy; in the same scenarios, training embeddings
separately leads to predictions that are no better than random.

To the best of our knowledge, we are the first to study the graph transfer learning problem,
and to propose a non-combinatorial method for its solution.

The rest of the paper is organized as follows. We review the previous work related to
problems on graph and node embeddings, graph distances and transfer learning on graphs
in Sect. 2. In Sect. 3, we focus on node embedding and node label prediction tasks that serve
as the backbone of our framework, which we introduce in Sect.4 and elaborate in Sect.5,
particularizing the options for both exact and inexact solutions. We briefly discuss two natural
extensions of the framework: to graphs of different size and weighted graphs, in Sect.5.4.
We present our experiments in Sect. 6, and finally conclude in Sect. 7.

2 Related work
2.1 Graph embeddings and graph neural networks

Graph embedding research has flourished recently [1-3, 7]. We thoroughly review techniques
as well as specific algorithms in Sect. 3, following the unifying framework of Hamilton et al.
[8] (Table 1). Typically, embeddings preserve node similarity in the embedding space, and
thus require the definition of similarity on both the embedding space as well as on graph nodes
[9, 10]. We list several examples in Table 2. Graph neural networks (GNNs) [8, 11-13] pro-
duce graph embeddings by generalizing the notion of a convolution, aggregating information
from neighboring nodes, in analogy to conventional convolutional neural networks. Aggrega-
tion methods vary from merely averaging of neighbor information [8] to more sophisticated
aggregation functions [13, 14] to spectral convolutions on graph nodes [15]. Gated graph
neural networks [12] propose a solution to vanishing/exploding gradients that allows up to
20 layers in GNNSs, by adapting recurrent neural network techniques. Variational variants
of GNNss also exist, e.g., [16]. Our transfer learning approach is generic, and applies to the
majority of the methods outlined above, including GNNs. Moreover, the challenges posed
by graph transfer learning we outline in Sect. 4.1 are pertinent to all these methods, and are
exacerbated by deep models, as non-convexity increases the multiplicity of local minima.

2.2 Transfer learning on graphs

Transfer learning in the general machine learning setting aims to apply knowledge gained
while solving one task to a different but related task [4, 17]. A quintessential example is
transferring a text classifier from language to another [18-20]. Transfer learning has been
applied to graphs only recently; all current work however [21-23] considers classifying
(and transferring labels across) graphs, as opposed to nodes. Stone et al. [24, 25] measure
similarity between rule graphs and then transfer a value function from one graph to another.
Other explored ways of transferring knowledge between graphs include co-factorization
[26, 27], learning graph representations via GNNs and mapping them via transfer matrix
[22, 23], and performing classic transfer learning on graphs representations in the spectral
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Table 1 Summary of notation

Notation Description

Ga,Gp Graphs

\%4 Node set of graphs G4, G g

Es Ep Edge sets of graphs G4, Gp

ZzA’ zf Embedding of nodes in G 4 and G

sg(, j) Topological similarity between nodes i, j € V
SE(Zis 2) Similarity between node embeddings z;, z;
ylf“‘ Label of node le € Vy

ACC Classification accuracy

RMSE Root-mean-square error

R? Coefficient of determination

Ls Embedding loss—Eq. (4b)

Lc Classification loss—Eq. (8)

Lp Penalty function—Egq. (15)

L Aggregate loss—Eq. (12a)

W, Wy, Wg, W Neural network weights

P Doubly stochastic matrix

B Birkhoff polytope—Eq. (18)

P Set of permutation matrices

domain [21]. Regardless of different ways used for knowledge transfer, the main common
feature across all the above works is that they consider classifying (and transferring labels
of) graphs, as opposed to nodes. To the best of our knowledge, we are the first to tackle
transferring structural node labels between graphs.

2.3 Graph distances and graph matching

Graph distance scores find applications in varied fields such as image processing [28], chem-
istry [29, 30] and social network analysis [31, 32], to name a few. Classic graph distance
examples include the edit distance [33, 34], the maximum common subgraph distance [35,
36], the chemical distance [30], and the Chartrand—Kubiki—Shultz (CKS) distance [37]. Jain
[38] proposes an extension of the chemical distance [30] that incorporates edge attributes
but is limited to the Frobenius norm. The reaction distance devised by Koca et al. [39] is
also directly related to the chemical distance [30] when edits are limited to edge additions
and deletions. All six [30, 34, 36-39] are metrics but are hard to compute. Moreover, it is
not immediately clear how to relax [38, 39] to attain tractability. Our tractable penalty is
based on, and inspired by, recent work by Bento and loannidis [5]. The authors propose
a family of graph distances that are (a) computable in polynomial time and (b) satisfy the
metric property and can be seen as convex relaxations of the chemical distance between two
graphs. We incorporate this formulation as a penalty into our framework and use it to couple
the embeddings of two graphs in order to transfer the learned classifier.

A straightforward approach to induce a metric over unlabeled graphs is to embed graphs
in a common metric space and then measure the distance between these embeddings. Riesen
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et al. [40, 41] embed graphs into real vectors by computing their edit distances to a set of
prototype graphs. The same embedding approach is also used to compute a median of graphs
[42]. Other works [43—45] map graphs to spaces determined by their spectral decomposition.
Although all described methods satisfy metric properties, the resulting embeddings do not
capture the full graph structure, and are thus not as discriminative as the metrics proposed in
[5] and incorporated in our current work.

Graph matching (also sometimes referenced as graph alignment in literature) is inherently
related to graph distance computations, as it is often a preprocessing step toward computing
graph distances. The literature on graph matching heuristics is vast (see, e.g., [28, 32, 46—
48]). Most are tractable, but distances induced by these mappings do not satisfy the metric
property [5]. Nevertheless, several graph matching methods are related to the approach we
take. Heimann [49] proposes an embedding-based graph matching that maps nodes with
similar node degree or structural connectivity to each other with high probability. Chen [50]
uses non-convex alternating optimization methods to match the nodes with embedding-based
nearest-neighbor search. By using objectives that take into account distance in the embedding
space, these methods are highly related to the trace penalty that Bento and Ioannidis [5]
proposed that we also employ here.

2.4 Epidemiclearning

The seminal paper by Kempe et al. [51] has motivated learning the parameters of an epidemic
spread (e.g., [52-54]). Typically, this is done via maximum likelihood estimation over a
generative model, e.g., the independent cascades (IC) or linear threshold (LT) models [51].
Though methodologically quite different from the approach we take here, these estimation
methods can be used for the influence cascade prediction task we study as a motivating
example, and that we also explore via our experiments in Sect. 6. In particular, the parameters
of a propagation model can be trained on one graph, and then used to predict propagation
on another graph with similar structural characteristics or known matched correspondences
between nodes. In contrast, our approach can be used to perform this task without any
parameter inference. In short, following our graph transfer learning method, we can learn
how cascades behave in one graph and then transfer this knowledge directly to another graph.
We thus avoid intermediate parameter inference and modeling assumptions (such presuming
that the IC or LT generative models hold during the cascade) that may not hold in practice
and introduce model bias in the prediction process.

3 Background
3.1 Node embeddings

The goal of node embedding algorithms is to learn parsimonious node representations that are
discriminative w.r.t. downstream tasks such as community detection and link prediction. We
follow the framework of Hamilton et al. [8] that unifies multiple different node embedding
methods.

A Unifying Framework. Given a graph G(V, E) with n = |V| nodes, let x; € {0, 1}"* be
the 1-hot encoding of a node i € V in the graph. An embedding is a parametric function
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Table 2 Different embedding methods expressed in the unifying framework of Hamilton at al. [8]

Method sg(, j) SE(Zi, 2) Loss function £ g
Laplacian Eigenmaps [2] n-neighborhood —llzi —z; H% =sG (i, J) - sgziszj)
Graph Factorization [1] Aj ZiTZj (56, J) = sE s Zj))z
GraRep [7] Aij AT oo A z' 2 (GG J) = s G z))*
Tz
node2vec [3] p@lj) — —=sG (i, j)1og(sg (zis 2))
Treve' *

Here, s (i, j) and s (z;, zj) denote topological and embedding similarity, respectively, between nodes i and
J, and for node2vec, p(i|j) is the probability of visiting node j on a fixed-length random walk from node i

f R x R" — RY, where d < n, mapping nodes to d dimensional vectors, that is,
zi = fxi, W) eR? (1)

is the embedding z; of nodei € V,and W € R™, forsomem € N, are weights parameterizing
the embedding function. For example, f could be a neural network with weights W or an
affine (shallow) function. Note that this representation can readily incorporate node attributes
that can be represented via features in input vectors x;.

Keeping the exposition on one-hot encoding for concreteness, the parameters of the embed-
ding can be trained as follows. Given a topological similarity function between nodes with
the following formulation

sg:VxV—->R 2)
as well as the following embedding similarity function between embeddings
sE:]RdX]Rd—>R, 3)
the node embedding task can be formulated via the following minimization problem:
anélmcs(w; G), (4a)
where
Ls(W:G) = ) Es(s6(i. j).se(zi.z)), and (4b)
i,jev
zi=fxi, W), VieV, (4c)

and 5 : R x R — R is an appropriately defined loss function. Typically, Problem (4) is
solved via stochastic gradient descent over the nodes, although techniques like hierarchical
softmax [55] and negative sampling [56] can be incorporated to accelerate computations.
Examples. The topological similarity sg (2) can be node adjacency or proximity in path
distance. That is, if A is the adjacency matrix of G(V, E), and d;; is the shortest path distance
between i, j € V, then two possible similarities are sg (i, j) = A;; and sg (i, j) = 1/d;;.
Other alternatives include powers of the adjacency matrix, the probability that a random walk
starting at i terminates at j after a small number of steps, etc. Several examples are provided
in Table 2 (see also [8]). For example, Laplacian Eigenmaps [2] couple Euclidean distance
with a product loss, yielding:

LsW;G) = Y llzi — 215 - 56, ), ©)
i.jeV
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while Graph Factorization [1] couples an inner product with a quadratic loss, yielding:

Ls(W,G) = Y (g zj = s, )™ ©)
i,jev

3.2 Node label prediction

Node embeddings often serve as an intermediate step for downstream supervised learning
tasks on graphs, such as community detection and link prediction. For example, given binary
labels y; € {0, 1} for nodes i € S C V, learning embeddings that are discriminative w.r.t.
these labels can be accomplished by extending Problem (4) as follows:

min  Ls(W;G)+ Lc(W, W'; ys, G), (M
WeRm, W’ eRm’
where Ls(W; G) is the similarity loss (4b), while
LW, Wiys, G) =Y Le(vi gz, W) ®)
ieS

is the classification loss with z; being the embedding (4c) of node i. Here, £c : R x R — R
is a loss function (such as square error, logistic, or cross-entropy), ys € {0, 1151 is the vector
of labels, and g : RY x R” — R is a function (i.c., a prediction model) parameterized by
W e R™, mapping node embeddings to labels. This can again be a deep or shallow model
(e.g., logistic regression). Problem (7) can again be solved via stochastic gradient descent,
where an epoch iterates over batches node pairs i, j € V and labeled nodes i € S. Note that
in this scenario, W and W’ are trained jointly, i.e., over multiple epochs iterating over the two
objectives; alternatively, embeddings z; could be learned first via SGD on W, as in Prob. (4),
and subsequently used to train W’ with embeddings fixed.

4 Graph transfer learning
4.1 Problem formulation

In this paper, we wish to solve the graph transfer learning problem. Given two graphs and
labels in the nodes of the first graph, we wish to predict the labels on the second graph.
As discussed in the introduction, labels such as community membership, susceptibility to
an infection and centrality, may be functions of structural properties of a node and, as a
result, may be transferable across graphs. Formally, we are given two unweighted graphs
GA(Va, Ep) and Gp(Vp, Ep) of the same size (i.e., |V4| = |Vp| = n), as well as a set of
labels y; fori € S € Vy. For example, y; € {0, 1} fori € S in a binary classification task
and y; € R in the case of a regression task. We wish to train a neural network over labels in
G 4, and use it to subsequently predict labels in G 5. We focus first on unweighted graphs of
equal size for the sake of simplicity; we extend our method to weighted graphs and graphs
of unequal size in Sect.5.4.

A Naive Solution. The node embedding and node label prediction algorithms we reviewed
in Sect.3 give a possible simple solution to the graph transfer learning problem. First, a
discriminative embedding is trained on graph G 4, by solving Prob. (7): this gives both an
embedding f (-, W4) and a predictive model g(-, W’). Second, an embedding f (-, Wp) is
trained on graph G g, by solving Prob. (4) on G p alone. Finally, the predictive model g(-, W’)

@ Springer



A.Gritsenko et al.

-2 am a¥a = -2
| ]
a4 Class1
_3 - _3 4
m Class 2
-4 : . . . , , . -4 . . . , . . .
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(a) Graph G4 (b) Graph Gp

Fig. 1 Example of two isomorphic embeddings and the failure to transfer a learned classifier across them. (a)
Embeddings of a G 4 are used to train an almost perfect classifier between two classes. Embeddings of G p
in (b) are identical to G 4 but subject to a rotation; as a result, the classifier trained in G 4 does not readily
generalize to G p

is applied on the embeddings of nodes in graph G p to predict their labels. Altogether, this
naive algorithm solves the following problem, which is separable over (W4, W’) and Wpg:

min  Ls(Wa; Ga) + Lc(Wa, W' ys, Ga) + Ls(Wg; Gp), 9)
Wa, Wg, W

where Lg, L¢ are given by Eqgs. (4b) and (8), respectively. Unfortunately, this approach is
bound to fail; we extensively demonstrate this experimentally in Sect.6.2, and give some
intuition as to why this is the case below.

Non-Uniqueness. It can be noticed that Eq. (9) fails to transfer the learned classifier by
considering the case when the two graphs G 4 and G g are isomorphic. In this case, nodes
that map to each other should have the same embeddings and, thereby, the same labels.
Unfortunately, none of the methods outlined in Table 2 are guaranteed to produce the same
embeddings for nodes in V4 and Vp. This is because of non-uniqueness: the non-convexity
of the loss Lg for all of these methods implies that optimal embeddings (i.e., solutions
to Prob. (4)) are non-unique. In turn, this non-uniqueness implies that the embeddings of the
same graph, or two isomorphic graphs, can be vastly different at two different executions of
the algorithm.

For several objectives, non-uniqueness manifests through arbitrary transformations of the
latent space, via rotations, shifts, or other transforms. In turn, this “breaks” transferring a node
classifier learned on one graph to another via the above naive method. This is shown in Fig. 1:
noticeably, a classifier trained on a set of samples fails to correctly classify exactly the same
samples when the latter are rotated. Simply put, the separating surface (e.g., hyperplane
for a shallow linear classifier like logistic regression) is not invariant to the aforementioned
transforms that relate embeddings between different graphs; as a result, embeddings trained
across the two graphs can be misaligned. This suggests that embeddings across graphs need
to be trained jointly, maintaining an appropriate alignment. We accomplish this, via a non-
combinatorial method, in the next section.
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The use of different random seeds or starting points, the use of deep neural networks
that may introduce additional local minima, and departures from perfect isomorphism (i.e.,
different edges in the two graphs), all further exacerbate the problem of non-uniqueness.
Most importantly, as non-uniqueness is a consequence of the non-convexity of the objective,
it arises irrespective of whether embedding functions are shallow or deep, whether inputs
X; are features or one-hot encodings or whether graph neural networks are used. In the
latter case, it is tempting to think that embeddings are, by design, linked to topological
properties of the position of a node in the graph, and thereby are invariant (at least if graphs are
isomorphic). However, this is not true: the non-convexity of the objective makes such methods
also susceptible to variations due to randomness, initialization conditions, and departures
from perfect isomorphism. We also demonstrate this experimentally in Sect. 6.2, exploring
three direct encoding methods, viz. Laplacian Eigenmaps [2], Graph Factorization [1], and
node2vec [3], as well as graph neural network GraphSAGE [13]: all four algorithms fail to
transfer across graphs for the aforementioned reasons (see Table 4).

To make two of these examples concrete, non-uniqueness for both Laplacian Eigenmaps
and Graph Factorization (with objectives (5) and (6), respectively) is quite easy to see,
as demonstrated below. Indeed, if {z]};cv is an optimal embedding obtained by Laplacian
Eigenmaps, then so will be { R ~z;“ }iev,where R € R9*4 ig a rotation matrix. Similarly, in the
case of Graph Factorization, if {z} };cv is an optimal embedding, then sois { O -z} };cv, where
0 € R4*4 is an arbitrary orthogonal matrix. For exactly the same reason, other embeddings
in Table 2 that use inner products (e.g., node2vec) are non-unique. Finally, we note that
the above problem arises in the context of structural node label prediction, but not for link
prediction and, possibly, other pairwise classification tasks that depend only on the distance
or angle between node embeddings. This is because the latter are not affected by rotation and
the other transforms listed above. Indeed, embeddings learned via Prob. (9) may work well
at predicting edges between two nodes in G g, even though classifier g(-, W’) fails.

4.2 Graph transfer learning via coupling penalty

Graph Matching. To transfer graph embeddings across graphs, one would need to know the
correspondence between the nodes in the two networks. This is generally known as the graph
matching problem [28, 57, 58], and several algorithms (mostly heuristics) exist for solving
it. Assuming that graphs have the same size, we would like to find a permutation that maps
nodes from graph G 4 to G p that minimizes edge discrepancies. Formally, let us denote the
set of permutation matrices by

P={Pe{0,1}™":P1=1,P 1=1} (10)
and the Frobenius matrix norm by || - ||, then we seek P such that:
min ||[AP — PB]|, 11
PelP

where A and B are the corresponding adjacency matrices for G 4 and G p, respectively. The
permutation P indeed then captures the node mapping between the two graphs that minimizes
edge discrepancies; in particular, the minimum value (11) is zero if and only if the two graphs
are isomorphic. Unfortunately, no poly-time algorithm is known for solving (11) [59], though
research on approximation algorithms and heuristics is vast (see, e.g., [28]).

Coupling Penalty. Rather than solving (11), we focus on its convex relaxation, which was
proposed by Bento and Ioannidis in [5]. We incorporate this relaxed version of (11) into
the optimization problem (9). In particular, we propose solving the following optimization
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problem:

min Lg(Wa; Ga) + LcWa, W5 ys,Ga) + Ls(Wg; Gp)

Wa,Wp
W', P
+alAP — PB|} + Bur (PTD(WA, WB)), (12a)
st. PeR™ P1=1,P"1=1,P >0, (12b)

where «, > 0 are positive regularization parameters,

w(PTD)= Y P;Dj (13)
i€V,
jevs

is the element-wise product between matrices P, D € R"*", and D = D(W4, Wp) is a
matrix comprising all the pairwise distances between the embeddings of nodes across the
two graphs, that is:

D(W4, W) = [Dijlievy,jevy € RV, where (14a)
Dij =llzf —=2flla, Vi€ Va,jeVs, (14b)
7 = f(xi, Wa), Vi€ Va4, and (14c)
Zf = f(x;, Wg), Vje€ Vg. (14d)

Intuitively, Prob. (12) jointly determines (a) the embeddings of nodes in the two graphs, via
parameters Wy, W € R™, (b) the label classifier g, via parameters W' € R™, and (c) a
doubly stochastic matrix P € [0, 1]"*" that couples the nodes of the two graphs and their
embeddings together through the penalty:

Lp(P,Wa, Wg) =a||AP — PB|}+ Bte(PT D). (15)

The first term of this penalty learns a probabilistic mapping between nodes in the two graphs,
via the doubly stochastic matrix P. Intuitively, if G4, G p are isomorphic, |AP — PB]|| is
zero under a mapping P that sends every node in G 4 to its image in G g with probability 1;
the double stochasticity of P, enforced via the constraints (12b), relaxes this to probabilistic
mappings. The second term enforces nodes that map to each other to have similar embeddings.
Indeed, if P;; € [0, 1] is high for some i € V4, j € Vp, minimizing the penalty in Eq. (15)
forces D;; = IIZiA - zfllg to be low.

Our approach has several advantages. It avoids finding a discrete, exact solution to the
graph isomorphism/graph matching problem, which is notoriously hard [59]. The coupling
penalty (15) is convex, making the optimization w.r.t. P tractable given the node embeddings.
The coupling via continuous, smoothly evolving variables P translates to a smooth evolution
of neural network weights, which is beneficial in practice during SGD. Finally, as embeddings
are fine-tuned, the trace penalty helps discover better stochastic mappings P, as nodes with
similar embeddings are mapped to each other. Our solution to Prob. (12), discussed next,
exploits these properties.
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5 An alternating minimization algorithm for solving the graph transfer
learning problem

We solve Prob. (12) via alternating minimization. Denote the combined weights of the net-
work embeddings f for each graph and the predictor g by W = (W4, Wg, W’) € R+,
We rewrite (12) as

min L(W, P), (16)
WeR2ntm' pcB

where
L R2mAm' o guxn R (17

is the aggregate loss (12a), and B € R"*" is the set of doubly stochastic matrices (a.k.a. the
Birkhoff polytope):

B2{Pel0,1]™":P1=1,P 1=1)}. (18)

We solve Prob. (12) via alternating minimization as follows: at each iteration k € N, we
update weights W and matrix P via

WD = argminy, _gonew LW, PO), (192)
P& — argminp g LWED P). (19b)

We describe these two alternating steps in detail below. In short, Eq. (19a) can be solved
via standard SGD. Equation (19b) is a convex optimization problem, and admits fast imple-
mentations via, e.g., the Frank—Wolfe (FW) algorithm [60] and the alternating directions
method of multipliers (ADMM) [61].

5.1 Updating combined weights W

Given P, minimizing £ w.r.t. W amounts to the following problem:

WTiVI;BL’s(WA; Ga)+ Lc(Wa, Wi ys.Ga) + Ls(Wp; Gg) + Bte(PTD).  (20)
W
This is almost identical to the naive problem formulation (9) save for the linear trace term
tr(PT D) that indeed depends on the embeddings via (14b). We thus minimize this objective
via stochastic gradient descent (SGD) w.r.t. the weights W. We note that in practice, we only
run one epoch of SGD per iteration of (19a) before switching to optimizing P, rather than
executing SGD until full convergence.

5.2 Updating graph mapping P
5.2.1 An exact solution: constrained optimization over the Birkhoff polytope

Given W and, thereby, embeddings zlf“, i € Vy4, and zf , j € Vg, (19b) amounts to the
following problem ‘

min Lp(P)=a||AP — PB| + Bu(P' D), (21a)

st. PeB (21b)
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where D = D(Wy4, Wp) is fully determined by the (fixed) embeddings and B is the Birkhoff
polytope, given by (18). This is a convex optimization problem and can thus be solved
via standard optimization toolboxes, such as CVX OPT [62]. Nevertheless, we can design
efficient algorithms tailored to (21) and (19b) precisely because (21) is constrained over the
Birkhoff polytope. In particular, Problem (21) can be solved efficiently via the Frank—Wolfe
(FW) algorithm [60] and the alternating directions method of multipliers (ADMM) [61]. We
describe both in detail below.

Frank—Wolfe (FW) Algorithm. The FW algorithm [60] is an iterative algorithm that solves
(21) through a sequence of linear programs (LPs). The algorithm starts from a feasible
PO € B, e.g., the identity matrix /, and proceeds with the following iterations k € N:

§* = arg ming g tr (ST VL p(Pk)) , (22a)
P = (1 =y P + i S5, (22b)

where Lp is the objective in (21a), and yx is a step size set to be, e.g., yx = 1/(k + 2), or
determined via line search [63] as follows:

ye = argming, cpo. 1y L (1= 70 P® + ys©). 23)

As L p is convex, this is guaranteed to converge to an optimal solution under mild conditions
[64]. Crucially, as B is a polytope, (22a) is a linear program; thus, it has an optimal solution
that is a vertex of B, by the fundamental theorem of linear programming. By the Birkhoff—
von Neuman theorem, the vertices of B are in fact the permutation matrices. As a result, a
solution to (22a) can be found by solving:

arg minpp tr (ST : Vﬁp(Pk)) , (24

instead, where P is the set of permutation matrices. This is precisely the so-called assignment
problem [65], and can be solved in strongly polynomial time via the so-called Hungarian
algorithm [65]. As we show in Sect.6.2.2, using the Frank—Wolfe (22) combined with the
Hungarian algorithm to solve assignment problem (22a) has significant computational advan-
tages compared to both generic convex optimization methods for solving (19b), as well as
generic LP solvers for solving (22a).

Alternating directions method of multipliers (ADMM). To employ ADMM [61], we first
incorporate constraints into the objective of Prob. (21) using the indicator function xp :
R™" — {0, oo}, where D is a convex set and xp(P) = 0 if and only if x € P. Now, we
can reformulate Prob. (21) as follows:

min Lp(P) + xr(P1) + xc(P2) (25a)
st. P="P; (25b)
P =P, (25¢)
where
R={Pec[0,11"":P1=1} (26)
and
C={Pel0,11™":PT1=1}. (27)

Note that P € Bifand only if P € R and P € C. Problem (25) is well-suited for the ADMM
algorithm [61], as it involves linear constraints and two sets of variables, i.e., P and (P1, P»).
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With regard to the given problem, the steps of ADMM amount to the following:

PED = argming, £p(P) + S(P—PO+UP P 1P=PO+U 1) 80)

Pl(k'H) = argminp g |p*FD — pp 4 Ul(k)||2 (28b)
K+ - k

PHY = argming, ¢ | P4 — Py + UP )2 (28¢)

Ul(k+1) _ Ul(k) + (P(k-H) _ P1(k+1)) (28d)

U — y® 4 (P(k-H) _ p2<’<+1>), (28e)

where p > 0 is an ADMM parameter controlling convergence and U, U, € R"*" are
(scaled) dual variables corresponding to (25b) and (25c¢), respectively. All the steps in (28)
can be executed efficiently; (28a) is an unconstrained strongly convex problem which can be
solved via, e.g., gradient methods. Problems (28b) and (28c) are projections over the simplex,
which can be solved efficiently via strongly polynomial algorithms (see, e.g., Michelot [66]).
Finally, dual variable adaptations (28d) and (28e) can be executed in linear time.

5.2.2 An inexact solution: projected gradient descent

Though an optimal P can be obtained efficiently through the algorithms discussed above,
combining it with stochastic gradient descent steps used to update W has some drawbacks. In
particular, different steps may oscillate across different values of P; this, combined with the
non-convexity of the objective (20), may hinder the convergence of alternating minimization
(19).

For this reason, we consider the following alternative for updating P in (19b). Rather than
solving (21) exactly, we execute one step of projected gradient descent, instead:

plht) _ HB(Pk . )/VPACP(P(k)))! (29)

where I is the orthogonal projection to the Birkhoff polytope B. The projection involves
a quadratic objective subject to the Birkhoff constraints; as such, it can be solved again via
Frank—Wolfe or ADMM, as outlined above, or by a standard solver such as CVX OPT.

5.3 Overall algorithm and initialization

A summary of our overall framework for solving Prob. (12) is shown in Fig.2. The
embeddings f for both graphs and the predictor network g are neural networks, and their
corresponding parameters can be trained via SGD. The optimization w.r.t. P, appearing in
penalty Lp, requires customized solvers like Frank—Wolfe or ADMM, or convex optimiza-
tion solvers like CVX OPT. As the objective is not convex, it is important to start from a
good initialization point. To do so, we first compute a matrix P ignoring embeddings (i.e.,
assuming that D = 0). Then, we train the embedding and classifier for graph G 4 ignoring P
(i.e., solving Eq. (7) w.r.t Wy ) for one epoch; then, using the existing embedding of G 4 and
P, we train the embedding of G p (i.e., solving Eq. (19a) w.r.t. Wp alone). The remaining
alternating minimization proceeds as in Eq. (19), with each step as described above.

5.4 Extensions

Our approach naturally extends to weighted graphs and graphs of different size.
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Fig.2 Schematic portrayal of the proposed framework. Here, L‘? and Lg are node embedding penalties (Eq.
(4b)) for graphs G 4, G p, respectively, L¢ is the prediction model loss (Eq. (8)), and L p is the matching
penalty (Eq. (15))

Graphs of Different Size. Given two graphs G4, G p of different size, there are several
ways of expanding them with “dummy” nodes such that the new graphs, G, and G, have
the same number of nodes (see, e.g., [5, 67]). A simple one is to expand graph G4 with
|VG | dummy nodes and graph G g with |V, | dummy nodes, resulting in two graphs of size
|Vl + |Vp|. Dummy nodes are handled in the coupling penalty (15) as follows. First, A, B
are extended by adding edges of weight 1/2 between dummy and normal nodes, as well as
between dummy nodes: using 1/2 differentiates such edges from edges in the original graph
(that have weight 1), which in turn penalizes maps between dummy and normal nodes. Such
maps can be further discouraged via D, by setting the distance between dummy nodes in G 4
and non-dummy nodes G g to a large value (e.g., 100x the largest distance between normal
node embeddings) and vice versa, while the distance between dummy nodes is set to 0. Note
that dummy nodes have no embeddings, so W updates (Eq. (20)) remain unaltered.
Weighted Graphs. The coupling penalty (Eq. (15)) remains the same under weighted graphs,
with A, B being now weighted adjacency matrices in R”*”. Handling weighted graphs thus
only requires modifying the embedding functions, taking weights into account when com-
puting graph similarities s¢; all methods outlined in Table 2 can be appropriately adjusted
to do so.

6 Experiments
To validate our proposed methodology, we perform a series of experiments on real and

synthetic datasets. We provide in detail our experimental setup in this section, followed by
description of results in Sect.6.2.
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Table 3 Dataset summary

BP-2 SB-4 SB-6 ZKC Email IDTD
V| 50 100 120 34 986 788
|E| ~331 ~985 ~1028 78 16064 118291
# of clusters 2 4 6 2 28 N/A

6.1 Experimental setup
6.1.1 Datasets

In our experiments, we use three real-world datasets, which are Zachary Karate Club (ZKC)
[68], Email [69], and Infectious Disease Transmission Dataset (IDTD) [70], and three syn-
thetic graphs with C = 2, 4 and 6 equal-sized clusters. Zachary’s Karate Club is a popular
dataset for the classification task [14, 71, 72] because it contains two distinct clusters. Email
is a popular graph [53, 73, 74] with large number of nodes and clusters. IDTD is a graph rep-
resenting close proximity interactions at an American high school, representing 655 students,
73 teachers, 55 staff, and 5 other persons. Nodes represent individuals and edges represent
contacts. This dataset is tailored to assessing the performance of our framework in an epi-
demic spread task. We also constructed synthetic datasets with distinguishable clusters; thus,
they are good means to assess the performance and limitations of our proposed framework
on the classification task. Details for all six datasets are summarized in Table 3.

The synthetic graph with two clusters, BP-2, contains one cluster generated via Erd&s-
Rényi model [75] G (25, 0.5), while the second cluster is a complete bipartite graph K12, 13;
these two clusters are connected via a bipartite graph with a one-to-one correspondence
between nodes from the two clusters (see Fig.3a). In the 4-cluster and 6-cluster datasets,
SB-4 and SB-6, graphs are generated via the stochastic block model [76]. Each cluster is
an Erd@s-Rényi graph G (n, pf”) (n = 25 for the graph with 4 clusters and n = 20 for the
graph with 6 clusters), and pf " varies for different clusters i. Clusters are connected as shown
in Fig. 3b and Fig. 3c, which also provide the inter- and intra-connection probabilities for both
stochastic block models.

6.1.2 Labels

We predict two types of labels in our experiments: clustering labels and epidemic
spread/influence labels. Both are structural (i.e., depend on the position of a node in the
graph), can be inferred from latent embeddings, and, as we show below, are transferable
across graphs.

Clustering labels are standard: each node is assigned with a single integer-valued label
representing a single cluster it belongs to. We use ground truth cluster labels for ZKC as
provided by Zachary in the original paper [68]. For Email, we reorganize ground truth labels
provided with the dataset as follows: clusters with fewer than 10 nodes are dissolved, and
their nodes are assigned to a cluster with more than 10 nodes by a majority vote across their
neighbors. We use the IDTD dataset solely for epidemic experiments.

Influence/epidemic spread labels are generated with the Independent Cascade (IC) model
[51] from the Network Diffusion Library (NDlib) [77] as follows. We first
always select a center node, i.e., a node with eccentricity equal to the radius of a graph,
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(¢) SB-6: Graph with 6 communities

Fig. 3 Synthetic graphs with (a) 2, (b) 4 and (¢) 6 communities. Each community is represented as a highly
interconnected cluster of nodes. For SB-4, SB-6 graphs, corresponding block adjacency matrices (left) depict
probabilities of intra- and inter-cluster connections; shallow inter-clusters connections produce asymmetric
structure of a graph

to be the infection seed. We set the transition probability, i.e., the probability that a node will
get infected by a neighbor, to pinfectea = 0.5. We then run independent cascades 1000
times to obtain labels. For each run, the infection propagation process unfolds from active
nodes in discrete steps according to the following rule:
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(a) When node v becomes active in step z, itis given a single chance to activate each currently
inactive, susceptible, neighbor w; it succeeds with a transition probability pinfecrea. At
step t = 0, only the infection seed is active.

(b) If w has multiple newly activated neighbors, their attempts are sequenced in an arbitrary
order.

(c) If v succeeds, then w will become active in step ¢ + 1, and v itself changes its status to
removed. Whether or not v succeeds, it cannot make any further attempts to activate w
in subsequent rounds.

The process runs until no more activations are possible. All nodes that remain susceptible
after the process halts are declared as healthy, and the rest of the nodes are considered as
infected. We use the fraction of times a node was infected as ground truth, and we utilize our
proposed framework to regress them for both synthetic and real-world datasets.

6.1.3 Label transfer experiments

All of the datasets, both synthetic and real, contain only one graph G 4. We generate a second
graph G p by randomly permuting G 4 as follows:

B=PTAP, (30)

where A, B are adjacency matrices of graphs G4, G g, respectively, and P is a random
permutation matrix, i.e., P € P (Eq. (10)).

In the BP-2 dataset, we additionally remove L'—‘Z/‘J + 1 edges from both graphs. For SB-4
and SB-6 datasets, we randomly remove p - |V | edges subsequently adding the same amount
of new connections to a given graph G p. Here, parameter p identifies the percentage of
existing edges to be removed and new edges to be added, thus referred to as perturbation
factor. The effect of this perturbation is studied in Sect.6.2.5, with the remaining results on
SB-4 and SB-6 reported for p = 0.

Though we train embeddings over the entire graphs G 4, G p, we train predictor g (Eq. (8))
using a subset S C V4 containing only 80% of the nodes G 4, selected so that cluster class
ratios are preserved. When reporting, the results for this subset are denoted as fr. The rest 20%
of G 4’s nodes are used as a test set (fA). All of G p nodes are used as a separate test set (zB), to
validate the success of our transfer learning algorithms. To ensure statistical significance, we
repeat all experiments 100 times with random initializations and splits, and report averages
and standard deviations of the metrics described below, except for large graphs Email and
IDTD, where we only conduct one experiment.

6.1.4 Metrics

To assess performance in experiments on clustering labels, we use accuracy, i.e., the fraction
of correct predictions ¥; across all classes in the test set, which is a common metric for
classification problems on balanced or slightly imbalanced datasets, given by

: 1,
ACC = ZlEteSt Yi=)i c [0’ 1] (31)
[test]

For influence/epidemic spread labels, we use root-mean-square error

— 52
RusE = | 2ietest 0T =32 0 32)
|test]
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that is one of the most popular general purpose metrics for regression models evaluation.
Additionally, we measure the coefficient of determination [78, 79], which can be more intu-
itively informative than RMSE due to its scale invariance.

Zietest(yi - 9[)2

R =1- — € (—o0, 1], (33)
Zietest(y - yi)z
where
_ 1
V= D (34)
151455

is the average label in the training set.
6.1.5 Architectures

We implement Laplacian Eigenmaps [2], Graph Factorization [1], and node2vec [3] embed-
ding methods, whose loss and similarity functions are given in Table 2 and briefly discussed
in Sect.3.1. For the Laplacian Eigenmaps and Graph Factorization algorithms, default
parameters proposed by authors were used in all conducted experiments. The node2vec
embedding algorithm is deployed with the following parameters: 20 random walks of length
10 are generated for each explored node with the window size equal to 4, return parameter
p = 0.25 and in-out parameter ¢ = 4. Furthermore, negative sampling with n = 5 was
used in the experiments involving node2vec to reduce computation burden. We additionally
employ GraphSAGE [13], a graph neural network node-classification framework, using an
open-source implementation distributed by algorithm’s authors.

In order to ensure the adequate minimization of the label prediction loss (Eq. (8)), we
design the prediction branch of the framework consisting of seven fully connected hidden
layers when learning node labels of the ZKC, Email and IDTD datasets. A sole fully connected
hidden layer was exploited in the branch’s design when training a framework on synthetic
datasets BP-2, SB-4 and SB-6. Each hidden fully connected layer contains ten neurons with
hyperbolic tangent activation function applied.

6.1.6 Solvers

We perform update Eq. (19b) via both exact solution (optP) as well as via one iteration of
projected gradient descent (itferP). We implemented both via the CVX OPT solver, ADMM,
and Frank—Wolfe. We compare these in efficiency and use the best-performing solver for the
rest of our experiments: Frank—Wolfe for optP and ADMM for iterP, respectively.

We solve the graph transfer learning optimization problem (12) with a stochastic gradient
descent optimizer with Nesterov momentum and learning rate n = 0.025. Regularization
parameters «, 8, employed in the coupling penalty (Eq. (15)), are both settoa = B = 1.
The proposed framework is trained till convergence on the training subset. The convergence
is declared when the early stopping criterion with the patience equal to 5 epochs is met. All
stated parameter values were selected through the exploration of the corresponding parameter
spaces.

6.1.7 Graph transfer algorithms and implementation

We compare the two versions of our graph transfer learning algorithm (optP, using a full
constrained optimization solver, and iterP, using one iteration of projected gradient descent
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for Eq. (19b), respectively) to the following baselines. First, we implement the naive algo-
rithm (9) that ignores the coupling penalty; we refer to this algorithm as noP. We also
solve Prob. (12) w.r.t W, assuming the true permutation matrix P € P mapping G4 to Gp is
fixed and entered in the objective of (12); we call this algorithm frueP. We also construct a
doubly stochastic P € B that maps every node in one cluster in G 4 uniformly to every node
in the corresponding cluster in G p; with this P fixed, we solve again Prob. (12) w.r.t. W;
we call this algorithm dsP. Note that both frueP and dsP are powerful benchmarks, as they
exploit a priori knowledge of the ground truth cluster maps across G 4 and Gp.

We implement our proposed framework on Python 3.6, using Keras 2.2 neural
network interface with TensorFlow 1.10 backend. We make our code publicly avail-
able.!

6.2 Experimental results
6.2.1 Evaluating architectures

We first evaluate four embedding algorithms (Laplacian Eigenmaps [2], Graph Factorization
[1], node2vec [3], and GraphSAGE [13]) to solve the node label prediction Prob. (7) on the
SB-4 and SB-6 datasets. Table 4 reports performance on train (¢r) and test (#A) subsets of
graph G 4, as well test graph G g (tB), w.r.t. ACC and RMSE metrics for clustering and influ-
ence labels, respectively, as described in Sect.6.1.2. As expected, all examined embedding
methods, including the GNN GraphSage, fail to transfer across graphs. This is evident by
the close to random guess accuracy for the classification task and high RMSE for the regres-
sion task over graph G p (¢B) on both datasets. However, node2vec algorithm has superior
prediction performance for graph G 4, both in train (#r) and test (tA) subsets. Thus, in all
further experiments, we focus on transfer learning using this embedding method.

6.2.2 Solver comparison

Figure4 illustrates the convergence of four solvers on randomly generated graphs with n =
100 nodes for both (a) constrained optimization (21) and (b) orthogonal projection (29). The
solvers are ADMM, CVX OPT, Frank—Wolfe with line-search step sizes, and Frank—Wolfe
with fixed step sizes.

All methods eventually converge to the same loss. For a straightforward constrained
optimization solution (Fig. 4a), Frank—Wolfe algorithm with fixed step size exhibits the fastest
convergence; we use it as the default algorithm in the corresponding experiments, optP.
For the projected gradient descent (Fig.4b), ADMM converges the fastest; we use it in all
upcoming experiments for iterP.

6.2.3 Transferring clustering labels

Figure 5 shows the performance of the five graph transfer algorithms, noP, trueP, dsP, iterP,
optP, described in Sect.6.1.7 on two synthetic datasets, SB-4 and SB-6. Algorithms are
compared w.r.t. transfer test accuracy on G (¢B); for reference purposes, we also show
the training and testing accuracy on G4 as well (7 and A, respectively). We make three
important observations. First, the naive algorithm (noP, Eq. (9)) fails to accurately predict

1 https://github.com/neu-spiral/GraphTransferLearning-NEU
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Fig.4 Convergence rate comparison of solvers used to solve (19b). In the experiment, both the graphs G 4 and
G p have |V4| = |Vp| = 100 nodes. Analysis reveals that (a) Frank—Wolfe algorithm with fixed step size has
the steepest convergence rate finding the solution of straightforward constrained optimization problem (21),
and (b) projected gradient descent (29) converges faster when implemented via ADMM algorithm
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B trueP-tr dsP-tr  E#iterP-tr E#HoptP-tr
B trueP-tA dsP-tA #BiterP-tA EZoptP-tA
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Fig. 5 Classification accuracy, ACC, w.r.t. clustering labels of different transfer learning algorithms (noP,
trueP, dsP, iterP, optP) on two synthetic datasets (SB-4 and SB-6). Each group of 3 ACC values is for training
(tr) and testing (tA) subsets of graph G 4, and testing subset of graph G p (¢B). We observe that (a) ACC under
naive scenario (noP) is no better than random on 7B, while (b) ACC when P is learned (both using projected
gradient descent (iterP) and constrained optimization (op?P) methods) on B is almost 1, which is on par with
B accuracy when true permutation (frueP) and doubly stochastic (dsP) matrices are used, and on par with
train/test accuracies (77, tA) on G 4

Classification Accuracy

00000}

node labels for graph G g for both topologies, doing almost no better than a random guess.
This is anticipated, for the reasons illustrated in Fig. 1. Second, our two transfer algorithms
(iterP, optP) attain almost the same test accuracy on G (tB) as in G 4 (tA): this indicates
that the classifier trained on G 4 is successfully transferred to G p. Finally, our two transfer
methods perform equally well as the powerful benchmarks (trueP, dsP) that have full access
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Table 5 Classification label accuracy, ACC, on BP-2, SB-4, SB-6, ZKC, and Email datasets for the noP and
iterP transfer algorithms

Dataset noP iterP

tr tA tB tr tA tB
BP-2 0.99 0.99 0.53 0.99 0.99 0.97
SB-4 0.99 0.95 0.32 0.98 0.95 0.97
SB-6 0.97 0.93 0.21 0.96 0.94 0.95
ZKC 1.0 0.85 0.5 0.98 0.88 0.96
Email 0.52 0.44 0.02 0.55 0.48 0.49

We report ACC on training (#r) and testing (tA) sets of G 4, as well as on the test set of graph G g (tB); iterP
significantly outperforms noP on tB

to the ground truth mappings, yielding accuracies that are comparable to both training (¢r)
and test (fA) accuracies observed on G 4.

Table 5 presents the accuracy for naive (noP) and projected gradient descent (iterP) graph
transfer algorithms on the BP-2, SB-4, SB-6, ZKC, Email datasets. Our earlier observations
carry over to these graphs as well: noP fails to transfer across graphs, yielding low ACC on
tB, no better than a random guess. On the other hand, iterP universally performs as well on
Gp (tB) as on G4 (tA). We note that these observations persist on BP-2, where graphs G 4
and G p are not isomorphic. We observe also that clusters are harder to learn on Email (on
both G 4 and G p), but the accuracy is considerably better than random guess (1/28 ~ 0.04,
for 28 clusters); moreover, transfer accuracy (0.49 on ¢B) is comparable to both train and
test accuracy on G4 (0.55 and 0.48, respectively), indicating that the poorer performance
is inherent to the embedding method and the trained classifier, as opposed to the transfer
method.

6.2.4 Transferring epidemic spread labels

Figure 6 illustrates the performance of the five algorithms, viz. noP, trueP, dsP, iterP, optP,
employed to transfer influence/epidemic spread labels from graph G 4 to graph G of two
synthetic datasets, SB-4 and SB-6. In concordance with previously discussed experiments on
clustering labels, we compare algorithms’ performance on test subset of graph G g (tB) w.r.t.
root-mean-square error RMSE and coefficient of determination R?.

Table 6 shows the predicted RMSE and R? under noP and iterP transfer algorithms on
SB-4, SB-6, ZCK, Email, IDTD datasets. We also show the training RMSE (#r) as a baseline
for comparison purposes.

Our observations align perfectly with our earlier clustering results: test RMSE and R? on
Gp (tB) indicate that noP fails to transfer, being sometimes worse than predicting based
on the training mean (R?> < 0), while prediction on G under iterP is almost as good as
prediction on G 4 (tA), sometimes even better (e.g., for SB-6 and Email).

6.2.5 Impact of graph perturbation

Figure 7 illustrates performance with respect to prediction accuracy and RMSE on the SB-4
and SB-6 datasets obtained for different perturbation factors (see Sect.6.1.3). Here, we use
results on graph G 4, tA, which does not have any edges removed or added, and results on
graph G p obtained with naive method, noP, as upper and lower bounds when assessing the
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Fig. 6 Performance of different transfer learning algorithms (noP, trueP, dsP, iterP, optP) on epidemic
spread/influence labels of two synthetic datasets (SB-4 and SB-6), w.r.t both coefficient of determination R2
and RMSE. We report 3 RMSE values, for training (r) and testing (tA) subsets of graph G 4, and testing subset
of graph G (1B), while we report only two R? values (for test subsets, zA and B, respectively), for each
algorithm. For RMSE, the smaller values the better; for R? € (—00, 1], the higher the better. For the sake of
visualization, we use exponential scale for the latter: exp (R%) € (0, e]. We observe that (a) naive scenario
(noP) demonstrates much worse performance on ¢B than on #r and A for both RMSE and R? metrics; (b) when
P is learned (either using projected gradient descent (iterP) or constrained optimization (optP) methods),
RMSE on £B is on par with, and R? is on par or slightly worse than for frueP and dsP scenarios, when true
permutation and doubly stochastic matrices are used, respectively; and (¢) the performance under iterP and
optP scenarios is on par with train accuracy, and sometimes even surpasses test accuracy on G 4 (tr, tA)

influence of the amount of perturbed edges on ¢B prediction performance. From all four plots,
we can observe a consistent behavior: performance on both clustering and regression tasks
remains largely unaffected when the perturbation factor does not exceed 10% (recall that this
corresponds to 10% of edges removed and the same amount of new edges added). Up until
this level, performance is close to rA and trueP performance. A degradation happens beyond
this point; however, some level of transferability is possible even with a 25% perturbation
factor (prediction ¢B for both iter P and opt P scenarios is still better than for no P scenario).
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Table6 Influence/epidemic spread label prediction performance of noP and iterP transfer learning algorithms
on SB-4, SB-6, ZKC, Email and IDTD datasets

Dataset noP iterP

tr tA tB tr tA tB

RMSE RMSE/R? RMSE/R? RMSE RMSE/R? RMSE/R?
SB-4 0.09 0.09/0.29 0.15/-1.49 0.10 0.10/0.38 0.11/0.14
SB-6 0.07 0.12/0.42 0.23/-1.91 0.07 0.11/0.37 0.08/0.65
ZKC 0.09 0.09/0.49 0.26/-2.17 0.10 0.11/0.48 0.11/0.45
Email 0.08 0.10/0.22 0.20/-1.66 0.07 0.08/0.23 0.08/0.32
IDTD 0.10 0.10/0.41 0.17/-3.44 0.10 0.10/0.25 0.10/0.16

We compare prediction performance on training (¢r) and testing (#4) sets on G 4, and the test set graph G g
(tB), w.r.t RMSE (the lower the better) and R? (the higher the better); note that the latter only applies to test
sets (fA, tB). We observe that prediction accuracy fails to transfer to G p under noP, even attaining negative
R? values. In contrast, iterP successfully transfers labels, with a predictive power that is comparable to the
one over G 4 (tA)

Classification Accuracy

RMSE

10 10° 10! 102 107 10° 10! 10°
Perturbation Factor, % Perturbation Factor, %
#tA *noP:tB *trueP: tB -+dsP:tB *iterP: tB -+ optP: tB
Fig. 7 Effect of edge perturbations between G 4 and G g on the label prediction performance (in ACC and

RMSE for clustering and influence labels, respectively) studied on synthetic datasets, SB-4 and SB-6. Trans-
ferability is possible even with a 25% perturbation factor, with almost no impact in the < 10% range
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7 Conclusion

We study the graph transfer learning problem using a group of synthetic and real-world
datasets. Our proposed method, being generic with respect to the employed embedding
methods, offers strong evidence that structural labels can be successfully transferred across
graphs. This can have important implications, such as learning epidemics on one graph
and transferring this knowledge on another. Exploring this on real epidemics is an exciting
direction. Accelerating our methods, and scaling them to larger graphs, is an important
open problem. The invariance of embeddings to rotations and orthogonal matrices suggests
optimizations in which matrix P is orthogonal, rather than doubly stochastic; exploring
efficient algorithms for such constraints is also an interesting future direction.
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