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We perform the first application of the wavelet scattering transform (WST) to actual galaxy
observations, through a WST analysis of the BOSS DR12 CMASS dataset. We included the effects of
redshift-space anisotropy, non-trivial survey geometry, systematic weights, and the Alcock-Paczynski
distortion effect, following the commonly adopted steps for the power spectrum analysis. In order to
capture the cosmological dependence of the WST, we use galaxy mocks obtained from the state-of-
the-art ABACUSSUMMIT simulations, tuned to match the anisotropic correlation function of the BOSS
CMASS sample in the redshift range 0.46 < z < 0.60. Using our model for the WST coefficients, as
well as for the first 2 multipoles of the galaxy power spectrum, that we use as reference, we perform
a likelihood analysis of the CMASS data. We obtain the posterior probability distributions of 4
cosmological parameters, {ωb, ωc, ns, σ8}, as well as the Hubble constant, derived from a fixed value
of the angular size of the sound horizon at last scattering measured by the Planck satellite, all of
which are marginalized over the 7 nuisance parameters of the Halo Occupation Distribution model.
The WST is found to deliver a substantial improvement in the values of the predicted 1σ errors
compared to the regular power spectrum, which are tighter by a factor of 3 − 5 in the case of flat
and uninformative priors and by a factor of 3− 8, when a Big Bang Nucleosynthesis prior is applied
on the value of ωb. Our results are investigative and subject to certain approximations, which we
discuss in the text.

I. INTRODUCTION

The process of gravitational instability, modulated by
the expansion of the universe and the set of fundamen-
tal interactions between its basic constituents, has led
to the emergence of the large-scale structure (LSS) of
the universe out of the primordial cosmic density field.
The observed 3-dimensional (3D) distribution of matter
is, as a result, a powerful probe of fundamental physics,
which can reveal a wealth of information about the na-
ture of the late-time accelerated expansion of the universe
[1], the law of gravity at large scales [2–4], the nature
of dark matter [5], the properties of massive neutrinos
[6, 7] and the physics of the early universe [8]. Aiming
to tap into this valuable resource, a wide array of cur-
rent and future cosmological surveys, such as the Dark
Energy Spectroscopic Instrument (DESI) [9], the Vera
C. Rubin Observatory Legacy Survey of Space and Time
(LSST) [10, 11], Euclid [12], and the Nancy Grace Ro-
man Space Telescope [13], among others, will trace the
galaxies in the cosmic web with unprecedented levels of
accuracy, potentially allowing us to explore and test the
vast landscape of cosmological scenarios that propose to
tackle these unresolved questions.

On the theory front, the expected influx of data needs
to be complemented by an associated theoretical frame-
work to quantify and extract all possible cosmological
information encoded in the LSS of the universe, a step
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that is underway. One of the most efficient ways to ex-
tract information out of an observed dataset is through
the evaluation of the 2-point correlation function or its
Fourier-space counterpart, the power spectrum. Com-
bined with theoretical modeling and/or state-of-the-art
simulations to capture the cosmological dependence of
the target statistic and its covariance matrix, the values
of the cosmological parameters that constitute a given
scenario can be determined, up to a certain degree of ac-
curacy. Despite serving as a useful first line of attack in
problems of cosmological parameter inference, the power
spectrum analysis is known to be incomplete, because
it fails to capture a significant part of the information
content in the LSS: the non-Gaussian part of the dis-
tribution sourced by the process of gravitational insta-
bility that drives structure formation [14]. In order to
fully exploit the additional gains associated with tapping
into the nonlinear regime of the LSS, one thus needs to
evaluate higher-order statistics beyond the 2-point func-
tion. Despite significant theoretical progress made in this
direction in the past decade [15–21], including higher-
order moments as part of a standard parameter inference
scheme quickly becomes intractable, both from a compu-
tational standpoint, because of the sharply rising dimen-
sionality of the resulting data vector, but also on the the-
oretical modeling front. In addition, in more challenging
cases, such as that of a probability distribution with a
heavy tail, even a complete description of all moments
would fail to capture all available information, while at
the same time amplifying outliers by raising the density
field to very high powers [14].

Furthermore, realistic probes of the LSS, such as the
3D pattern of galaxies observed by spectroscopic surveys,
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do not generally perfectly trace the underlying matter
distribution, but are rather biased tracers of it [22], due
to the complicated physics of structure formation. In ad-
dition, when galaxies are identified through spectroscopic
means, their peculiar velocities around the Hubble flow
lead to a perceived anisotropy of the observed clustering
pattern, the redshift-space distortions (RSD) [23]. Com-
bined with other challenges associated with systematic
errors or galaxies observed in a non-trivial survey geom-
etry [24], an additional layer of complexity is added that
makes the modeling and interpretation efforts more dif-
ficult.

Aiming to overcome the former challenge, an active
area of research is focused on developing novel estimators
beyond the 2-point function, attempting to access higher-
order information without having to explicitly evaluate
the full correlation hierarchy. This broad spectrum of
approaches consists of, but is not limited to, attempts
to Gaussianize the density distribution by suppressing
the contribution of LSS from regions with high overden-
sity [14, 25–29], estimators that harness the information
from regions that have not undergone nonlinear gravi-
tational collapse, the cosmic voids [30–36], proxy lower-
order statistics [37–39], and a variety of other statistics
beyond the power spectrum, such as Minkowski func-
tionals [40–43], the k-nearest neighbor cumulative distri-
bution functions [44], the minimum spanning tree [45] or
1-point statistics [46]. More recently, Convolutional Neu-
ral Networks (CNNs) [47] have emerged as a completely
novel approach that promises to reliably identify features
of complex datasets, including a potentially full extrac-
tion of their non-Gaussian information content. Despite
very promising results on cosmological applications [48–
51], the extent to which their outcomes can be interpreted
in order to allow reliable applications on real galaxy data
is still an open question.

In our recent work [52], we investigated the prospect of
bridging the gap between the use of traditional estima-
tors and CNNs in modern cosmological analyses of the
LSS, using the Wavelet Scattering Transform (WST) es-
timator [47, 53]. Originally proposed in the context of
signal processing in computer vision, the WST subjects
an input physical field to a series of successive nonlinear
operations (wavelet convolution and modulus), in a net-
work architecture that resembles the one of a CNN with
fixed kernels [47, 53–56]. The outcome of this process is a
compact set of a few coefficients that can serve as a basis
that reflects the clustering properties of the input field
beyond the 2-point function, without raising the field to
very high powers, a common shortcoming of traditional
estimators [14], while at the same time retaining its inter-
pretability, unlike in CNNs [54–56]. In light of the great
promise held in the use of this estimator, the WST has
been recently applied in the fields of astrophysics [57–59],
cosmology [52, 60–64] and molecular chemistry [65, 66]
(a review can be found in Ref. [67]).

Through the first WST application to 3D matter den-
sity fields, simulated by the QUIJOTE simulations [68], we

showed in Ref. [52] how the WST can deliver a very large
improvement in the extracted errors on cosmological pa-
rameters. Motivated by these promising results, in this
work we carry out the first WST application to actual
galaxy observations. In particular, we use the WST to
analyze galaxy observations from the twelfth data release
(DR12) [69] of the Baryon Oscillation Spectroscopic Sur-
vey (BOSS), a part of Sloan Digital Sky Survey, SDSS-III
[70, 71], and in particular the CMASS sample. We in-
clude the effects of redshift-space anisotropy, non-trivial
survey geometry, the shortcomings of the dataset through
a set of systematic weights and the Alcock-Paczynski ef-
fect, following the commonly adopted steps for the power
spectrum analysis. In order to model the cosmologi-
cal dependence of the WST coefficients extracted from
galaxy observations, we make use of state-of-the-art sim-
ulated mocks that have been tuned to match the cluster-
ing properties of CMASS, through a set of free parame-
ters absorbing the physics of galaxy formation, that we
marginalize over. Using this framework, we perform a
likelihood analysis of the BOSS CMASS dataset, which
allows us to infer the values of cosmological parameters
with the WST estimator. We finally compare our WST
results against the ones obtained by the multipoles of the
regular galaxy power spectrum, which we use as a refer-
ence, and clarify certain approximations in our analysis.

The rest of the paper is structured as follows: in §II
we introduce the Wavelet Scattering Transform, and in
§III we lay out all the details related to the analysis of
the BOSS dataset, and of the associated mocks, using
the WST and the power spectrum multipoles. We then
present our results in §IV, while concluding in §V. More
technical results are included in Appendices §A, §B, §C
and §D.

II. WAVELET SCATTERING TRANSFORM

The Wavelet Scattering Transform estimator [47, 53]
was originally proposed in the context of signal process-
ing in computer vision as a means of capturing the statis-
tical properties of an input field. In addition to exhibit-
ing a set of powerful and well-understood mathemati-
cal properties (superseding the ones of the conventional
power spectrum) [53], it was also shown to provide key
insights into the nature of convolutional neural networks
[47]. As a result, and as we will see more clearly below,
it can constitute an ideal middle-ground between these
two types of approaches.

In the WST approach, a given input field, I(x), is sub-
jected to two basic nonlinear operations: wavelet convo-
lution and modulus. That is, if ψj1,l1(x) is an oriented
wavelet probing a scale j1 and angle l1, under the funda-
mental WST operation, I(x) will be transformed as:

I ′(x) = |I(x) ∗ ψj1,l1(x)|, (1)

where ∗ denotes convolution. Taking the expectation
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value1 of Eq. (1) produces a WST coefficient, S, which
is nothing else than a real number characterizing the
field. Combined with a family of localized wavelets
ψj1,l1(x) probing a range of scales j1 and angles l1, suc-
cessive applications of the above procedure give rise to
a scattering network, the WST coefficients, Sn, of which
are given by the following relations up to order n = 2:

S0 = 〈|I(x)|〉,
S1(j1, l1) = 〈|I(x) ∗ ψj1,l1(x)|〉 , (2)

S2(j2, l2, j1, l1) = 〈| (|I(x) ∗ ψj1,l1(x)|) ∗ ψj2,l2(x)|〉 ,

where in Eq. (2) and hereafter the angular brackets, 〈.〉,
denote averaging over the sample. Given that a convolu-
tion with an oriented wavelet reflects spatial and angular
information about the input field, it can be intuitively
understood how the WST coefficients of order n encode
clustering information analogous to the 2n-point corre-
lation function [53, 55]. As such, the network in Eq.
(2) generates a compact basis of coefficients that can be
used to partially characterize the higher-order clustering
properties of a physical field, a task of particular inter-
est to modern cosmology. Furthermore, the fundamental
WST operations, namely convolution and modulus, to-
gether with its hierarchical architecture resemble a CNN
with fixed kernels [47, 53]. The combination of the above
properties leads to a powerful estimator that can cap-
ture the non-Gaussian information content encoded in a
physical field, similar to a CNN, but while retaining the
desired interpretability of conventional clustering statis-
tics (e.g., correlation function) through a basis of a few
WST coefficients. As opposed to the regular clustering
statistics, the WST can extract higher-order correlations
without raising the target field to high powers [67], which
is computationally more efficient. Lastly, the WST has
demonstrated the ability to better access the information
content carried in physical fields with heavy-tailed prob-
ability distributions [67], a case that is particularly chal-
lenging for higher-order moments to describe [14]. A ped-
agogical overview of various other properties of the WST
(such as texture characterization or field generation) can
be found in Ref. [67], whereas the formal mathematical
description is discussed in detail in Refs. [47, 53–56].

The relations in Eq. (2) can be generalized to allow
for operations on a target field raised to a given power,
q, in the following manner:

S0 = 〈|I(x)|q〉,
S1(j1, l1) = 〈|I(x) ∗ ψj1,l1(x)|q〉 , (3)

S2(j2, l2, j1, l1) = 〈| (|I(x) ∗ ψj1,l1(x)|) ∗ ψj2,l2(x)|q〉 ,

where the choice of values of q < 1 or q > 1 emphasizes
underdense or overdense regions, respectively, and q = 1

1 In practice, this corresponds to taking the spatial average of the
field.

recovers the basic WST case. In the first 3D WST appli-
cation to the large-scale structure of the universe [52], it
was shown that highlighting cosmic voids with values of
q < 1 led to a substantial increase in the information ex-
tracted on fundamental parameters, particularly the sum
of the neutrino masses, matching and also exceeding the
performance of the marked power spectrum [28, 31]. In
order to leverage this property, we choose to work with
the relations in Eq. (3), a choice also adopted by the 3D
molecular chemistry WST application of [65].

The input WST field I(x), that we will specify in the
next section, can have an arbitrary number of dimen-
sions, as far as the WST is concerned. In the context of
the 3D LSS observations we will focus on in this work,
I(x) will be a 3D field. In general, a family of wavelets,
ψj1,l1(x), can be generated by performing dilations and
rotations on a mother wavelet, which can similarly take
various forms according to the desired application. In the
3D WST implementation of this analysis2, the mother
wavelet is a solid harmonic, multiplied by a Gaussian
envelope, of the form

ψml (x) =
1

(2π)
3/2

e−|x|
2/2σ2

|x|lY ml
(

x

|x|

)
, (4)

where Y ml are the familiar Laplacian spherical harmon-
ics and σ is the Gaussian width in units of the field pix-
els. The dilations are then described by the following
re-scaling of the wavelet argument:

ψmj1,l1(x) = 2−3j1ψm1

l1
(2−j1x). (5)

If we sum over the index m, and consider l to describe
the angular information of the wavelet family, then the
WST coefficients in this particular case will be given by:

S0 = 〈|I(x)|q〉,

S1(j1, l1) =

〈(
m=l1∑
m=−l1

|I(x) ∗ ψmj1,l1(x)|2
) q

2
〉
, (6)

S2(j2, j1, l1) =

〈(
m=l1∑
m=1

|U1(j1, l1)(x) ∗ ψmj2,l1(x)|2
) q

2
〉
,

with

U1(j1, l1)(x) =

(
m=l1∑
m=−l1

|I(x) ∗ ψmj1,l1(x)|2
) 1

2

. (7)

After performing the 1st order convolution of the in-
put field over a scale determined by j1 in Eq. (6), any
information in scales smaller than that will be obscured
in any subsequent convolutions of said field within the

2 This was first introduced in the context of molecular chemistry
applications.
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scattering network. Indeed, the 2D weak lensing (WL)
application by Ref. [60] found that S2 coefficients with
j2 < j1 did not contribute any substantial cosmological
information3. As a result, we also choose to work with
S2 coefficients with only j2 > j1, as we also did in [52].
We additionally point out that, as opposed to Eq. (3),
the particular implementation (6) developed by Ref. [65],
that we follow, uses the same angular scale l2 = l1 for the
second order coefficient S2 ≡ S2(j2, j1, l1). Even though
such a restriction most likely causes some loss of angular
information, it significantly reduces the associated com-
putational cost of the 3D WST evaluations, a tradeoff
that was found to still perform very well in the 3D LSS
application of [52].

To summarize, given an input 3D field with a resolu-
tion of NGRID cells on a side, a number of total spatial
dyadic scales J (that can never exceed log2(NGRID)) and
total orientations L, the indices

(j, l) ∈ ([0, .., J − 1, J ], [0, .., L− 1, L]), (8)

give rise to a total of

S0 + S1 + S2 = 1 + (L+ 1)(J2 + 3J + 2)/2 (9)

WST coefficients up to 2nd order. The final choices that
need to be determined for a WST evaluation are the val-
ues of the power q and Gaussian width σ, that we will
appropriately choose in the next section.

We should note, at this point, that when working
with isotropic input fields, dimensionality reduction tech-
niques can further reduce the number of WST coefficients
to work with. These include averaging over all l orienta-
tions for a given spatial scale j, in order to construct
isotropic coefficients [57, 58, 60] or less aggressive re-
duction techniques that aim to retain a larger degree of
isotropy [72]. Given that in this work we will apply the
WST on an anisotropic physical field (as is the one de-
termined by galaxy observations in redshift space), we
will not consider this reduction. Lastly, we note that the
WST coefficients are commonly normalized as follows:

S̄0 = log(S0),

S̄1 = log(S1/S0), (10)

S̄2 = log(S2/S1),

a choice adopted by several past applications [55, 57, 58,
60, 61]. Despite the fact that the WL WST applications
on 2D shear maps [60, 61] found this re-normalized basis
to break degeneracies between Ωm and σ8, our previous
3D application to cosmological density fields of Ref. [52]
did not find any noticeable gains in information associ-
ated with this basis. As a consequence, we choose to
work with the bare WST coefficients given by Eq. (6).

3 We do note, nevertheless, that using equivariant wavelets on 2D
fields the work of Ref. [72] did find some residual power to be
carried in those usually discarded coefficients.

III. ANALYSIS

In this section, we lay out the details of the particular
galaxy dataset and mocks in our analysis, as well as of
the procedure we follow in order to extract the WST and
power spectrum estimators out of them in each case.

A. Dataset

This works uses galaxy observations from the twelfth
data release (DR12) [69] of the BOSS4, a part of Sloan
Digital Sky Survey, SDSS-III [70, 71]. Specifically, we
work with CMASS data in the redshift range 0.46 < z <
0.60 that were observed from two separate parts of the
sky, the North (NGC) and South Galactic Cap (SGC).
In light of the fact that these are two distinct subsets of
observations, we hereafter evaluate our clustering statis-
tics on each one of them separately and then obtain the
average, weighted by the corresponding values of their
angular footprint, following the standard procedure in
past analyses of BOSS data [73, 74]. To be specific, if
XNGC and XSGC is our statistic (be it WST or P (k) mul-
tipoles) evaluated from the NGC and SGC parts, respec-
tively, then the resulting data vector used in our analysis
is always given by:

XN+S =
(ANGCXNGC +ASGCXSGC)

(ANGC +ASGC)
, (11)

where ANGC = 6851 deg2 and ASGC = 2525 deg2. We
should note, at this point, that even though the redshift
range of the entire CMASS sample commonly adopted in
BOSS analyses is actually 0.43 < z < 0.70, we work with
a narrower z cut because this was the one used for the
production of our galaxy mocks, as we will see in the next
section. Due to the same reason, we only work with the
CMASS, rather than also with the LOWZ BOSS sample,
even though our WST estimator can be straightforwardly
applied to any set of galaxy observations.

Each dataset is accompanied by a corresponding ran-
dom unclustered catalogue, with the exact same angular
footprint and selection function, in order to enable the
evaluation of clustering statistics (as we will see below).
We choose to work with the random catalogue that has
a number density 50× greater than the one of the corre-
sponding observed samples, a choice commonly adopted
in previous analyses [73, 74].

We now proceed to explain the procedure followed to
evaluate the fractional overdensity field from the BOSS
dataset, which serves as the fundamental quantity of in-
terest needed to extract both the WST and the P(k)

4 All BOSS data, as well as the accompanied covariance PATCHY
mocks, are publicly available at https://data.sdss.org/sas/

dr12/boss/lss/.

https://data.sdss.org/sas/dr12/boss/lss/
https://data.sdss.org/sas/dr12/boss/lss/


5

statistic. To do so, we start by converting the ob-
served galaxy sky coordinates, right ascension (RA),
declination (DEC) and redshift z into comoving Carte-
sian coordinates, x, y, z, always assuming a cosmology of
Ωm = 0.3152, h = 0.6736, which, as we will see below,
will correspond to our chosen fiducial cosmology. We
account for the potential errors introduced when assum-
ing an incorrect cosmology to perform this conversion,
which are known as the Alcock–Paczynski (AP) distor-
tion [75]. We will explain our strategy in §III C for the
power spectrum and in §III D for the WST. Using the
publicly available package nbodykit5, we then proceed
to embed the sample into a cubic box with a comoving
side equal to L = 2820 Mpc/h, which corresponds to
the smallest possible cube that can embrace our (irregu-
larly shaped) sample. Finally, the desired quantity is the
(weighted) fractional overdensity field of data in a realis-
tic survey format, commonly referred to as the Feldman-
Kaiser-Peacock (FKP) field, F (r) [24], which we evaluate
on a mesh through the following relationship:

F (r) =
wFKP(r)

I
1/2
2

[wc(r)ng(r)− αrns(r)] . (12)

Here ng(r) and ns(r) are the observed number density
of the galaxies and the objects of the random cata-
logue, respectively, and αr denotes the ratio between the
(weighted) total number of objects in the galaxy cata-
logue over the corresponding value of the synthetic ran-
dom one. The BOSS dataset further includes 3 weights
that reflect the incompleteness of the observed sample: a
redshift failure weight, wrf , a fiber collision weight, wfc

and a systematics weight, wsys. They enter Eq. (12) as
a combined contribution [73, 74]

wc(r) = (wrf(r) + wfc(r)− 1.0)wsys(r). (13)

The remaining weight in Eq. (12) is the FKP weight [24],

wFKP(r) = [1 + n̄g(r)P0]
−1
, (14)

for P0 = 10−4 Mpc3/h3, which is meant to ensure opti-
mal extraction of information at small scales and is also
provided for each galaxy of the sample. Finally, the nor-
malization factor

I2 =

∫
d3r w2

FKP(r)〈wc(r)ng(r)〉2 (15)

is meant to normalize the amplitude of the power spec-
trum with respect to the observed power in an instance
of no survey selection. It is straightforward to see that
in the absence of a weighting scheme, Eq. (12) gives the
regular galaxy overdensity field evaluated from a sample.
The FKP field from Eq. (12) is the fundamental quan-
tity of interest to extract from the data, which, as we will

5 https://nbodykit.readthedocs.io/en/latest/index.html

see below, can either be fed into Eq. (6) to obtain the
observed WST coefficients or get Fourier transformed in
order to obtain the multipoles of the anisotropic galaxy
power spectrum.

It should be noted, at this point, that the weighting
scheme (13) was designed to account for the impact of the
dataset incompleteness on the power spectrum, rather
than the WST. As a result, it is possible that a different
set of weights is needed in order to fully account for these
effects on the WST coefficients. Given however, that the
WST (partly) contains clustering information compara-
ble to that in the 2-point correlation function, we expect
Eq. (13) to at least partially capture the shortcomings
of the dataset, from a WST point of view, and consider
it a reasonable starting point for this first WST applica-
tion. We defer a more detailed investigation of how to
optimally model this effect for the WST to future work.
Likewise, even though the FKP weights from Eq. (14)
were designed to ensure the optimal recovery of infor-
mation by the power spectrum, we include them in the
WST analysis as well, in order to maintain consistent
inputs across our pipeline.

B. Mocks

Previous analyses of BOSS data use more traditional
estimators, which mostly relied on perturbation theory
models of various kinds to capture the cosmological de-
pendence of the target clustering statistics (with a few
representative examples being [20, 73, 74, 76–78]). On
the other hand, given the lack of a first principles theory
model in place to predict its cosmological dependence,
the WST approach demands the use of a full set of sim-
ulated mocks. In this section we introduce the set of
mocks we will use for our model and covariance matrix
for the WST (and the power spectrum, for comparison)
in our final likelihood analysis.

1. ABACUSSUMMIT mocks

In order to model the cosmological dependence of
our estimators, we use the publicly available suite of
ABACUSSUMMIT simulations [79]6, which were performed
using the state-of-the-art ABACUS N-body code [80, 81].
Having evolved 69123 dark matter particles in a cubic
box of a side equal to LBox = 2000 Mpc/h (for the ‘base’
configuration), corresponding to a particle mass resolu-
tion Mp = 2.1 × 109 M�/h

7, these simulations are able
to not only match but also exceed the requirements of

6 Detailed information on all the simulations, as well as on
how to access them, can be found at https://abacussummit.

readthedocs.io/en/latest/index.html
7 h is the dimensionless Hubble constant, h = H0/(100 km

s−1Mpc−1).

https://nbodykit.readthedocs.io/en/latest/index.html
https://abacussummit.readthedocs.io/en/latest/index.html
https://abacussummit.readthedocs.io/en/latest/index.html
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DESI [9], making them the best available set of simu-
lations to work with. The gravitationally bound dark
matter halos in the ABACUSSUMMIT collection were identi-
fied using the state-of-the-art spherical overdensity halo
finder, COMPASO [82].

We will now briefly summarize the cosmological land-
scape of the ABACUSSUMMIT, starting with the fiducial
‘base’ configuration, which corresponds to the mean
values of the ‘base plikHM TTT EEE lowl lowE lensing’
version of the Planck 2018 [83] ΛCDM cosmology. In or-
der to enable averaging over the effects of cosmic vari-
ance, the base cosmology was also run using 24 ad-
ditional different random initial phases, in addition to
the base box. We begin by considering constraints
around 4 cosmological parameters, {ωb, ωc, ns, σ8} =
{0.02237, 0.120, 0.9649, 0.8114}, where ωX = ΩXh

2 and
σ8 refers to the amplitude of density fluctuations traced
by the combination of cold dark matter and baryons,
‘cb’, in the presence of massive neutrinos with ων =
0.0006442. To capture the cosmological dependence on
the above 4 parameters, we further consider additional
simulations which vary each one of the parameters, in
turn, and in a step-wise fashion, away from the fiducial
background while keeping the rest fixed. This enables
the evaluation of first-order derivatives. The exact list
(as well as the associated parameter variations of these
‘first-order derivative grid’ cosmologies) are listed in Ta-
ble I, while we also add that these were phase-matched
to the base box, in order to cancel out the effects of cos-
mic variance upon taking central differences. All sim-
ulations have kept the value of the angular size of the
sound horizon at last scattering, θ?, fixed to the corre-
sponding value derived from measurements by the Planck
satellite [83]: 100θ? = 1.041533, which implies a corre-
sponding value of h = 0.6736, for the base cosmology.
Even though the Hubble constant was not explicitly var-
ied in ABACUSSUMMIT, the choice of a fixed θ? enables the
evaluation of h as an additional derived parameter, an
option that we will consider below. The values of all the
other cosmological parameters, which we keep fixed, to-
gether with a detailed description of the ABACUSSUMMIT
simulations can be found in Ref. [79].

In order to generate realistic galaxy mock samples
from the underlying dark matter and halo catalogues,
ABACUSSUMMIT uses the Halo Occupation Distribution
(HOD) framework through a flexible package called
ABACUSHOD [84]8. In the baseline HOD implementa-
tion [85], simulated halos host galaxies based on a semi-
analytical probablistic model that depends on 5 parame-
ters. In particular, if Mcut denotes the minimum mass of
a halo that can host a central galaxy, κMcut the minimum

8 The package is publicly available as part of ABACUSUTILS

http://https://github.com/abacusorg/abacusutils, together
with an associated instruction manual at https://abacusutils.
readthedocs.io/en/latest/hod.html. In particular, we use the
ABACUSUTILS version 1.0.4.

ωb ωc ns σ8

0.02237 0.1200 0.9649 0.8114

0.02282 0.1200 0.9649 0.8114

0.02193 0.1200 0.9649 0.8114

0.02237 0.1240 0.9649 0.8114

0.02237 0.1161 0.9649 0.8114

0.02237 0.1200 1.0249 0.8114

0.02237 0.1200 0.9049 0.8114

0.02237 0.1200 0.9649 0.8698

0.02237 0.1200 0.9649 0.7532

TABLE I. A list of all 8 ABACUSSUMMIT first-order derivative
cosmologies we use in this work, together with the correspond-
ing values of the 4 cosmological parameters varied. The first
row corresponds to the base cosmology, shown for reference.

halo mass to host a satellite galaxy and M1 characterizes
the typical halo mass that hosts one satellite galaxy, the
mean expected number of central, n̄cent(M), and satel-
lite, n̄sat(M), galaxies assigned to a halo of mass M are
given by:

n̄cent(M) = 0.5 erfc

[
log10(Mcut

M )
√

2σ

]
, (16)

and

n̄sat(M) =

[
M − κMcut

M1

]α
n̄cent(M). (17)

The parameters α and σ calibrate the relations (16) and
(17), and fully characterize the standard HOD model.
We note that Eqs. (16) and (17) are applicable to lu-
minous red galaxies (LRGs) [86, 87], which mostly dom-
inate the CMASS sample that we will work with. Out
of a rich variety of extensions going beyond the vanilla
HOD framework described above, we will adopt a version
that accounts for the effect of the velocity bias of LRGs,
a step shown to be necessary for an accurate fit against
both BOSS data [84] and hydrodynamical simulations
[88]. The two additional HOD parameters it introduces
are the central velocity bias, αc, which is meant to ac-
count for the mismatch between the velocity of central
galaxies and the one of halo centers, and the satellite ve-
locity bias, αs, which captures the equivalent effect for
satellite galaxies. For a more in-depth discussion on more
sophisticated HOD parametrizations (such as, for exam-
ple, including assembly bias [89]) interested readers are
referred to the relevant works referenced above.

We can finally proceed to use our adopted 7-parameter
HOD framework in order to generate galaxy mocks for
our BOSS analysis. In particular, we closely follow the
procedure laid out in Refs. [84, 90] and search for an
ABACUS-derived galaxy mock that best fits the redshift-
space 2-point correlation function, ξ(r⊥, r‖), of the BOSS
DR12 CMASS sample introduced in §III A, (averaged
over North and South according to Eq. (11)), for the

http://https://github.com/abacusorg/abacusutils
https://abacusutils.readthedocs.io/en/latest/hod.html
https://abacusutils.readthedocs.io/en/latest/hod.html
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base cosmology. Here r⊥, r‖ are the separations perpen-
dicular and parallel to the line of sight, respectively, and
we fit the CMASS correlation function using 8 logarith-
mic bins in the range 0.169-0.30 Mpc/h for r⊥ and using
6 linearly spaced bins between 0 and 30 Mpc/h for r‖,
for the redshift cut 0.46 < z < 0.60. The HOD param-
eters giving the best fit through this procedure, that we
take as the fiducial HOD parameters, correspond to the
following values:

{α, αc, αs, κ, logM1, logMcut, σ} = (18)

{0.9022, 0.2499, 1.1807, 0.3288, 14.313, 12.8881, 0.02084},

where Mcut and M1 are expressed in units of M�/h. We
then proceed to use ABACUSHOD, always with the parame-
ters in Eq. (18) as input, so as to produce CMASS mocks
for each one of the 8 first-order derivative cosmologies in
Table I, as well as for the 25 boxes of the fiducial cos-
mology. In order to null out any residual effects of cos-
mic variance during the evaluation of the derivatives, in
addition, we generate 20 different HOD realizations for
each one of the 8 derivative cosmologies. Finally, in or-
der to capture the effects of varying the values of the
HOD parameters, and in a direct analogy to the proce-
dure followed for the 4 cosmological parameters, we pro-
ceed to generate first-order derivative mocks for HOD
variations. We kept all parameters fixed to the fiducial
values and successively varied one HOD parameter at a
time, in a step-wise fashion. With θHOD being the vector
of HOD parameter values from Eq. (18), we take steps
θHOD ±∆θHOD as follows:

{∆α,∆αc,∆αs,∆κ,∆ logM1,∆ logMcut,∆σ} = (19)

{0.36088, 0.02499, 0.11807, 0.2959, 0.7157, 0.3866, 0.020}.

The resulting output of the procedure described in this
section is a collection of 25 mocks for the base cosmology
and a total of 20× 2× 11 = 440 mocks for the cosmolog-
ical derivative variations, which constitute the full set of
simulations that we will use in our analysis.

2. PATCHY mocks

In order to construct a Gaussian likelihood for our in-
ference framework, that we will explain in detail in §III E,
we also need to construct an accurate covariance ma-
trix in addition to the model for the observable. To do
so, we use the 2048 realizations of the publicly avail-
able MULTIDARK-PATCHY mocks9 [87, 91], hereafter re-
ferred to as PATCHY mocks, a collection large enough
to make them ideal candidates for the evaluation of
a properly converged covariance matrix. These mocks

9 Available at https://data.sdss.org/sas/dr12/boss/lss/dr12_
multidark_patchy_mocks/.

were produced through a hybrid combination of an ap-
proximate gravity solver and a reference simulation [92]
that evolved 38403 dark matter particles on a cubic vol-
ume of side 2.5 Gpc/h, using the code GADGET-2 [93],
with a baseline cosmology given by {Ωb,Ωm, ns, σ8, h} =
{0.0482, , 0.307, 0.961, 0.829, 0.6778}. Gravitationally-
bound halos were identified using the Bound Density
Maximum halo finder [94], which were subsequently pop-
ulated with galaxies using the Halo Abundance Matching
technique (HAM) [95], an alternative to the HOD method
described above. The PATCHY mocks were finally shaped
into the realistic survey geometry of the BOSS CMASS
dataset, also split into the separate NGC and SGC ob-
served parts of the sky, while each galaxy was assigned a
set of systematic weights (similarly to Eq. (13))

wc(r) = wfc(r)wveto(r). (20)

The weights include fiber collisions, wfc, and a veto mask,
wveto, capturing the rest of the associated shortcom-
ings of the dataset. The galaxies are also assigned FKP
weights, according to Eq. (14). Since the PATCHY mocks
were cast into a survey format, we treat them as the data
and repeat the exact same procedure detailed in §III A in
order to generate the resulting FKP field from Eq. (12),
but using the weighting scheme in Eq. (20) rather than
in Eq. (13).

We will assume a cosmology-independent covariance
matrix [96, 97] and combine the PATCHY mocks with the
ABACUSSUMMIT suite, even though strictly speaking the
two sets correspond to different fiducial cosmologies and
used different mock-generating procedures. We also note
that mixing different ways of modeling the theory vector
and the covariance matrix is common practice in BOSS
analyses (eg. [20, 73, 74, 76–78]). Under this approx-
imation, we use the ABACUSSUMMIT fiducial cosmology
(rather than the one of PATCHY) to convert the galaxy
positions from sky coordinates RA, DEC, and z into co-
moving Cartesian ones. We finally add that the PATCHY
mocks are accompanied by their own set of randomly
generated catalogues, both for the NGC and the SGC,
each containing ∼ 50× the number of objects in the cor-
responding actual galaxy mock.

C. Power spectrum

In this section we explain how we evaluate the multi-
poles of the anisotropic redshift-space power spectrum,
the predictions of which we will use as a reference to
assess the performance of the WST. Given that the
BOSS data (as well as the PATCHY mocks) and the
ABACUSSUMMIT mocks come in a different format, we will
follow a different strategy to extract the power spectrum
multipoles in each case.

https://data.sdss.org/sas/dr12/boss/lss/dr12_multidark_patchy_mocks/
https://data.sdss.org/sas/dr12/boss/lss/dr12_multidark_patchy_mocks/
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1. BOSS data & PATCHY mocks

When working with galaxy data or mocks in a non-
trivial survey geometry, with a corresponding FKP field
from Eq. (12), the multipoles of the anisotropic redshift-

space power spectrum, P̂`(k), can be evaluated using the
‘Yamamoto’ estimator [24, 98–100]:

P̂`(k) =
(2`+ 1)

I2

∫
dΩk
4π

[∫
d3r1F (r1)eik·r1 (21)

×
∫
d3r2F (r2)eik·r2L`(k̂ · r̂2)− P shot

` (k)

]
.

Here L` is the Legendre polynomial of order `, dΩk is the
differential solid angle element in Fourier space and the
term P shot

` is the shot noise contribution:

P shot
` (k) = (1 + αr)

∫
d3rw2(r)n̄g(r)L`(k̂ · r̂), (22)

which vanishes for higher order multipoles ` > 0, and
where w(r) = wc(r)wFKP(r). We use Eqs. (21) and
(22) to extract the galaxy power spectrum multipoles
from the BOSS catalogues and the PATCHY mocks, both
of which are shaped into a realistic survey geometry. We
do so using nbodykit, which follows the optimized Fast
Fourier Transform (FFT)-based implementation of Eq.
(21), developed by Ref. [101]. In particular, we use
Eq. (12) to evaluate the FKP field using the Triangu-
lar Shaped Cloud (TSC) mass assignment scheme [102]
on NGRID= 500 cubic cells on the side, which corre-
sponds to a high enough resolution for an accurate de-
scription of the scales we will consider. We then eval-
uate the first 2 non-vanishing multipoles, ` = {0, 2}, of
the power spectrum through Eq. (21) using 46 linearly
spaced bins of width ∆k = 0.01 h/Mpc within the k
range 0.001−0.50 h/Mpc. Our chosen ∆k value has been
found to be adequate for recovering the information en-
coded in the power spectrum [103]. We finally discard
wavenumbers larger than kmax = 0.25 h/Mpc, a choice
that both matches the ones of previous BOSS analyses
[20, 73, 74, 76–78] and also guarantees that the power
spectrum and WST both reach a similar minimum scale,
such that we perform a fair comparison between the two
estimators.

2. ABACUSSUMMIT mocks

The ABACUSSUMMIT mocks we work with were pro-
duced, by design, in the regular ABACUS periodic cubic ge-
ometry with LBox = 2000 Mpc/h, with the redshift-space
anisotropy applied along their Cartesian ẑ-axis and with-
out any systematic weights applied to them. As a result,
their corresponding power spectrum multipoles can be
straightforwardly evaluated using standard FFT-based
algorithms on a periodic box, which are also supported
by nbodykit. We do so using a TSC mass assignment

scheme with NGRID= 1700 cells on the side and the
same k-binning strategy adopted for the data in §III C 1,
a set of choices that was once again confirmed to guar-
antee sufficient accuracy for the range of scales included
in our analysis.

However, we should be careful when comparing power
spectra evaluated from data on a survey geometry against
predictions obtained from periodic cubic mocks. This is
because of the fact that, if δ(x) is the regular galaxy
density field obtained from a periodic volume, and W (x)
the survey window function (that includes both the sur-
vey geometry and systematic weights), then a survey will
observe a masked density field, δ′(x), given by [24, 104]:

δ′(x) = δ(x)W (x), (23)

which corresponds to a convolution in Fourier space.
The FKP field of Eq. (12) is such an example. As a
consequence, if P (k) is the theory power spectrum cor-
responding to δ(x) (estimated, for example, from the
ABACUSSUMMIT mocks or a perturbation theory model)

then the power spectrum, P̂ (k), observed from a sur-
vey with non-trivial geometry will be modified as follows
[24, 73, 74, 104, 105]:

P̂ (k) =

∫
d3k′

(2π)
3P (k)|W̃ (k− k′)|2, (24)

where

W̃ (k) =
αr

I
1/2
2

∫
d3rn̄s(r)eik·r, (25)

is the Fourier Transform (FT) of the window function,
that obeys the normalization∫

d3k

(2π)
3 |W̃ (k)|2 = 1. (26)

To evaluate the multipoles, P̂`(k) in Eq. (24), we trans-
form the ABACUS-derived power spectrum multipoles,
P`(k), to get the corresponding correlation function mul-
tipoles, ξ`(s), as follows [74, 104]10:

ξ`(s) = i`
∫
dkk2

2π2
j`(ks)P`(k), (27)

with j`(ks) the spherical Bessel functions of order `.
Given the configuration space multipoles of Eq. (25),
W 2
` (s), we can modify the correlation function multi-

poles to account for this effect. Explicitly, the window-

corrected multipoles, ξ̂`(s), will be given (up to ` = 2)

10 We use the package mcfit, which is publicly available at https:

//github.com/eelregit/mcfit and implements the FFTLog al-
gorithm [106].

https://github.com/eelregit/mcfit
https://github.com/eelregit/mcfit
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by [74]:

ξ̂0(s) = ξ0(s)W 2
0 (s) +

1

5
ξ2(s)W 2

2 (s),

ξ̂2(s) = ξ0(s)W 2
2 (s) + ξ2(s)

[
W 2

0 (s) +
2

7
W 2

2 (s)

]
. (28)

Finally, these can be transformed back to the Fourier
space, in order to give the window-corrected multipoles,
P̂`(k), through:

P̂`(k) = (−i)`4π
∫
dss2j`(ks)ξ̂`(s). (29)

We use Eq. (29) to evaluate the window-corrected
power spectrum multipoles from the ABACUSSUMMIT
mocks, to be compared against the corresponding results
from the BOSS data and the PATCHY mocks11. To ap-
ply Eq. (28), we use the publicly available results for
W 2
` (s) provided by Ref. [74] (which evaluates these func-

tions with the pair-counting method proposed by Ref.
[104]), for both the NGC and the SGC patches of the
BOSS CMASS sample, separately. Following the stan-
dard practice in previous BOSS analyses [73, 74, 105],
we average over the window contributions for the North
and the South, according to Eq. (11). An alternative
way to handle the effects of survey geometry would be to
de-convolve the data, instead, as more recently proposed
by Ref. [107].

Furthermore, as we discussed in §III A, the assumption
of a given (and potentially incorrect) cosmology when
converting the data (and the PATCHY mocks) from sky
coordinates, RA, DEC and z, into comoving coordinates
might introduce an error in our analysis [75]. To account
for this AP effect on the estimation of the power spectra
from the mocks, we work as follows [108]: if r‖ and r⊥ are
the mock galaxy coordinates parallel and perpendicular
to the line of sight (which coincides with the Cartesian
ẑ direction for the cubic mocks), they should then be
re-scaled according to the following relations:

r‖,ref = r‖,sim

(
Hsim(z)H0,ref

H0,simHref(z)

)
, (30)

and

r⊥,ref = r⊥,sim
dA,ref(z)

dA,sim(z)
. (31)

The subscripts ‘sim’ and ‘ref’ in Eqs. (30) and (31) de-
note the true cosmology of each mock and the reference
cosmology assumed for the conversion (corresponding to
the fiducial, in our case), respectively, and dA is the co-
moving angular diameter distance. That is, before we
apply Eqs. (23)-(29) to evaluate the power spectrum

11 We use the corrected normalization coefficients for the power
spectrum, as explained in detail in Ref. [107].

multipoles, the galaxy coordinates of each mock are first
re-scaled according to Eqs. (30) and (31). Alternatively,
one could use an analytical prediction of the AP effect
on the anisotropic power spectra (as, for example, done
in [20, 76–78, 109, 110]), a procedure that is equivalent
to the one described above.

FIG. 1. Redshift-space monopole (top panel) and quadrupole
(bottom panel) of the galaxy power spectrum evaluated
from the BOSS CMASS dataset (blue circles) and the
ABACUSSUMMIT mocks (black squares) for the fiducial cosmol-
ogy. The 1σ error bars on the data have been evaluated from
the 2048 PATCHY mock realizations.

Finally, in Fig. 1 we show the power spectrum mul-
tipoles for the base cosmology, as obtained from the
ABACUSSUMMIT mocks using Eq. (29) and for the BOSS
CMASS dataset, as well as the PATCHY mocks, using Eq.
(21). We highlight the excellent monopole agreement be-
tween the ABACUSSUMMIT prediction and the correspond-
ing one from the data, down to scales smaller than the
ones we work with in this analysis.
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D. WST

To evaluate the WST coefficients for all datasets and
mocks used in our analysis, we make use of the publicly
available package KYMATIO [111]12, which implements the
WST Eqs. (6) for an input 3D density field I(x)13. We
evaluate all input density fields on a cubic box of side
Lbox = 2820 Mpc/h, with NGRID= 282 grids on the
side and the TSC mass assignment scheme, while al-
ways adopting the choices J = 4, L = 4, σ = 0.8 and
q = 0.8. The choice of a grid cell with a side equal to 10
Mpc/h guarantees that the WST uses information from
a minimum scale that is both similar to the one used for
the power spectrum multipoles (for which kmax = 0.25
h/Mpc) and also ensures that we do not extract infor-
mation from a regime that would make the evaluation
susceptible to small-scale systematics. This combination
corresponds to a basis of S0 + S1 + S2 = 76 total WST
coefficients (from Eq. (9)).

1. BOSS data & PATCHY mocks

In order to extract the WST coefficients from the data
and the PATCHY mocks, we need to apply Eq. (6) with
the corresponding FKP field evaluated from Eq. (12),
as input. However, we need to be careful at this point,
because Eq. (6) assumes a periodic 3D cube as input,
rather than a masked density field such as the FKP one.
To overcome this obstacle, we modified the public ver-
sion of KYMATIO such that Eq. (6), and in particular its
fundamental operations of wavelet convolution and mod-
ulus, can be used with a masked density field of the form
(12) (or more generally (23)) as input (with the technical
details discussed in Appendix §A). We finally proceed to
extract the WST coefficients from the CMASS dataset,
as well as from the 2048 PATCHY mocks, using this mod-
ified version.

2. ABACUSSUMMIT mocks

As we already discussed in §III C 2, the ABACUS-derived
mocks from ABACUSHOD have a 3D cubic geometry. How-
ever, as we discussed in §III D 1, the WST coefficients
extracted from the data were computed from the masked
density field of Eq. (12). This implies that, just like in
the case of the power spectrum, the effect of survey ge-
ometry needs to be taken into consideration in our WST
predictions from ABACUS (in fact, the WST analysis is

12 https://www.kymat.io/.
13 Strictly speaking, KYMATIO evaluates the sum over all pixels of

the input field, rather than the mean, which is the same up
to a normalization, and thus equivalent for parameter inference
applications.

even more sensitive to the survey geometry). In the ab-
sence of a model to apply this window correction on the
evaluated statistic directly, such as Eq. (29) for the power
spectrum, we proceed to cut the ABACUS cubes into the
shape of the BOSS CMASS data14. For this, we use the
public code make survey [113] 15, with the exact CMASS
angular footprint (for each one of the NGC and the SGC
patches) and redshift range, as input. Before feeding the
cubic mocks into make survey, we first undo the redshift-
space distortions effect originally applied along the Carte-
sian ẑ-axis, such that the code can then implement it
along the sky radial direction, resembling the realistic
configuration of the actual survey. The necessary galaxy
velocities for these RSD manipulations are also provided
upon the mock generation by ABACUSHOD. The final re-
sulting output is an equivalent set of galaxy mocks in
sky coordinates RA, DEC, and z that exactly match the
3D geometry of the observed CMASS dataset. To make
sure that the clustering properties were not affected dur-
ing the cut sky implementation, we evaluate the power
spectrum multipoles from the new re-shaped mocks from
Eq. (21) (using, also, an additional set of randoms pro-
duced with the same procedure) and confirm that the
result matches the one from the corresponding cubic box
using Eq. (29), for the fiducial cosmology. One could
actually use either of those ways of evaluating the power
spectrum, since they are equivalent when handled prop-
erly, and which choice to go with is ultimately a matter
of preference. Having confirmed the robustness of this
procedure, we then proceed to evaluate the FKP fields
from all the cut ABACUS mocks using Eq. (12) (but with
all the weights set to 1, which we then feed into the set
in Eq. (6) so as to finally get the WST coefficients for all
cosmologies of Table I.

Lastly, as with the power spectrum analysis laid out
in §III C, we need to also account for the AP effect in-
troduced by the assumption of a given cosmology when
converting the data into comoving coordinates. In the
WST case, the mock data were converted (using the true
cosmology of each simulation) into sky coordinates upon
the cut-sky procedure we described above. To account
for the AP effect, we then use the reference fiducial cos-
mology in order to convert these data back into comoving
coordinates, a step that is necessary to evaluate the FKP
field from Eq. (12), out of which the WST coefficients
will be extracted. This step serves as the WST equiva-
lent to the AP re-scalings applied in Eqs. (30) and (31)
for the power spectrum multipoles.

In Fig. 2, we plot the WST coefficients evaluated from
the ABACUSSUMMIT mocks, together with the correspond-
ing results from the CMASS data, for the fiducial cosmol-
ogy. The level of agreement between the ABACUS model
and the data, which is even better than the one in the

14 Alternatively, inpainting techniques could be considered [112].
15 Available at https://github.com/mockFactory/make_survey

https://www.kymat.io/
https://github.com/mockFactory/make_survey
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power spectrum case, confirms the validity of our model
constructed for the WST.

FIG. 2. All 76 WST coefficients evaluated from the BOSS
CMASS dataset (blue circles) and the ABACUSSUMMIT mocks
(black squares) for the fiducial cosmology. The WST coeffi-
cients populate the data vector in order of increasing values
of the j1 and l1 indices, with the l1 index varied faster. The
1σ error bars on the data (which are too small to be clearly
seen on the plot) have been evaluated from the 2048 PATCHY

mock realizations.

E. Likelihood analysis

Having laid out the methodology on how to extract the
clustering statistics from both the data and also from the
two sets of mocks used in this work, we now proceed to
explain our strategy for combining these necessary ingre-
dients into a likelihood analysis of the BOSS dataset. In
particular, if X is our target estimator (the WST coef-
ficients or the power spectrum multipoles), we assume
a Gaussian likelihood16, L(θ|d), given by the following
relation:

logL(θ|d) = −1

2
[Xd −Xt(θ)]

T
C−1 [Xd −Xt(θ)]+const.,

(32)
where θ is the parameter we want to extract from the
data d and Xd is the value extracted from the BOSS
data d. The covariance matrix C is estimated from the

16 The validity of this assumption was recently tested in the weak
lensing application of Ref. [61], in which the probability distribu-
tion of the WST coefficients was found to be closer to Gaussian
than that of the bispectrum. Also see Ref. [114] for an in-depth
analysis of the validity of this assumption for various statistics.

Nmocks = 2048 PATCHY mocks:

C =
1

Nmocks − 1

Nmocks∑
k=1

(
Xk
P − X̄P

) (
Xk
P − X̄P

)T
, (33)

with X̄P the mean prediction from the Nmocks. In order
to de-bias our prediction for the inverse covariance ma-
trix, C−1, we apply the Hartlap correction factor [115],
as follows:

Ĉ−1 =
Nmocks −Nd − 2

Nmocks − 1
C−1, (34)

where Nd = 58 when working with the l = 0, 2 multipoles
of the galaxy power spectrum (up to kmax = 0.25 h/Mpc)
and Nd = 76 for the WST coefficients as the data vector.
Prior to inversion, we make sure that the covariance ma-
trices for both estimators are well-conditioned and can
thus be safely inverted in order to be used in the likeli-
hood in Eq. (32). The convergence of the WST covari-
ance is confirmed in Appendix B. The correlation matrix,
Cij/(CiiCjj), of the WST coefficients is shown in Fig. 3,
while the corresponding matrix for the power spectrum
multipoles is presented in Fig. 4, both evaluated at the
fiducial cosmology.

Crucially, the remaining quantity to determine in Eq.
(32) is the model, Xt(θ), which captures the dependence
of each estimator on the target set of cosmological pa-
rameters, θ. In our case this is an 11-dimensional vector
consisting of the 4 cosmological parameters varied in Ta-
ble I and the 7 nuisance parameters of the HOD model,
from Eq. (18). We construct this model as follows: if
θfid is the vector of the parameter values determining our
fiducial cosmology, given by the parameters in the first
row of Table I, and the associated best-fit HOD parame-
ters from Eq. (18), we model the parameter dependence

FIG. 3. Correlation matrix of all 76 coefficients for the WST
evaluated at the fiducial cosmology. The WST coefficients
populate the data vector in order of increasing values of the
j1 and l1 indices, with the l1 index varied faster, as in Fig. 2.
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FIG. 4. Correlation matrix of the galaxy power spectrum
multipoles, l = {0, 2}, evaluated from the 2048 realizations
of the PATCHY mocks for the fiducial cosmology. In the 2 × 2
blocks, from bottom to top and from left to right, we visualize
the auto and cross correlations of P̂0 and P̂2, respectively.

using the following expansion:

Xt(θ) = Xt(θfid) + (θ − θfid)∇θX, (35)

where the gradient ∇θX in Eq. (35) is straightforwardly
determined using the derivatives constructed from the
derivative grid cosmologies of Table I, as we explained in
§III B 1. We have carefully checked and confirmed that
the combination of the vector dimensionality, derivative
step size and number of HOD realizations used is suf-
ficient for the derivatives to be well-converged, for all
parameters and for both estimators (see Appendix §C
for details). It should be clarified, at this point, that
being a first order expansion, Eq. (35) needs to be eval-
uated using a fiducial cosmology θfid sufficiently close to
the true one, such that the derivative approximation only
breaks down far away from the (true) maximum of the
likelihood and the correct cosmology is recovered after
a likelihood analysis of the data. Since our chosen θfid

corresponds to the mean values of the Planck 2018 [83]
ΛCDM cosmology, and as it can be also inferred by the
very good agreement between the fiducial theory predic-
tion and the one from the data shown in Figs. 1 and
2, this requirement is satisfied in our analysis. We do,
however, point out that the since the Taylor expansion
(35) will inevitably break down far away from the fiducial
part of the parameter space, our model will fail to cap-
ture any potential non-Gaussianities in the likelihood, for
which a full model (e.g., an emulator) for Xt(θ) would be
necessary. We add that a very similar expansion was also
recently used in the Dark Energy Survey (DES) year-1
data re-analysis of Ref. [116], which employed a hybrid

combination of perturbation theory and ABACUSSUMMIT
simulations in order to model the lensing power spectrum
needed for their analysis 17. We leave the construction
of an actual WST emulator for future work. Finally, we
clarify that, even though a wide variety of approaches
exist for a more accurate modeling of the cosmological
dependence of the galaxy power spectrum or correlation
function (e.g., perturbation theory [20, 76–78, 109, 110])
or emulators [90, 103, 117–119]), we use the model from
Eq. (35) for the power spectrum, as well, in order to
guarantee a fair comparison against the performance of
the WST.

In order to perform a posterior analysis, we sample
the likelihood from Eq. (35) using the Markov Chain
Monte Carlo (MCMC) sampler emcee[120] 18, choosing
100 walkers, 500 ’burn-in’ steps and 100000 steps for our
main runs. We use flat unrestricted priors (with the walk-
ers initialized in the range 0 − 1.05) for all parameters,
with the exception of ωb, for which we also consider the
case of a Gaussian prior determined from Big Bang Nu-
cleosynthesis (BBN) [83] and the measurement of helium
and deuterium primordial abundances [121–123]:

ωb = 0.02268± 0.00038, (36)

a choice commonly adopted in analyses of BOSS data
[76–78]. Finally, to check the convergence of our chains,
we monitor the mean integrated autocorrelation time and
make sure its value is at least 2 orders of magnitude lower
than the total number of steps used, following the pro-
cedure laid out by Ref. [120]. We similarly also monitor
the mean value of the acceptance fraction and make sure
it always falls within the reasonable range of values of
0.3− 0.5.

IV. RESULTS

Before presenting our results from the likelihood anal-
ysis explained in §III E, we briefly summarize the proce-
dure we follow in order to determine the posterior of the
Hubble constant, h, as a derived parameter. As stated in
§III B 1, in the ABACUSSUMMIT simulations the value of the
angular size of the sound horizon at last scattering, θ?, is
kept fixed to the corresponding mean value derived from
measurements by the Planck satellite, 100θ? = 1.041533.
This implies that we can compute h for each point in
our chains and derive its posterior, which we will also
discuss below as the fifth cosmological parameter deter-
mined from our analysis.

17 We note that Ref. [116] was able to correct the errors caused
by such a Taylor expansion, using the HALOFIT model for the
matter power spectrum. Given that no such possibility is avail-
able for the cosmological dependence of the WST coefficients, a
correction of this kind was not possible in our case.

18 Publicly available in https://emcee.readthedocs.io/en/

stable/

https://emcee.readthedocs.io/en/stable/
https://emcee.readthedocs.io/en/stable/
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We now discuss the results of our analysis of the BOSS
CMASS data using the WST and the power spectrum
multipoles, starting with the case in which the BBN
prior (36) was imposed on the value of ωb. In Fig. 5,
we show the resulting 2-dimensional posterior probabil-
ity distribution function of the 3 other cosmological pa-
rameters explicitly varied in the likelihood (32), together
with the derived Hubble constant h, all of which have
been marginalized over the 7 nuisance parameters of the
HOD model. In addition, the mean and 1σ error values
obtained from the two estimators for all cosmological pa-
rameters are listed in Table II, while the full corner plot
is presented in Appendix §D.

FIG. 5. Constraints on the cosmological parameters obtained
from the combined monopole and quadrupole of the galaxy
power spectrum evaluated up to kmax = 0.25 Mpc/h (red
contours), as well as from the WST coefficients defined in
§III D (blue contours). The results shown above were obtained
after imposing a BBN Gaussian prior on the value of ωb =
0.02268± 0.00038.

We notice the relative consistency between the corre-
sponding mean values for the parameters extracted from
the two estimators, the differences of which never ex-
ceed the respective 1σ values from the power spectrum.
Furthermore, all values are broadly consistent with the
ones found from recent re-analyses of BOSS data [20, 76–
78, 109, 110], a fact that confirms the robustness of the
WST as a tool to be used for cosmological analyses. More
importantly, in addition to being able to serve as a reli-
able clustering statistic to infer cosmological parameters
from the LSS, the WST is found to deliver significant
improvements in the inferred 1σ errors for all cosmologi-
cal parameters, in the range 3− 8× tighter. This finding
demonstrates the potential carried in the use of the WST

as a way to access the non-Gaussian information encoded
in the LSS data (as suggested in our previous work [52]),
and thus subsequently improve the errors obtained on
cosmological parameters.

In Fig. 6 we show a case with no priors on any of the
cosmological parameters (the results are also summarized
in Table II). We observe a similar trend as in the previ-
ous case, with the WST once again outperforming the
regular power spectrum with respect to the obtained 1σ
errors, by a factor of 3 − 5. The inferred mean values
of the 5 cosmological parameters are once again consis-
tent, within 1σ, between the two statistics, despite the
fact that the totally unrestricted priors led to a relatively
lower value of ωb (relative to the BBN prior), and subse-
quently of h (through the fixed θ?).

We also briefly comment on the results obtained from
a likelihood analysis using the vector of WST coefficients
up to first order, only. In this case, the inferred 1σ errors
from the WST are improved compared to the correspond-
ing power spectrum results by a factor of 1.1 to 2.0.

A fair comparison with previous analyses of the BOSS
data [20, 76–78, 109, 110, 124, 125] is difficult given sev-
eral differences between those works and ours, the major
ones being the approximate model we employed from Eq.
(35) and the fact that the Hubble constant was not explic-
itly varied in our analysis, but was rather derived from
a fixed θ?

19. This is also the case when attempting to
compare against recent BOSS analyses using emulators
of the redshift-space power spectrum [126] or the corre-
lation function [90, 119], with the additional difference
that the correlation function analyses focused on much
smaller scales than the ones we worked with. It should be
also noted that the 1σ errors reported above are purely
statistical, since we did not attempt to quantify how the
various systematics and approximations adopted by our
analysis would affect the final results.

Furthermore, we clarify that in our WST analysis we
have purely worked with unreconstructed density fields.
In the context of traditional BOSS analyses, reconstruc-
tion algorithms [127] have been shown to enable a more
precise determination of the Baryon Acoustic Oscillation
(BAO) peak position, the complementary information of
which can further improve the constraints obtained using
the full shape of the power spectrum [78, 109] and also
the bispectrum [20]. Whether a WST analysis applied
to the reconstructed density field can improve the con-
straints extracted on cosmological parameters is an in-
teresting question, that we plan to explore in the future.
Putting these differences aside, we do highlight that the
relative 1σ error from the power spectrum obtained on
the Hubble constant is found to be equal to 2%, when
using the BBN prior on ωb, a value that is similar to the
one recently found by Refs. [20, 76, 78, 109].

19 We also worked with a subset of the CMASS sample, rather than
with the full CMASS and LOWZ samples, due to the limitations
imposed by the HOD procedure.
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BBN prior on ωb unrestricted priors

P(k) WST P(k) WST

ωb 0.02268+0.00036
−0.00036 0.02225+0.00034

−0.00034 0.0217+0.0043
−0.0043 0.0184+0.0011

−0.0011

ωc 0.1225+0.0037
−0.0037 0.120+0.00041

−0.00041 0.1217+0.0058
−0.0058 0.1154+0.0012

−0.0012

ns 0.927+0.063
−0.063 0.914+0.018

−0.018 0.921+0.057
−0.049 0.931+0.018

−0.018

σ8 0.77+0.13
−0.13 0.67+0.023

−0.023 0.762+0.11
−0.094 0.691+0.023

−0.023

h 0.675+0.014
−0.014 0.68+0.0025

−0.0025 0.668+0.024
−0.024 0.653+0.0074

−0.0074

TABLE II. Mean values and 68% confidence intervals for all
cosmological parameters resulting from the posterior analysis
of the power spectrum multipoles and the WST coefficients in
the case of a BBN prior applied on the value of ωb (left half),
and the case of unrestricted priors (right half). All results are
presented in the format ‘mean+1σ

−1σ’, after marginalization over
all HOD parameters.

FIG. 6. Same as in Fig. 5, but using a flat and uninformative
prior on ωb.

Finally, we finish this section by commenting on the
fact that the mean value of σ8 obtained from our WST
application is in very good agreement with results from
recent BOSS re-analyses, which are also found to be in
tension with the corresponding Planck value, in particu-
lar for the case of an unrestricted prior on ns [20]. Im-
posing a Planck prior on ns somewhat raises the recov-
ered mean value of σ8 [20, 109], but is not large enough
to completely alleviate the tension. Furthermore, cross-
correlating BOSS clustering data with CMB lensing mea-
sured by Planck has been recently found to further lower
the inferred value of σ8 [124].

V. CONCLUSIONS

In this work, we present the first application of the
wavelet scattering transform on actual galaxy obser-
vations, through a WST analysis of the BOSS DR12
CMASS dataset.

Building upon our previous LSS application to 3D mat-
ter overdensity fields [52], we lay out the detailed method-
ology to capture additional layers of realism that are nec-
essary to analyze galaxy observations obtained from a
spectroscopic survey, such as BOSS. After capturing the
effects of redshift-space anisotropy, non-trivial survey ge-
ometry, the shortcomings of the dataset through a set of
systematic weights and the Alcock-Paczynski effect, we
show how to transform a galaxy sample from redshift-
space sky coordinates into the weighted Feldman-Kaiser-
Peacock (FKP) field, which serve as the input of a WST
scattering network. The resulting WST coefficients can
then be treated as a well-defined basis that reflects the
clustering properties of the observed sample, which we
use as the main object of our BOSS analysis.

In order to model the cosmological dependence of
the WST coefficients we use the state-of-the-art suite
of ABACUSSUMMIT simulations [79]. These span the
cosmological parameter space around the Planck 2018
ΛCDM cosmology [83], and have been HOD-tuned to
match small-scale redshift-space correlation function of
the BOSS CMASS sample in the redshift range 0.46 <
z < 0.60. For the evaluation of the WST covariance ma-
trix, which is also necessary in addition to the model, we
employ the publicly available MULTIDARK-PATCHY mocks
[87, 91]. We take all necessary steps to ensure that our
mock theory predictions satisfy the same level of realism
as the observations we compare them against, and also
evaluate the multipoles of the anisotropic galaxy power
spectrum, which we use as a benchmark to assess the
performance of the WST.

We then use our model to perform a likelihood analy-
sis of the CMASS observations with the WST coefficients
and the power spectrum multipoles. We obtain the poste-
rior probability distributions of the 4 target cosmological
parameters, {ωb, ωc, ns, σ8}, as well as the Hubble pa-
rameter, h, derived from the fixed value θ?, all of which
were marginalized over the 7 nuisance parameters of the
HOD model. The analysis reveals a substantial improve-
ment in the values of the 1σ errors predicted by the WST,
which are tighter than the corresponding ones from the
regular power spectrum by a factor of 3 − 8, when a
BBN prior is applied on the value of ωb, and by a factor
in the range 3 − 5 in the case of flat and uninformative
priors for all of the parameters. At the same time, the in-
ferred mean values of all cosmological parameters by the
WST (as well as the power spectrum) are always found
to be broadly consistent with the ones found by recent re-
analyses of BOSS data [20, 76–78, 109, 110, 124], demon-
strating, overall, that the WST can be reliably used as a
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powerful estimator in modern analyses of LSS data 20.
We should take note, at this point, of certain limi-

tations of our current analysis, that we plan to tackle
in a follow-up work. First, the Taylor expansion from
Eq. (35), that we used to emulate the parameter depen-
dence of our model vector in the likelihood (Eq. 32) is
inevitably expected to break down in parameter regions
far away from the fiducial cosmology, a fact that essen-
tially prevents us from capturing any substantial non-
Gaussianities present in the likelihood. In order to do
this, a full model for the non-linear dependence of the
WST coefficients as a function of the cosmological pa-
rameters will need to be developed, similar to the training
procedure of an emulator for a given clustering statistic.
We envision that well-established emulation techniques
(such as the one presented in Ref. [90] for the correlation
function, or emulators at the field level [128]) could be
straightforwardly expanded to enable a full WST appli-
cation, such as the one we performed in this work. Sec-
ond, the Hubble parameter was not explicitly varied in
our analysis, but rather obtained as a derived parameter
through the fixed angular scale θ? (to the value measured
by the Planck satellite [83]) in the ABACUSSUMMIT simula-
tions. This limitation can be easily overcome by using a
different set of mocks, in which h is explicitly varied. Fur-
thermore, the current set of ABACUS mocks we used did
not account for the effect of light-cone evolution of the
galaxy clustering within the survey volume21, an effect
that can be rather easily overcome using the next gener-
ation of ABACUS mocks already in production. Lastly, the
weighting scheme (13) and (14), which we adopted to cor-
rect for the data systematics, was designed for the power
spectrum case, rather than for the WST. Even though
this option is expected to capture these effects to some ex-
tent, a correction scheme tailored to the WST estimator
would be preferred. After all of the above improvements
are implemented, a fair comparison against the results
obtained by state-of-the-art re-analyses of BOSS data us-
ing perturbation theory ([20, 76–78, 109, 110, 124]) or
emulators ([90, 103, 117–119, 126]) will finally be possi-
ble, a step that we reserve for future work.

Our BOSS analysis hints at a wide range of exciting
future applications of the WST in the context of LSS cos-
mology. In our previous work [52], we showed that the
WST coefficients are particularly sensitive to the prop-
erties of massive neutrinos, thanks to their innate ability
to capture clustering information beyond the traditional
2-point function, combined with their ability to trace the
properties of voids. Even though we did not include neu-
trinos in our current analysis, since they were not varied
in the ABACUSSUMMIT simulations, they can be easily in-
corporated using a future set of mocks that captures their

20 We note that this result relies on the adoption of a reliable and
accurate HOD model.

21 This effect is already captured, however, by the covariance from
the PATCHY mocks.

effect, which could then potentially allow us to obtain
powerful constraints on the sum of the neutrino masses.
This is also the case for a variety of other ΛCDM exten-
sions, such as theories for modified gravity or dynamical
dark energy. We also emphasize here that the procedure
we laid out is very flexible, and can be straightforwardly
applied to any future set of spectroscopic galaxy observa-
tions, given an associated set of systematic weights and
mock catalogues, both of which are commonly produced
to support analyses using traditional estimators. For ex-
ample, and subject to the additional improvements dis-
cussed above, our framework can be easily adjusted for a
future application to spectroscopic observations by DESI.

We note that despite their impressive performance in
the context of an LSS analysis, the wavelets we used to
implement the scattering network from Eq. (6) were pro-
posed in the context of a 3D molecular chemistry applica-
tion [65, 66]. One could envision developing wavelets op-
timized for a cosmological application, which can further
improve the benefits of a WST analysis. For example,
equivariant wavelets [72] can find a natural application
in the case of fields with a particular directional depen-
dence, as is the galaxy overdensity observed in redshift
space, that we have used as the input field in the current
work.

In addition, we comment on the fact that the second or-
der WST used in this analysis encodes information from
correlation functions up to 4th order. It would be in-
teresting, as a result, to compare a BOSS analysis using
WST and the 4-point correlation function [21] in future
work.

Through this first application of the wavelet scattering
transform on actual galaxy observations, we demonstrate
that this technique can serve as a promising tool for cur-
rent and future applications of cosmological parameter
inference.
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Appendix A: WST for masked density fields

In the original WST implementation (3) in KYMATIO,
the input field is assumed to be a periodic 3D cube,
such as, for example, the output of an N-body simula-
tion. Given that in this application, however, we work
with data that occupy the non-trivial survey geometry of
BOSS, we need to make the necessary modifications. In
particular, and in direct analogy to the power spectrum
case, we start by embedding the masked density fields
(23) (both from the data and the cut-sky mocks) into 3D
cubes using nbodykit. These 3D grids, which contain
both the actual volume of the survey and also the part
of the cube that lies outside of the BOSS mask, are fed
as input into KYMATIO. We then need to make sure that
the fundamental WST evaluations, wavelet convolution,
modulus and averaging, include only the contributions
from regions within the mask. In practice, we modify
KYMATIO such that regions of the 3D grid that lie outside
the mask do not contribute to the convolutions in Eq.
(3), in any order. This is straightforward to implement
with minimal modifications, given the exact knowledge
of the survey binary mask. Likewise, the regions outside
the mask are always zeroed out and do not receive any
contributions from the density field through the wavelet
convolutions. Finally, we take the modulus and average
over the parts of the field that lie within the survey foot-
print, in order to get the WST coefficients from a masked
input field. This procedure is analogous to the corre-
sponding evaluation of the power spectrum monopole for
an input masked field.

In addition to occupying an irregular survey geometry,
we also note that the density fields we work with in this
application are anisotropic, due to the effects of RSD,
with the survey line-of-sight lying along the radial di-
rection in a spherical coordinate system. Given that the
basis of solid harmonic wavelets we adopted was designed
for an isotropic input field, without treating any direc-
tion as special, the current WST configuration might not
fully leverage all the information encoded in the RSD
field (similar to evaluating only the monopole of the
power spectrum, that averages over all directions). Such
a shortcoming is indeed possible to overcome, for exam-
ple with the directional-dependent equivariant wavelets
of Ref. [72]. We defer this study for future work.

Appendix B: Numerical Convergence

Given that the covariance matrix of the WST coeffi-
cients is evaluated from simulations, we need to make
sure that the number of realizations used is sufficient to
guarantee the numerical convergence of the results. We
show in Fig. 7 the 1 − σ errors on the cosmological pa-
rameters as a function of the number of PATCHY mock
realizations used to evaluate the covariance matrix. We
find that the change (relative to the results obtained from
the full suite of Ncov = 2048 realizations) is smaller than
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1.8% for all parameters, when using Ncov ≥ 1800 real-
izations. This confirms the numerical convergence of the
WST covariance.

FIG. 7. The 1-σ errors on the cosmological parameters, σθ,
plotted as a function of the number of PATCHY mock real-
izations, Ncov, used to evaluate the WST covariance matrix.
The y axis is normalized with respect to the 1-σ errors ob-
tained when using the total number of available Ncov = 2048
realizations.

Appendix C: Data Compression

In addition to the covariance matrix convergence dis-
cussed in the previous section, we also confirm the nu-
merical stability of the derivatives entering the Taylor
expansion in Eq. (35). After testing how the 1-σ er-
rors obtained on the cosmological parameters change as
a function of the number of realizations used to evalu-
ate the derivatives, we found variations of at most 6%
when using half of the total realizations. Furthermore,
we note again that the simulations used to construct the
derivatives were run with phase-matched initial condi-
tions. This fact, in combination also with the much
higher volume and resolution of ABACUS compared to
other existing simulations, is expected to modulate the
noise due to cosmic variance, at least to some extent.
Given, however, the relatively low number of 20 HOD
realizations available for the evaluation of these deriva-
tives, we also test the numerical stability by repeating
our analysis using a compressed data vector.

In particular, for a likelihood L(θ|d), the quantity [129]

t = ∇θL(θ|d), (C1)

corresponds to a compression from the original data vec-
tor of dimensionality Nd down to one with dimensions
equal to the number of parameters, n. In the case of a
Gaussian likelihood with a data covariance independent
of the cosmological parameters, Eq. (C1) is further sim-
plified to

t = ∇θXTC−1 [Xd −Xt(θfid)] , (C2)

which represents a linear and lossless compression that
preserves the Fisher matrix of the original estimator [130,
131]. The Gaussian likelihood of the compressed statistic
is

logLt(θ|d) = −1

2
[t− t(θ)]T C−1

t [t− t(θ)] + const.,

(C3)
where

t(θ) = ∇θXTC−1 [Xt(θ)−Xt(θfid)] , (C4)

and with Ct the covariance matrix of t. In the particular
case of the WST, the original data vector of Nd = 76
coefficients is compressed down to n = 11 numbers. Re-
ductions of this kind greatly reduce the challenges asso-
ciated with parameter inference from high-dimensional
data vectors and have been utilized in bispectrum appli-
cations [132–134]. More importantly for our case, the
compression (C1) leads to a statistic that is less sen-
sitive to numerical noise, being a weighted average of
the original data points. Indeed, such a compression has
been recently used to accelerate the convergence of Fisher
forecasts, the numerical stability of which is notoriously
challenging in the case of noisy derivatives [135–137].

We compress the WST and the power spectrum mul-
tipole vectors using Eqs. (C2)-(C4) and then repeat the
parameter inference application of the analysis section,
sampling from the likelihood (C3). In Fig. 8, we com-
pare the marginalized 2-dimensional posteriors obtained
for the cosmological parameters using the compressed
WST, against the results obtained from the original, un-
compressed, WST analysis in the case of a BBN prior.
The very small differences between these two sets of re-
sults serve as additional confirmation of the robustness
of the main analysis. Finally, in Fig. 9 we show the
same comparison for the multipoles of the galaxy power
spectrum, reaching a similar conclusion.

Appendix D: Full Parameter Space for P(k) and
WST

For completeness, in this appendix we show the full
corner plots from our likelihood analysis, including the
marginalized posteriors of the 7 parameters of our HOD
model, that we treated as nuisance parameters. In par-
ticular, in Fig. 10 we show the full corner plot of the anal-
ysis with a BBN prior on the value of ωb, while Fig. 11
illustrates the results for the case of unrestricted priors
on all parameters. We see that the 12 parameters shown
are consistent (within 1σ) for the mean values recovered
using the WST coefficients and the power spectrum mul-
tipoles.
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FIG. 8. Constraints on the cosmological parameters obtained
from the original WST coefficients defined in §III D (red con-
tours), as well as from the compressed version of the WST
data vector from Eqs. (C2)-(C4) (blue contours). The results
shown above were obtained after imposing a BBN Gaussian
prior on the value of ωb = 0.02268± 0.00038.
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[87] S. A. Rodŕıguez-Torres, C.-H. Chuang, F. Prada,
H. Guo, A. Klypin, P. Behroozi, C. H. Hahn,
J. Comparat, G. Yepes, A. D. Montero-Dorta, J. R.
Brownstein, C. Maraston, C. K. McBride, J. Tin-
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