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We present a machine learning algorithm that discovers conservation laws from differential equa-
tions, both numerically (parametrized as neural networks) and symbolically, ensuring their func-
tional independence (a non-linear generalization of linear independence). Our independence module
can be viewed as a nonlinear generalization of singular value decomposition. Our method can readily
handle inductive biases for conservation laws. We validate it with examples including the 3-body
problem, the KdV equation and nonlinear Schrödinger equation.

I. INTRODUCTION

The importance of conservation laws (CLs) in physics
can hardly be overstated [1]. Physicists usually derive
conservation laws with time-consuming pencil and paper
methods, using different hand-crafted strategies for each
specific problem. This motivates searching for a general-
purpose problem-agnostic approach. A few recent papers
have exploited machine learning to auto-discover conser-
vation laws [2–5]. Despite promising preliminary results,
these techniques are not guaranteed to discover all con-
servation laws. In this paper, we start with differential
equations defining a dynamical system and aim to dis-
cover all its conservations laws, either in numerical form
(parameterized as neural networks) or in symbolic form.
The new method is named AI Poincaré 2.0 since it builds
on [2]. When no confusion occurs, we call the original
method 1.0, and the new method 2.0. We summarize
three major improvements of 2.0 over 1.0 below, as well
as in FIG. 1(c).

First, 1.0 tacitly requires the assumption that the tra-
jectory is ergodic, while 2.0 does not need the assump-
tion since it directly deals with differential equations. 2.0
can apply to systems with dissipation or directionality
on which 1.0 falls short. A case of directionality is the
Korteweg–De Vries (KdV) wave equation, where solitons
travel from left to right, violating ergodicity.

Second, 2.0 introduces a new manifold learning method
that is more efficient and accurate than 1.0. 2.0 also
extends the notion of variable dependence to functional
dependence, which is fundamental and useful for physics
and machine learning applications.

Third, 2.0 provides numerical evaluation of each con-
served quantity, while 1.0 provides no information at all
other than the conserved quantity exists. These numer-
ical values can hopefully give physicists insights about
properties or symbolic forms of the conservation laws.

In the Method section, we introduce our notation and
the AI Poincaré 2.0 algorithm. In the Results section, we
apply AI Poincaré 2.0 to various systems (illustrated in
FIG. 2) to test its ability to auto-discover conservation
laws, followed by discussions and conclusions. We note
other works exploring the direction of “machine learning
meets conservation laws” [6–8], which have different goals
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FIG. 1: (a) The AI Poincaré 2.0 pipeline: The NN front
leverages neural networks for conservation laws, while

the symbolic front searches for formulas with fast
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than ours.

II. METHOD

A. Problem and Notation

We consider a first-order ordinary differential equa-
tion (ODE) dz

dt = f(z) where z ∈ Rs is the state vector
and f : Rs → Rs is a vector field. Hamiltonian sys-
tems correspond to the special case where s is even and

f =
(
∂H0

∂p ,−
∂H0

∂x

)
for a Hamiltonian function H0. A

conserved quantity is a scalar function H(z) whose value
remains constant along a trajectory z(t) determined by
dz
dt = f(z) with any initial condition z(t = 0) = z0. A
necessary and sufficient condition for a scalar function
H(z) being a conservation law is ∇H · f = 0, because
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FIG. 2: Tested ordinary and partial differential equation examples, each of which has s degrees of freedom and nc
conservation laws. AI Poincaré 2.0 is seen to find the correct nc by computing rank (read off as the low flat region of

the neff curve as defined in [2]) or differential rank.

d
dtH (z(t)) = ∇H · dzdt = ∇H · f . We use hats to de-

note unit vectors, e.g., f̂ ≡ f/|f |. Our goal is to discover
the maximal number nc independent conserved quanti-
ties {H1(z), H2(z), · · · , Hnc

(z)} numerically and symbol-
ically, optionally with user-specified properties.

Dynamical systems of the form dz
dt = f(z) are very

general because (1) higher-order ODEs, e.g. Newto-
nian mechanics, can always be transformed to first-order
ODEs by including derivatives as new variables in z, and
(2) partial differential equations (PDEs) can be approx-
imated by ODEs by discretizing space.

B. AI Poincaré 2.0

AI Poincaré 2.0 consists of three steps: (1) learn con-
servation laws parameterized by neural networks, (2)
count the number of independent conservation laws and
(3) find symbolic formulas for conservation laws. The
pipeline is illustrated in FIG. 1.

1. Parameterizing conservation laws by neural networks

We parameterize a conserved quantity as a neural net-
work H(z; θ) where θ are model parameters. Our loss
function is defined as

`(θ) ≡ 1

P

P∑
i=1

∣∣∣f̂(z(i)) · ∇̂H(z(i);θ)
∣∣∣2 , (1)

where z(i) denotes the ith sample in phase space. ∇H(z)
can be easily computed with automatic differentiation [9].

Note that f̂ and ∇̂H are normalized unit vectors, to make
the loss function dimensionless and invariant under un-
interesting re-scaling of H. We update θ by trying to
minimize the loss function until it drops below a small
threshold ε.

To obtain multiple conserved quantities, one can re-
peat the above method with different random seeds and
hope to discover algebraically independent ones. In prac-
tice, however, we find that learned conservation laws are
often highly correlated for different initializations [10].
To encourage linear independence between two neural
networks, say, H1 and H2, we add a regularization term

R(θ1,θ2) ≡ 1

P

P∑
i=1

∣∣∣∇̂H1(z(i);θ1) · ∇̂H2(z(i);θ2)
∣∣∣2 (2)

to the loss function. Since we know that there cannot
be more conservation laws than degrees of freedom s,
we train n = s models together by minimizing the loss
function `1 + λ`2 defined by

` =
1

n

n∑
i=1

`(θi)︸ ︷︷ ︸
`1

+λ× 2

n(n− 1)

n∑
i=1

n∑
j=i+1

R(θi,θj)︸ ︷︷ ︸
`2

, (3)

where λ is a penalty coefficient. We refer to `1 and `2 as
conservation loss and independence loss, respectively.
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2. Counting the number of independent conserved
quantities

After training, we aim to determine (in)dependence
among these neural networks. Specifically, we are inter-
ested in functional independence, a direct generalization
of linear independence that we define and compute as
described below.

Definition II.1. Functional independence. A set of
non-zero functions H1(z), H2(z), · · · , Hn(z) is indepen-
dent if

f(H1(z), H2(z), · · · , Hn(z)) = 0 =⇒ f = 0 (4)

or, equivalently, if no function Hi(z) can be constructed
from (possibly nonlinear and multivalued) combinations
of the other functions.

Definition II.2. Function set rank. The function set
H = {H1(z), H2(z), · · ·Hn(z)} has rank k ≤ n if it con-
tains k but not k + 1 functions that are independent.

Computing the function set rank We determine
the rank k with a nonlinear manifold learning method.
We define the matrix A such that Aij is the value of the
jth neural network evaluated at the ith sample point:

A =


H1(z(1)) H2(z(1)) · · · Hn(z(1))
H1(z(2)) H2(z(2)) · · · Hn(z(2))
· · · · · · · · · · · ·

H1(z(P )) H2(z(P )) · · · Hn(z(P ))

 , (5)

where P � n is the number of data points z(i). If we
interpret each row of A as a point in Rn, then the ma-
trix corresponds to a point cloud in Rn located on a a
manifold, whose dimensionality k is equal to the function
set rank. If there are k independent linear conserved
quantities (where Hi(z) are linear functions), then the
point cloud will lie on a k-dimensional hyperplane that
can readily be discovered using singular value decompo-
sition (SVD): k is then the number of non-zero singular
values, i.e., the rank of the matrix A. For our more
general nonlinear case, we wish to discover the mani-
fold that the point cloud lies on even if it is curved. For
this, we exploit the manifold learning algorithm proposed
in Poincaré 1.0 [2] to measure the manifold dimension-
ality [11], which performs local Monte Carlo sampling
followed by a linear dimensionality estimation method,
from which we define neff . For the rank row in FIG. 2
(excluding the two last PDE examples), nc can be readily
read off as the value of neff corresponding to the low flat
valley.

Taking the derivative of f(H1(z), H2(z) · · · , Hn(z)) =
0 from equation (4) with respect to zi gives.

H1,1 H2,1 · · · Hn,1

H1,2 H2,2 · · · Hn,2

...
...

...
H1,s H2,s · · · Hn,s


︸ ︷︷ ︸

B


f,1
f,2
...
f,n


︸ ︷︷ ︸
∇f

= 0.
(6)

This means that, if {H1, · · · , Hn} and f are differentiable
functions and B has full rank, then ∇f(z) and therefore
f(z) itself must vanish identically, so the functions Hi

must be independent. We exploit this to define differen-
tiable independence and differentiable rank as follows:

Definition II.3. Differential functional indepen-
dence. A set of n non-zero differentiable functions H is
differentially independent if their gradients are linearly
independent, i.e., if rank B(z) = n almost everywhere
(for all z except for a set of measure zero).

Definition II.4. differential function set
rank. The differential rank of the function
set H = {H1(z), H2(z), · · ·Hn(z)} is defined as
kD = max

z
rank B(z).

In practice, it suffices to compute the maximum over
a finite number of points P � n: it is exponentially
unlikely that such sampling will underestimate the true
manifold dimensionality, just as it is exponentially un-
likely that P random points in 3-dimensional space will
happen to lie on a plane.

Numerically, one can apply singular value decomposi-
tion to B to obtain singular values {σ1, σ2, · · · , σn}, and
define the rank as the number of non-zero singular val-
ues. In practice, we treat components as vanishing if
the explained fraction of the total variance, σ2

i /
∑
j σ

2
j ,

is below ε = 10−2. In the differential rank row of FIG. 2
(plus two PDE examples in the rank row), we draw a
horizontal line at ε, and define nc as the number of com-
ponents above that line. The differential rank and the
rank mostly give consistent results, as shown in FIG. 2.
However, the differential rank is more efficient to com-
pute and appears to be more stable in high dimensions
(see examples in Section III D).

3. Discovering symbolic formulas

When no domain knowledge is available for a physical
system, we perform a brute-force search over symbolic
formulas ordered by increasing complexity as in [12, 13].

We leverage the criterion f̂ · ∇̂H = 0 to determine if a
candidate function H(z) is a conserved quantity or not.
We implement a brute force algorithm in C++ for speed
and employ a fast rejection strategy for further speedup:
we prepare np = 10 test points in advance, and reject

H immediately if
∣∣∣f̂(z) · ∇̂H(z)

∣∣∣ > εs = 10−4 for any

test point z. If a formula survives at the np test points,
we test thoroughly by checking the condition numerically
on the whole dataset, or test the condition symbolically.
We determine whether the new conserved quantity is in-
dependent of already discovered ones by checking if the
differential function set rank increases by 1 when adding
the new conserved quantity. Appendix A provides fur-
ther technical details.
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Including inductive biases to learn conservation
laws Above we did not distinguish between integrals of
motion (IOM) and conservation laws. Loosely speaking,
conservation laws are those IOMs with inductive biases.
As clarified in [14] and Section IV A, conservation laws
are usually derived from homogeneity and isotropy of
space and time, and have the feature of being additive,
i.e., expressible as a sum of simple terms involving only a
small subset of the degrees of freedom. Conserved quanti-
ties of PDEs usually take the form of integrals over space.
We incorporate any such desired inductive biases into our
method by restricting the neural networks parametrizing
Hi(z) to have the corresponding properties.

III. RESULTS

Summary of numerical experiments We test AI
Poincaré 2.0 on several systems: the Kepler problem, the
damped harmonic oscillator, the isotropic/anisotropic
harmonic oscillators , the gravitational three-body
problem, the KdV wave equation and the nonlinear
Schrödinger equation. The neural network has 2 hid-
den layers, each containing 256 neurons with SiLU acti-
vation, and is trained with the Adam optimizer [15] for
100 epochs. When training multiple networks simultane-
ously, we choose the regularization coefficient λ = 0.02.
Our method succeeds in discovering all conservation laws
numerically (FIG. 2) and most symbolically (Table I).
Below we go through these examples one by one.

A. 2D Kepler Problem

The 2D Kepler Problem is described by two coordi-
nates (x, y) and two velocity components (vx, vy),

z =

 x
vx
y
vy

 , f(z) =


vx

−GMx/(x2 + y2)3/2

vy
−GMy/(x2 + y2)3/2

 (7)

where G is the gravitational constant, M and m are the
mass of the sun and the planet, respectively. The sys-
tem has three conserved quantities: (1) energy H1 =

−GMm/
√
x2 + y2 + m

2 (v2
x+v2

y); (2) angular momentum
H2 = m(xvy − yvx); (3) The direction of the Runge-lenz

vector H3 = arctan(
vxH2+GMr̂y
−vyH2+GMr̂x

) where r̂ ≡ (r̂x, r̂y) =

( x√
x2+y2

, y√
x2+y2

). Without loss of generality, GM = 1.

As shown in FIG 2 first column, out method correctly
identifies all of three conservation laws.

The reverse Polish notation for
√
x2 + y2 is xQyQ+R (6

symbols) which is quite expensive. To facilitate symbolic
learning, one may wish to add in the radius variable r =√
x2 + y2 to exploit the symmetry of the problem. To

do so, we augment the original system with the extra
variable r into an augmented system:

z′ =


x
vx
y
vy
r

 , f ′(z′) =


vx

−GMx/(x2 + y2)3/2

vy
−GMy/(x2 + y2)3/2

(xvx + yvy)/r

 (8)

Our method manages to rediscover the symbolic formulas
for energy and angular momentum, but the one for the
Runge-Lenz vector is too long to be discovered, as shown
in Table I.

B. 1D Damped Harmonic Oscillator

1D damped harmonic oscillator is described by the
equation

d

dt

(
x
p

)
=

(
p

−x− γp

)
, (9)

where γ is the damping coefficient. In the sense of Frobe-
nius integrability (defined in Section IV A), the system
has 1 conserved quantity. We first attempt to construct
the quantity analytically. The family of solutions for
Eq. (9) is(

x(t)
p(t)

)
=

(
e−γtcos(t+ ϕ)
e−γtsin(t+ ϕ)

)
, ϕ ∈ [0, 2π). (10)

Define the complex variable z(t) ≡ x(t) + ip(t) =
e(−γ+i)t+iϕ and its complex conjugate z̄ = e(−γ−i)t−iϕ.
Then

H ≡ z(−γ−i)/z̄(−γ+i) =
(z
z̄

)−γ
(zz̄)−i = e−2iγϕ (11)

is a conserved quantity. When γ = 0, H ∼ (zz̄) = |z|2 =
x2 + p2 which is the energy; when γ →∞, H ∼ (z/z̄) ∼
arg(z) = arctan(p/x) which is the polar angle. For vi-
sualization purposes, we define H ′ ≡ i

2γ lnH = θ + lnr
γ ,

where θ = arctan px and r =
√
x2 + p2. We visualize

cosH ′ in FIG. 4 top for different γ. The function looks
regular for γ = 0 and γ ≥ 10, but looks ill-behaved for
e.g., γ = 0.01 and 0.1.

Neural networks cannot learn ill-behaved con-
served quantities well. Neural networks have an im-
plicit bias towards smooth functions, so they are unable
to learn ill-behaved conserved quantities. To verify the
argument, we run AI Poincaré 2.0 (only an n = 1 model,
hence no regularization) on the 1D damped harmonic os-
cillator with different damping coefficient γ, and plot `1
as a function of γ in FIG. 3. We found that: (1) the
conservation loss `1 is almost vanishing at small γ = 0.01
and large γ = 100; (2) `1 peaks around γ = 1, which
agrees with the visualization in FIG. 4 top row. We vi-
sualize functions learned by neural networks in FIG. 4
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System Integrals of Motion or Conservation Laws Reverse Polish Notation Discovered

Kepler Problem
H1 = 1

2
(p2x + p2y)− 1√

x2+y2
pxQpyQ+rIo- Yes

H2 = xpy − ypx xpy*ypx*- Yes
H3 = (xpy − ypx)py + r̂x xpy*ypx*-py*xr/+ No

1D Damped Oscillator H1 = arctan( p
x

) + ln
√
x2 + p2/γ px/TxQpQ+RLγ/+ No

Isotropic Oscillator
H1 = 1

2
(x2 + p2x) xQ*pxQ+ Yes

H2 = 1
2
(y2 + p2y) yQpyQ+ Yes

H3 = xy + pxpy xy*pxpy*+ Yes

Anisotropic Oscillator
H1 = 1

2
(x2 + p2x) xQ*pxQ+ Yes

H2 = 1
2
(4y2 + p2y) yQOOpyQ+ Yes

H3 = x
√
H1H2 − l2 − lpx (l = xpy − 2ypx) H1H2*lQ-Rx*lpx*- No

Three Body Problem

H1 =
∑3

i=1
1
2
(p2i,x + p2i,y)− ( 1

r12
+ 1

r13
+ 1

r23
)

∑
i pi,xQpi,yQ+ri(i+1)IO- Yes

H2 =
∑3

i=1 xipi,y − yipi,x
∑

i xipi,y*yipi,x*- Yes

H3 =
∑3

i=1 pi,x
∑

i pi,x Yes

H4 =
∑3

i=1 pi,y
∑

i pi,y Yes

KdV

H1 =
∫
φ dx φ Yes

H2 =
∫
φ2 dx φQ Yes

H3 =
∫

(2φ3 − φ2
x) dx φQφ*OφxQ- Yes

H4 =
∫

(5φ4 − 10φφ2
x + φ2

xx) dx φQQ5*φxQφ*10*-φxxQ+ No

Nonlinear Schrödinger
H1 =

∫
|ψ|2 dx ψQ Yes

H2 =
∫

(|ψx|2 + |ψ|4) dx ψxQψQQ+ Yes
H3 =

∫
(|ψxx|2 + 2|ψx|2|ψ|2 − 2|ψ|6) dx ψxxQψQψxQO*+ψQQψQ*O- No

TABLE I: 16 of the 20 conservation laws were discovered not only numerically, but also symbolically using our
fast-rejection brute force search limited to 9 distinct symbols.

middle row, each column displaying results of a specific γ.
To interpret what conserved quantity the neural network
has learned, we compare the learned function H(x, p)

with two baseline functions H1(x, p) = r ≡
√
x2 + p2

and H2(x, p) = x in FIG. 4 bottom row. If H and
Hi(i = 1, 2) are the same function up to an overall non-
linear transformation, i.e., H = f(Hi), then 2D scatter
points (H(x, p), Hi(x, p)) for all (x, p) pairs should only
occupy a 1D sub-manifold in 2D. When the scatter points
do not have a submanifold structure, it implies that H
and Hi are not the same function. When γ = 0.01, the
conserved quantity is equivalent to r up to a nonlinear re-
parameterization; When γ = 100, the conserved quantity
is equivalent to x up to a nonlinear re-parameterization.

While advanced techniques [16] can bias neural net-
works towards highly oscillatory and/or ill-behaved func-
tions, the smoothness of neural networks is a feature than
bug for physicists who care about only well-behaved con-
served quantities. We will expand on this idea in Section
IV A.

C. 2D Isotropic and Anisotropic Harmonic
Oscillator

The Harmonic Oscillator (2D) is described by two co-
ordinates (x, y) and two momenta (px, py).

z =

 x
px
y
py

 , f(z) =

px/m−ω2
xx

py/m
−ω2

yy

 , (12)

10 2 10 1 100 101 102

10 6

10 5

10 4

10 3

1

FIG. 3: 1D damped harmonic oscillator: conservation
loss `1 as a function of γ.

where m is the mass, and ωx and ωy are angular fre-
quencies. When ωx 6= ωy, the system is anisotropic and
has two obvious conserved quantities: (1) x-energy H1 =
1
2ω

2
xx

2 + 1
2mp

2
x and (2) y-energy H2 = 1

2ω
2
yy

2 + 1
2mp

2
y.

The third conserved quantity is less studied by physi-
cists but still exists if ωx/ωy is a rational number [17].
When ωx = ωy, the system is isotropic and has three con-
served quantities. Besides H1 and H2, angular momen-
tum H3 = xpy − ypx is also conserved. For the isotropic
case, we choose m = ωx = ωy = 1; for the anisotropic
case, we choose m = ωx = 1, ωy = 2. Samples are drawn
from the uniform distribution z ∼ U [−2, 2]4. We include
more physics discussion below for completeness.



6

FIG. 4: 1D damped harmonic oscillator: Each column corresponds to a damping coefficient γ. Top: The conserved
quantity of the 1D damped harmonic oscillator with different γ. Neural networks cannot perfectly learn the singular
behavior near the origin, and also struggle when the stripes get too narrow. Middle: visualizations of neural network

predictions of the conserved quantity. Bottom: Comparison of neural network predictions with x and r =
√
x2 + p2.

For γ = 0 and γ = 100, the neural network learns r and x as conservation laws, respectively.

Isotropic case In the isotropic case ωx = ωy = m = 1,
there are four conservation laws [18]:

2H1 = x2 + p2
x, 2H2 = y2 + p2

y,

L = ypx − xpy, K = xy + pxpy.
(13)

but they are dependent because L2 + K2 = 4H1H2.
H1, H2 and L are more common in physics, while K
is less common. However, there is no need to prefer
L over K. In fact, our symbolic module discovers the
three conserved quantities 2H1, 2H2,K and then ignores
L because of its dependence on the other three quanti-
ties, shown in Table I. The ordering of L and K is in
fact arbitrary. In terms of reverse polish notation, both
K = xy ∗ pxpy ∗ + and L = ypx ∗ xpy ∗ − belong to the
template 0020022 where 0 represents a variable and 2
represents a binary operator. Because we try “+” before
“−”, K comes before L. If we instead try “−” before
“+”, then L comes before K. As a sanity check, our
method discovered the correct number (3) of conserva-
tion laws, as shown in FIG. 2 second column.

Anisotropic case Something amusing happened for
the anisotropic oscillator example. The first author, de-
spite passing his classical mechanics exam with full score,
expected two IOMs rather than three because the angular

momentum is not conserved for the anisotropic oscillator.
However, AI Poincaré insisted there were three IOMs, as
shown in FIG. 2 third column. The authors eventually
realized that AI Poincaré was right: a third IOM is in-
deed present, although poorly known among physicists
[17].

Let us consider the specific case m = ωx = 1, ωy = 2.
The equations of motion are:

d

dt

 x
vx
y
vy

 =

 vx
−x
vy
−4y

 . (14)

Solving the equation yields the trajectory x
vx
y
vy

 =

 Axsin(t+ ϕx)
Axcos(t+ ϕx)
Aysin(2t+ ϕy)

2Aycos(2t+ ϕy)

 (15)

with arbitraty constants Ax, Ay, ϕx and ϕy.
We define angular momentum

L(1) ≡ xpy − ypx = 2AxAy(sin(t+ ϕ1 − ϕ2)). (16)

Note L(1) is not conserved, nor is K(1) ≡√
(2AxAy)2 − L(1)2 = 2AxAycos(t + ϕ1 − ϕ2). How-

ever, it is interesting to note that the trajectory of
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z′ ≡ (x, vx, L
(1),K(1)) can be generated from an

isotropic harmonic oscillator, because all components
have the same angular frequency. Hence the ‘angular
momentum’ is conserved:

L(2) ≡ xK(1) − yL(1) =

x(xpy − ypx)− y
√

(x2 + p2
x)(y2 + p2

y)− (xpy − ypx)2

(17)
Although the numerical front realizes the existence of this
conserved quantity, it remains difficult for the symbolic
front to discover it due to its length, as shown in Table
I.

For general (ωx, ωy), there exists a third conserved
quantity in the sense of Frobenius integrability, as we
construct below (also in [18]). The family of solutions is x

px
y
py

 =

 Axcos(ωxt+ ϕx)
−ωxAxsin(ωxt+ ϕx)
Aycos(ωyt+ ϕy)
−ωyAysin(ωyt+ ϕy)

 (18)

We define z1 ≡ 1
Ax

(x + i pxωx
) = ei(ωxt+ϕx), and z2 ≡

1
Ay

(y + i
py
ωy

) = ei(ωyt+ϕy). Hence

H3 ≡ z
ωy

1 /zωx
2 = ei(ωyϕx−ωxϕy) (19)

is a conserved quantity. In the isotropic case when ωx =
ωy = ω, H3 simplifies to

H3 = (ω2xy + pxpy + iω(xpy − ypx))/H2 (20)

whose imaginary part is the well-known angular momen-
tum. Since the norm of H3 is 1, the real and imaginary
part are not independent. We plot −ilnH3 in FIG. 5 top
with different (ωx, ωy). We set Ax = Ay = 1. In the
cases when ωy/ωx is an integer or simple fractional num-
ber, H3 is regular; however when ωy/ωx is a complicated
fractional number or even an irrational number, H3 is
ill-behaved, demonstrating fractal behavior.

We also run AI Poincaré 2.0 (n = 4 models are trained)
on the 2D harmonic oscillator example with different
frequency ratios ωy/ωx. In FIG. 5 bottom, we visual-
ize the worst conserved quantity, i.e., the one with the
highest conservation loss, out of 4 neural networks. To
map the four-dimensional function to a 2D plot, we con-
strain x = cosϕ1, px = sinϕ1, y = cosϕ2, py = sinϕ2.
When (ωx, ωy) = (1, 1) or (1, 2), the neural network pre-
diction of the third conserved quantity aligns well with
our expectation (visualized in FIG. 5). For more com-
plicated ωy/ωx ratios, the prediction looks similar to the
(ωx, ωy) = (1, 1) case, but they have high conservation
loss, as shown in TABLE II.

D. Three-body Problem

The three-body problem has 12 degrees of free-
dom: 6 positions (xi, yi)(i = 1, 2, 3) and 6 veloci-
ties (vx,i, vy,i)(i = 1, 2, 3). Although there are 12-
1=11 IOMs, only 4 are identified as conservation laws

(ωx, ωy) (1, 1) (1, 2) (2, 3) (17, 23) (67, 97)
Worst conservation loss 1.1× 10−4 5.1× 10−4 7.9× 10−4 1.2× 10−3 1.4× 10−3

Average conservation loss 7.7× 10−5 4.6× 10−4 4.7× 10−4 1.0× 10−3 1.1× 10−3

TABLE II: 2D harmonic oscillator: worst and average
conservation loss for different ratios ωy/ωx.

by physicists: (1) x-momentum: H1 =
∑3
i=1mivi,x;

(2) y-momentum: H2 =
∑3
i=1mivi,y; (3) angular mo-

mentum: H3 =
∑3
i=1mi(xivi,y − yivi,x); (4) energy

H =
∑3
i=1

1
2mi(v

2
i,x + v2

i,y) + ( Gm1m2

((x1−x2)2+(y1−y2)2)1/2
+

Gm1m3

((x1−x3)2+(y1−y3)2)1/2
+ Gm2m3

((x2−x3)2+(y2−y3)2)1/2
). In numer-

ical experiments, we set G = m1 = m2 = m3 = 1.
Similar to the Kepler problem, we can simplify symbolic
search by adding three distance variables:

r12 =
√

(x1 − x2)2 + (y1 − y2)2,

r13 =
√

(x1 − x3)2 + (y1 − y3)2,

r23 =
√

(x2 − x3)2 + (y2 − y3)2.

(21)

According to Landau [14], conservation laws are those
IOMs which respect spacetime symmetries and being ad-
ditive. To incorporate these inductive biases, we assume
that a conserved quantity decomposes into 1-body terms
and 2-body terms. We assume nothing about the 1-body
terms, but assume translational and rotational invariance
for the 2-body terms. As a result, a candidate conserva-
tion law must have the form:

H =

3∑
i=1

g(xi, yi, vi,x, vi,y) +

3∑
i=1

3∑
j=i+1

h(rij) (22)

where rij ≡
√

(xj − xi)2 + (yj − yi)2. By param-
eterizing g and h as two separate neural networks,
the learned conservation laws automatically satisfy the
above-mentioned desired physical properties. Our algo-
rithm now discovers precisely 4 independent conservation
laws, as shown in FIG. 2 fourth column.

It is useful to push the limit of our method to see it
still works in more challenging scenarios. We investigate
two cases below: (1) no inductive biases or (2) unequal
masses.

Challenging case 1: No inductive biases. When
no inductive bias is added to the neural network, the
neural network degrades to parameterize integrals of mo-
tion. Since a first-order differential equation with s de-
grees of freedom have s − 1 integrals of motion, the 2D
three-body problem has 12− 1 = 11 integrals of motion.
The results are quite interesting: the differential rank
method predicts correctly 11 IOMs (FIG. 6 left), while
the rank method predicts incorrectly 12 IOMs (FIG. 6
right). This is possibly because Neural Empirical Bayes
(the manifold learning module used to compute rank, as
well as in AI Poincaré 1.0) degrades when dealing with
high-dimensional manifolds. This highlights yet another
benefit of differential rank, which is novely proposed in
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FIG. 5: The third conserved quantity of the 2D harmonic oscillator with different frequency pairs (ωx, ωy). Top:
ground Truth; bottom: learned results by neural networks. A neural network can only learn this conserved quantity
if the frequency ratio q ≡ ωx/ωy is a ratio of small integers; if q is irrational, the conserved quantity is an everywhere

discontinuous function that is completely useless to physicists.

FIG. 6: The 2D three body problem without inductive
biases. The differential rank (left) correctly predicts 11

IOMs, while the rank (right) incorrectly predicts 12
IOMs. This implies that the differential rank is

preferred over the rank in high dimensions, i.e., when nc
is large.

2.0. Differential rank is not only more numerically effi-
cient than rank, but also more stable in high dimensions.

Challenging case 2: Unequal masses We tried
a case in which m1 : m2 : m3 = 400 : 20 : 1. Both
the rank and the differential rank predict 5 conservation
laws, shown in FIG. 7 left and right. Interestingly, this
is different from 4 conservation laws in the case of equal
masses. We conjecture that this is because in the limit
m1 � m2 � m3: (1) the momentum of m1 is almost con-
served (2 conservation laws); (2) m2 orbits around m1 as
in the Kepler problem (3 conservation laws); (3) any term
involving m3 can be ignored. So there are 2+3=5 con-
servation laws in total. The discrepancy between cases
of equal or unequal masses is arguably a feature rather
than a bug, implying that our method not only applies
to exact conservation laws, but also to approximate ones.

FIG. 7: The 2D three body problem with uneuqal
masses m1 : m2 : m3 = 400 : 20 : 1. Both the differential
rank (left) and the rank (right) correctly predict nc = 5
conservation laws. The result is different from nc = 4
for the equal masses case in FIG. 2, implying that our

method can also capture approximate conservation laws
besides exact conservation laws.

E. KdV Wave Equation

Another set of interesting systems are partial differen-
tial equations (PDE) in the form ut = f(u, ux, uxx, · · · ).
Since a field has infinite number of degrees of freedom
(hence infinitely many IOMs), it is crucial to constrain
the form of conservation laws to exclude trivial ones. In
quantum mechanics, for example, any projector onto an
eigenstate is an IOM, but these are less profound than
probability conservation (known as unitarity) and energy
conservation etc. Thus we focus on conservation laws
with an integral form obeying translational invariance:

H =

∫
h(u, |ux|, |uxx|, · · · ) dx (23)
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In practice, we replace the integral by a sum over the
points on a uniform grid. Moreover, we take the absolute
value of derivatives as inputs, e.g., |ux| and |uxx|, to avoid
trivial “conserved quantities” of the total derivative form
h = d

dxF (u, ux, uxx, ...), e.g., ux, uux, or uxx, which are
conserved simply due to zero boundary conditions.

The Korteweg–De Vries (KdV) equation is a mathe-
matical model for shallow water surfaces. It is a nonlin-
ear partial differential equation for a function φ with two
real variables, x (space) and t (time):

φt + φxxx − 6φφx = 0. (24)

Zero boundary conditions are imposed at the ends of
the interval [a, b]. The KdV equation is known to have
infinitely many conserved quantities [19], which can be
written explicitly as∫ b

a

P2n−1(φ, φx, φxx, · · · )dx, (25)

which follows from locality and translational symmetry.
The polynomials Pn are defined recursively by

P1 = φ,

Pn = −dPn−1

dx
+

n−2∑
i=1

PiPn−1−i.
(26)

The first few conservation laws are∫
φdx (mass)∫
φ2dx (momentum)∫
(2φ3 − φ2

x)dx (energy)

(27)

Despite infinitely many conservation laws, useful ones in
physics are usually constrained to contain only φ and
low-order derivatives (φx, φxx, · · · ).

Converting to the canonical form ż = f(z) Since
our framework can only deal with systems with finite
degrees of freedom, we need to discretize space. We dis-
cretize the interval x ∈ [−10, 10] uniformly into Np = 40
points, denoted x1, · · · , xNp and only store derivatives
up to fifth order on each grid point, using them to
parametrize our φ(x). This transforms our PDE into an
ordinary differential equation with 3Np degrees of free-

dom (φ(i) = φ(xi), φ
(i)
x = φx(xi), · · · ): Eq. (24) implies

that

∂t


φ
φx
φxx

...

 =


−φxxx + 6φφx

−φxxxx + 6(φ2
x + φφxx)

−φxxxxx + 6(3φxφxx + φφxxx)
...

 (28)

so our discretized PDE problem becomes

z ≡



φ(1)

φ
(1)
x

φ
(1)
xx

...
φ(Np)

φ
(Np)
x

φ
(Np)
xx


, f(z) ≡ ∂tz =



−φ(1)
xxx + 6φ(1)φ

(1)
x

−φ(1)
xxxx + 6(φ

(1)2
x + φ(1)φ

(1)
xx )

−φ(1)
xxxxx + 6(3φ

(1)
x φ

(1)
xx + φ(1)φ

(1)
xxx)

...

−φ(Np)
xxx + 6φ(Np)φ

(Np)
x

−φ(Np)
xxxx + 6(φ

(Np)2
x + φ(Np)φ

(Np)
xx )

−φ(Np)
xxxxx + 6(3φ

(Np)
x φ

(Np)
xx + φ(Np)φ

(Np)
xxx )


(29)

Sample generation We represent φ as a Gaussian
mixture, so all derivatives can be computed analytically.
In particular,

φ(x) =

Ng∑
i=1

Ai(
1√

2πσi
exp(−(x−µi)2)/2σ2

i ),−10 ≤ x ≤ 10

(30)
where coefficients are set or drawn randomly accordingly
to Ai ∼ U [−5, 5], µi ∼ U [−3, 3], σi = 1.5. These distri-
butions are chosen such that (1) φ(x) is (almost) zero at
two boundary points x = −10, 10; and (2) every single
term in f(z) have similar magnitudes. We choose Ng = 5
and generate P = 104 profiles of φ.

Constraining conservation laws The conserva-
tion laws of partial differential equations usually have
the integral form, i.e., H =

∫
h(x′)dx where x′ =

(φ, φx, φxx, · · · ). When space is discretized, we constrain

the conservation law to the form H =
∑Np

i=1 h(x′). On
the numerical front, we parameterize h(x′) (as opposed
to H) by a neural network; On the symbolic front, we
search the symbolic formula of h(x′) (as opposed to H).
The summation operation is hard coded for both fronts.

Avoiding trivial conservation laws Due to zero
boundary conditions, if h(x′) is an x-derivative of an-

other function g(x′), then it is obvious that
∫ b
a
h(x′)dx =

g(x′)|b−g(x′)|a = 0 which is a trivial conserved quantity.
For example, h(x′) = φx, φφx, φxx, φ

2
x+φφxx are all triv-

ial. We observe that each of them has at least one term
that is an odd function of a derivative. Consequently a
simple solution is to use absolute values (|φx|, |φxx|, · · · )
instead of (φx, φxx, · · · ) so that these trivial conservation
laws are avoided in the first place.

On the numerical front, our algorithm successfully dis-
covers 2, 3, 4 conserved quantities which are dependent
on φ, (φ, φx) and (φ, φx, φxx) respectively, as shown in
FIG. 2 second to last column. On the symbolic front,
we constrain the input variables to be (φ, φx, φxx), and
three out of four conservation laws (mass, momentum
and energy) can be discovered, as shown in Table I. Our
method fails for the fourth conservation law because it is
too long.

F. Nonlinear Schrödinger Equation

The 1D nonlinear Schrödinger equation (NLS) is a non-
linear generalization of the Schrödinger equation. Its
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principal applications are to the propagation of light in
nonlinear optical fibres and planar waveguides and to
Bose-Einstein condensates. The classical field equation
(in dimensionless form) is

iψt = −1

2
ψxx + κ|ψ|2ψ. (31)

Zero boundary conditions are imposed at infinity [20].
Like the KdV equation, the NLS has infinitely many con-
served quantities of the integral form

H(x) =

∫ ∞
−∞

h(ψ,ψx, ψxx, · · · )dx. (32)

Useful conservation laws in physics usually contain only
low-order derivatives, e.g.,

unitarity :

∫
|ψ|2dx

energy :

∫
1

2

(
|ψx|2 + κ|ψ|4

)
dx

(33)

Converting to the canonical form ż = f(z) Sim-
ilar to the KdV equation, we treat (ψ,ψx, ψxx, · · · )
as different variables. We denote ψr ≡ Re(ψ), ψi ≡
Im(ψ),Re(ψx) = ψx,r, Im(ψx) = ψx,i, etc.

∂t


ψ
ψx
ψxx

...

 =


1
2 iψxx − iκ|ψ|

2ψ
1
2 iψxxx − iκ(|ψ|2ψx + (ψrψx,r + ψiψx,i)ψ)

1
2 iψxxxx − iκ(|ψ|2ψxx + 2(ψrψx,r + ψiψx,i)ψx + (ψ2

x,r + ψrψxx,r + ψ2
x,i + ψiψxx,i)ψ)

...


(34)

Since ψ is a complex number, we should treat real and
imaginary parts separately.

∂t



ψr
ψi
ψx,r
ψx,i
ψxx,r
ψxx,i

...


=



− 1
2ψxx,i + κ|ψ|2ψi

1
2ψxx,r − κ|ψ|

2ψr
− 1

2ψxxx,i + κ(|ψ|2ψxi
+ (ψrψx,r + ψiψx,i)ψi)

1
2ψxxx,r − κ(|ψ|2ψx,r + (ψrψx,r + ψiψx,i)ψr)

− 1
2ψxxxx,i + κ(|ψ|2ψxx,i + 2(ψrψx,r + ψiψx,i)ψx,i + (ψ2

x,r + ψr,iψxx,r + ψ2
x,i + ψiψxx,i)ψi)

1
2ψxxxx,r − κ(|ψ|2ψxx,r + 2(ψrψx,r + ψiψx,i)ψx,r + (ψ2

x,r + ψrψxx,r + ψ2
x,i + ψiψxx,i)ψr)

...


(35)

Just as in the KdV example, to avoid trivial solu-
tions, we consider only the equations for magnitude
(|ψ|, |ψx|, |ψxx|, · · · ).

∂t


|ψ|
|ψx|
|ψxx|

...


︸ ︷︷ ︸

z

=


(ψr∂tψr + ψi∂tψi)/|ψ|

(ψx,r∂tψx,r + ψx,i∂tψx,i)/|ψx|
(ψxx,r∂tψxx,r + ψxx,i∂tψxx,i)/|ψxx|

...


︸ ︷︷ ︸

f

(36)
Sample generation is similar to the KdV equations,

with the only difference that real and imaginary parts
are both treated as (independent) Gaussian mixtures.

We feed the neural network with (1) ψ only; (2) ψ and
|ψx|; (3) ψ, |ψx| and |ψxx|, and our method predicts 1, 2
and 3 conservation laws respectively (shown in FIG. 2 last
column), which basically agree with the ground truth, al-
though our method is unable to discover the momentum

which involves ψx because the input |ψx| lacks the phase
information. We would like to investigate how to include
the phase information with the help of complex neural
networks in future works.

IV. DISCUSSION

A. Definitions of integrability and relations to AI
Poincaré 1.0/2.0

Conservation laws are closely related to the notion of
integrability [21], which in turn has various definitions
from different perspectives [22, 23]. Here we list five def-
initions of integrability and corresponding definitions of
conserved quantities.

(1) General integrability [global geome-
try/topology]. In the context of differential dynamical
systems, the notion of integrability refers to the existence
of an invariant regular foliation of phase space [22].
Consequently, a conserved quantity should be a well-
behaved function globally, not demonstrating any fractal
or other pathological behavior.

(2) Frobenius integrability [local geome-
try/topology]. A dynamical system is said to be
Frobenius integrable if, locally, the phase space has a
foliation of invariant manifolds [22]. One major corollary
of the Frobenius theorem is that a first-order dynamical
system with s degrees of freedom always has s−1 (local)
integrals of motion. Consequently, a conserved quantity
in the sense of Frobenius integrability does not require
the foliation to be regular in the global sense. The visual
differences between local and global conserved quantities
are shown in FIG. 4, and 5.

(3) Liouville integrability [algebra]. In the spe-
cial setting of Hamiltonian systems, we have Liouville
integrability, which focuses on algebraic properties of a
Hamiltonian system [17]. Liouville integrability states
that there exists a maximal set of Poisson commuting
invariants, corresponding to conserved quantities. A sys-
tem in the 2n-dimensional phase space is Liouville inte-
grable if it has n independent conserved quantities which
commute with each other, i.e., {Hi, Hj} = 0. According
to the Liouville-Arnold theorem [17], such systems can
be solved exactly by quadrature, which is a special case
of solvable integrability (the fifth criterion below).

(4) Landau integrability [concept simplicity]
Landau stated in his textbook [14] that physicists pre-
fer symmetric and additive IOMs and promote them as
fundamental “conservation laws”.

(5) Solvable integrability [symbolic simplicity].
Solvable integrability requires the determination of solu-
tions in an explicit functional form [23]. This property is
intrinsic, but can be very useful to simplify and theoret-
ically understand problems.

(6) Experimental integrability [robustness]. In
physics, we consider a conserved quantity useful if a mea-
surement of it at some time t can constrain the state at
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General Frobenius Liouville Landau solvable
Poincaré 1.0 Yes No No No Yes
Poincaré 2.0 Yes Yes Yes a Yes Yes
a This case is not included in paper, but is doable when we
combine the techniques of searching for hidden symmetries in
[24].

TABLE III: Five integrability definitions and whether
AI Poincaré 1.0/2.0 can deal with them.

some later time t′ > t. In experimental physics, a mea-
surement of a physical quantity always contains some fi-
nite error. Hence a useful conserved quantity must not
be infinitely sensitive to measurement error. In contrast,
FIG. 5 (top row) shows that, although a conserved quan-
tity exists for all possible frequency pairs (ωx, ωy), their
robustness to noise differ widely. Once the noise scale
significantly exceeds the width of stripe pattern, an ac-
curate measurement of the conserved quantity is impossi-
ble, and a measurement of the “conserved quantity” pro-
vides essentially zero useful information for predicting the
future state. When the frequency ratio is an irrational
number, the “conserved quantity” becomes discontinuous
and pathological throughout phase space and completely
useless for making physics predictions. This experimen-
tal integrability criterion is thus compatible with general
integrability, not Frobenius integrability.

In summary, the various notions of integrability are
used to study dynamical systems, but have different mo-
tivations and scopes. General integrability and Frobe-
nius integrability characterize global and local geome-
try; Liouville integrability takes an algebraic perspective
and applies only to Hamiltonian systems; Landau and
solvable integrability instead focus on simplicity based
on concepts and symbolic equations, respectively. To
the best of our knowledge, there is no agreement on
whether one particular definition outperforms others in
all senses. We believe they are complementary to each
other, rather than being contradictory or redundant. In
AI Poincaré 1.0 [2] and 2.0 (the current paper), we mostly
did not mentioned explicitly which sense of integrabil-
ity/conserved quantities we referred to. Fortunately, AI
Poincaré 2.0 can flexibly adapt to all definitions, as sum-
marized in Table III.

AI Poincaré 1.0 defines a trajectory manifold, which
is orthogonal to the invariant manifold. The trajec-
tory manifold is globally defined, and its dimensional-
ity is a topological invariant. As a consequence, in AI
Poincaré 1.0, conserved quantities satisfy general inte-
grability. The symbolic part of AI Poincaré 1.0 looks
for formulas with simple symbolic forms, in the spirit of
solvable integrability.

AI Poincaré 2.0 addresses the problem of finding a
maximal set of independent conserved quantities, in anal-
ogy to the goal of the Frobenius theorem [25] which
searches for a maximal set of solutions of a regular sys-
tem of first-order linear homogeneous partial differential
equations. The loss formulation in Eq. (3) can be viewed

as a variational formulation of the system of PDEs to
be satisfied for conserved quantities. Consequently, AI
Poincaré 2.0 (neural network front) is aligned with Frobe-
nius integrability if there is only one training sample z.
In the presence of many training samples over the phase
space, our algorithm becomes aligned with the notion of
the general integrability, because the conserved quantity
is parameterized as a neural network which has an im-
plicit bias towards smooth and regular functions globally.
Although we did not explicitly deal with Liouville inte-
grability in this paper, the algebraic nature of Liouville
integrability makes it simply a “hidden symmetry prob-
lem” that is defined and solved by [24], and the tech-
niques in the current paper can further improve the pro-
cess by determining functional dependence among invari-
ants learned by neural networks. The symmetry and ad-
ditivity in Landau integrability is known in the machine
learning literature as physical inductive biases, which can
be elegantly handled by adding constraints to the archi-
tectures or loss functions [26, 27]. Finally, the symbolic
front of AI Poincaré 2.0 addresses the problem of finding
conserved quantities with simple symbolic formulas.

B. Phase transitions and how to choose λ

Eq. (3) has a hyperparameter, the regularization coef-
ficient λ. If λ is too small, then multiple networks may
learn dependent conserved quantities. If λ is too large,
then the regularization loss dominates the conservation
loss, making the conservation laws inaccurate. As we
argue below, the proper choice of λ has a lower bound
which is determined by the approximation error tolerance
ε, and an upper bound O(1).

We first use two analytic toy examples to provide in-
sight. In both cases, the number of neural networks n is
equal to the dimension s of the problem, just to demon-
strate all possible phase transitions. In practice, it is suf-
ficient to choose n = s − 1. The geometric intuition for
minimizing the loss function Eq. (3) is that `1 encourages
∇Hi to be orthogonal to f while the regularization loss
`2 encourages ∇Hi and ∇Hj (j 6= i) to be orthogonal.

Toy example 1: The first toy example is inspired by
the 1D damped harmonic oscillator with its 2D phase
space. There is only one conserved quantity in the sense
of Frobenius integrability, and the approximation error of
a neural network is ε. We train 2 networks to learn the
conserved quantities. At the global minima, two possible
geometric configurations (gradients of neural conserved
quantities) are shown in FIG. 8. It is easy to check that
any other configuration has higher loss than at least one
of the two configurations. Which configuration has lower
loss depends on λ: when λ < 1−ε

2 , two networks repre-
sent the same function (i.e., the only conserved quantity);
when λ > 1−ε

2 , two networks represent two independent
functions, one of which is not a conserved quantity even
in the sense of Frobenius integrability. Since only the
first phase is desirable, we need to set λ < 1−ε

2 . This
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FIG. 8: 2D Toy example: With different λ, the global
minima may have different geometric configurations.

Assume the single conserved quantity can be
approximated by a neural network with error ε.

condition can be easily satisfied if ε� 1.
Toy example 2: The second toy example is inspired

by the 2D anisotropic harmonic oscillator. To better vi-
sualize the example, we consider a 3D (rather than 4D)
phase space, but the intrinsic nature of the problem does
not change. There are two conserved quantities in the
sense of Frobenius integrability. One is easy for neural
networks to fit, hence the approximation error can be
minimized to zero; another is hard, so a neural network
can at best approximate the function up to an error ε.
Similarly to the analysis above, three possible configura-
tions are global minima. We train three neural networks
to learn the conserved quantities. When λ < ε

2 , three
models represent only one conserved quantity (the easy
one); when ε

2 < λ < 1, three models represent two in-
dependent conserved quantities (both the easy and the
hard one); when λ > 1, a third false conserved quantity
is learned. Both the first phase and the second phase
are acceptable, depending on different notions of inte-
grability, since a hard conserved quantity may be locally
well-behaved but globally ill-behaved. If we search for
globally conserved quantities, the first phase is desired.
However, if we allow locally conserved quantities, the sec-
ond phase is desired. All the experiments in the main
text are conducted with λ = 0.02, which is equivalent
to saying we only care about conserved quantities whose
approximation errors are less than 0.02c. c = 2 in the
current toy example, but we expect c ∼ O(1) in general.

The analysis of two toy examples above suggests a
simple picture of phase transitions for more complicated
systems: for n conserved quantities with different diffi-
culty (approximation error ε1 < ε2 < · · · < εn), we ex-
pect there to be n+ 1 phases. At each phase transition,
only one conserved quantity is learned or un-learned, and
the order of phase transitions depends on the order of ε.
From the picture of phase transitions, one learns not only
the number of conserved quantities, but also knows their
difficulty hierarchy. In practice, the phase transition di-
agram may not be as clean as in these toy examples due

FIG. 9: 3D Toy example: With different λ, the global
minima may have different geometric configurations.

Assume the first and second conserved quantity can be
approximated by a neural network with zero error

(easy) and ε > 0 error (hard), respectively.

to neural network training inefficiency. We show that the
phase transition diagram agrees reasonably well with our
theory above for the 1D damped harmonic oscillator and
2D harmonic oscillator. We would like to investigate this
further in future work.

1D damped harmonic oscillator Toy example 1
can apply to the 1D damped harmonic oscillator without
any modification. FIG. 10 shows that we find a phase
transition of `1/`2 at λ ≈ 1

2 for both γ = 0 and γ = 1.
When γ = 1, the non-zero `1 in the first phase implies
the irregularity of the conserved quantity.

2D harmonic oscillator Toy example 2 is a good
abstraction of the 2D harmonic oscillator, but should
not be considered to be exact in the quantitative sense.
The two energies are easy conserved quantities, while the
third conserved quantity regarding phases are harder to
learn due to its irregularity when ωy/ωx is not a frac-
tional number. FIG. 11 shows that: when (ωx, ωy) =
(1, 1), only one clear phase transition happens around

λ = 1. When (ωx, ωy) = (1,
√

2), two phase transi-
tions are present, one around λ = 1, another around
10−3 < λ < 10−2.

V. CONCLUSIONS

We have presented a method that, given a set of dif-
ferential equations, can determine not only the number
of independent conserved quantities, but also neural (or
even symbolic) representations of them. Conservation
laws and integrability have many competing definitions
listed in Section IV A, and AI Poincaré 2.0 is able to
adapt to all of them much better than 1.0. In the case
of unknown differential equations, however, we have to
resort to 1.0. We hope that these tools will may accel-
erate future progress on exciting open physics problems,
for example integrability of quantum many-body systems
and many-body localization.
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FIG. 10: 1D damped harmonic oscillator: `1/`2 as
functions of λ demonstrate phase transition behavior.
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`1/`2 as functions of λ demonstrate phase transition

behavior.
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Appendix A: How to determine (in)dependence of multiple conserved quantities

Suppose we know n independent conserved quantities H = {H1(z), · · · , Hn(z), z ∈ Rs}, which are parameterized
as neural networks or symbolic formulas. How do we determine whether another conserved quantity Hn+1(z) is
dependent on or independent of H?

Method A: differential rank. We know that kD(H) = n due to the functional independence of H. We then
compute k′ ≡ kD(H

⋃
Hn+1). If k′ = n+1, then Hn+1 is independent of Hn; otherwise k′ = n, and Hn+1 is dependent

on H. In practice, we compute the singular value decomposition of B (defined in Eq. (6)). If the smallest singular
value σn+1 < εσ = 10−3, we consider it vanishing, implying that k′ = n; otherwise k′ = n+1. However the complexity
of SVD is O(sn2), which is more computationally expensive than method B.

Method B: orthogonality test. Because H is an independent set of functions, their gradients at almost all z
should span a linear subspace S(z) ≡ span(∇H1(z), · · · ,∇Hn(z)) of dimensionality n. We construct a random unit

vector t̂(z) that is orthogonal to S, which can be computed via a Gram-Schmidt process of a random vector and n

gradient vectors. If Hn+1(z) is not independent of H, then the gradient ∇Hn+1(z) ∈ S(z), so t̂ · ∇̂Hn+1(z) = 0. We

consider Hn+1 to be not independent if
∣∣∣̂t(z) · ∇̂Hn+1(z)

∣∣∣ < εi = 10−3 and reject it. If Hn+1(z) is independent of H,

then
∣∣∣̂t(z) · ∇̂Hn+1(z)

∣∣∣ > εi is true with high probability. To further reduce probability of errors, one may test on nt

points, which incurs an O(nts) computational cost.
Once Hn+1 is verified as being independent of H, we append Hn+1 to H. This process is repeated until |H| (the

number of functions) equals the number of conserved quantities (obtained from the neural network front) or the brute
force search reaches its computation limit.

Appendix B: Does overfitting happen?

We split the whole dataset into 50/50 training/testing. FIG. 12 shows the result for the three-body problem.
Training and testing losses have no gap, signifying that overfitting does not occur.

FIG. 12: The evolution of the loss function during training, for training data (blue) and testing data (orange).
There is no clear generalization gap, implying that overfitting did not happen.
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