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ABSTRACT

Background

A model that jointly simulates infectious diseases with common modes of transmission can serve as a
decision-analytic tool to identify optimal intervention combinations for overall disease prevention. In the
United States, sexually transmitted infections (STIs) are a huge economic burden, with a large fraction of
the burden attributed to HIV. Data also show interactions between HIV and other sexually transmitted
infections (STIs), such as higher risk of acquisition and progression of co-infections among persons with
HIV compared to persons without. However, given the wide range in prevalence and incidence burdens of
STIs, current compartmental or agent-based network simulation methods alone are insufficient or
computationally burdensome for joint disease modeling. Further, causal factors for higher risk of
coinfection could be both behavioral (i.e., compounding effects of individual behaviors, network
structures, and care behaviors) and biological (i.e., presence of one disease can biologically increase the

risk of another). However, the data on the fraction attributed to each are limited.

Methods

We present a new mixed agent-based compartmental (MAC) framework for jointly modeling STIs. It uses
a combination of a new agent-based evolving network modeling (ABENM) technique for lower-
prevalence diseases and compartmental modeling for higher-prevalence diseases. As a demonstration, we
applied MAC to simulate lower-prevalence HIV in the United States and a higher-prevalence hypothetical
Disease 2, using a range of transmission and progression rates to generate burdens replicative of the wide
range of STIs. We simulated sexual transmissions among heterosexual males, heterosexual females, and
men who have sex with men (men only and men and women). Setting the biological risk of co-infection
to zero, we conducted numerical analyses to evaluate the influence of behavioral factors alone on disease

dynamics.

Results
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The contribution of behavioral factors to risk of coinfection was sensitive to disease burden, care access,
and population heterogeneity and mixing. The contribution of behavioral factors was generally lower than
observed risk of coinfections for the range of hypothetical prevalence studied here, suggesting potential

role of biological factors, that should be investigated further specific to an STI.

Conclusions

The purpose of this study is to present a new simulation technique for jointly modeling infectious diseases
that have common modes of transmission but varying epidemiological features. The numerical analysis
serves as proof-of-concept for the application to STIs. Interactions between diseases are influenced by
behavioral factors, are sensitive to care access and population features, and are likely exacerbated by
biological factors. Social and economic conditions are among key drivers of behaviors that increase STI
transmission, and thus, structural interventions are a key part of behavioral interventions. Joint modeling
of diseases helps comprehensively simulate behavioral and biological factors of disease interactions to
evaluate the true impact of common structural interventions on overall disease prevention. The new
simulation framework is especially suited to simulate behavior as a function of social determinants, and

further, to identify optimal combinations of common structural and disease-specific interventions.
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1. INTRODUCTION

A model that jointly simulates infectious diseases that have common modes of transmission will be a
useful decision-analytic tool to identify optimal intervention combinations for overall disease prevention.
In the United States, sexually transmitted infections (STIs) continue to impose high disease and economic
burdens. The lifetime medical costs for treatment of STIs and sequelae, for incident infections in 2018,
were estimated at $15.9 billion, with a large fraction attributed to human immunodeficiency virus (HIV)
infection ($13.7 billion)(1). Further, there are considerable interactions between HIV and other STTs,
including human papillomavirus (HPV), hepatitis C (HCV), hepatitis B (HBV), gonorrhea (NG),
chlamydia (CT), and syphilis, in terms of HIV acquisition, transmission, or progression as seen in the
following examples. The odds of HPV infection, infection with high-risk oncogenic HPV types that lead
to cervical cancer, HBV infection, and liver-related mortalities from HCV or HBV are higher in women
living with HIV compared to women without an HIV infection (2—-5). Among persons with HIV (PWH),
the risk of cervical cancer (3) and mortality from liver cancer (6) were directly correlated with HIV stage.
Persons with syphilis, CT, and NG have higher risk of HIV transmission and acquisition (7,8). Studies
also show higher risk of CT and NG among HIV infected persons who also had a recent HCV infection or
syphilis infection(9). Further, though there is sufficient evidence associating risk and severity of
coinfections to biological factors (i.e., presence of one disease can biologically increase the risk of
another), these estimates are confounded by behavioral factors (combined effects of individual sexual
behavior, partnership network structure, and care behaviors). Observational studies alone are insufficient

to quantify risk attributed to each factor(10,11).

A model that can jointly simulate STIs can quantify risk of disease attributable to behavioral and
biological factors, determine intervention needs, and jointly evaluate interventions for overall disease
prevention. Interventions to address biological factors include disease management interventions, such as
pharmaceutical and care support programs. On the other hand, structural interventions, such as health care

coverage, subsidized housing, childcare and food programs, access to mental healthcare, and early
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childhood academic enrichment programs (12—16) are key part of behavioral interventions. This is due to
the fact that social and economic conditions are among key drivers of behaviors associated with STI
transmission, e.g., higher number of partners, higher rates of condomless sex, higher rates of substance
abuse, and lower care access among people experiencing homelessness compared to those stably housed
(17-20). Consequently, social determinants are key correlates of disease burden. Among persons living
with diagnosed HIV infection, 44% had a disability (including physical, mental, and emotional
disabilities), 41% were unemployed, 43% had household incomes at or below the federal poverty
threshold, and 10% were experiencing homelessness (21,22). A joint disease model, that simulates
disease interactions through the behavioral factors that are common modes of transmission, will be ideal
to simulate behaviors as functions of social determinants, and eventually, serve as a decision-analytic tool
for identifying the most cost-effective combinations of disease-specific and common structural

interventions for overall STI prevention.

Multi-disease models in the literature are limited, and most focus on chronic diseases prediction(23,24) or
management (25-27). Some focus on infectious diseases, but use a single simulation technique
(10,11,28,29) which is not computationally sufficient for modeling diseases of widely varying incidence
and prevalence. Other models only do combined health infrastructure costing of diseases without
modeling disease interactions (30). Among commonly used simulation techniques, compartmental
modeling is sufficient for fast-spreading or high-prevalence infections, whereas agent-based network
modeling (ABNM) is preferred for slower-spreading, lower-prevalence infections, where granular
representations of network structures and individual-level characteristics are key for accurate estimations
(31). Even ABNM, however, becomes computational challenging to use for diseases with very low
prevalence, such as HIV in the United States. Thus, in our previous work, we developed an agent-based
evolving network modeling (ABENM) technique, which uses a hybrid ABNM and compartmental
structure for single disease modeling of lower-prevalence diseases (32). This simulation technique was

applied to develop PATH 4.0 (Progression and Transmission of HIV), a comprehensive simulation model
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of HIV in the United States that was validated against metrics from the National HIV Surveillance System
(NHSS) for the period 2006 to 2017(33). While HIV, HBV, HCV, and syphilis are slower-spreading,
lower-prevalence diseases, HPV, NG, and CT are faster-spreading higher-prevalence diseases(34).
Therefore, ABNM or ABENM alone will not be sufficient for co-modeling of these diseases , due to
computational challenges (discussed in Methods) arising from co-modeling widely varying disease
burdens in a national context. We developed a mixed agent-based compartmental (MAC) framework that

uses ABENM for lower-prevalence diseases and compartmental model for higher-prevalence diseases.

This paper presents the MAC mathematical framework for multi-disease modeling. We demonstrate the
framework by applying it to the case of two-disease modeling, representing Disease 1 via ABENM and
Disease 2 via compartmental modeling. We adopt the PATH 4.0 model to represent HIV as lower-
prevalence Disease 1, and we construct a hypothetical higher-prevalence Disease 2, evaluating it with a
range of values for epidemiological parameters to generate incidence and prevalence representative of the
wide range of STIs. Further, we conduct numerical analyses to quantify the risk of coinfection attributable
to behavioral factors alone, assessing its sensitivity to disease burden, care access, and population
heterogeneity. This paper serves as proof-of-concept for the MAC framework, to demonstrate its
feasibility and to highlight, through the numerical analyses, the potential significance of joint modeling of

diseases.

2. METHODS

Figure 1 gives an overview of the MAC framework, which employs the ABENM-based PATH 4.0 model
of HIV(33). The main concept of ABENM as used in PATH 4.0 is to simulate persons infected with HIV
and their immediate contacts as individual agents and all other persons using a compartmental model.
Immediate contacts are defined as all sexual partners a person will have over their lifetime; at the current
time-step they could either be infected or susceptible. In-turn, as these susceptible contacts in the network

become infected with HIV, their immediate contacts are added as agents to the network (transitioning
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from the compartmental portion of the model to the network portion of the model), thus evolving the

contact network. An Evolving Contact Network Algorithm (ECNA) maintains the network dynamics.

The MAC simulation framework expands on the above concepts of ABENM, where all persons in a
population are either in a network or in a compartmental model. To accommodate the multiple diseases, it
simulates only persons infected with at least one lower-prevalence disease and their immediate contacts as
agents in a network, and it simulates all other persons, including those infected with only higher-
prevalence diseases, via a compartmental model (see Figure 1). As the exposed immediate contacts of
agents in the network become infected with a lower-prevalence disease, their contact network is generated
by moving persons from the compartmental model to the network using the ECNA. As HIV or HCV are
slower-spreading lower-prevalence diseases in the United States, with an annual incidence at 13 and 1,
respectively, per 100,000 persons in 2018 (Figure 2a)(34), they are suitable candidates for ABENM. As
HPV, CT, or GN are faster-spreading higher-prevalence diseases in the United States, with annual
incidence at 1820, 640, and 212, respectively, per 100,000 persons in 2018 (Figure 2a)(34), they are
suitable candidates for compartmental modeling. The MAC framework would be computationally
advantageous over ABNM for jointly modeling these diseases that have varying epidemiological features.
For example, in ABNM, simulating 100,000 nodes in the network representative of the sexually active
population in the United States will generate sufficient samples for the higher-prevalence disease, but for
lower-prevalence HIV it would generate 490 persons with HIV with 13 new cases each year, which is not
a sufficient sample size for our analyses. In contrast, in ABENM, as the network will consist of only
persons with the lower-prevalence disease and their partners, the population size in the network can be
controlled to meet computational needs without compromising the sample size of either disease. As an
example, we can generate the network with a sufficient but computationally efficient sample of HIV
infected persons, say 12,000 (as was the case in our numerical analyses), as a scaled representation of the
0.4% HIV prevalence in 2017 in the United States(35), which is equivalent to simulating a population

size of ~3 million (compartmental plus network).
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2.1 Overview of MAC

We present an overview of the MAC simulation framework, using, without loss of generality, a two-
disease example, lower-prevalence Disease 1 and higher-prevalence Disease 2. An overview of the MAC
simulation framework is presented in Figure 1 using, for illustration, two diseases, Disease 1 is tracked in
a network model and Disease 2 is tracked through a compartmental model. We describe below an

overview of the model and present its mathematical formulations in the Appendix.

2.1.1 Computational structure of MAC

We present below a brief description of the MAC computational structure and present its mathematical
representation in Appendix S1.1 and S1.2. We track Disease-1-infected persons and immediate contacts
using a dynamic graph G (V' £), with the number of nodes Q; = |V (G;)| and the number of edges |E(G,)|
in the graph dynamically changing over time t as persons become newly infected with Disease 1 and their
immediate contacts are added to the network. Each person in the network has attributes such as age, HIV
transmission category (heterosexual males, heterosexual females, men who have sex with men), degree
(number of lifetime partnerships), geographic jurisdiction, and health status ({stage of Disease 1, stage of

Disease 2}, including {0, 0} to indicate uninfected with either disease).

We track all other persons using an array S; of size A X R X D X G X H (our numerical analyses uses 7 X
3 X9 x1Xx2), where, A is the number of age-groups, R is the number of risk-groups, D is the number of
degree-bins (degree is the number of contacts per person, degrees are grouped into bins analogous to age
grouped into age-groups), G is the number of geographic jurisdictions (in our numerical analyses we
assumed G = 1, corresponding to a national jurisdiction), and H is the number of health states (note: here
the size would be equal to the number of Disease 2 health states because, by design, persons infected with
Disease 1 will be in the network and thus all persons in the compartmental model will have a value of 0 for
Disease 1). Each element of the array (S¢[a,, d, g, h]) is the number of people in that specific category. We

use a dash for age-group and degree-bin notations to indicate that they are grouped intervals in the

8
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compartmental model, unlike in the network where each node has a discrete value. A summary list of

notations is presented in Appendix Table S1.

Thus, Q; + Xie[aragn St » denotes the total number of people in the population at time t. Because all

Disease 1 infected persons and exposed partners are in the network, Disease 1 transmissions and state
progression are modeled at the individual level (see network transmission and network disease progression
modules below and in Appendix Section S2.2). Disease 2 transmissions and progression are modeled using
differential equations (as typically done in compartmental modeling) but with the consideration that people
in both the network G.(MV,€) and compartmental array S; can be infected with Disease 2 (see

compartmental module below and in Appendix Section S2.1).

The mathematical challenge to address for the above MAC framework to work is to maintain the dynamics
between the network G;(V, ) and compartmental array S;, including transitioning people from S; to
G:(IV,E) when a node becomes newly infected. Specifically, the simulation algorithm must determine
‘who’ are to be added as the immediate contacts of the node newly infected with Disease 1. Here we
determine ‘who’ according to their degree, transmission group, age, and geographical location, as these
characteristics of infected persons and their contacts are known to be correlated (36—41). Upon determining
and adding all lifetime partners of nodes newly infected with Disease 1, we need to determine when the
partnerships would initiate and dissolve, including the age of both partners at that time, such that the overall
dynamics of age-mixing and transmission-group-mixing of the resulting network match that of the
population being simulated. As network generation techniques in commonly used agent-based models are
designed to generate the network between the full population (susceptible and infected persons), they cannot
be adopted here. We developed an evolving contact network algorithm (ECNA(32,33)) for modeling the
transitions from S; to G;(V, £) (see ECNA module below and in Appendix Section S2.3). For diseases that

are chronic (such as HIV) once persons enter the network G, (', £) they do not transition back to S;. For
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diseases with recovery, recovered persons with no infected contacts can be added back to the compartments
corresponding to their categorical group (see (32) for stability of network dynamics under different

epidemic profiles).

2.1.2 The four main modules of MAC

The overall epidemiological, demographical, and network dynamics are maintained through simulation of
four main modules that are run at every time-step (monthly) of the simulation: compartmental module,
network transmission module, ECNA network generation module, and network disease progression

module.

The formulation of the compartmental module for a hypothetical Disease 2 is presented in Appendix S2.1,
we provide a brief overview here. The compartmental module updates the demographic features (births,
aging, and deaths) and transmission and progression features of higher-prevalence diseases (Disease 2 here)
among persons tracked through the array S; and in the network G.(IV,E), as follows. As in typical
compartmental modeling, it uses difference equations to transition persons between the compartments. It
also determines transitions of the network nodes from one state to another. It does so by converting
transition rates to transition probabilities by assuming that sojourn times follow an exponential distribution,
as typically done in Markov chains. Then, for every state transition, the module uses the corresponding
probability as a parameter of a binomial distribution to determine the number of persons to transition, and
it randomly samples that many people from the network who are in the reference state and moves them to
the next state. With this approach, the same level of granularity is applied to persons in the network and
compartmental models, e.g., in the above representation, the granularity in the compartmental model is
[a,7,d, g, h] and thus the rates would be applied specific to age-group, transmission-group, degree-bin,
geographic location, and health state. A key feature of this setup is approximating network features into the

compartmental modeling structure. This is done by splitting the compartments into degree-bins (d, a
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dimension in array S;) and using a degree-mixing matrix to simulate partnership mixing between people in
different degree-bins. As noted earlier, degree between partners are correlated (36), and thus this feature
helps better capture the network dynamics even in the compartmental model. Whereas the distributions for
partnership mixing by age, transmission group, and degree are applied at the individual-level in the network,

they are applied at the aggregated-level in the compartmental model.

The network transmission module determines if nodes exposed to a lower-prevalence disease (Disease 1
here) become infected using an individual-level Bernoulli transmission equation. Transmissions are
determined at the individual-level using the network structure and individual-level sexual behaviors and
transmission risk factors. Thus, the granularity of transmissions can be controlled by modifying the
individual-level attributes that are tracked among agents. As an example, Appendix S2.2 presents a
Bernoulli transmission equation using the level of granularity applied in the PATH 4.0 model. Note that,
by definition, as persons in the compartmental model are not partners of any person infected with the lower-
prevalence diseases (Disease 1 here), their chance of infection is zero. Further note that persons can move
from the compartmental model to the network (see Figure 1) if their partners become infected with Disease

1, modeled using the ECNA module (below), which would then expose them to Disease 1.

The ECNA module controls the overall network dynamics of partnerships between nodes. Specifically, for
every node newly infected with Disease 1 in the network, it determines the number of new partnerships to
generate and the features of each of those new partners, including their degree (number of lifetime partners),
their transmission-group, and their current age-group. The module then randomly selects susceptible
persons who meet these criteria and moves them from the compartmental model to the network. The ECNA
module also determines partnership details, such as the age of both partners and simulation times at
partnership initiation and termination. Three main algorithms were used in the development of this module,
which were presented elsewhere (32,33), and are briefly summarized below and discussed in Appendix

S2.3. The first algorithm determines the degree of the new partner using a neural network prediction model,
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a machine learning method, developed based on the assumption that sexual partnerships are scale-free
networks with power-law distribution. For scale-free networks, the degree of node-neighbors are correlated,
i.e., in the context here, the degree of the new partner is conditional on the degree of the newly infected
node. While the literature presents analytical methods for estimation of the conditional distribution, they
are developed for static networks, and thus, the degree of any node is conditional on the degree of ‘all’ its
neighbors. In the evolving network here, the degree of the new partner is conditional on only the degree of
the newly infected node, i.e., dependent on the network path taken to reach this person, and thus, the degree
correlation is also influenced by the stochastic process of disease transmissions. Our previous work showed
that, given a specific network, the degree correlations are not influenced by variations in the probability of
transmission but influenced by the prevalence of disease, and thus, trained the neural network by generating
the data through multiple simulations of hypothetical diseases, characterized by different values of
probability of transmission (32). Upon determining the degree of the new partner, the second algorithm is
applied to determine the age at which each of those partnerships are active, including the age of the other
person in each partnership (one of those partnerships is with the newly infected node). Direct data for this
would be a longitudinal survey over the duration of life of an individual, where the individual reports the
number of partnerships they initiated at every age points of their life, and the age of their partner. Such
surveys, however, are unavailable. Typical survey data only collect the number of partners up to the current
age of the surveyed individual, and age of partners at a cross-sectional time-point. By assuming the number
of partners up to the current age are steady state distributions of a time-invariant Markov chain with a
multivariate state space of age-group - degree-bin combinations (time-invariant from assumption of no
generational changes in partnership behavior), the transition probabilities were solved using simulation-
based optimization to determine the number of new partnerships initiated in each age-group, for each
degree-bin. The third algorithm determines the age-groups of both partners at the time of partnership
activation by formulating the problem as a variant of an unbalanced assignment problem, a category of

optimization problems with a classic example being assigning n jobs (here partners) to m machines (here

12
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age-groups), applying age-mixing matrix and number of partners in each age-group as constraints. Further
details of the three algorithms and data assumptions are presented in Appendix S2.3 and S3, respectively.
Finally, the network disease progression module updates the individual-level demographic and disease
dynamics for every person infected with Disease 1 (and other low-prevalence diseases as the case may be)
in the network. The level of granularity for disease progression could be dependent on the analyses and
diseases of interest.

Appendix S4 provides further details on model initialization and S5 gives a more detailed description of
the steps of the simulation.

2.2 Numerical analyses

Using the MAC simulation framework, we conducted numerical analyses, using relative prevalence (RP)
metrics, to quantify the risk of coinfection attributable to behavioral factors (individual sexual behaviors,
partnerships networks, and care behaviors) alone. Further, we evaluated the sensitivity of relative
prevalence to variations in care access, disease burdens (incidence and prevalence), and population
heterogeneity by estimating RPmetrics specific to transmission group and under varying hypothetical
assumptions of care and epidemiological assumptions. For these analyses, we adopted the validated HIV
model from PATH 4.0 as Disease 1 and constructed a hypothetical Disease 2 using a compartmental
model. To keep the focus on behavioral factors, we assume no biological risk of coinfection, i.e., Disease
1 does not biologically increase the risk of Disease 2, and vice-versa. We first give a brief overview of

Disease 1 (HIV) and Disease 2 modeling, and then discuss the numerical analysis in detail.

2.2.1 Overview of HIV (Disease 1) model

For the development of MAC, we directly adopted the HIV model from PATH 4.0, which has been
validated to match well against data from the CDC’s National HIV Surveillance System (NHSS) for both
population epidemic features and HIV-network features. Details of PATH 4.0 and its validation are
presented elsewhere (33); we give a brief description below. PATH 4.0 simulates sexual transmission of

HIV in the United States in three transmission categories: heterosexual females (HETF), heterosexual males
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(HETM), and men who have sex with men (MSM). (Note that MSM includes men who have sex with men
only and men who have sex with men and women). To validate the model, we first generated an initial
population that is representative of PWH in the United States in 2006 using data from several studies. These
include demographical, sexual behavioral, clinical, and HIV care and treatment behavioral studies that
originated from multiple large national surveillance and survey systems in the United States, along with
other small studies. The surveillance and survey systems include the National HIV Surveillance System
(NHSS), the Medical Monitoring Project (MMP), the HIV Outpatient Study (HOPS), the National HIV
Behavioral Surveillance (NHBS), the National Survey for Family Growth (NSFG), and the National Survey
for Sexual Health and Behavior (NSSHB)(42—47). The model was validated for the period 2006 to 2017 by
calibrating to 2006 data, simulating the epidemic from 2006 to 2017 in monthly-time steps, and comparing
simulated estimates for multiple epidemic features and HIV-network features against data from NHSS.

Details of this validation study are presented elsewhere (33).

2.2.2 Overview of Disease 2 model

Individual sexual behaviors and partnership networks do not change specific to disease, and thus, sexual
behavioral data for Disease 2 are the same as in HIV, though in aggregated form for the compartmental
model structure. Specifically, individual sexual behaviors such as the number of lifetime partners,
distribution of these partnerships over the lifetime of the person (as they transition across age-groups),
number of sex acts, and condom use, most parameters specific to transmission group (HETF, HETM, and
MSM) and age-group, and sexual network structures such as degree mixing matrix, age-group mixing
matrix, and transmission-group mixing matrix to model mixing between partnerships, were adopted from
PATH 4.0 (42—47). Note that, behaviors that change specific to disease can be added over general
population behaviors, e.g., change in condom-use behavior upon awareness of HIV status was added to
HIV-agents. While behaviors were simulated at the individual-level for HIV, they were simulated at the
aggregated-level for Disease 2 in the compartmental model, using corresponding principles of each type of
simulation method. That is, in the network, each person was assigned characteristics such as age,
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transmission -group, and degree, matrices defining mixing between these groups were used for generating
their network, and behavior modeled as a function of these characteristics to determine the probability that
a susceptible person becomes infected. Whereas, in the compartmental model, compartments define age-
group, transmission-group, and degree-bin combinations, and behaviors specific to these compartments and
matrices defining mixing between these compartments were included into infection rate estimations (see
Appendix S2.1 for methodological details). Infection rates were then used for determining the number of
people to transition from susceptible to infected. Demographic features, such as the population sizes of
transmission groups (HETF, HETM, MSM), population distributions by age-group, birth rate and natural
mortality rates (48—50), which are not disease-specific, are a feature of the population modeled, and thus
the overall model (network +compartmental) would match population features. As noted under Disease 1
overview, these data were comprehensively informed through numerous data sources, estimation methods,

and validation processes and are presented elsewhere (32,33).

The only change for Disease 2 would be its epidemiology. While HIV is a Susceptible-Infected
epidemiology structure, i.e., persons live with the infection for the remaining duration of life, we assumed
Disease 2 to be a Susceptible-Infected-Susceptible epidemiology structure, i.e., persons can recover from
Disease 2 and become susceptible for reinfection, which is representative of higher-prevalence STIs.
Transition from Susceptible to Infected stage for Disease 2 would use the same sexual behaviors as in HIV,
as noted above, except for the per contact transmission rate which is an epidemiologic parameter specific
to a disease. The duration of the Infected stage (transition from Infected to Death) for HIV is an outcome
of simulating HIV-disease stage progressions using care data specific to the United States (such as rates of
diagnosis, linkage to care, and treatment), in addition to natural disease progression rates. For Disease 2,
we used an overall rate of recovery that transitions persons from the Infected to the Susceptible stage, but
we did not model sequelae. Thus, the inverse of the recovery rate represents the average duration of Infected

stage, reflective of the natural disease progression and care access.
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Therefore, there are only two parameters specific to Disease 2, transmission rate and recovery rate, which

can be varied to generate diseases of differing incidence and prevalence. As described in the next section,

we evaluated 16 scenarios using different combinations of these rates, to generate incidence and prevalence

replicative of the range corresponding to STIs observed in the United States.

2.2.3 Metrics and scenarios

For the numerical analysis, we calculated the following metrics:

The relative prevalence of D2 given D1 (RPpyp,), estimated as the prevalence of Disease 2

among persons with HIV compared to persons without HIV, i.e.,

# of persons with Disease 2 and HIV / # of persons with HIV

RPpyip1 = and therefore, if

# of persons with Disease 2 only (no HIV)/ # of persons with no HIV ’

RPpyip1 > 1, then persons with HIV have a higher burden of Disease 2 than persons without

HIV.

The relative prevalence of DI given D2 (RPpq|p,), estimated as the prevalence of HIV among

persons with Disease 2 compared to persons without Disease 2, i.e.,

# of persons with Disease 2 and HIV / # of persons with Disease 2

RPpyp2 = and therefore, if

# of persons with HIV only (no Disease 2)/ # of persons with no Disease 2’

RPpqjpz > 1, then persons with Disease 2 have a higher burden of HIV than persons without

Disease 2.

The average degree (average number of partners) among all persons with HIV (dy;y+), average
degree among all persons with Disease 2 (dp,., ), and average degree in the overall population

(doperair), which are metrics representing network features.

When estimating RPp,|p; and RPpq)p,, we assume no biological risk of coinfection, i.e., Disease 1 does

not biologically increase the risk of Disease 2 acquisition, transmission, or progression (and vice-versa).

Thus, if RPpypy > 1 or RPpqjp, > 1, it would be attributed to behavioral factors alone, which would be
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the combined effects of individual-behaviors, partnership network structures, and care behaviors. Note
that the assumption of no biological risk is made for purposes of evaluating risk attributed to behavioral
factors alone, during application of model in future work, biological risk can be easily modeled by using a

multiplier for transmission or disease progression rates.

We report average results for the last year of the simulation (year 2017). Note, over the period 2006 to
2017 (simulation timeline) due to variations in care access (proportion of PWH on treatment with viral
suppression increased from ~20% in 2006 to ~56% in 2017(43)) incidence from sexual transmissions
decreased from ~44,000 in 2006 to ~33,100 in 2017 (51,52). However, hypothetical D2 is in equilibrium

due to the nature of its SIS epidemiology structure.

Prevalence of HIV and care access in the United States has been continuously increasing over the past
few decades as noted above (35,53,54). Further, there is considerable heterogeneity in disease burden,
care access, and sexual behavior across transmission risk-groups that mix with each other, thus generating
cross-over effects. Therefore, in addition to estimating the risk of co-infections attributable to behavioral
factors, we evaluate the sensitivity of relative prevalence to care metrics, disease burden, and population
heterogeneity under mixing. The effects of each subcomponent on the relative prevalence metrics are not
independent, nor is their effect static over time. Thus, fully evaluating the sensitivity of each will not be
feasible. Here, we attempted to gain general insight by utilizing naturally observed variations of these
components in the United States. Specifically, we estimated relative prevalence metrics specific to
transmission group (sexual behaviors and network structures are inherently different across HETF,
HETM, and MSM), under varying epidemiological assumptions for HIV (utilizing the inherent increases
in HIV disease burden (35,53,54) and care access over the past two decades(55—-58)), under hypothetical
assumptions for Disease 2 epidemiology (generating disease burdens replicative of the range observed in
STIs in the United States), and under varying assumptions of epidemiology across transmission-groups
(utilizing the inherent heterogeneity across risk-groups and mixing of MSM with other MSM and

women).
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In total, we simulated four scenarios (Scenarios 1 to 4) related to HIV disease burden, and under each,
sixteen scenarios related to hypothetical Disease 2 burden, simulating both diseases among three
transmission-groups, HETF, HETM, and MSM who have varying individual sexual behaviors and
network structures. However, across scenarios, transmission-group specific individual sexual behaviors
and network structures, and mixing between transmission-groups remain unchanged, and were
comprehensively informed through national surveillance and survey systems in the United States, as
noted earlier. We simulated each scenario for a 12 year period. Scenario 1 is a status-quo representation

of HIV in the United States for the period 2006 to 2017, and Scenarios 2 to 4 are hypothetical, as follows.

HIV scenarios

o Scenario 1(status-quo HIV) was a status-quo representation of HIV in the United States between
2006 and 2017, calibrated to HIV prevalence and HIV care metrics (such as proportions aware,
linked to care, and on treatment) specific to transmission group (HETF, HETM, MSM). The
model was initiated in 2006, with an HIV prevalence of about 0.1%, 0.05%, and 6% for HETF,
HETM, and MSM, respectively, and the proportion of PWH on treatment with viral suppression
of about 20%, 18%, and 19%, for HETF, HETM, and MSM, respectively. By 2017, HIV
prevalence in the U.S. increased to 0.12%, 0.06%, and 8% for HETF, HETM, and MSM,
respectively, and the proportion of PWH on treatment with viral suppression increased to 56%,
50%, and 57%, for HETF, HETM, and MSM, respectively.

o Scenario 2 (low HIV prevalence low care) initiates the model with a lower HIV prevalence
(taking data from 1990s) of 0.07%, 0.04%, and 3.2% for HETF, HETM, and MSM, respectively,
and for the full duration of the simulation (12 years) maintains care metrics to keep the
proportion on treatment with viral suppression at a constant value of 20%, 18%, and 19%, for
HETF, HETM, and MSM, respectively (corresponding to 2006 care data).

o Scenario 3 (low HIV prevalence high care) is similar to Scenario 2 in initiating the model with

the low HIV prevalence, but assumes higher care by using care data from 2017, thus resulting in
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lower HIV incidence compared to Scenario 2. Specifically, the model initiates with a HIV
prevalence of 0.07%, 0.04%, and 3.2% for HETF, HETM, and MSM, respectively, and for the
full duration of the simulation, maintains care metrics to keep the proportion on treatment with
viral suppression at a constant value of 56%, 50%, and 57%, for HETF, HETM, and MSM,
respectively.

Scenario 4 (equal and low HIV prevalence for all transmission groups) is similar to Scenario 2
in the use of the 2006 care data, but the model is initiated with equal and low HIV
prevalence(1990s HETF prevalence) for all three transmission-groups. Specifically, the model is
initiated with a prevalence of 0.07% for HETF, HETM, and MSM, and for the full duration of
the simulation, maintains care metrics to keep the proportion on treatment with viral suppression
at a constant value of 20%, 18%, and 19%, for HETF, HETM, and MSM, respectively. As the
actual prevalence of HIV among MSM has been significantly higher than heterosexuals (HETF
and HETM), and as MSM mix with men and women, comparing Scenario 4 with Scenario 2 will
provide insight into the sensitivity of the relative prevalence metrics to heterogeneity in

populations that mix.

Disease 1 scenarios are summarized in Table 1. In addition to a dry run, that initializes network dynamics
and individual-level event history and populate the initial HIV prevalence and care metrics (Appendix

S4), we ran each scenario for a period of 12 years and report results for the last year of the simulation.

Disease 2 scenarios

Under each of Scenarios 1 to 4, we simulated 16 scenarios for Disease 2 using combinations of transmission
rates (0.04, 0.06, 0.1, 0.2 per contact), and recovery rates (0.042, 0.083, 0.16, and 0.0083 per month,
corresponding to an average infection duration of 1, 2, 5 and 10 years, respectively). These values generate
a wide range of estimated incidence and prevalence for Disease 2 and were chosen to mimic the range of

STIs observed in the United States population (Figure 2).
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3. RESULTS

As expected by design of scenarios, the range of transmission rates and recovery rates used for Disease 2
created epidemics of varying Disease 2 burden, but for a specific combination of transmission rate and
recovery rate, Disease 2 burden was similar across all Scenarios 1 to 4 (Figure 3a). Also as expected by
design, Scenarios 1 to 4 created varying Disease 1 (HIV) burdens (Figure 3b), the values for the last year
of the simulation are as follows. Scenario 1 (status-quo HIV) had high HIV prevalence for MSM (~8%)
compared to heterosexual female (HETF) (~0.12%) and heterosexual male (HETM) (~0.06%),
representative of HIV in the United States (Figure 3b). Compared to Scenario 1, Scenario 2 (low HIV
prevalence, low care) created a lower HIV prevalence (0.09% for HETF, 0.04% for HETM, and 5% for
MSM) but similar incidence because of the low care assumption (Figure 3b). Scenario 3 (low HIV
prevalence, high care) created HIV prevalence similar to Scenario 2 but lower incidence because of the
higher care assumption. Compared to Scenario 1, Scenario 4 (low and equal HIV prevalence for all
transmission groups) reduced HIV prevalence by an order of magnitude for MSM and, because of mixing
between MSM with HETF, reduced HIV prevalence in HETF; HETM had the same prevalence as HETF
(0.07% for HETF, 0.06% for HETM, and 0.1% for MSM) (Figure 3b). As expected from inherent
differences in behaviors, and reflecting data inputs to the simulation, the overall average degree (d,perqir)

was higher among MSM than HETF and HETM.

RPp, p1was sensitive to both HIV and Disease 2 burden (incidence and prevalence) and HIV care (Figure
4a, 4b), and the patterns could be consistently explained through comparison of resulting average degrees
of persons with at least HIV, at least Disease 2, and overall (dy;v 4, dp2+) doverar> respectively) (Figure
4c, 4d). We discuss these below. Keeping HIV prevalence fixed, i.e., observing within each Scenario and
transmission-group, as Disease 2 burden increased, RPp,p,increased. In Scenario 1, RPpy p; > 1.2 for
HETF in most cases, RPpp1 < 0.8 for HETM in most cases, and RPp;|p; < 1.2 for MSM in most cases
(Figure 4). To recollect, HIV prevalence was moderate for HETF, lowest for HETM, and high for MSM.

Thus, there was no consistent pattern when comparing RPp;|piand HIV disease burden (prevalence)
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alone. However, the pattern in RPp;|p;could be explained by the network structure as measured by
average degree. In Scenario 1, for HETF, dy vy > doyerqu, and RPpypy > 1.2 if dpyy > dypyy, and
RPpjip1 = 1asdpyy = doyerau (Figure 4¢). For HETM, dyyy < doyerau and RPpyjpy < 1in most
cases. For MSM, dyy+ R doperan and RPpyjp1 < 1.2. This suggests that, when the average degree of

both diseases is greater than the average degree in the overall population (as was the case for HETF in

certain scenarios), RPp, pywould be greater than 1, and if average degree of HIV is close to or less than
the overall average degree (as was the case for HETM and MSM), then RPp3|p1 would be closer to 1 or

below 1.

The interpretation of the above results is that, when both diseases have a sufficiently low prevalence, they
are both concentrated in higher-risk networks (dps+ > doverair; Auv+ > Aoverqur) and thus, persons with
HIV would have higher risk of Disease 2 co-infection. These conclusions are intuitive, and characteristic
of scale-free networks, where the disease first spreads to high-risk networks before spreading to the rest

of the network.

This correlation between RPp,|p,and patterns of average degree were consistent across the four scenarios,
as discussed below, supporting the above conclusion. HETF and HETM in Scenario 2 (low HIV
prevalence low care) had small decreases in HIV prevalence and saw minimal changes in RPp;|pand
average degrees (Figure 4a). For MSM in Scenario 2, the lower HIV prevalence led to a concentration of
disease burden in higher risk networks (dy;y > dyperqn)(Figure 4c), and thus, the values of

RPp; pytended to be higher (more reds) than in Scenario 1 (Figure 4a). Compared to Scenario 2, though
Scenario 3 (low HIV prevalence high care) created only minutely lower HIV prevalence, it had
significantly lower HIV incidence because the higher HIV-care led to fewer transmissions (Figure 3b),
leading in-turn to lower RPpy|p,for HETF and MSM. These changes in RPp;|p;could again be explained
through corresponding changes in average degree. As average degree in HIV decreased and got closer to

or equal to overall average degree (dy v ~doveran), RPpzjp1decreased to 1 or below. This also suggests
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that the reduction in transmissions from the higher HIV-care in Scenario 3 helped dissipate the impact of

high HIV-prevalence burden in the high-risk networks.

In Scenario 4, HETM saw no change compared to Scenarios 1 to 3, it had a very low HIV prevalence and
had dyy < doperau- On the other hand, the RPp;|p,in HETF and MSM in Scenario 4 were opposite to
that in Scenario 1, although both HETF and MSM saw a reduction in HIV prevalence in Scenario 4. For
MSM, the average degree among HIV tended to be higher than overall (dy;y > dyperanr), suggesting that,
because of the significantly lower HIV epidemic than in Scenario 1, it was now mostly concentrated in

high-risk networks, and thus, RPp;)p1 > 1 when Disease 2 was also low and concentrated in high-risk
network (dp, > dyperan) (Figure 4c). For HETF, though Scenario 4 initiated with the same HIV
prevalence as Scenario 1, because of the mixing with MSM, it had a large reduction in HIV incidence and
prevalence (Figure 3b). The corresponding average degree among HIV was now closer to overall
(duiy~doveran), and thus the corresponding RPppy < 1 (Figure 4¢). These consistent patterns between
relative prevalence and average degree, under varying values of HIV and Disease 2 burdens and care

access, demonstrate the role of network features in burden of coinfection.

The behavior of RPpq|p, was similar to that of RPpypy, 1.€., if RPpypy > 1 then RPpqjp, > 1 (Figure 5).

These results again support that when both disease burdens are lower, the infection is more concentrated

in higher risk networks.

4., DISCUSSION

The purpose of this manuscript is to present a novel mixed agent-based compartmental (MAC) simulation
framework for joint modeling of diseases with common modes of transmission but varying
epidemiological features. The numerical analyses assessed the contribution of behavioral factors to joint-
disease outcomes, and its sensitivity to disease burden, care metrics, and population heterogeneity and

mixing. This work serves as a proof-of-concept for the feasibility of the proposed method and the
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sensitivity analyses highlights the potential significance of joint-disease modeling in a heterogeneous

interacting population.

The key aspect of the MAC framework is its computational tractability while maintaining sufficient
sample size even for lower prevalence diseases. The computational complexity of network modeling and
compartmental modeling are in the O(N?) and O(S), respectively, where N is the number of people
simulated and S is the number of states. Thus, while compartmental modeling is computationally
efficient, it lacks the granular individual-level features of network modeling, and while networks are
favored for this feature, they are computationally complex and lose tractability as population size
increases. The MAC simulation technique provides an efficient balance, as can be seen by sample
computation times in Table 2. The computational complexity of MAC is in the O(Q; + S + 61,d3),
where Q; is the number of nodes in the network at time t, with upper bound equal to the number of
infected nodes in the network (I,) times the average number of lifetime partnerships per person (d,,), and

0 is an overall rate of infection, and thus 61, is the number of newly infected nodes at time t. Note that an
. . . . . . 8IS . .
epidemiologically correct expression for new infections is %, where S; is the number of susceptible

persons, however, as only low prevalence diseases are modeled in the network, S; = N. Also note that,
because they are slow spreading diseases, 81, is very small relative to I;. Thus, unlike agent-based
modeling where the computational complexity increases with N, here the computational complexity
increases with I;. This is a useful feature because the selection criteria for population size can be based on
the desired sample size of positive cases without having to worry about its computational feasibility. For
example, we can select the number of infected nodes in the network to be sufficiently large, say 12,000
(I;)- Then, simulating a disease with prevalence of 0.4% will generate a simulated population size of
about 3 million persons (N), whereas, simulating a disease with prevalence of 0.2% will generate a
simulated population size of about 6 million persons (N) but it will not increase the computational
complexity. To achieve the same computational complexity when modeling two low prevalence diseases

in the network, we can specify the total number of agents having one or both of the diseases. The
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resulting sample size would then depend on the prevalence of each and the overlap between the two
diseases. For example, suppose the prevalence is 0.4% and 0.2% for two low prevalence diseases D1 and
D2, respectively, and there is no overlap, i.e., each agent has one and only one of the two diseases.
Generating 12,000 infected nodes will generate ~8,000 persons with D1 and ~4,000 persons with D2, and
a total population of ~2 million. If these samples are not sufficient, then more nodes can be generated,
with a concomitant non-linear increase in computation time that is closer to linear than quadratic. Note
that in our numerical analyses we did not remove infected agents who were dead or remove partnerships
that happened in the past. Doing so will not impact epidemic projections but can reduce computational
time. The simulation technique here could also be useful to further improve efficiency of large-scale
simulators that focus on software efficiencies and are capable of simulating millions as nodes in the

network with the use of high performance computing (59,60).

In the numerical analyses, the values of relative prevalence were greater than 1 in several scenarios,
highlighting the influence of behavioral factors on joint disease outcomes. These values are lower than
those reported from observational studies, e.g., a 4 to 8 fold increase in burden of cervical cancer caused
by HPV infection was observed among women with HIV compared with women without HIV (61), and a
3 times higher HIV incidence risk was observed among MSM with rectal gonorrhea or chlamydia
infection compared with MSM without these STIs (62). The differences are expected because the data
from the literature are estimates from cohort studies or case control studies and thus include risk of
coinfection attributable to both biological factors and behavioral factors (61), whereas in the model we

forced the biological risk to be zero so that relative prevalence is attributable to behavioral factors alone.

Consequently, through joint modeling of diseases, the differences between model estimates and
observational studies can be used for determining risk attributed to biological factors alone and behavioral
factors alone. These estimations can help inform both the type of interventions and optimal allocation of
resources. While disease risk originating from behavioral factors would require behavioral and structural

interventions because social determinants are key drivers of high-risk behaviors, disease risk originating
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from biological predisposition of pre-existing infections would additionally require disease management
and care support programs. Using a model along with observational data to control for behavioral factors
would help more realistically estimate the biological risk of acquisition and transmission of infections,
and thus inform care management interventions. Modeling work in this area is limited (10,63) and
focused on modeling subgroups in isolation, such as MSM only. Our numerical analyses highlights the
sensitivity of results in a subgroup to variations in disease burden in persons outside the subgroup due to

population mixing, as in the comparison between Scenarios 4 and 2 for HETF.

While estimates of biological risk of co-infection can directly inform care management programs, and the
estimates of risk attributable to behavioral factors are necessary for determining those biological risk
estimates, the value of risk attributable to behavioral factors is not a sufficient measure for informing the
need for behavioral and structural interventions. Indeed, values of relative prevalence closer to 1 or below
could be generated because of higher HIV prevalence (MSM compared to HETF in Scenario 1), low HIV
prevalence (HETM in all scenarios), mitigation of HIV risk through increased care access (Scenario 3
compared to Scenario 2 for HETF and MSM)), or risk mitigation in the higher risk population when two
groups mix (HETF in Scenario 4 compared to Scenario 2). Although the relative prevalence values were
closer to 1 or below in all these scenarios, structural interventions would be key interventions mainly in
scenarios with high-prevalence and low care. Further, relative prevalence of greater than 1 can originate
from factors within the population (comparing across Scenarios 1 to 4 for MSM) or from mixing with
populations with high-risk of infection (HETF between Scenarios 2 and 4), each requiring different
intervention strategies. Thus, although the values of relative prevalence would be necessary for inferring

biological risk of infection, they alone are insufficient for informing interventions.

The above results from the numerical analyses justify the need for joint disease modeling for more
accurate representation of the behavioral and biological dynamics of disease interactions. Further, social
determinants, such as poverty, unemployment, homelessness, and stigma and discrimination, are known

correlates of sexual and care behaviors that increase disease risk, such as higher number of partners,
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higher condomless sex, and lower treatment uptake among persons experiencing homelessness compared
to persons with stable housing (17-20). Therefore, structural interventions, such as healthcare coverage,
subsidized housing and food programs, and access to mental healthcare, are key part of behavioral
interventions to reduce risk of STI acquisition (12,13,15,16,64). While the costs of these structural
interventions can be extrapolated from small cohort studies, the impact of structural interventions on
disease burden is infeasible to estimate through controlled trials, because of the intricate disease
interactions attributed to behavioral factors and its sensitivity to population and epidemic features (as
observed through numerical analyses conducted here). A model would be a fundamental tool for
estimation of the impact and thus cost-effectiveness, which are key measures used for allocation of public
health resources. The new MAC simulation framework is computationally ideal for the above application,
as it can be expanded to simulate sexual and care behavioral factors as a function of social conditions, and

thus, subsequently serve as a decision-analytic tool for evaluation of structural interventions.

Joint modeling of STIs in the literature is limited, and most focus on sub population groups (10,63).
While sub-population modeling could help compare impact of alternate interventions on the sub-
population, a national model that additionally simulates mixing between sub-populations and thus cross-
over effects of interventions, would help identify optimal combination of interventions for overall
reduction of diseases and disparities. Such a decision-analytic model would be suitable for informing
public health guidelines, such as through the HealthyPeople2030 plan (65). Such a joint-disease joint-
population model would also be suitable during emergence of new infection outbreaks, such as the recent
2022 Mpox outbreak. It could help shed light on populations at greatest risk and those that would benefit

from medical countermeasures, to help inform interventions for containment of transmissions.

Our work is subject to limitations. The above analyses were conducted using hypothetical
epidemiological and care assumptions, and thus, our work is limited to evaluating sensitivity of joint
disease dynamics to key behavioral factors and epidemiological factors. Thus, the results should not be

used to infer actual burden of coinfection. We assumed biological risk of coinfection to be zero to
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evaluate the sensitivity of behavioral factors alone. However, computational changes needed for modeling
the biological risk are minimal, through use of a factor multiplied to the rates of transmission or
progression to represent the increased risk, and calibrating the factor specific to a disease by matching
simulated cases of coinfection with surveillance data. The scope of this work was limited to presenting a
new simulation framework for joint modeling of diseases, and we did not model all behavioral changes
driven from epidemic awareness. While some of these behavioral changes such as partnership selection
for serosorting behaviors could be added to the current model structure through some modifications,
changes in network structure, such as generational changes in the number of partners that would change
the overall network statistics from the ones used in model calibration, would require recalibration. This
would be a general challenge for any disease model and is outside the scope of this study. However,
changes in network structure for evaluating impact of interventions could be carried out with the current

model, by evaluating potential changes to network structure specific to interventions.

5. CONCLUSIONS

The study contributes a new simulation technique that is uniquely suitable for jointly modeling infectious
diseases in a heterogeneous population that have common modes of transmission but varying
epidemiological features, that a single simulation technique would be insufficient or computationally
challenging. The numerical analysis serves as proof-of-concept for its application to STIs. The numerical
analysis also demonstrates the influence of behavioral factors on joint disease outcomes, and its
sensitivity to disease burden, care access, and population heterogeneity and mixing, which justify the
need for joint modeling of related infectious diseases. Social and economic conditions are among key
drivers of behaviors that increase STI risk. The new simulation framework is especially suitable for
simulating behavioral factors as a function of social determinants, and it can be expanded in future work
to subsequently evaluate optimal combinations of common structural interventions and disease-specific
interventions for overall reduction of STI burden. The new simulation technique would also be suitable

for the joint modeling of other infectious diseases that have common modes of transmissions. This would
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663  be especially suitable for early detection and intervention of new or emergent disease outbreaks, when
664  prevalence is still low, but spread within networks of people with other ongoing diseases. Examples in
665  recent years include Mpox for sexually transmitted infections, or COVID-19, SARS, MERS for

666  respiratory infections.

667  LIST OF ABBREVIATIONS

668  STIs: sexually transmitted infections

669  HIV: human immunodeficiency virus

670  HPV: human papillomavirus

671  HCV: hepatitis C

672  HBYV: hepatitis B

673  NG: Gonorrhea

674  CT: Chlamydia

675  PWH: people with HIV

676  ART: antiretroviral therapy treatment

677  PrEP: pre-exposure prophylaxis

678  NHSS: U.S. National HIV Surveillance Systems
679  SDH: social determinants of health

680 MAC: mixed agent-based compartmental

681  ABENM: agent-based evolving network modeling
682  ABNM: agent-based network modeling

683  PATH 4.0: Progression and Transmission of HIV, version 4.0
684  ECNA: Evolving Contact Network Algorithm

685  RP: relative prevalence

686  HETF: heterosexual females

687 HETM: heterosexual males

28



688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

MSM: men who have sex with men (men who have sex with men only and men who have sex with men

and women)
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Table 1: Overview of Disease 1 (HIV) scenarios

HIV Descriptive | HIV prevalence assumptions | HIV care assumptions

(Disease 1) | name

scenarios

Scenario 1 status-quo Initiated the model with a HIV | Care continuum distributions scaled-

prevalence of 0.1%, 0.05%, and | up as per values in the United States
6% for HETF, HETM, and over the period 2006 —2017. The
MSM, respectively. Values corresponding values for the
correspond to HIV prevalence | proportion of PWH on treatment with
in the United States in 2006. viral suppression was about 20%,
18%, and 19%, in 2006, and 56%,
50%, and 57%, in 2017, for HETF,
HETM, and MSM, respectively.

Scenario 2 low Initiated the model with a HIV | Care continuum distributions as per
prevalence, | prevalence of 0.07%, 0.04%, values in 2006, and kept constant for
low care and 3.2% for HETF, HETM, all 12 years of simulation. The

and MSM, respectively. Values | corresponding values for the

correspond to HIV prevalence proportion of PWH on treatment with

in the United States in 1990s. viral suppression was about 20%,
18%, and 19%, for HETF, HETM,
and MSM, respectively.

Scenario 3 low Initiated the model with a HIV | Care continuum distributions as per
prevalence, | prevalence of 0.07%, 0.04%, values in 2017, and kept constant for
high care and 3.2% for HETF, HETM, all 12 years of simulation. The

and MSM, respectively. Values | corresponding values for the

correspond to HIV prevalence proportion of PWH on treatment with

in the United States in 1990s. viral suppression was about 56%,
50%, and 57%, for HETF, HETM,
and MSM, respectively.

Scenario 4 equal and Initiated the model with a Care continuum distributions as per
low prevalence of 0.07% for HETF, | values in 2006, and kept constant for
prevalence HETM, and MSM. Values all 12 years of simulation. The
for all correspond to HETF HIV corresponding values for the
transmission | prevalence in the United States | proportion of PWH on treatment with
groups in 1990s. viral suppression was about 20%,

18%, and 19%, for HETF, HETM,
and MSM, respectively.

Note: HIV care assumptions are an input to the simulation. HIV prevalence are an input only for
initialization of the model in the first year of simulation. HIV prevalence over time are an outcome of the
model. For Scenario 1 (status-quo), the model was validated to match the U.S. epidemic on multiple
metrics, including prevalence, for the period 2006 to 2017. Scenarios 2 to 4 are hypothetical.
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Table 2: Computational time of the mixed-agent based compartmental model for the two-disease example

Number of
Number of nodes in the network persons in the Total *Computation time
Susceptible compartmental simulation per run (minutes)
Infected partners Total model population size Average (range)
4,100 17,947 22,047 1,025,050 1,047,097 | 12(10-16)
8,216 35,740 43,956 2,053,900 2,097,856 | 31(24-41)
12,020 50,612 62,632 3,005,000 3,067,632 | 56(46-71)

*Using single thread on Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz 3.70 GHz 64-bit operating
system, x64-based processor. Average and range of 10 runs.
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Figure 1: Computational structure of mixed agent-based compartmental (MAC) simulation framework for multi-
disease modeling, taking two diseases for illustration, a low prevalence Disease 1 and a higher prevalence Disease 2.
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calendar year 2017).
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RPpyp1 is the prevalence of D2 among persons with D1 compared to persons without D1;D1 is HIV; D2 is
hypothetical Disease 2; HETF-heterosexual female; HETM-heterosexual male; MSM-men who have sex with men
(men only and men and women). Note: For each HIV scenario (SI to S4), there are 16 data points corresponding to
each of the sixteen Disease 2 scenarios (larger the marker size higher the value of D2 transmission rate); Results
are from last year of 12-year-long simulation (for S1 it corresponds to calendar year 2017).
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RPpyp, is the prevalence of D1 among persons with D2 compared to persons without D2; D1 is HIV; D2 is
hypothetical Disease 2. HETF-heterosexual female; HETM-heterosexual male; MSM-men who have sex with men
(men only and men and women). Note: For each HIV scenario (SI to S4), there are 16 data points corresponding to
each of the sixteen Disease 2 scenarios (larger the marker size higher the value of D2 transmission rate),; Results
are from last year of 12-year-long simulation (for S1 it corresponds to calendar year 2017).
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1  Overview of MAC

The mixed agent-based compartmental (MAC) simulation framework was developed for
co-modeling of diseases spread over a common contact network but have varying levels of
prevalence and incidence that neither agent-based or compartmental model alone are sufficient.
The computational framework for the hybrid agent-based compartmental simulation was enabled
through use of a recently developed agent-based evolving network modeling technique
(ABENM)(1), applied to the development of the Progression and Transmission of HIV (PATH
4.0) model in the United States and validated against data from the National HIV Surveillance
Systems (NHSS) (2). The main concept of ABENM is to simulate only persons infected with at
least one low-prevalence disease and their immediate contacts at the individual level as agents of
the simulation, and to model all other persons including those with high-prevalence diseases using
a compartmental modeling structure. Immediate contacts are defined as all partners a person will
have over their lifetime who at the current time-step may be infected or susceptible. As these
contacts in the network become infected with a low-prevalence disease, their immediate contacts
are added as agents to the network (transitioning from the compartmental portion of the model to
the network portion of the model), thus evolving the contact network. An Evolving Contact
Network Algorithm (ECNA) maintains the network dynamics. Here we provide an overview of
the MAC simulation framework, without loss of generality, using a two-disease example, low-
prevalence Disease 1 and high-prevalence Disease 2. In the analyses presented in the main paper,
we modeled HIV as Disease 1, adopting the validated PATH 4.0 model (2) and a hypothetical
Disease 2. Without loss of generality, we can model Disease 2 as a single stage disease, as the
process would be similar for multi stages, but for the analyses presented in the main paper, we
experimented with varying rates of transmission and recovery to make it representative of a range
of diseases. We believe this framework can be generalized to any number of diseases, the
computational complexity and relevance informing decisions for modeling it in the ABENM or in

the compartmental.

1.1 Overview of MAC using low-prevalence disease 1 and high-prevalence disease 2
We present the framework using HIV as Disease 1 and a hypothetical Disease 2. We track
HIV-infected persons and immediate contacts using a dynamic graph G,(V, £), with the number

of nodes in the graph Q; = |V (G,)| and the number of edges |E(G;)| dynamically changing over
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time t as persons become newly infected with HIV and their immediate contacts are added to the
network. Each person in the network has attributes age, transmission-group (heterosexual female
(HETF), heterosexual male (HETM), men who have sex with men (MSM)), degree (number of
lifetime partnerships), geographic jurisdiction, and health status ({stage of Disease 1, stage of

Disease 2}, including {0,0} to indicate uninfected with either disease).

We track all other persons using an array S; of size A X R X D X G X H, where,
A is the number of age-groups,
R is the number of risk-groups,
D is the number of degree-bins (degree is the number of contacts per person, degrees are
grouped into bins analogous to age grouped into age-groups),
G is the number of geographic jurisdictions (equal to 1 here corresponding to national), and
H is the number of health states (two in numerical analyses:{0,0} and {0,1} corresponding
to {HIV stage, Disease 2 stage}; note: by design persons who are HIV positive will not be
in the compartmental model).
Therefore, each element of the array (St[d, r,d,g, h]) is the number of people in that specific
category, and thus, Q; + Xie[a,r.a,g,n] St,i» Would be the total number of people in the population at

time t.

As all HIV infected persons and exposed partners are in the network, HIV transmissions and HIV
disease progression are modeled at the individual level (using HIV transmission and HIV disease
progression modules in Appendix S2.1). Disease 2 transmission and progression are modeled
using differential equations (as typically done in compartmental modeling technique) but with the
consideration that people in both the network G, (I, £) and compartmental array S; can be infected

with Disease 2 (see compartmental module in Appendix S2.1).

The mathematical challenges to address for this method to work is to maintain the dynamics
between the network G, (V, £) and compartmental array S;, including, transitioning people from
St to G¢(IV, E). Specifically, determining ‘who’, i.e., the degree, transmission group, age, and
geographical location of the persons, are to be added as the immediate contacts of the node newly
infected with HIV, as these characteristics of infected persons and their contacts are known to be

correlated [12]. Upon determining and adding all lifetime partners of nodes newly infected with
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HIV, we need to determine when the partnerships would initiate and dissolve, including the age of
both partners at that time, such that the overall dynamics of age-mixing and transmission-group-
mixing of the resulting network match that of the U.S. population over time. As network generation
techniques in commonly used agent-based models are designed to generate the network between
the full population (susceptible and infected persons), they cannot be adopted here. We developed
an evolving contact network algorithm (ECNA) for modeling the transitions from S; to G;(V, £)
(see ECNA module in Appendix S2.3). As HIV is a chronic infection, once persons enter the
network G.(V, ) they do not transition back to S;. However, for low-prevalence diseases that
are not chronic, they can be added to the compartments corresponding to their group (stability of

the network dynamics for varying epidemiology profiles are discussed elsewhere (1)).

We discuss the computational structure of MAC in Appendix S1.2 and the four simulation modules
in Appendix S2. A visual representation of the computational structure is presented in Figure 1

(main manuscript). All notations used in the model are also summarized in Table S1.

1.2 Computational structure of MAC

As noted above, following the compartmental modeling structure, we use a five-dimensional array
S¢ to keep track of the number of susceptible persons (who are not contacts of persons with HIV
infection), i.e., S¢[@, 7, d, g, h] is the number of susceptible persons in age-group @ , transmission-

group 7, degree-bin d, pseudo-geographic jurisdiction g, and health status h at time ¢.

As noted above, following the ABNEM structure, we use a dynamic graph G;(V, €) to track HIV-
infected persons and their immediate contacts, where V" is a set of nodes, each node representing
an HIV-infected person or a susceptible sexual partner (they may or may not have Disease 2),
and £(G,) is a set of undirected edges, an edge {i,j} representing a sexual partnership between

nodes i and j.
The graph G;(V, ) has the following features:

Static adjacency matrix: C; of time-variant size Q, X @, with static elements C;[i,j] = 1
if i and j are sexual partners anytime during their lifetime and C;[i, j] =0 otherwise, and
Dynamic adjacency matrix: V, of time-variant size Q; X Q;, with element V;[i,j] = 1 if

i and j are in a partnership during month t and V;[i, j] = 0 otherwise.
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Each edge {i, j}€€ has the following features (similar to nodes having features of say age, sex, etc.,

edges can also have features):

Partnership initiation time: t({i, j}) representing the simulation month for when the

partnership initiated,

Partnership termination time: t({i,j}) representing the simulation month when the

partnership terminated,

Partnership initiation age: {di, dj} representing the age of nodes i and j, at the time of

partnership initiation, and

Partnership termination age: {Qi, a j} representing the age of nodes i and j, at the time

of partnership termination.

Each node jeV'(G,) has the following features:

Actual degree: d; representing the actual number of lifetime sexual partners of node j,
Current degree: &t,]- representing the number of lifetime sexual partners of person j who
are already added as nodes in G.(V, £); if node j is HIV-infected dt,]- = dj, if node j is
HIV-susceptible dt’j < d;, and thus dynamically changing with time ¢,

Partnership distribution matrix: L, ; of size A X 2, where A is the number of age-groups,
L¢ j[a, 1] is the number of partnerships that node j initiates in age group a, and L j[a, 2] is
the number of partnerships that are yet to be assigned; the sub-script t are to indicate that
the values of column 2 of L, ; can change over time, specifically, L. ;[,2] is a column of

zeros if the node is HIV-infected as all their partnerships are already assigned, and greater
than or equal to zero if the node is HIV-susceptible (when the HIV-susceptible person is
added as a contact of a different HIV-infected person one of the rows is decremented, and
when the HIV-susceptible person becomes HIV-infected all rows of column 2 are
decremented to zero as their partners are found and added - the HIV-ECNA was
specifically developed for determining when and how to assign these partnerships, and thus

generating the network, which is discussed in Appendix S2.3),
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Health status: £.; = {Disease 1 status, Disease 2 status}, e.g., i; = {1,0} if node j
is stage 1 HIV and no Disease 2 at time ¢,

Deceased status: 72, ; = 1 if node j is alive and 0 otherwise,

Age: a. ; taking an integer value representative of the age of node j,

Geographic jurisdiction: g; taking an integer value representative of the geographic
location of node J,

Transmission-group: 77 taking one of the following values, representative of transmission-
group of node j, 7 € {heterosexual female, heterosexual male, MSM}, and

HIV care continuum and disease stage: 8, ; taking one of the following values, 0 (not
infected), 1 (infected, acute HIV stage, and undiagnosed), 2 (non-acute HIV, and
undiagnosed), 3 (diagnosed and not in care), 4 (in care not on antiretroviral therapy (ART)

treatment), 5 (on ART no viral load suppression (VLS)), or 6 (on ART with VLS).

The main relationships between different components of the graph G, (V' £) are the following.

Between partnership initiation t({i,j}) and termination t({i,j}) times and static and

dynamic adjacency matrices (C; and V;):

Celi,j] = { Lif {i.j}e€ i.e., if {i,j} are partners at some point during their life, this will

0 otherwise’

have a value of 1,

Veli,jl = {1 if t(tijh) st = E({i'j}), i.e., if {i, j} are partners at time t this will have a

0 otherwise

value of 1, and thus,
Celi,j1 =2 Ve[i j]-
Between actual degree d;, current degrees oAlt,]-, and static adjacency matrix C:

n { = d; if node j is infected
tj

i< d; if node j is susceptible” i.e., if a node is infected, they are linked to all partners

they will have (actual degree) over their lifetime and thus d; = dt,,-, and if a node is

susceptible, they are only linked to their infected partners and thus d; < &t,j, and
at,]- = Yi=1:¢, Celi, j1. i.e., C¢ keeps track of their current degree.
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Between actual degree d; and partnership distribution matrix Ly ;:

Ya=1aLljla, 1] = d;, atany t, i.e., as L, ;[a, 1] tracks number of partnerships that initiate
at age-group a, when summed over all a it should add to the actual degree d; for all nodes
whether infected or susceptible, and

L 5 . .f .. . l ] _
d; — dyjifnode j is susceptib € e as L, [@ 2] tracks number of

Ya=1:4 Lt,j [a,2] = {

0 if node j is infected
partnerships that initiate at age-group a and are yet to be generated, Y.g-1.4 L ;[a@, 2]would
be zero if the node is infected because all partnerships of an infected node are already
connected in the network, and would be equal to the number of partners yet to be assigned
if the node is susceptible. (Assigning partnerships and all other features related to the
network are part of the newly developed HIV-ECNA network generation algorithm,
discussed later).

This section presented the computational structure of the model, specifically the compartmental

modeling structure, the network structure, and the features of the nodes and edges in the network.

A visual representation of the computational structure is presented in Figure 1. The next section

describes the methods (modules) used in simulating these features, Appendix S3 discusses the data

inputs, and Appendix S4 discusses model initialization, and Appendix S5 provides an overview of

the steps of the simulation.

2 Four main modules of MAC

We present the overall MAC framework through four modules, that are run at every time-step
(monthly) of the simulation: a compartmental module for simulating Disease 2, a Bernoulli
transmission module for simulating new infections, the ECNA network generation module for
generating partnership networks of new HIV-infected persons, and a disease progression module

for simulating HIV-related events for HIV-infected persons.

2.1 Compartmental module for simulating high-prevalence Disease 2
This module updates the demographic features (births, aging, and deaths) and Disease 2 features
(transmission and progression) of persons tracked through the array S;, using difference equations

as follows.
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ds,
St+At = St + EAt

ds . . . . . . .
d—tt is the rate of change in S;, with the general equation for its calculation only varying in element

corresponding to health status h, as follows using a simple two stage Disease 2 as in our numerical

analyses,

45t 1 d, g, h={0,0
E[am ,g,h = {0,0}]

= —D2 new infections + D2 recovery — aging_out + aging_in — deaths

ﬁ[ar& h ={0,1}]
dt 1y Uy gr )
= D2 new infections — D2 recovery — aging_out + aging_in — deaths
Each element on the right-hand side can be calculated as follows,
D2 new infections = e[ﬁ,r,c_l,g]st[a: r,d,g,h= {0,0}],
D2 recovery = yS; [&, T, cz,g, h = {0,1}] ,
aging_out = (é) S:la,r.d,g,h = {0,0}],

1
la-1]

aging_in = ( )St[d —1,7,d,g,h = {0,0}], and

deaths = &5 S;[a,r,d, g, h],

where,
O1a,r a,g) 1s the infection rate for persons in age-group @, transmission-group r, degree-bin
d, pseudo-geographic jurisdiction g at time t,
y is the recovery rate (in this hypothetical analyses we assumed it is static, but could be
varied as a function of @, , g, to represent epidemiological differences by demography or
as a function of time t to represent changes in care or treatment over time,
|@| is the age-interval of age-group a, and
05 1s mortality rate as a function of age-group a (here we only modeled all-cause mortality,

but it could be varied as a function of health status h).

We calculated infection rate 6|z g, 41 as follows, (as G = 1 here, for clarity of notation, we ignore

g in below notations)
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Oar.a) = BiaraCiaraMr(a d)

Mi = Z ri,j(P A)TD
JE{HETF,HETM,MSM}

Biara) is the per contact transmission probability among persons in age-group a,
transmission-group 7, degree-bin d,

Clar,a) 18 the number of contacts among persons in age-group @, transmission-group 7,
degree-bin d,

M; is a matrix of size A X D, with each element Mi(d, CZ) the probability that the contacts

of a person in transmission-group i and with degree d and age-group @ is infected,

_ ja—
P is a matrix of size D X A, with each element P(d, @) the prevalence (Na'r"fg
ardg

) among

persons in degree-bin d and age-group a, (I a7 dg 18 the number of persons infected with

Disease 2 and Ny 7 g 4 is the number of persons in that group),

A is an age-mixing matrix of size A X A, with each element A(m, n) the probability persons
in age-group m mix with persons in age-group n,

D is a degree-mixing matrix of size D X D, with each element D(m, n) the probability
persons in degree-bin m mix with persons in degree-bin n,

r;j 1s the probability persons in transmission-group i mix with persons in transmission-
group j, and

T represents matrix transpose.

larag = Sel@r,d, g,h = {0,13] + {Maragn=ry)l;

Narag = Sela.r,d, g.h ={0,0}] + S [a,r,d, g,h = {0,13] + {N(aragn=r.on} +

N (aragn=tu)]

i.e., Ij would be the sum of Disease 2 infected persons in group j in the compartmental model
(St[c_l, r,d,g,h = {0,1}]) and the number of nodes in the network in group j (|{N [d,r,&,g,h:{.,1}]}|)a

and similarly, N; would be the sum of the total number of persons in group j in the compartmental
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model (St[c_l, r,d, g.h= {0,0}] +S; [ﬁ, r,d, g,h= {0,1}]) and the total number of nodes in group
Jj in the network (|{N [d,r,&,g,h:{.,o}]} + |{N [d,r,a’g’h={”1}]}|). Note that, while the first element of h
is always zero in notations related to S; indicating that all persons in the compartmental model are

HIV negative, we use a dot in notations related to V' to denote that it sums over all nodes in any

stage of Disease 1.

Simulating Disease 2 among HIV infected persons in the network G.(N', E)

We use the above transition rates (infection rate 65, 4 and progression rate y) to simulate
Disease 2 among nodes in the network. We first convert rates to probability, as probability =
1 — exp %1 (assuming sojourn times follow exponential distribution). We then use a binomial
distribution to determine number of nodes to transition, specifically,

number of nodes newly infected with Disease 2 =i, ~Binomial( |{N [d,r,a’g’h#”o}]}l, 1-

exp‘emmﬁgyl)

number of nodes newly recovered from Disease 2 =rp,~Binomial( |{N [d,r,a’g’h#”l}]}l, 1-
exp V1)
We then randomly choose ip, from node-set {N [ard, g,h={_,0}]} and set their health status h = {.,1},
and randomly choose 7p, from node-set {N [d,r,&,g,h:{.,l}]} and set their health 2 status h = {.,0}.
Note that the dot in the first element of h indicates that Disease 2 transitions in our numerical are
independent of Disease 1 stage, however, to model biological risks of coinfections this assumption
would be modified.
Note that, given the simulation time-step is chosen such that the rates are sufficiently small, as the
sample size increases, the number of persons to transition drawn from a Binomial distribution will
be similar to the number determined by directly using the difference equations, expect that the
former is stochastic and generates an integer number and the latter is deterministic and generates
a floating point number. To equalize the effects of randomness, the model in the numerical
analyses was setup to draw from the Binomial distribution even for the compartmental model. For
example, the number of D2 new infections in the compartmental model (Section S2.1) would
change from H[C—l,r,a,g]St[d, T, J,g, h = {0,0}] to Binomial( |{St [6_1, r.d, g,h= {0,0}]}l, 1-—

exp_e[ama«g] .
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2.2  Transmission module for simulating new Disease 1 infections in network (HIV-
infection)

This module determines if a HIV-susceptible node [ in the network G,(V, £) becomes infected
using a Bernoulli transmission equation and individual-level sexual behaviors and transmission
risk factors, each factor modeled as functions of demographic features, and HIV testing and
treatment status of infected contacts. Note, as persons in the compartmental model array S; are not
connected to an HIV-infected person, their chance of infection is zero. However, note, persons can
move from S; to G,(V, £) upon becoming partners of an HIV-infected person, modeled using the
HIV-ECNA algorithm discussed in the next section, which would then expose them to HIV
infection. Specifically, every time-step (monthly) of the simulation, this module determines if a
HIV-susceptible node [ in graph G, (V, £) becomes HIV-infected i.e., for nodes with health status

H—1; ={0,.} or A_1,[0] = 0, it estimates its updated value £, as follows.
eg[0] = F~1 (1 - T1%%, (1 — @)™ (1 - “j)st'j'(l_ct'j)), where,

aj = V[l,jl.m; .p.;, where V;[l, j] and m, ; are the elements of the graph described in
Appendix S1.2, and p, ; is the probability of transmission per act modeled as a function of
health state 4 ; and transmission-group #; of the infected node j; we will have a value of
a;j = pj if j is a contact of [ (i.e., V¢[l,j] = 1) and is alive (i.e., m,; = 1), and a; = 0
otherwise; further p; ; = 0 if #A._,; = {0,0}, and p,; = 0 for all other values of £_4 j,
1.e., py,; can be a function of care and disease stage of Disease 1 only or a function of care

and disease stage of Disease 1 and Disease 2 if the presence of one infection biologically

increases the risk of another,
e =1 - condom effectiveness,

S¢,j = number of sex acts per month with node j, modeled as a function of age, transmission-

group, and number of partners of node j,

C¢j = proportion of acts with node j that is condom protected, modeled as a function of

age, transmission-group, and number of partners of node j,

F~1(u) = an inverse Bernoulli distribution that takes a value of 1 with probability u and

value of 0 with probability 1 — u.
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If node [ becomes infected, then the above equation will yield 4¢,;[0] = 1 i.e., transition to first

stage of Disease 1.

Every time-step t, this module also determines and updates any changes in sexual
partnerships of HIV-infected nodes. Specifically, for every partnership (k,j), it updates its

1if t({k,j}) <t < t(k,j}), indicating it is active

active/inactive status as Vi [k, j] =
tlfe,j] { 0 otherwise, indicating it is inactive

2.3 ECNA network generation module for generating partnerships of new HIV-infected
nodes

This module controls the overall network dynamics of partnerships between nodes. The main
functionality is to generate the contact network for each new HIV-infected node (. The steps of the
ECNA are as follows.

For every new HIV-infected node [,

1. Determine the number of new partnerships (edges) to generate as actual degree minus current
degree. Note, these new partnerships would all be with HIV-susceptible persons as any
partnerships with HIV-infected were already added when networks of those HIV-infected
persons were created.

2. For each new HIV-susceptible partner node, determine node features: number of lifetime
partners using ECNA (discussed below), transmission-group, current age-group, and pseudo-
geographic jurisdiction using conditional probability distributions, and partnership distribution
using a two-step Markov process (discussed below).

3. For each partnership, determine age of both partners and simulation times at partnership
initiation and termination, by formulating and solving as assignment optimization model
(discussed below).

4. Determine who each new partner is by a uniform random draw from all who are eligible, i.e.,
all persons who are eligible have an equal chance of selection. All HIV-susceptible nodes in
the network G;(V', £) and HIV-susceptible non-agents in the compartmental model array S;
with features matching that in steps 2 and 3 above, can be eligible.

5. For each new partner and partnership (determined in previous steps) update their

corresponding features in the network G, (', £) and compartmental array S;.
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S2.3.1 ECNA for determining degree of susceptible partner nodes
We assumed that the contact network of sexual partnerships follows a scale-free network, where

the distribution of the number of contacts per person follows a power-law distribution (3). A key
feature of scale-free networks is that, for a node [, the degree-bin of a partner d, is not independent
of its degree-bin d; because of degree correlations between node neighbors (4). That is,
Pr(Dy = di|D, = d;) # Pr(Dy = d); where Dy is the random variable for degree-bin of node
k, and thus, d, cannot be directly drawn from the power-law probability mass function. While the
literature presents an analytical method for estimation of Pr(ﬁk =d,|D, = Jl) for general static
scale-free networks (4), this method is not suitable for simulating an epidemic in a dynamically
evolving contagion network(1). Specifically, in general static scale-free networks, the full network
is available so the degree of all node neighbors are available, and thus Pr‘(ﬁk =d,|D; = cfl) is an
expectation over all possible values of d,, i.e., an average over “all” node neighbors. However, as
we only simulate HIV-infected nodes and their immediate contacts in the network, in our context,
only values corresponding to HIV-infected node neighbors’ are used. As it is more likely that
nodes with higher degree get infected first, the value of Pr(ﬁk =dy|D, = cfl) when [= ‘all node
neighbors’ is different compared to when [= ‘HIV-infected node neighbors’. And further,
Pr(ﬁk =dy|D, = 071) is likely to change over time as the HIV epidemic spreads and the percent
of the population that is HIV-infected changes. We developed a neural network model for the
prediction of Pr(ﬁk =d|D, = Jl) using as independent variables, d;, dj,, the minimum degree
of the network m, the percent of the population that is infected (p), and the scale-free network
parameter 4,., corresponding to transmission-group of node [ (7). Details of this algorithm are

presented elsewhere (1), and summarized below.

The neural network was trained on data generated by multiple simulations of hypothetical diseases,
characterized by different values of probability of transmission, on scale-free networks of different
minimum degree and size. Specifically, using the barabasi.game in the R software multiple scale-
free network of varying size (N) (1000, 5000, and 10000), and minimum network degree (m) (1,
2, 3, 4, and 5) were generated. Then, hypothetical diseases were simulated on each network, and

at every time-step, for every newly infected node, the following data were collected, the

Z,1
212k,

independent variables d;, d;, m, N, p, and the conditional probability as Pr(d|d;) =

3
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where, z;,; was a counter in the simulation that kept track of the total number of susceptible
contacts with degree d, € d, for newly infected persons with d; € d,, for every d,d,
combination. The value of the transmission probability itself were not relevant, however the
prevalence (p) was relevant, and therefore we used small values of transmission probability to
capture a range of prevalence over time as the infection spread. Although the scale-free network
generation package in R (barabasi.game) uses m and N as inputs, the scale-free network power-
law degree distribution decay-coefficient A is more relevant as it is more generalizable. Therefore,
we recoded m and N into A, by calculating 4 from the corresponding networks generated, as
follows. For a scale-free network following a power law degree distribution, the probability that a

node has degree k (represented as Pr(k)) can be written as

k—/l

A —

where, the decay-coefficient A = —Alog(ny)/Alog(k), ni= number of nodes with degree k, A4 is
the gradient, m is the minimum degree, and m is the maximum degree (network size influences

maximum degree and thus served as a proxy).

The trained neural network was used in the ECNA module for determining the value of Pr(dy|d,),
corresponding to the degree of the newly infected node (d,), HIV prevalence at the time, the scale-
network parameter for the transmission-group (4,-,), and the minimum degree of the network (m).
Data used for the estimation of 4,., are discussed in Appendix S3.5 and S3.6. We assumed
minimum degree of 2 and maximum degree of 128, and thus, for every d;, values of Pr(d,|d;)
were normalized to add to 1 to keep the range of dj, from 2! to 27. However, the computational

structure can be set to take any degree range (see Appendix S3.3).

S2.3.2 Two-step Markov process for determining the partnership distribution by age

Suppose dj, is the actual degree (number of lifetime partners) of a newly added susceptible node
k. We need to determine at what age of k will each partnership initiate. Specifically, suppose there
is a matrix L of size A X D, with A the number of age-groups and D the number of degree-bins,
and element L[a, d] representing the proportion of partnerships that initiate at age-group a for

persons in degree-bin d, with each column of L adding to 1, for all d € {1,2, ... D}. Then, for any
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node k with actual degree dyed, we can calculate the partnership distribution matrix, i.e., the
number of partnerships that initiate at age @, as L [a, 1] = Z[C_l, cf]. d,. Direct data for L would be
a longitudinal survey over the duration of life of an individual, where the individual reports the
number of partnerships they initiated at every age points of their life. Such surveys, however, are
unavailable. Therefore, we estimated L using survey data on the reported number of partners up to
that time by persons of different age-groups(see S2.2 and S2.3). Note that, these survey data only
represent the number of partners up to the current age of the surveyed individual. Thus, the degree-
bin d each person would belong to is unknown as d represents the number of partners the person
would eventually have over their full lifetime. The age at which each partnership initiated is also

unknown.

We developed a two-step Markov process and simulation method for estimation of L using the
survey data. Details of this method were presented previously (2), we discuss it below for

completeness.
Step 1: Formulation and solution method for the probabilities of initiating a new partnership-

Let X; be the degree-bin corresponding to the number of partners a node has up to the age of
age-group a, a € {1, 2, ...,A}. Then, {Xati Q, superdiag(Py, Py, ..., PA_l)}:o:1 is a discrete-time

Markov chain with state space 0 =

{1-1,25=1, -»Dg=1,1g=2,25=2, . Dg=2, ..., 1g=4, 2g=4, --» Dg=4}, Where each discrete timestep
corresponds to the length of time equal to the width of age-group a, D is the number of degree-
bins, A is the number of age-groups, superdiag(P;, P, ..., P4_1) is a block matrix with

{P;,P,, ..., P,_1} on the superdiagonal and all other elements equal to zero!, and P; isa D X D
upper triangular matrix, with Pz [x, y] equal to the probability that a person transitions from state
xe{lgz, 25, ..., Dz} in age-group a to state ye{1z41, 2541, ---» Dz+1} In age-group a + 1 (i.e., goes
from degree-bin x to degree-bin y in one age-group increment). By assuming that there are no
generational changes in partnership behavior and that births are equal to deaths, we can rewrite
the above Markov process as a regular Markov chain that is in steady state, i.e., the state

distribution is stationary over time. Using the components of each matrix Pz, and defining a row

! Alternatively, ... is a block upper bidiagonal matrix with {P,, P,, ...., P4_1} on the superdiagonal and the elements
of the diagonal blocks equal to zero.”
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vector 5 with z[x] equal to the proportion of people (among those in age-group @) with

number of partners up to age a in degree-bin x, we can write
Tg+1 = MgPg.

Note that, for each a, the elements of m; add to 1 and @ is a normalized sub-vector of the steady

state distribution of the above Markov chain.

Data for r; are available from the behavioral survey studies (see Appendix S3.5 and S3.6). We
solved for the values in P;, for each a, by formulating and solving a linear least-squares

optimization problem as follows.

For each a, we formulated an optimization model as
Objective Function: mzin% ICz — L 1115
Subjectto: Bz =0D>b
0<z<1

where the objective function is equivalent to min lmgPsz — mz4113, i.e., equivalent to
a

minimizing the sum of squared errors between the left- and right-hand sides of the equation

Tgz41 = TPz defined above (]|. || is the £,-norm), and is obtained by reformulating as below:

Z is a column vector of length D? obtained by stacking the columns of Py; i.e., z =

vec(P;),

C is a D X D? matrix where, for eachrow i = 1,2,...,D, C[i, (i — 1)D + 1:iD] = mg and

all other elements are equal to zero,

ml,, is the transpose of 4, 1,

B is a D x D? matrix consisting of D side-by-side D X D identity matrices, and
b is a column vector of length D, all of whose elements are equal to 1.

The reformulation converts the objective function into a linear least squares function, which is
easier to solve using standard linear least-squares solvers. The constraint Bz = b ensures that each
row of P; adds to 1, a necessary Markov chain property. We used the least-squares solver in
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MATLAB to solve for the optimal value of elements of vector z, and thus obtained elements of

P;.

Step 2: Simulation- We simulated a hypothetical population of 10,000 persons. At the start of the
simulation, all persons are assigned the lowest age group (@ = 1) and lifetime partners are assigned
according to the degree distribution of the lowest age group (taking mid-value of the degree-bin).
Every time-unit, of length equal to the width of the age-group interval, each person transitions to
the next age-group and is assigned additional partners as per the transition probabilities in Pz
estimated in Step 1. This is repeated until all persons reach the last age-group. Taking all persons
with lifetime partners in degree-bin d at the last age-group, we estimated L[@, d] as the average of

the proportion of partnerships that initiated when that person was at age-group a.

S2.3.3 Assignment model with heuristic solution for partnership initiation and termination

We formulated the problem of assigning age at partnership initiation as a variant of an assignment
optimization model. Suppose ny[i] is the age of partnership initiation for i*" partner of node k
(Ing| = dj the degree of node k). Then the objective is to assign each element (and all elements)
of n; of a newly infected node [ to one (and-only-one) element of n; for each partner k, with
constraints to maintain the probability distribution for age-mixing between partners, and
partnership distribution matrices (L ; and Ly, Vk) of the newly infected node [ and each partner
k. However, solving it using standard solvers for each infected person is computationally
expensive, and therefore, we developed a heuristic solution algorithm. Solving for partnership
initiation age for each new partner sets the focal point for assigning the other three parameters
partnership initiation time, partnership termination age, and partnership termination time. Details

of this method were presented previously (2), and are discussed below for completeness.

The task is to estimate partnership initiation age {&@;, @y }, termination age {Ql, gk}, intiation
time t({l, k}), and termination time t({l, k}) between nodes [ and k. The optimal values are those
that ensures age-mixing between partners is maintained, the distribution of partnership age-
initiation for newly infected node [ (i.e., Ly ;[,1]) is maintained, and the distribution of partnership

age-initiation for each of its partners k is maintained. We can formulate this problem as an

optimization model as follows. Let,
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M be an age-mixing matrix of size A XA with element M{[i, j] the probability that, given a
person is in age-group j, his or her partner is in age-group i (here, element j corresponds
to the newly infected node, and i the yet to be assigned partners); M will vary by risk-

group, but we do not include risk group in the notation for clarity,

P =M -diag(L,[,2]), where diag(v) is a diagonal matrix with diagonal elements equal
to those of the vector v , be a matrix of size A XA with element P[i, j] representing the
number of partners of age in age-group i yet to be assigned, when the newly infected node

[ is in age-group J,

n be a vector of size A with n[i] = };-,.4 P[i,]], V ie{1,.., A} denoting the number of

partnerships to initiate when the partner is in age-group i,

N be a binary matrix of size AXD, ;, where, D, = d; — czt'l, d; is the degree of the newly-

infected node [ and d; — (it,l is the number of partners to newly add, with element N[a, k] =

{1 if Leeld, 11> 0

) ,i.e., N[a, k] = 1 if partner k is eligible to initiate the partnership at
0 otherwise

age-group @ , and

R be a binary matrix of size A XDy, with element R[a, k] = 1 if the partnership with k

would occur when partner k is in age-group a.

Then, the problem is to solve for R using the following formulation of the optimization model

2
Objective Function: mRin Yi=1:4 [Zj=1=dz—51t,1 R[i,j] = Xq=1.4P[i, q]]
Subjectto:  R[i,j] < NI[i,jl; Vie{l,..,4},je{1,..,d; —dy}

Zi:l:AR[i'j] = 1; V]{l, "dl - Czt,l}

The objective function seeks to minimize the sum of squared error between the number of
contacts initiating at a particular age-group and the expected number of contacts to initiate at that
age-group (here the age references to the partner’s age). The first constraint ensures that the newly
infected node does not initiate a partnership in the age-group where the partner does not have an
expected partner initiation. The second constraint ensures that any partnership initiates only one

time. The above model can be considered a variant of an unbalanced assignment problem, a
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category of problems that deal with assigning n jobs (here partners) to m machines (here age-
groups). The first variant being the addition of the first constraint (which is similar to a machine
assignment problem constraint where not all jobs are eligible on all machines). The second variant
being the modification of the objective function, from the typical form

mRin Yi=1:4 Xj=1:q-d,, R[i,j] ¢ij, by setting ¢;; = 1 (the cost of assigning job i to machine j for

all i,j combination), and putting a tight constraint that the maximum capacity of the machine
should be met (n[i]). Notice that, if there exists a solution, there could be more than one solution
to this problem. A solution will not exist if for any age-group @, n[a] > ¥ ;_1.p,, N[a,j], i.e., the

number of required partnerships at age-group a is greater than that available.

Instead of applying a standard assignment problem optimization solver, which was
computationally expensive to apply for every newly infected node, we developed a simple

heuristic solution algorithm as follows.

Let e, be a vector of size A with ey [i] = n[i]N[i, k], for every new partner k. Then, e, [i] >
0 if k is eligible to initiate a partnership at age-group i and there is a need for a partnership at that
age-group. For each new partner k, we search through all elements of e, by starting at the last
element, we select the first occurrence of i with e [i] > 0 as the solution, i.e., set R[a = i, k] = 1,
and update n[a] = n[a] — 1. This process of starting at the last element of e, leads to an optimal
solution, provided a feasible solution exists, because of the following property assumptions related

to the distribution of lifetime partners by age-group of partnership initiation.

Property 1: For any k, if N[i,k] = 1 then N[j, k] = 1V 1 < j < i but the opposite is not

necessarily true.

Property 2: Let S; be a set of partners eligible to initiate partnership at age-group a, i.e., if
N[a,jl > 1, thenj € S5. Then, §; € 8;Vj > i, i.e., |S;| < |8;], where |.| is the size of the set.

Properties 1 and 2 suggest that partners who are eligible to initiate partnership at an older
age-group are also eligible to initiate partnership at a younger age-group but not necessarily vice-
versa. Property 2 further suggests that the number of partners feasible to initiate a partnership at a
specific age-group decreases with age, with the oldest age-group having the least number.

Therefore, the heuristic method is equivalent to starting at the oldest age-group, randomly picking
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from those eligible, removing them from all sets Sz, and iterating to the next oldest age-group to
repeat the process. We apply the heuristic algorithm even for cases where a solution does not exist
(infeasible solution), i.e., when there exists at least one age-group, say @, where n[a] >
> j=1:D¢; N|[a, j] indicating that the number of required partnerships at age-group @ is greater than
that available. And at the end of the algorithm, any unassigned partner k, i.e., for k with
Y. R[., k] = 0, are assigned to initiate partnership when they are in age-group a, i.e., set R[a, k] =
1, and if there are more than one such occurrence, they are randomly selected. This infeasibility in
solution occurred 9% on average. Considering that the infeasibility is caused by trying to match
various types of data, age-mixing data with partnership initiation derived from number of partners,

this margin of error could be expected.

Upon solving for R, for every partner k, using P and R together we can identify the age-
groups of [ and k at which the partnership will initiate. We select a random age within those age-
groups to set as {@;, @y }. We thenset t({l,k}) =t + @, —a, and a, = @, — (t{l, k}) — ¢). If
this partnership initiated in the past, we would then have &, — a,; < 0, t({l,k}) < t, and a,; >
ay, . If this partnership would initiate in the future, we would then have @; — a,; > 0, t({L, k}) >
t,and a,j < ay. If this partnership would initiate at current time-step, we would then have @; =
agi, t{Lk}) =t,and a,, = a; (note: this is of significance in HIV as the susceptible person is
then exposed to the acute phase of infection where the transmission is high). Finally, partnership

termination time t({l, k}) is set to the time the next partnership of node [ initiates.

Data inputs for this section follows from the estimations from the previous sections, and
additionally uses age-mixing matrix discussed in Appendix S3.5 and S3.6.
2.4 Disease progression module for simulating Disease 1 progression for nodes in the
network
The disease progression module updates the individual-level demographic and disease dynamics
for every HIV-infected person in the network just like an agent-based model. This includes aging,
Disease 1-related and natural mortality, progression through Disease 1 disease and care stages. For

the analyses in the main paper we adopted the disease progression module from PATH (5).
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3 General data structure and data inputs used in ECNA module development

3.1 Age structure

For the numerical analyses, the compartmental model used the following age-groups:{13 —
17,18 — 24,25 — 29,30 — 34,35 — 39,40 — 44,45 — 65}. The agent-based model used
individual age and tracks persons until death, though for the numerical analyses we included only
persons aged 13-65, to focus on transmissions. For future work, the compartmental model can be
easily extended to include age 65+ for purposes of tracking disease progression, such as
progression of HPV to cervical or other forms of cancer. Also note that, the age-structure in
compartmental model is flexible to change and should be informed by age-groups used in data
inputs, to sufficiently capture data heterogeneity (see S3.7 for data that informed choice of age-
structure used here). Once an age-structure is chosen, all data common to both compartmental and
network should be converted to this age-distribution. Further, the distributions should be kept
consistent between the network and compartmental, e.g., though agent-based uses individual age,
the age-group for partnership mixing should be drawn from the same distribution as that used in
compartmental model. Data specific to agents can use any age-structure and have parameters with
varying age-structures. For example, the overall population (network +compartmental) was
initialized to the U.S. census data using the age-structure noted above, but the distribution of people
with HIV (agents) were distributed using data in Table S2. Some of the sexual behavioral data
from the literature are presented in Table S4, which has a different age-structure than in the
compartmental model. As these data are common to persons in both compartmental and network

they were converted to compartmental age-structure.

3.2 Birth cohort for evolving network

Individuals can only enter the population by aging into the lowest sexually active age-group
modeled (13 to 17) and are susceptible upon entering the population, i.e., added to the
compartmental model. We assume a constant number of births per year, calculated for each risk

group using the overall birth rate in the U.S. in 2015 times the population in the respective risk
group.

As the evolving network tracks all life-time partnerships of persons with HIV (Disease 1), when a

person becomes newly infected, the current age of one or more of their susceptible contacts could
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be outside the ‘alive’ susceptible population, either the susceptible contact has already aged-out,
i.e., was a partner in the past, or not yet aged-in, i.e., is a partner in the future. Persons who have
aged-out will have an age value greater than the sexually-active age (or dead) and thus,
computationally will not influence any part of the model. Persons who have not aged-in will have
an age value less than 13, including negative. Computationally, this would not cause an issue in
the network because the partnership activation algorithm (discussed in S2.3.3) enforces the
activation age to be within the sexually active age-groups modeled here. However, when that
person is moved from the susceptible compartment to the network, as the model is set to decrement
the number in the corresponding compartment by one, but the first age-group in the compartmental
array (S;) is 13-17, it would create an error. To overcome this, the model maintains a birth-cohort,
an array of dimension 100 X 9 (corresponding to age X degree-bin dimensions), initialized to the
number of births per year distributed by degree-bin (degree-bin distribution discussed below), i.e.,
each row sums to constant number of births per year. If a person of age less than 13 years (say i)
with degree-bin j moves from compartmental to network (G;), then the corresponding element of
the birth-cohort (100 + i — 13, ) is decremented by 1. Every year, the values in the 100™ row of
the birth-cohort array are added to the compartmental array (S;) corresponding to the first age-
group (13-17), every row i € {2,..100} of the birth-cohort is set equal to the value in row i — 1,
and row 0 is initialized to add to the number of births. For the assumptions used here, a birth-
cohort dimension of 65 — 13 X 9 would be sufficient, however, we set it to 100 X 9 for the
computational structure to be generalizable to any disease assuming maximum age is 100 years,

as its contribution to computational complexity is minimal.

3.3 Degree-bin structure

For the numerical analyses, the computational structure of compartmental array uses a degree-bin
distribution of dimension 9 as follows:{0,1,2,3 —4,5—-8,9—-16,17 — 32,33 — 64,65 —
128}. However, in the model we assumed minimum and maximum degree (lifetime number of
partnerships) as 2 and 128, respectively, as the probabilities outside of this were low. However,
we kept the computational structure to include degree 0 and 1 to keep it generalized and flexible
to changes, or for modeling other networks such as needle sharing. The computational structure is
also flexile to change the maximum degree. In the methods in Appendix S2.3, degree of 0 and 1

could also be included in parameter estimations (see Appendix S3.5).
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3.4 Risk-group categorization

The distribution of persons by HIV transmission-group category are presented in Table S3. We
only modeled the first three groups, i.e., only simulated sexual transmissions of HIV, and excluded
persons who infect drugs (PWID). Data initialization was specific to these categorizations, where
available (Table S2). Sexual behavioral data (Tables S3 to S10) were obtained from surveys of
sexual behavior, which may not necessarily have excluded PWID. However, as PWID are a much
smaller fraction of the population, we believe it would not have an influence on the overall
distributions used here. Data for HIV care continuum distribution over time were also specific to
the transmission-group. Our validation metrics for HIV similarly included transmission-group
specific parameters, including distribution of new infections across the three groups, incidence
divided by prevalence within each group, and distribution of infections by age-group within each

transmission-group. Model outputs matched surveillance data in most cases (2).

3.5 Data for ECNA module methods: heterosexuals

The National Survey for Family Growth (NSFG), that surveys sexual behavior among persons
aged 15-44 years, presents survey results for the distribution of men (and women) by the reported
number of female (and male) sexual partners they have had to this point (age-group) in their lives
(Table S5.1 for men and Table S5.2 for women). Note that this data represents mz[x] (in the
Appendix S2.3.2 method), i.e., the proportion of people (among those in age-group a) with
reported number of partners (upto age @) in degree-bin x. Therefore, we can directly use this data
in Appendix S2.3.2 method to infer both the distribution of lifetime number of partners, and for
each degree-bin, infer the proportion of partnerships initiating in each age-group. However, that
would restrict us to the reported degree-bin [0, 1, 2, 3-6, 7-14, 15+]. Therefore, we converted this
data to probabilities in degree-bin of interest ([0, 1, 2, 3-4, 5-8, 9-16, 17-32, 33-64, 65-128]) as
follows. By assuming that the number of partners up to age-group a, Va, also follows a power-law
distribution, we estimated the power-law exponent A; for each age-group a by fitting to the data
in each age-group, and using Az, determined the Pr;(k) Vk € {0,1,2,3 —4,5—-8,9 - 16,17 —
32,33 — 64,65 — 128}. Note here that we included degree 0 and 1 because for younger age-
groups, Prz(k = 0) and Prz(k = 1) are not small values. We then applied the method in
Appendix S2.3.2. Results for the distribution of persons by degree-bin. ie., Pr(d)Vvd €
{0,1,2,3-4,5—-8,9 — 16,17 — 32,33 — 64,65 — 128} are presented in Table S6. The power-
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law exponent corresponding to this distribution is used in the simulation as input to the neural

network model (Appendix S2.3.1) to predict neighbor’s degree.

The proportion of partnerships initiated by age-group @ for persons in degree-bin d, i.e.,
a Z[i, cf] for each d, estimated using the method in Appendix S2.3.2, are presented in Tables

S7.1 and S7.2 for heterosexual male and female transmission-groups, respectively. These data

along with data for partnership age-mixing (Table S10) were used in the simulation as inputs to

the method in Appendix S2.3.3, and was applied to every newly infected node, to infer current age

of each partner and the age-group of both persons at time of their partnership activation.

3.6 Data for ECNA module methods: MSM

Similar steps as heterosexuals was applied to MSM, expect that the data set used were different.
There are no national surveys for MSM that report the distribution of MSM by number of
partnerships upto age-group (as that for heterosexuals in Tables S5.1 and S5.2). However, there
are smaller surveys, that only report the median and the range of the partners up to the persons
current age-group, for both heterosexuals and MSM (Table S8). By assuming that the number of
partners up to any given age also follow a power-law distribution, we estimated A5 specific to each

age-group a by applying the equation for the median of the power-law distribution, as

1
median = mz2%*a~1, where mz = 1 is the minimum degree in age-group @, and using the data

from the smaller surveys (Table S8) as the median. With the estimation of these exponents
(A3 v{a}), the same steps as heterosexuals were followed. Corresponding results for the
distribution of persons by degree-bin are presented in Table S6. The proportion of partnerships
initiated by age-group @ for persons in degree-bin d, are presented in Tables S9. Data for

partnership age-mixing are presented in Table S10.

Note that the data in Table S8 were based on a small survey compared to the nationally
representative NSFG survey used for heterosexuals. Therefore, to compare the differences in the
two data sources, and thus the influence of minimal data for MSM, we estimated the proportion of
partnerships initiated by age-group a for heterosexual male and female using the data from Table
S8 and compared it with that estimated from the NSFG survey (Table S5), the comparisons are

presented in Figure S1. The youngest age-groups had the most difference, which though improved
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with older age-groups, continued to have some differences. The data were closer for heterosexual

male than female. Thus, as more data become available these estimations should be updated.

3.7 Additional age-group assumptions

Note that the use of age-group 13-17, 18-24, 25-29, 30-34, 35-39, 40-44, and 45-65 for Z[C_L, cf],
though the original source starts from 18-24 for MSM (Table S7) and ends at 40-44 in both sources,
MSM (Table S7) and heterosexuals (Table S4), was to keep consistent with the age mixing matrix
(M) (presented in Table S9), necessary for the methods in Appendix S2.3.3. To do so, we assumed
half of partnerships in 18-24 initiate in age group 13-17. We also assumed that the number of
partnerships initiating in age group 45-64 is the same as the number initiating in age-group 40-44.
Note that, the use of compartmental age-structure was driven by this data, however, as noted in

S3.1, it could be modified based on model application and corresponding data.

4 Model initialization and dry run

We can initialize the model to be representative of people in a population in a specific year.
For the analyses in the main simulation, we initialized age, transmission-group, degree
distributions as per persons in the U.S in 2006 in both compartmental model and network. For
distribution by Disease 2 health status in the compartmental model and network, we randomly
selected 10% of persons in each category as infected with Disease 2, and dry running the
simulations so that the state distributions reach a steady state. We initialized the network for
Disease 1 to be representative of HIV in the US in the year 2006 through using two dry runs to

ensure network dynamics are generated in addition to epidemic and demographic distributions.

Dry run is a technique used for initialization of the model. It involves running the simulation
for a certain period, but the data generated over that period of run is not representative of an actual
epidemic projection and thus referred to as a dry run. For a pure agent-based model (without
networks), we could initialize the model with a few agents and assign parameters to match
surveillance data for the demographic, disease stage, and care-continuum stage distributions. But
the agents would be lacking the ‘history’, e.g., the age at infection, and the age and stage of ART
initiation, relevant for modeling future events. Therefore, we can do a dry run, which means

starting with some number of people, assigning them data according to a specific year, say 2006
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surveillance distributions as done here for HIV, running the simulation for several years while
maintaining the distributions to match that of 2006. As persons become newly infected, their
history is being generated, and the initial persons from day 0 age-out of the model. The above
method is also sufficient for diseases modeled in the compartmental model (Disease 2 here).
However, for diseases modeled in ABENM (Disease 1 here), the network adds another layer of
complexity as static data is infeasible (and moreover, rarely available) for determining the contact
network structure, including the links of HIV-infected persons to each of their lifetime partners,
the current age of partners, the initiation and termination times of the links, the initiation and
termination age of nodes at both ends of a link, the transmission-group of the partner, and the
infection status of partner. Therefore, for Disease 1, we first do a dry run to allow for the network
to dynamically grow over time (Dry run #1), and then apply the data from surveillance to set the
demographic, and disease and care-continuum stages (Dry run #2). Dry runs are explained in more
detail in (2) as applied to HIV and validated against NHSS, a similar method can be applied for

other diseases modeled.

5 Overview of simulation modeling steps

We provide an overview of the full simulation model in this section. All notations used in

the model are also summarized in Table S1.

Step 1: Initialization of the compartmental model array S;_, and graph G,_,(V, £) at time-step

t=20

Step la. We initialize the compartmental model array to be representative of the United
States population by age, transmission-group, and degree distribution in 2006. We
distributed the total population in the U.S. into degree bins by using life-time partner
distribution data for MSM and heterosexuals [43]. Within each degree-bin, we distributed
the population into seven age-groups, ranging from age 13 to 65, using US census data for
distribution by age, and further by risk-group (heterosexual male, heterosexual female, or

MSM) using population size estimates for MSM from [35,42].

Step 1b. We initiate a random graph of 1500 nodes and zero edges. For each node, we set
their HIV status as newly infected, allocate a degree by randomly drawing from the overall

degree distribution, and assign Disease 1-related care continuum and disease stages, age,
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and transmission-group through random draws from the corresponding distributions of

HIV in the US in 2006.

Step 2: Dry run- to make the network and disease state-distribution representative of the population

of interest

Dry run the model for a certain number of time-steps (here we chose 200 monthly time-steps) by

running the following steps sequentially for every time-step.

Step 2a. Run the ECNA module (Appendix S2.3) to generate the network of contacts for

every new HIV-infected node in the network.

Step 2b. Run the compartmental module (Appendix S2.1) to update Disease 2 parameters

in the compartmental model and network .

Step 2c. Run the transmission module (Appendix S2.2) to generate new Disease 1

infections in the network.

Step 2d. Run the disease progression module (Appendix S2.4) to update demographics and

Disease 1 progression and care parameters for nodes in the network.

Step 3: Main simulation run.

Repeat Steps 2a to 2d, for the required number of months. For the analyses in the paper, we

simulated years 2006 to 2017 in monthly time-steps.
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Table S1: Table of Notations

Notation

Description

Simulation time-step.

The number of age-groups.

The number of transmission-groups.

The number of degree bins.

O T x|

The number of geographic jurisdictions (1 representing national in this
analyses).

Used when referring to an age-group, transmission-group, degree-bin,
geographic jurisdiction, and health status, respectively, in the compartmental
model.

We use a dash for age-group and degree-bin to indicate that they are
grouped intervals in the compartmental model.

Used when referring to the age, transmission-group, degree, geographic
jurisdiction, and health status, respectively, of node j in in the network at
time t. Notations with no t in subscript are variables whose values do no
change over time.

An array of size A X R X D X G representing the number of susceptible
persons in the model, in age-group a, transmission-group r, degree-bin d,
pseudo-geographic jurisdiction g, and health status, at time t.

A set of nodes, each representing an infected person or a susceptible sexual
partner.

A set of edges representing sexual partnerships between nodes.

G.(V,E)

A dynamic graph with V" a set of nodes and € a set of edges, at time t.

Q¢

The number of nodes in graph G, at time ¢.

Ct [l,]]

A static adjacency matrix of size Q; X Q;, with static element C;[i, j] = 1 if
i and j are sexual partners anytime during their lifetime and C;[i, j] =0
otherwise.

Veli, j]

A dynamic adjacency matrix of size Q; X Q; , with element V;[i,j] = 1 ifi
and j are sexual partners during month ¢ and V;[i, j] = 0 otherwise.

e ={i,j}

An edge in graph G, representing a sexual partnership between nodes i and
J

td{i.jh

The partnership initiation time; represents the simulation month for
partnership initiation.

t({i. /)

The partnership termination time; represents the simulation month for
partnership termination.

{a,a;}

The age of nodes i and j at the time of their partnership initiation.

{aia;}

The age of nodes i and j at the time of their partnership termination.

ayj

Age-group of node j at time t.

J

Age of node j at time .

Degree-bin corresponding to the number of lifetime partners of node j.

GHGYAS

The actual number of lifetime sexual partners of node j.
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dy The number of lifetime sexual partners of person j wAho are already added as
nodes in graph G at time . For infected nodes d; = dy; for susceptible nodes
in G, d; > dy
Ly ; A partnership distribution matrix of size A X 2, where L, ;[a, 1] is the
number of partnerships that initiate at age-group @, and L, ;[a, 2] is the
number of partnerships that are yet to be assigned. For infected
nodes, L. ;[a, 2] = 0,Va
A Infection status of node j at time ¢. It is an array of size equal to the number
of diseases modeled.
My j Deceased status of node j at time .
7y Transmission-group of person j.
Dt j Infectiousness or risk of transmission per act for person j at time .
€ 1-condom effectiveness.
St j The number of sex acts per month for person j at time .
Ce j The proportion of acts condom protected of person j at time ¢.
Fl(w) The inverse Bernoulli distribution that takes values 1 with probability u and
0 with probability 1 — u.
Dy Random variable for degree of node k.
Pr(Dy, Conditional probability distribution for Dj,.
= di|D; = d;)
Pr(Dy, = d,) | Marginal probability distribution for Dj,.
m Minimum degree of the network.
Ar, Scale-free network parameter corresponding to the transmission-group of
node /.

Lla,d] A matrix of size A X D, representing the proportion of partnerships that
initiate at age-group @ for persons in degree-bin d.

Xz Random variable representing the number of lifetime partners at age-
group a.

Pz The transition probability matrix of size D X D for age-group a.

T The steady state distribution for lifetime-partners in age-group a.

z A vector of size D? X 1, converted from matrix Pg.

C A matrix of size D X D?, recreated with values of 7.

B A binary matrix of size D X D?.

b A vector of ones of size D X 1.

MIJi,j] An age-mixing matrix of size A X A, which represents the probability that,
given a person is in age-group i, his or her partner is in age-group j. Varies
by transmission-group.

P[i,j] A matrix of size A X A, representing the expected number of contacts the
newly infected node [ should have with person in age-group i, when node [
1S in age-group j.

Nla, k] A binary matrix of size A X (d; — dt’l), which represents whether partner k

would have a newly initiating partnership at age-group a.
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A binary matrix of size A X (d; — dt’l), which represents whether the
partnership with partner k would occur when partner k is in age-group a.

A vector of size A, denoting the number of partnerships that should initiate
when the partner is in age-group i.

A vector of size 4, representing node & to be eligible to initiate a partnership
at age-group i.
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Table S2: Data for initialization people with HIV (PWH) in 2006

Heterosexual | Heterosexual MSM Source
Female Male
Distribution of PWH in year 2006 by stage (6-8)
Acute-unaware 0.16% 0.07% 0.43%
NonAcute-unaware 5% 3% 14%
NonAcute Aware- No care 9% 5% 24%
NonAcute In care- No ART 4% 2% 10%
NonAcute-On ART- No VLS 1% 1% 3%
NonAcute-On ART-VLS 5% 2% 12%
Total 24% 12% 64%
Age distribution of PWH in year (same for heterosexuals and MSM) (7,9)
2006
13-14 0.20%
15-19 0.90%
20-24 3%
25-29 6%
30-34 9%
35-39 15%
40-44 21%
45-49 19%
50-54 13%
55-59 7%
60-64 3%
>=65 3%
Age distribution of new HIV infections in 2006 (7,9)
13-14 0.10% 0.10% 0.10%
15-19 4% 4% 4%
20-24 17% 17% 21%
25-29 15% 15% 19%
30-34 15% 15% 15%
35-39 12% 12% 12%
40-44 11% 11% 12%
45-49 11% 11% 9%
50-54 10% 10% 7%
55-59 5% 5% 2%
60-64 0% 0% 0%
>=65 0% 0% 0%
Distribution of CD4 cell count (cells/uL) at diagnosis for those aware of infection by year
2006(10-12)
<50 10% 10% 10%
50-200 14% 14% 14%
200-500 66% 66% 51%
>500 10% 10% 25%
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Table S3: Distribution of the U.S. population by transmission-category (13—15)

HIV Transmission Category Percentage
Heterosexual female 47.25%
Heterosexual male 47.25%
Men who have sex with men (MSM)(men only and women) 2.33%
People who infect drugs (PWID)-female 1.20%
PWID- heterosexual male 1.80%
PWID-MSM 0.18%
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Table S4: Behavioral parameters related to transmission

Age - 13- | 15— | 18- | 20— | 25— | 30— | 35~ | 40— | 45- | 50- | 55- | 60- | 65- Source
group 14 17 19 | 24 29 34 | 39 44 49 54 59 64 70
Number of sex acts per year? (11 g)_
HET 20- | 20- | 73- | 73- | 62- | 51- | 51- | 48- | 48- | 40- | 32- | 35- | 35-
Female 41 41 | 127 | 127 | 108 | 93 93 86 86 73 73 62 62
HET male 30-| 30- | 68- | 68-| 63-| 59- | 59- | 52- | 39- | 36- | 36- | 24- | 24-
60 60 | 119 | 119 | 110 | 104 | 104 | 95 95 73 73 67 67
MSM 30-| 30- | 68- | 68-| 63-| 59- | 59- | 52- | 39- | 36- | 36- | 24- | 24-
60 60 | 119 | 119 | 110 | 104 | 104 | 95 95 73 73 67 67
Proportion of acts that are anal (11 g)_
HET
0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.06 | 0.06 | 0.04 | 0.04 | 0.02 | 0.02 | 0.04 | 0.04
Female
HET Male | 0.06 | 0.06 | 0.06 | 0.06 | 0.11 | 0.07 | 0.07 | 0.09 | 0.09 | 0.06 | 0.06 | 0.05 | 0.05
MSM 1 1 1 1 1 1 1 1 1 1 1 1 1
Proportion of acts condom protected (main partners) b (20)
HET
0.58 | 0.58 | 0.39 | 0.39 | 0.27 | 0.18 | 0.18 | 0.14 | 0.14 | 0.11 | 0.11 | 0.09 | 0.09
Female
HET male | 0.79 | 0.79 | 0.45 | 0.45 | 0.28 | 0.26 | 0.26 | 0.21 | 0.21 | 0.1 | 0.1 | 0.06 | 0.06
MSM 0.79 1 0.79 | 045 | 0.45 | 0.28 | 0.26 | 0.26 | 0.21 | 0.21 | 0.1 | 0.1 | 0.06 | 0.06
Proportion
of acts
condom
p(ré’;;’f;d 0.57 | 0.57 | 0.57 | 0.57 | 0.54 | 0.54 | 0.53 | 0.53 | 0.53 | 0.52 | 0.52 [ 0.52 | 0.52 | (21)
partners)
(all risk
groups)
Other parameters Source
Proportion of anal sex acts insertive (receptive) (among MSM 50% (50%) Assumption
with other MSM)
Proportion of HIV-infected MSM who have sex with women 21% (21-24)
(MSMW)
Proportion of partnerships with female for MSMW 80% Calibrated in
)
Proportion of anal acts with female for MSMW 50% Calibrated (5)

¢ Number of sex acts were estimated as the average of the reported number of sex acts weighted by the
proportion reporting under each category of number of partners/sex acts among those sexually active.
For MSM, we used the heterosexual male data as age-distributed data were not available for MSM.
Moreover, the median of 1 partner for MSM (24) matched the heterosexual male data. Number of sex acts
are uniformly distributed in the given range

77



b We applied the heterosexual male data to MSM. These data are for the general population (heterosexual
and MSM) unaware of their HIV status, and they apply to their main partners.

Note: All data in the table relate to probability distributions of the parameters and for each person
random samples are drawn from these distributions as follows. If proportions are for true or false
outcomes, we draw a random number u~ Uniform float[0,1], if u <= proportion then it is true else false,
e.g., determining if MSM is MSMW. If proportions are for behavior of a specific individual then they are
directly used as point estimates, e.g., among all sex acts among MSMW, 80% are assigned to women. If
they are from probability distributions such as Uniform (e.g., sex acts), or Geometric (e.g., partnership
duration), samples are drawn from this distribution.
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Table S5.1: For each age group, the distribution of the number of sex partners accrued-to-date
for men in that age group (each row adds to 1) (25)

Number of female sexual partners

érg(f Total 15 or
P lin Age of 1| 2| 36| 7-14

of Grou more

Males P

15-19 ] 10,208 [ 0.385 [ 0.23 [ 0.092 | 0.207 | 0.062 [ 0.025
20-24 {9,883 [0.09 [0.159]0.117 [ 0.335]0.141 ) 0.159
25-29 19,226 [0.049 [ 0.1 0.088 [ 0.294 [ 0.232 | 0.238
30-34 | 10,138 [ 0.028 [ 0.107 | 0.069 | 0.285 | 0.219 | 0.292
35-39 110,557 10.02 |0.089[0.07 |]0.28 |[0.255]0.288
40-44 | 11,1351 0.019 ] 0.088 | 0.054 | 0.256 | 0.242 | 0.342

Table S5.2: For each age group, the distribution of the number of sex partners accrued-to-date
for women in that age group (each row adds to 1) (25)

Number of male sexual partners

érg(f Total 15 or
P |in Age of 1| 2| 36| 714
of more
Group
Females

15-19 9,834 [0.378 ]0.272]10.09 [0.191]0.05 | 0.019
20-24 9,840 [0.089 |0.246]0.13 [0.322]0.144 ] 0.069
25-29 9,249 [0.025 ]0.225]0.117 {0.313 | 0.201 | 0.119
30-34 10,272 { 0.019 | 0.205] 0.094 [ 0.388 | 0.18 | 0.113
35-39 10,853 [ 0.011 ]0.202 | 0.112 { 0.358 ] 0.205 | 0.112
40-44 11,512 { 0.014 ] 0.204 ] 0.105 { 0.374 ] 0.191 | 0.112
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Table S6: Scale-free degree distribution, stratified by risk group

Degree 1 2 3-4 5-8 9-16 17-32 | 33-64 | 65-128
HET-female 0 0] 0.261 0.229| 0.179] 0.131] 0.093| 0.064 | 0.044
HET-male 0 0] 0.211 0202 0.175| 0.143 | 0.113] 0.088 | 0.068
MSM 0 0] 0.190 0.189 ] 0.171| 0.146| 0.122| 0.100 | 0.081
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Table S7.1: Within each degree-bin, the estimated proportion of lifetime partnerships that are
initiated by the time a person leaves an age-group, for heterosexual men with number of lifetime
partnerships in that degree-bin

Degree-

bin 7 (65-
(degree 1(2) 2(3-4) 3 (5-8) 4(9-16) | 5(17-32) | 6 (33-64) 128)
range)-->

Age-

group

13-17 0.6 0.38 0.22 0.12 0.06 0.03 0.02
18-24 0.67 0.57 0.48 0.39 0.29 0.23 0.17
25-29 0.75 0.7 0.65 0.59 0.49 0.44 0.37
30-34 0.84 0.82 0.79 0.76 0.69 0.66 0.61
35-39 0.84 0.82 0.79 0.76 0.69 0.66 0.61
40-44 0.92 0.91 0.9 0.88 0.85 0.83 0.81
45-65 1 1 1 1 1 1 1

Table S7.2: Within each degree-bin, the estimated proportion of lifetime partnerships that are
initiated by the time a person leaves an age-group, for heterosexual women with number of
lifetime partnerships in that degree-bin

Degree-

bin 7 (65-
(degree 1(2) 2 (3-4) 3(5-8) | 4(9-16) [ 5(17-32) | 6 (33-64) 128)
range)-->

Age-

group

13-17 0.81 0.47 0.26 0.14 0.07 0.04 0.02
18-24 0.89 0.72 0.55 0.45 0.32 0.26 0.26
25-29 1.00 0.98 0.97 0.98 0.96 0.93 0.89
30-34 1.00 0.98 0.97 0.98 0.96 0.95 0.94
35-39 1 1 1 1 1 1 1
40-44 1 1 1 1 1 1 1
45-65 1 1 1 1 1 1 1
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Table S8: Median and range of lifetime number of partners accrued-to-date in that age group by
transmission-group (26)

Age MSM Heterosexual men Heterosexual women
Group

Median Range Median Range Median Range
18-24 15 (1-3100) 4 (1-99) 4 (1-25)
25-29 30 (1-2562) 8 (1-99) 6 (1-60)
30-34 55 (1-7000) 9 (1-99) 7 (1-40)
35-39 67 (0-9005) 12 (1-99) 7 (1-99)

Table S9: Estimated proportion of partnerships that initiated by age-group for persons with
lifetime partners in degree-bin for MSM

]_?igree'bm (degree) 12) | 23-4) | 3(5-8) | 4(9-16) | 5(17-32) | 6(33-64) | 7 (65-128)
Age-group

13-17 0.35 0.21 0.12 0.06 0.03 0.01 0.01
18-24 0.71 0.42 0.24 0.12 0.06 0.03 0.02
25-29 0.83 0.73 0.61 0.52 0.43 0.35 0.27
30-34 0.92 0.90 0.82 0.79 0.76 0.70 0.64
35-39 0.96 0.94 0.89 0.87 0.85 0.80 0.75
40-44 0.98 0.97 0.94 0.93 0.93 0.90 0.88
45-65 1 1 1 1 1 1 1
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Table S10: Age mixing: proportion of partners within own age-group (26)

Age Group | Heterosexual female Heterosexual male Men who have sex with men

13-17 91.1 91.05 91.1
18-24 90.0 92.1 48

25-29 57.7 82 55.9
30-34 54.5 54.5 46.3
35-39 81.8 76.2 55.2
4044 81.8 76.2 55.2
45-65 81.8 76.2 55.2
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Figure S1.1: Comparing the proportion of partnerships initiated by age-group estimated using
data from source 1(presented in Table S8) with those estimated using data from source 11

(presented in Tables S5.1 and S5.2), for heterosexual men.
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Figure S1.2: Comparing the proportion of partnerships initiated by age-group estimated using data
from source 1 (presented in Table S8) with those estimated using data from source 11 (presented

in Tables S5.1 and S5.2), for heterosexual female.
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