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ABSTRACT 24 

Background  25 

A model that jointly simulates infectious diseases with common modes of transmission can serve as a 26 

decision-analytic tool to identify optimal intervention combinations for overall disease prevention. In the 27 

United States, sexually transmitted infections (STIs) are a huge economic burden, with a large fraction of 28 

the burden attributed to HIV. Data also show interactions between HIV and other sexually transmitted 29 

infections (STIs), such as higher risk of acquisition and progression of co-infections among persons with 30 

HIV compared to persons without. However, given the wide range in prevalence and incidence burdens of 31 

STIs, current compartmental or agent-based network simulation methods alone are insufficient or 32 

computationally burdensome for joint disease modeling. Further, causal factors for higher risk of 33 

coinfection could be both behavioral (i.e., compounding effects of individual behaviors, network 34 

structures, and care behaviors) and biological (i.e., presence of one disease can biologically increase the 35 

risk of another). However, the data on the fraction attributed to each are limited.  36 

Methods 37 

We present a new mixed agent-based compartmental (MAC) framework for jointly modeling STIs. It uses 38 

a combination of a new agent-based evolving network modeling (ABENM) technique for lower-39 

prevalence diseases and compartmental modeling for higher-prevalence diseases. As a demonstration, we 40 

applied MAC to simulate lower-prevalence HIV in the United States and a higher-prevalence hypothetical 41 

Disease 2, using a range of transmission and progression rates to generate burdens replicative of the wide 42 

range of STIs. We simulated sexual transmissions among heterosexual males, heterosexual females, and 43 

men who have sex with men (men only and men and women). Setting the biological risk of co-infection 44 

to zero, we conducted numerical analyses to evaluate the influence of behavioral factors alone on disease 45 

dynamics.  46 

Results 47 
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The contribution of behavioral factors to risk of coinfection was sensitive to disease burden, care access, 48 

and population heterogeneity and mixing. The contribution of behavioral factors was generally lower than 49 

observed risk of coinfections for the range of hypothetical prevalence studied here, suggesting potential 50 

role of biological factors, that should be investigated further specific to an STI.  51 

Conclusions  52 

The purpose of this study is to present a new simulation technique for jointly modeling infectious diseases 53 

that have common modes of transmission but varying epidemiological features. The numerical analysis 54 

serves as proof-of-concept for the application to STIs. Interactions between diseases are influenced by 55 

behavioral factors, are sensitive to care access and population features, and are likely exacerbated by 56 

biological factors. Social and economic conditions are among key drivers of behaviors that increase STI 57 

transmission, and thus, structural interventions are a key part of behavioral interventions. Joint modeling 58 

of diseases helps comprehensively simulate behavioral and biological factors of disease interactions to 59 

evaluate the true impact of common structural interventions on overall disease prevention. The new 60 

simulation framework is especially suited to simulate behavior as a function of social determinants, and 61 

further, to identify optimal combinations of common structural and disease-specific interventions.  62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 
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1. INTRODUCTION 71 

A model that jointly simulates infectious diseases that have common modes of transmission will be a 72 

useful decision-analytic tool to identify optimal intervention combinations for overall disease prevention. 73 

In the United States, sexually transmitted infections (STIs) continue to impose high disease and economic 74 

burdens. The lifetime medical costs for treatment of STIs and sequelae, for incident infections in 2018, 75 

were estimated at $15.9 billion, with a large fraction attributed to human immunodeficiency virus (HIV) 76 

infection ($13.7 billion)(1). Further, there are considerable interactions between HIV and other STIs, 77 

including human papillomavirus (HPV), hepatitis C (HCV), hepatitis B (HBV), gonorrhea (NG), 78 

chlamydia (CT), and syphilis, in terms of HIV acquisition, transmission, or progression as seen in the 79 

following examples.  The odds of HPV infection, infection with high-risk oncogenic HPV types that lead 80 

to cervical cancer, HBV infection, and liver-related mortalities from HCV or HBV are higher in women 81 

living with HIV compared to women without an HIV infection (2–5). Among persons with HIV (PWH), 82 

the risk of cervical cancer (3) and mortality from liver cancer (6) were directly correlated with HIV stage. 83 

Persons with syphilis, CT, and NG have higher risk of HIV transmission and acquisition (7,8). Studies 84 

also show higher risk of CT and NG among HIV infected persons who also had a recent HCV infection or 85 

syphilis infection(9). Further, though there is sufficient evidence associating risk and severity of 86 

coinfections to biological factors (i.e., presence of one disease can biologically increase the risk of 87 

another), these estimates are confounded by behavioral factors (combined effects of individual sexual 88 

behavior, partnership network structure, and care behaviors). Observational studies alone are insufficient 89 

to quantify risk attributed to each factor(10,11). 90 

A model that can jointly simulate STIs can quantify risk of disease attributable to behavioral and 91 

biological factors, determine intervention needs, and jointly evaluate interventions for overall disease 92 

prevention. Interventions to address biological factors include disease management interventions, such as 93 

pharmaceutical and care support programs. On the other hand, structural interventions, such as health care 94 

coverage, subsidized housing, childcare and food programs, access to mental healthcare, and early 95 
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childhood academic enrichment programs (12–16) are key part of behavioral interventions. This is due to 96 

the fact that social and economic conditions are among key drivers of behaviors associated with STI 97 

transmission, e.g., higher number of partners, higher rates of condomless sex, higher rates of substance 98 

abuse, and lower care access among people experiencing homelessness compared to those stably housed 99 

(17–20). Consequently, social determinants are key correlates of disease burden. Among persons living 100 

with diagnosed HIV infection, 44% had a disability (including physical, mental, and emotional 101 

disabilities), 41% were unemployed, 43% had household incomes at or below the federal poverty 102 

threshold, and 10% were experiencing homelessness (21,22). A joint disease model, that simulates 103 

disease interactions through the behavioral factors that are common modes of transmission, will be ideal 104 

to simulate behaviors as functions of social determinants, and eventually, serve as a decision-analytic tool 105 

for identifying the most cost-effective combinations of disease-specific and common structural 106 

interventions for overall STI prevention.  107 

Multi-disease models in the literature are limited, and most focus on chronic diseases prediction(23,24) or 108 

management (25–27). Some focus on infectious diseases, but use a single simulation technique 109 

(10,11,28,29) which is not computationally sufficient for modeling diseases of widely varying incidence 110 

and prevalence. Other models only do combined health infrastructure costing of diseases without 111 

modeling disease interactions (30). Among commonly used simulation techniques, compartmental 112 

modeling is sufficient for fast-spreading or high-prevalence infections, whereas agent-based network 113 

modeling (ABNM) is preferred for slower-spreading, lower-prevalence infections, where granular 114 

representations of network structures and individual-level characteristics are key for accurate estimations 115 

(31). Even ABNM, however, becomes computational challenging to use for diseases with very low 116 

prevalence, such as HIV in the United States. Thus, in our previous work, we developed an agent-based 117 

evolving network modeling (ABENM) technique, which uses a hybrid ABNM and compartmental 118 

structure for single disease modeling of lower-prevalence diseases (32). This simulation technique was 119 

applied to develop PATH 4.0 (Progression and Transmission of HIV), a comprehensive simulation model 120 
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of HIV in the United States that was validated against metrics from the National HIV Surveillance System 121 

(NHSS) for the period 2006 to 2017(33). While HIV, HBV, HCV, and syphilis are slower-spreading, 122 

lower-prevalence diseases, HPV, NG, and CT are faster-spreading higher-prevalence diseases(34). 123 

Therefore, ABNM or ABENM alone will not be sufficient for co-modeling of these diseases , due to 124 

computational challenges (discussed in Methods) arising  from co-modeling widely varying disease 125 

burdens in a national context. We developed a mixed agent-based compartmental (MAC) framework that 126 

uses ABENM for lower-prevalence diseases and compartmental model for higher-prevalence diseases.  127 

This paper presents the MAC mathematical framework for multi-disease modeling. We demonstrate the 128 

framework by applying it to the case of two-disease modeling, representing Disease 1 via ABENM and 129 

Disease 2 via compartmental modeling. We adopt the PATH 4.0 model to represent HIV as lower-130 

prevalence Disease 1, and we construct a hypothetical higher-prevalence Disease 2, evaluating it with a 131 

range of values for epidemiological parameters to generate incidence and prevalence representative of the 132 

wide range of STIs. Further, we conduct numerical analyses to quantify the risk of coinfection attributable 133 

to behavioral factors alone, assessing its sensitivity to disease burden, care access, and population 134 

heterogeneity. This paper serves as proof-of-concept for the MAC framework, to demonstrate its 135 

feasibility and to highlight, through the numerical analyses, the potential significance of joint modeling of 136 

diseases.  137 

2. METHODS 138 

Figure 1 gives an overview of the MAC framework, which employs the ABENM-based PATH 4.0 model 139 

of HIV(33). The main concept of ABENM as used in PATH 4.0 is to simulate persons infected with HIV 140 

and their immediate contacts as individual agents and all other persons using a compartmental model. 141 

Immediate contacts are defined as all sexual partners a person will have over their lifetime; at the current 142 

time-step they could either be infected or susceptible. In-turn, as these susceptible contacts in the network 143 

become infected with HIV, their immediate contacts are added as agents to the network (transitioning 144 
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from the compartmental portion of the model to the network portion of the model), thus evolving the 145 

contact network. An Evolving Contact Network Algorithm (ECNA) maintains the network dynamics.  146 

The MAC simulation framework expands on the above concepts of ABENM, where all persons in a 147 

population are either in a network or in a compartmental model. To accommodate the multiple diseases, it 148 

simulates only persons infected with at least one lower-prevalence disease and their immediate contacts as 149 

agents in a network, and it simulates all other persons, including those infected with only higher-150 

prevalence diseases, via a compartmental model (see Figure 1). As the exposed immediate contacts of 151 

agents in the network become infected with a lower-prevalence disease, their contact network is generated 152 

by moving persons from the compartmental model to the network using the ECNA. As HIV or HCV are 153 

slower-spreading lower-prevalence diseases in the United States, with an annual incidence at 13 and 1, 154 

respectively, per 100,000 persons in 2018 (Figure 2a)(34), they are suitable candidates for ABENM. As 155 

HPV, CT, or GN are faster-spreading higher-prevalence diseases in the United States, with annual 156 

incidence at 1820, 640, and 212, respectively, per 100,000 persons in 2018 (Figure 2a)(34), they are 157 

suitable candidates for compartmental modeling. The MAC framework would be computationally 158 

advantageous over ABNM for jointly modeling these diseases that have varying epidemiological features. 159 

For example, in ABNM, simulating 100,000 nodes in the network representative of the sexually active 160 

population in the United States will generate sufficient samples for the higher-prevalence disease, but for 161 

lower-prevalence HIV it would generate 490 persons with HIV with 13 new cases each year, which is not 162 

a sufficient sample size for our analyses. In contrast, in ABENM, as the network will consist of only 163 

persons with the lower-prevalence disease and their partners, the population size in the network can be 164 

controlled to meet computational needs without compromising the sample size of either disease. As an 165 

example, we can generate the network with a sufficient but computationally efficient sample of HIV 166 

infected persons, say 12,000 (as was the case in our numerical analyses), as a scaled representation of the 167 

0.4% HIV prevalence in 2017 in the United States(35), which is equivalent to simulating a population 168 

size of ~3 million (compartmental plus network).   169 



8 
 

2.1 Overview of MAC 170 

We present an overview of the MAC simulation framework, using, without loss of generality, a two-171 

disease example, lower-prevalence Disease 1 and higher-prevalence Disease 2. An overview of the MAC 172 

simulation framework is presented in Figure 1 using, for illustration, two diseases, Disease 1 is tracked in 173 

a network model and Disease 2 is tracked through a compartmental model. We describe below an 174 

overview of the model and present its mathematical formulations in the Appendix. 175 

2.1.1 Computational structure of MAC 176 

We present below a brief description of the MAC computational structure and present its mathematical 177 

representation in Appendix S1.1 and S1.2. We track Disease-1-infected persons and immediate contacts 178 

using a dynamic graph 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ), with the number of nodes 𝑄𝑄𝑡𝑡 = |𝒩𝒩(𝐺𝐺𝑡𝑡)| and the number of edges |ℰ(𝐺𝐺𝑡𝑡)| 179 

in the graph dynamically changing over time 𝑡𝑡 as persons become newly infected with Disease 1 and their 180 

immediate contacts are added to the network. Each person in the network has attributes such as age, HIV 181 

transmission category (heterosexual males, heterosexual females, men who have sex with men), degree 182 

(number of lifetime partnerships), geographic jurisdiction, and health status ({stage of Disease 1, stage of 183 

Disease 2}, including {0, 0} to indicate uninfected with either disease).  184 

 185 

We track all other persons using an array 𝑆𝑆𝑡𝑡 of size 𝐴𝐴 × 𝑅𝑅 × 𝐷𝐷 × 𝐺𝐺 × 𝐻𝐻 (our numerical analyses uses 7 ×186 

3 × 9 × 1 × 2), where, 𝐴𝐴 is the number of age-groups, 𝑅𝑅 is the number of risk-groups, 𝐷𝐷 is the number of 187 

degree-bins (degree is the number of contacts per person, degrees are grouped into bins analogous to age 188 

grouped into age-groups), 𝐺𝐺 is the number of geographic jurisdictions (in our numerical analyses we 189 

assumed 𝐺𝐺 = 1, corresponding to a national jurisdiction), and  𝐻𝐻 is the number of health states (note: here 190 

the size would be equal to the number of Disease 2 health states because, by design, persons infected with 191 

Disease 1 will be in the network and thus all persons in the compartmental model will have a value of 0 for 192 

Disease 1). Each element of the array (𝑆𝑆𝑡𝑡[𝑎𝑎�, 𝑟𝑟, 𝑑𝑑�,𝑔𝑔, ℎ]) is the number of people in that specific category. We 193 

use a dash for age-group and degree-bin notations to indicate that they are grouped intervals in the 194 
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compartmental model, unlike in the network where each node has a discrete value. A summary list of 195 

notations is presented in Appendix Table S1. 196 

 197 

Thus, 𝑄𝑄𝑡𝑡 + ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖𝑖𝑖∈[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ]  , denotes the total number of people in the population at time 𝑡𝑡. Because all 198 

Disease 1 infected persons and exposed partners are in the network, Disease 1 transmissions and state 199 

progression are modeled at the individual level (see network transmission and network disease progression 200 

modules below and in Appendix Section S2.2). Disease 2 transmissions and progression are modeled using 201 

differential equations (as typically done in compartmental modeling) but with the consideration that people 202 

in both the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) and compartmental array 𝑆𝑆𝑡𝑡 can be infected with Disease 2 (see 203 

compartmental module below and in Appendix Section S2.1).  204 

 205 

The mathematical challenge to address for the above MAC framework to work is to maintain the dynamics 206 

between the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) and compartmental array 𝑆𝑆𝑡𝑡, including transitioning people from 𝑆𝑆𝑡𝑡 to 207 

𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) when a node becomes newly infected. Specifically, the simulation algorithm must determine 208 

‘who’ are to be added as the immediate contacts of the node newly infected with Disease 1. Here we 209 

determine ‘who’ according to their degree, transmission group, age, and geographical location, as these 210 

characteristics of infected persons and their contacts are known to be correlated (36–41). Upon determining 211 

and adding all lifetime partners of nodes newly infected with Disease 1, we need to determine when the 212 

partnerships would initiate and dissolve, including the age of both partners at that time, such that the overall 213 

dynamics of age-mixing and transmission-group-mixing of the resulting network match that of the 214 

population being simulated. As network generation techniques in commonly used agent-based models are 215 

designed to generate the network between the full population (susceptible and infected persons), they cannot 216 

be adopted here. We developed an evolving contact network algorithm (ECNA(32,33)) for modeling the 217 

transitions from 𝑆𝑆𝑡𝑡 to 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) (see ECNA module below and in Appendix Section S2.3). For diseases that 218 

are chronic (such as HIV) once persons enter the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) they do not transition back to 𝑆𝑆𝑡𝑡. For 219 
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diseases with recovery, recovered persons with no infected contacts can be added back to the compartments 220 

corresponding to their categorical group (see (32) for stability of network dynamics under different 221 

epidemic profiles).   222 

2.1.2 The four main modules of MAC 223 

The overall epidemiological, demographical, and network dynamics are maintained through simulation of 224 

four main modules that are run at every time-step (monthly) of the simulation: compartmental module, 225 

network transmission module, ECNA network generation module, and network disease progression 226 

module. 227 

 228 

The formulation of the compartmental module for a hypothetical Disease 2 is presented in Appendix S2.1, 229 

we provide a brief overview here. The compartmental module updates the demographic features (births, 230 

aging, and deaths) and transmission and progression features of higher-prevalence diseases (Disease 2 here) 231 

among persons tracked through the array 𝑆𝑆𝑡𝑡 and in the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ), as follows. As in typical 232 

compartmental modeling, it uses difference equations to transition persons between the compartments. It 233 

also determines transitions of the network nodes from one state to another. It does so by converting 234 

transition rates to transition probabilities by assuming that sojourn times follow an exponential distribution, 235 

as typically done in Markov chains. Then, for every state transition, the module uses the corresponding 236 

probability as a parameter of a binomial distribution to determine the number of persons to transition, and 237 

it randomly samples that many people from the network who are in the reference state and moves them to 238 

the next state. With this approach, the same level of granularity is applied to persons in the network and 239 

compartmental models, e.g., in the above representation, the granularity in the compartmental model is 240 

[𝑎𝑎�, 𝑟𝑟, 𝑑𝑑�,𝑔𝑔, ℎ] and thus the rates would be applied specific to age-group, transmission-group, degree-bin, 241 

geographic location, and health state. A key feature of this setup is approximating network features into the 242 

compartmental modeling structure. This is done by splitting the compartments into degree-bins (𝑑̅𝑑, a 243 
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dimension in array 𝑆𝑆𝑡𝑡) and using a degree-mixing matrix to simulate partnership mixing between people in 244 

different degree-bins. As noted earlier, degree between partners are correlated (36), and thus this feature 245 

helps better capture the network dynamics even in the compartmental model. Whereas the distributions for 246 

partnership mixing by age, transmission group, and degree are applied at the individual-level in the network, 247 

they are applied at the aggregated-level in the compartmental model.  248 

 249 

The network transmission module determines if nodes exposed to a lower-prevalence disease (Disease 1 250 

here) become infected using an individual-level Bernoulli transmission equation. Transmissions are 251 

determined at the individual-level using the network structure and individual-level sexual behaviors and 252 

transmission risk factors. Thus, the granularity of transmissions can be controlled by modifying the 253 

individual-level attributes that are tracked among agents. As an example, Appendix S2.2 presents a 254 

Bernoulli transmission equation using the level of granularity applied in the PATH 4.0 model. Note that, 255 

by definition, as persons in the compartmental model are not partners of any person infected with the lower-256 

prevalence diseases (Disease 1 here), their chance of infection is zero. Further note that persons can move 257 

from the compartmental model to the network (see Figure 1) if their partners become infected with Disease 258 

1, modeled using the ECNA module (below), which would then expose them to Disease 1.  259 

 260 

The ECNA module controls the overall network dynamics of partnerships between nodes. Specifically, for 261 

every node newly infected with Disease 1 in the network, it determines the number of new partnerships to 262 

generate and the features of each of those new partners, including their degree (number of lifetime partners), 263 

their transmission-group, and their current age-group. The module then randomly selects susceptible 264 

persons who meet these criteria and moves them from the compartmental model to the network. The ECNA 265 

module also determines partnership details, such as the age of both partners and simulation times at 266 

partnership initiation and termination. Three main algorithms were used in the development of this module, 267 

which were presented elsewhere (32,33), and are briefly summarized below and discussed in Appendix 268 

S2.3. The first algorithm determines the degree of the new partner using a neural network prediction model, 269 
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a machine learning method, developed based on the assumption that sexual partnerships are scale-free 270 

networks with power-law distribution. For scale-free networks, the degree of node-neighbors are correlated, 271 

i.e., in the context here, the degree of the new partner is conditional on the degree of the newly infected 272 

node. While the literature presents analytical methods for estimation of the conditional distribution, they 273 

are developed for static networks, and thus, the degree of any node is conditional on the degree of ‘all’ its 274 

neighbors. In the evolving network here, the degree of the new partner is conditional on only the degree of 275 

the newly infected node, i.e., dependent on the network path taken to reach this person, and thus, the degree 276 

correlation is also influenced by the stochastic process of disease transmissions. Our previous work showed 277 

that,  given a specific network, the degree correlations are not influenced by variations in the probability of 278 

transmission but influenced by the prevalence of disease, and thus, trained the neural network by generating 279 

the data through multiple simulations of hypothetical diseases, characterized by different values of 280 

probability of transmission (32). Upon determining the degree of the new partner, the second algorithm is 281 

applied to determine the age at which each of those partnerships are active, including the age of the other 282 

person in each partnership (one of those partnerships is with the newly infected node). Direct data for this 283 

would be a longitudinal survey over the duration of life of an individual, where the individual reports the 284 

number of partnerships they initiated at every age points of their life, and the age of their partner. Such 285 

surveys, however, are unavailable. Typical survey data only collect the number of partners up to the current 286 

age of the surveyed individual, and age of partners at a cross-sectional time-point. By assuming the number 287 

of partners up to the current age are steady state distributions of a time-invariant Markov chain with a 288 

multivariate state space of age-group - degree-bin combinations (time-invariant from assumption of no 289 

generational changes in partnership behavior), the transition probabilities were solved using simulation-290 

based optimization to determine the number of new partnerships initiated in each age-group, for each 291 

degree-bin. The third algorithm determines the age-groups of both partners at the time of partnership 292 

activation by formulating the problem as a variant of an unbalanced assignment problem, a category of 293 

optimization problems with a classic example being assigning n jobs (here partners) to m machines (here 294 
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age-groups), applying age-mixing matrix and number of partners in each age-group as constraints. Further 295 

details of the three algorithms and data assumptions are presented in Appendix S2.3 and S3, respectively. 296 

Finally, the network disease progression module updates the individual-level demographic and disease 297 

dynamics for every person infected with Disease 1 (and other low-prevalence diseases as the case may be) 298 

in the network. The level of granularity for disease progression could be dependent on the analyses and 299 

diseases of interest.  300 

Appendix S4 provides further details on model initialization and S5 gives a more detailed description of 301 

the steps of the simulation. 302 

2.2 Numerical analyses  303 

Using the MAC simulation framework, we conducted numerical analyses, using relative prevalence (RP) 304 

metrics, to quantify the risk of coinfection attributable to behavioral factors (individual sexual behaviors, 305 

partnerships networks, and care behaviors) alone. Further, we evaluated the sensitivity of relative 306 

prevalence to variations in care access, disease burdens (incidence and prevalence), and population 307 

heterogeneity by estimating RPmetrics specific to transmission group and under varying hypothetical 308 

assumptions of care and epidemiological assumptions. For these analyses, we adopted the validated HIV 309 

model from PATH 4.0 as Disease 1 and constructed a hypothetical Disease 2 using a compartmental 310 

model. To keep the focus on behavioral factors, we assume no biological risk of coinfection, i.e., Disease 311 

1 does not biologically increase the risk of Disease 2, and vice-versa. We first give a brief overview of 312 

Disease 1 (HIV) and Disease 2 modeling, and then discuss the numerical analysis in detail.  313 

2.2.1 Overview of HIV (Disease 1) model 314 

For the development of MAC, we directly adopted the HIV model from PATH 4.0, which has been 315 

validated to match well against data from the CDC’s National HIV Surveillance System (NHSS) for both 316 

population epidemic features and HIV-network features. Details of PATH 4.0 and its validation are 317 

presented elsewhere (33); we give a brief description below. PATH 4.0 simulates sexual transmission of 318 

HIV in the United States in three transmission categories: heterosexual females (HETF), heterosexual males 319 
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(HETM), and men who have sex with men (MSM). (Note that MSM includes men who have sex with men 320 

only and men who have sex with men and women). To validate the model, we first generated an initial 321 

population that is representative of PWH in the United States in 2006 using data from several studies. These 322 

include demographical, sexual behavioral, clinical, and HIV care and treatment behavioral studies that 323 

originated from multiple large national surveillance and survey systems in the United States, along with 324 

other small studies. The surveillance and survey systems include the National HIV Surveillance System 325 

(NHSS), the Medical Monitoring Project (MMP), the HIV Outpatient Study (HOPS), the National HIV 326 

Behavioral Surveillance (NHBS), the National Survey for Family Growth (NSFG), and the National Survey 327 

for Sexual Health and Behavior (NSSHB)(42–47). The model was validated for the period 2006 to 2017 by 328 

calibrating to 2006 data, simulating the epidemic from 2006 to 2017 in monthly-time steps, and comparing 329 

simulated estimates for multiple epidemic features and HIV-network features against data from NHSS. 330 

Details of this validation study are presented elsewhere (33). 331 

 332 

2.2.2 Overview of Disease 2 model  333 

Individual sexual behaviors and partnership networks do not change specific to disease, and thus, sexual 334 

behavioral data for Disease 2 are the same as in HIV, though in aggregated form for the compartmental 335 

model structure. Specifically, individual sexual behaviors such as the number of lifetime partners, 336 

distribution of these partnerships over the lifetime of the person (as they transition across age-groups), 337 

number of sex acts, and condom use, most parameters specific to transmission group (HETF, HETM, and 338 

MSM) and age-group, and sexual network structures such as degree mixing matrix, age-group mixing 339 

matrix, and transmission-group mixing matrix to model mixing between partnerships, were adopted from 340 

PATH 4.0 (42–47). Note that, behaviors that change specific to disease can be added over general 341 

population behaviors, e.g., change in condom-use behavior upon awareness of HIV status was added to 342 

HIV-agents. While behaviors were simulated at the individual-level for HIV, they were simulated at the 343 

aggregated-level for Disease 2 in the compartmental model, using corresponding principles of each type of 344 

simulation method. That is, in the network, each person was assigned characteristics such as age, 345 
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transmission -group, and degree, matrices defining mixing between these groups were used for generating 346 

their network, and behavior modeled as a function of these characteristics to determine the probability that 347 

a susceptible person becomes infected. Whereas, in the compartmental model, compartments define age-348 

group, transmission-group, and degree-bin combinations, and behaviors specific to these compartments and 349 

matrices defining mixing between these compartments were included into infection rate estimations (see 350 

Appendix S2.1 for methodological details). Infection rates were then used for determining the number of 351 

people to transition from susceptible to infected. Demographic features, such as the population sizes of 352 

transmission groups (HETF, HETM, MSM), population distributions by age-group, birth rate and natural 353 

mortality rates (48–50), which are not disease-specific, are a feature of the population modeled, and thus 354 

the overall model (network +compartmental) would match population features. As noted under Disease 1 355 

overview, these data were comprehensively informed through numerous data sources, estimation methods, 356 

and validation processes and are presented elsewhere (32,33).  357 

The only change for Disease 2 would be its epidemiology. While HIV is a Susceptible-Infected 358 

epidemiology structure, i.e., persons live with the infection for the remaining duration of life, we assumed 359 

Disease 2 to be a Susceptible-Infected-Susceptible epidemiology structure, i.e., persons can recover from 360 

Disease 2 and become susceptible for reinfection, which is representative of higher-prevalence STIs. 361 

Transition from Susceptible to Infected stage for Disease 2 would use the same sexual behaviors as in HIV, 362 

as noted above, except for the per contact transmission rate which is an epidemiologic parameter specific 363 

to a disease. The duration of the Infected stage (transition from Infected to Death) for HIV is an outcome 364 

of simulating HIV-disease stage progressions using care data specific to the United States (such as rates of 365 

diagnosis, linkage to care, and treatment), in addition to natural disease progression rates. For Disease 2, 366 

we used an overall rate of recovery that transitions persons from the Infected to the Susceptible stage, but 367 

we did not model sequelae. Thus, the inverse of the recovery rate represents the average duration of Infected 368 

stage, reflective of the natural disease progression and care access.  369 
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Therefore, there are only two parameters specific to Disease 2, transmission rate and recovery rate, which 370 

can be varied to generate diseases of differing incidence and prevalence. As described in the next section, 371 

we evaluated 16 scenarios using different combinations of these rates, to generate incidence and prevalence 372 

replicative of the range corresponding to STIs observed in the United States.  373 

2.2.3 Metrics and scenarios  374 

For the numerical analysis, we calculated the following metrics:  375 

• The relative prevalence of D2 given D1 (𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1), estimated as the prevalence of  Disease 2 376 

among persons with HIV compared to persons without HIV, i.e.,  377 

𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 =  # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻𝐻𝐻 / # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐻𝐻𝐻𝐻𝐻𝐻
# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑛𝑛𝑛𝑛 𝐻𝐻𝐻𝐻𝐻𝐻)/ # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛 𝐻𝐻𝐻𝐻𝐻𝐻

 , and therefore, if 378 

𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 > 1, then persons with HIV have a higher burden of Disease 2 than persons without 379 

HIV. 380 

• The relative prevalence of D1 given D2 (𝑅𝑅𝑅𝑅𝐷𝐷1|𝐷𝐷2), estimated as the prevalence of HIV among 381 

persons with Disease 2 compared to persons without Disease 2, i.e.,  382 

𝑅𝑅𝑅𝑅𝐷𝐷1|𝐷𝐷2 =  # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻𝐻𝐻/ # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2
# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐻𝐻𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑛𝑛𝑛𝑛 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2 )/ # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2

, and therefore, if  383 

𝑅𝑅𝑅𝑅𝐷𝐷1|𝐷𝐷2 > 1, then persons with Disease 2 have a higher burden of HIV than persons without 384 

Disease 2. 385 

• The average degree (average number of partners) among all persons with HIV (𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻+), average 386 

degree among all persons with Disease 2 (𝑑𝑑𝐷𝐷2+), and average degree in the overall population 387 

(𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂), which are metrics representing network features. 388 

When estimating  𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 and 𝑅𝑅𝑅𝑅𝐷𝐷1|𝐷𝐷2, we assume no biological risk of coinfection, i.e., Disease 1 does 389 

not biologically increase the risk of Disease 2 acquisition, transmission, or progression (and vice-versa).  390 

Thus, if 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 > 1 or 𝑅𝑅𝑅𝑅𝐷𝐷1|𝐷𝐷2 > 1, it would be attributed to behavioral factors alone, which would be 391 
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the combined effects of individual-behaviors, partnership network structures, and care behaviors. Note 392 

that the assumption of no biological risk is made for purposes of evaluating risk attributed to behavioral 393 

factors alone, during application of model in future work, biological risk can be easily modeled by using a 394 

multiplier for transmission or disease progression rates.  395 

We report average results for the last year of the simulation (year 2017). Note, over the period 2006 to 396 

2017 (simulation timeline) due to variations in care access (proportion of PWH on treatment with viral 397 

suppression increased from ~20% in 2006 to ~56% in 2017(43)) incidence from sexual transmissions 398 

decreased from ~44,000 in 2006 to ~33,100 in 2017 (51,52).  However, hypothetical D2 is in equilibrium 399 

due to the nature of its SIS epidemiology structure.  400 

Prevalence of HIV and care access in the United States has been continuously increasing over the past 401 

few decades as noted above (35,53,54). Further, there is considerable heterogeneity in disease burden, 402 

care access, and sexual behavior across transmission risk-groups that mix with each other, thus generating 403 

cross-over effects. Therefore, in addition to estimating the risk of co-infections attributable to behavioral 404 

factors, we evaluate the sensitivity of relative prevalence to care metrics, disease burden, and population 405 

heterogeneity under mixing. The effects of each subcomponent on the relative prevalence metrics are not 406 

independent, nor is their effect static over time. Thus, fully evaluating the sensitivity of each will not be 407 

feasible. Here, we attempted to gain general insight by utilizing naturally observed variations of these 408 

components in the United States. Specifically, we estimated relative prevalence metrics specific to 409 

transmission group (sexual behaviors and network structures are inherently different across HETF, 410 

HETM, and MSM), under varying epidemiological assumptions for HIV (utilizing the inherent increases 411 

in HIV disease burden (35,53,54) and care access over the past two decades(55–58)), under hypothetical 412 

assumptions for Disease 2 epidemiology (generating disease burdens replicative of the range observed in 413 

STIs in the United States), and under varying assumptions of epidemiology across transmission-groups 414 

(utilizing the inherent heterogeneity across risk-groups and mixing of MSM with other MSM and 415 

women).  416 
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In total, we simulated four scenarios (Scenarios 1 to 4) related to HIV disease burden, and under each, 417 

sixteen scenarios related to hypothetical Disease 2 burden, simulating both diseases among three 418 

transmission-groups, HETF, HETM, and MSM who have varying individual sexual behaviors and 419 

network structures. However, across scenarios, transmission-group specific individual sexual behaviors 420 

and network structures, and mixing between transmission-groups remain unchanged, and were 421 

comprehensively informed through national surveillance and survey systems in the United States, as 422 

noted earlier. We simulated each scenario for a 12 year period. Scenario 1 is a status-quo representation 423 

of HIV in the United States for the period 2006 to 2017, and Scenarios 2 to 4 are hypothetical, as follows.  424 

HIV scenarios 425 

• Scenario 1(status-quo HIV) was a status-quo representation of HIV in the United States between 426 

2006 and 2017, calibrated to HIV prevalence and HIV care metrics (such as proportions aware, 427 

linked to care, and on treatment) specific to transmission group (HETF, HETM, MSM). The 428 

model was initiated in 2006, with an HIV prevalence of about 0.1%, 0.05%, and 6% for HETF, 429 

HETM, and MSM, respectively, and the proportion of PWH on treatment with viral suppression 430 

of about 20%, 18%, and 19%, for HETF, HETM, and MSM, respectively. By 2017, HIV 431 

prevalence in the U.S. increased to 0.12%, 0.06%, and 8% for HETF, HETM, and MSM, 432 

respectively, and the proportion of PWH on treatment with viral suppression increased to 56%, 433 

50%, and 57%, for HETF, HETM, and MSM, respectively. 434 

• Scenario 2 (low HIV prevalence low care) initiates the model with a lower HIV prevalence 435 

(taking data from 1990s) of 0.07%, 0.04%, and 3.2% for HETF, HETM, and MSM, respectively, 436 

and for the full duration of the simulation (12 years) maintains care metrics to keep the 437 

proportion on treatment with viral suppression at a constant value of 20%, 18%, and 19%, for 438 

HETF, HETM, and MSM, respectively (corresponding to 2006 care data).  439 

• Scenario 3 (low HIV prevalence high care) is similar to Scenario 2 in initiating the model with 440 

the low HIV prevalence, but assumes higher care by using care data from 2017, thus resulting in 441 
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lower HIV incidence compared to Scenario 2. Specifically, the model initiates with a HIV 442 

prevalence of 0.07%, 0.04%, and 3.2% for HETF, HETM, and MSM, respectively, and for the 443 

full duration of the simulation, maintains care metrics to keep the proportion on treatment with 444 

viral suppression at a constant value of 56%, 50%, and 57%, for HETF, HETM, and MSM, 445 

respectively. 446 

• Scenario 4 (equal and low HIV prevalence for all transmission groups) is similar to Scenario 2 447 

in the use of the 2006 care data, but the model is initiated with equal and low HIV 448 

prevalence(1990s HETF prevalence) for all three transmission-groups. Specifically, the model is 449 

initiated with a prevalence of 0.07% for HETF, HETM, and MSM, and for the full duration of 450 

the simulation, maintains care metrics to keep the proportion on treatment with viral suppression 451 

at a constant value of 20%, 18%, and 19%, for HETF, HETM, and MSM, respectively. As the 452 

actual prevalence of HIV among MSM has been significantly higher than heterosexuals (HETF 453 

and HETM), and as MSM mix with men and women, comparing Scenario 4 with Scenario 2 will 454 

provide insight into the sensitivity of the relative prevalence metrics to heterogeneity in 455 

populations that mix.  456 

Disease 1 scenarios are summarized in Table 1. In addition to a dry run, that initializes network dynamics 457 

and individual-level event history and populate the initial HIV prevalence and care metrics (Appendix 458 

S4), we ran each scenario for a period of 12 years and report results for the last year of the simulation. 459 

Disease 2 scenarios 460 

Under each of Scenarios 1 to 4, we simulated 16 scenarios for Disease 2 using combinations of transmission 461 

rates (0.04, 0.06, 0.1, 0.2 per contact), and recovery rates (0.042, 0.083, 0.16, and 0.0083 per month, 462 

corresponding to an average infection duration of 1, 2, 5 and 10 years, respectively). These values generate 463 

a wide range of estimated incidence and prevalence for Disease 2 and were chosen to mimic the range of 464 

STIs observed in the United States population (Figure 2).   465 
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3. RESULTS 466 

As expected by design of scenarios, the range of transmission rates and recovery rates used for Disease 2 467 

created epidemics of varying Disease 2 burden, but for a specific combination of transmission rate and 468 

recovery rate, Disease 2 burden was similar across all Scenarios 1 to 4 (Figure 3a). Also as expected by 469 

design, Scenarios 1 to 4 created varying Disease 1 (HIV) burdens (Figure 3b), the values for the last year 470 

of the simulation are as follows. Scenario 1 (status-quo HIV) had high HIV prevalence for MSM (~8%) 471 

compared to heterosexual female (HETF) (~0.12%) and heterosexual male (HETM) (~0.06%), 472 

representative of HIV in the United States (Figure 3b). Compared to Scenario 1, Scenario 2 (low HIV 473 

prevalence, low care) created a lower HIV prevalence (0.09% for HETF, 0.04% for HETM, and 5% for 474 

MSM) but similar incidence because of the low care assumption (Figure 3b). Scenario 3 (low HIV 475 

prevalence, high care) created HIV prevalence similar to Scenario 2 but lower incidence because of the 476 

higher care assumption. Compared to Scenario 1, Scenario 4 (low and equal HIV prevalence for all 477 

transmission groups) reduced HIV prevalence by an order of magnitude for MSM and, because of mixing 478 

between MSM with HETF, reduced HIV prevalence in HETF; HETM had the same prevalence as HETF 479 

(0.07% for HETF, 0.06% for HETM, and 0.1% for MSM) (Figure 3b). As expected from inherent 480 

differences in behaviors, and reflecting data inputs to the simulation, the overall average degree (𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 481 

was higher among MSM than HETF and HETM. 482 

𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1was sensitive to both HIV and Disease 2 burden (incidence and prevalence) and HIV care (Figure 483 

4a, 4b), and the patterns could be consistently explained through comparison of resulting average degrees 484 

of persons with at least HIV, at least Disease 2, and overall (𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻+,𝑑𝑑𝐷𝐷2+,𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, respectively) (Figure 485 

4c, 4d). We discuss these below. Keeping HIV prevalence fixed, i.e., observing within each Scenario and 486 

transmission-group, as Disease 2 burden increased, 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1increased. In Scenario 1, 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 > 1.2 for 487 

HETF in most cases, 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 < 0.8 for HETM in most cases, and 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 < 1.2 for MSM in most cases 488 

(Figure 4). To recollect, HIV prevalence was moderate for HETF, lowest for HETM, and high for MSM. 489 

Thus, there was no consistent pattern when comparing 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1and HIV disease burden (prevalence) 490 
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alone. However, the pattern in 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1could be explained by the network structure as measured by 491 

average degree. In Scenario 1, for HETF, 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻+ > 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , and 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 > 1.2 if 𝑑𝑑𝐷𝐷2+ > 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻+, and 492 

𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 → 1 as 𝑑𝑑𝐷𝐷2+ → 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (Figure 4c). For HETM, 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻+ < 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜   and  𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 < 1 in most 493 

cases. For MSM, 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻+ ≳ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 < 1.2. This suggests that, when the average degree of 494 

both diseases is greater than the average degree in the overall population (as was the case for HETF in 495 

certain scenarios), 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1would be greater than 1, and if average degree of HIV is close to or less than 496 

the overall average degree (as was the case for HETM and MSM), then 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1would be closer to 1 or 497 

below 1.  498 

The interpretation of the above results is that, when both diseases have a sufficiently low prevalence, they 499 

are both concentrated in higher-risk networks (𝑑𝑑𝐷𝐷2+ > 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜;𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻+ > 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) and thus, persons with 500 

HIV would have higher risk of Disease 2 co-infection. These conclusions are intuitive, and characteristic 501 

of scale-free networks, where the disease first spreads to high-risk networks before spreading to the rest 502 

of the network.  503 

This correlation between 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1and patterns of average degree were consistent across the four scenarios, 504 

as discussed below, supporting the above conclusion. HETF and HETM in Scenario 2 (low HIV 505 

prevalence low care) had small decreases in HIV prevalence and saw minimal changes in 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1and 506 

average degrees (Figure 4a). For MSM in Scenario 2, the lower HIV prevalence led to a concentration of 507 

disease burden in higher risk networks (𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻 > 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)(Figure 4c), and thus, the values of 508 

𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1tended to be higher (more reds) than in Scenario 1 (Figure 4a). Compared to Scenario 2, though 509 

Scenario 3 (low HIV prevalence high care) created only minutely lower HIV prevalence, it had 510 

significantly lower HIV incidence because the higher HIV-care led to fewer transmissions (Figure 3b), 511 

leading in-turn to lower 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1for HETF and MSM. These changes in 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1could again be explained 512 

through corresponding changes in average degree. As average degree in HIV decreased and got closer to 513 

or equal to overall average degree (𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻~𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1decreased to 1 or below. This also suggests 514 
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that the reduction in transmissions from the higher HIV-care in Scenario 3 helped dissipate the impact of 515 

high HIV-prevalence burden in the high-risk networks.  516 

In Scenario 4, HETM saw no change compared to Scenarios 1 to 3, it had a very low HIV prevalence and 517 

had 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻 < 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . On the other hand, the 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1in HETF and MSM in Scenario 4 were opposite to 518 

that in Scenario 1, although both HETF and MSM saw a reduction in HIV prevalence in Scenario 4. For 519 

MSM, the average degree among HIV tended to be higher than overall (𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻 > 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), suggesting that, 520 

because of the significantly lower HIV epidemic than in Scenario 1, it was now mostly concentrated in 521 

high-risk networks, and thus, 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 > 1 when Disease 2 was also low and  concentrated in high-risk 522 

network (𝑑𝑑𝐷𝐷2 > 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) (Figure 4c). For HETF, though Scenario 4 initiated with the same HIV 523 

prevalence as Scenario 1, because of the mixing with MSM, it had a large reduction in HIV incidence and 524 

prevalence (Figure 3b). The corresponding average degree among HIV was now closer to overall 525 

(𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻~𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), and thus the corresponding 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 <  1 (Figure 4c). These consistent patterns between 526 

relative prevalence and average degree, under varying values of HIV and Disease 2 burdens and care 527 

access, demonstrate the role of network features in burden of coinfection.  528 

The behavior of 𝑅𝑅𝑃𝑃𝐷𝐷1|𝐷𝐷2 was similar to that of 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1, i.e., if 𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1 > 1 then 𝑅𝑅𝑃𝑃𝐷𝐷1|𝐷𝐷2 > 1 (Figure 5). 529 

These results again support that when both disease burdens are lower, the infection is more concentrated 530 

in higher risk networks. 531 

4. DISCUSSION 532 

The purpose of this manuscript is to present a novel mixed agent-based compartmental (MAC) simulation 533 

framework for joint modeling of diseases with common modes of transmission but varying 534 

epidemiological features. The numerical analyses assessed the contribution of behavioral factors to joint-535 

disease outcomes, and its sensitivity to disease burden, care metrics, and population heterogeneity and 536 

mixing. This work serves as a proof-of-concept for the feasibility of the proposed method and the 537 
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sensitivity analyses highlights the potential significance of joint-disease modeling in a heterogeneous 538 

interacting population.  539 

The key aspect of the MAC framework is its computational tractability while maintaining sufficient 540 

sample size even for lower prevalence diseases. The computational complexity of network modeling and 541 

compartmental modeling are in the 𝒪𝒪(𝑁𝑁2) and 𝒪𝒪(𝑆𝑆), respectively, where 𝑁𝑁 is the number of people 542 

simulated and 𝑆𝑆 is the number of states. Thus, while compartmental modeling is computationally 543 

efficient, it lacks the granular individual–level features of network modeling, and while networks are 544 

favored for this feature, they are computationally complex and lose tractability as population size 545 

increases. The MAC simulation technique provides an efficient balance, as can be seen by sample 546 

computation times in Table 2. The computational complexity of MAC is in the 𝒪𝒪(𝑄𝑄𝑡𝑡 + 𝑆𝑆 + 𝜃𝜃𝐼𝐼𝑡𝑡𝑑̅𝑑𝑛𝑛2), 547 

where 𝑄𝑄𝑡𝑡 is the number of nodes in the network at time 𝑡𝑡, with upper bound equal to the number of 548 

infected nodes in the network (𝐼𝐼𝑡𝑡) times the average number of lifetime partnerships per person (𝑑̅𝑑𝑛𝑛), and 549 

𝜃𝜃 is an overall rate of infection, and thus 𝜃𝜃𝐼𝐼𝑡𝑡 is the number of newly infected nodes at time 𝑡𝑡. Note that an 550 

epidemiologically correct expression for new infections is  𝜃𝜃𝐼𝐼𝑡𝑡𝑆𝑆𝑡𝑡
𝑁𝑁

, where 𝑆𝑆𝑡𝑡 is the number of susceptible 551 

persons, however, as only low prevalence diseases are modeled in the network, 𝑆𝑆𝑡𝑡 ≅ 𝑁𝑁. Also note that, 552 

because they are slow spreading diseases, 𝜃𝜃𝐼𝐼𝑡𝑡 is very small relative to 𝐼𝐼𝑡𝑡. Thus, unlike agent-based 553 

modeling where the computational complexity increases with 𝑁𝑁, here the computational complexity 554 

increases with 𝐼𝐼𝑡𝑡. This is a useful feature because the selection criteria for population size can be based on 555 

the desired sample size of positive cases without having to worry about its computational feasibility. For 556 

example, we can select the number of infected nodes in the network to be sufficiently large, say 12,000 557 

(𝐼𝐼𝑡𝑡). Then, simulating a disease with prevalence of 0.4% will generate a simulated population size of 558 

about 3 million persons (𝑁𝑁), whereas, simulating a disease with prevalence of 0.2% will generate a 559 

simulated population size of about 6 million persons (𝑁𝑁) but it will not increase the computational 560 

complexity. To achieve the same computational complexity when modeling two low prevalence diseases 561 

in the network, we can specify the total number of agents having one or both of the diseases. The 562 
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resulting sample size would then depend on the prevalence of each and the overlap between the two 563 

diseases. For example, suppose the prevalence is 0.4% and 0.2% for two low prevalence diseases D1 and 564 

D2, respectively, and there is no overlap, i.e., each agent has one and only one of the two diseases. 565 

Generating 12,000 infected nodes will generate ~8,000 persons with D1 and ~4,000 persons with D2, and 566 

a total population of ~2 million. If these samples are not sufficient, then more nodes can be generated, 567 

with a concomitant non-linear increase in computation time that is closer to linear than quadratic. Note 568 

that in our numerical analyses we did not remove infected agents who were dead or remove partnerships 569 

that happened in the past. Doing so will not impact epidemic projections but can reduce computational 570 

time. The simulation technique here could also be useful to further improve efficiency of large-scale 571 

simulators that focus on software efficiencies and are capable of simulating millions as nodes in the 572 

network with the use of high performance computing (59,60).    573 

In the numerical analyses, the values of relative prevalence were greater than 1 in several scenarios, 574 

highlighting the influence of behavioral factors on joint disease outcomes. These values are lower than 575 

those reported from observational studies, e.g., a 4 to 8 fold increase in burden of cervical cancer caused 576 

by HPV infection was observed among women with HIV compared with women without HIV (61), and a 577 

3 times higher HIV incidence risk was observed among MSM with rectal gonorrhea or chlamydia 578 

infection compared with MSM without these STIs (62). The differences are expected because the data 579 

from the literature are estimates from cohort studies or case control studies and thus include risk of 580 

coinfection attributable to both biological factors and behavioral factors (61), whereas in the model we 581 

forced the biological risk to be zero so that relative prevalence is attributable to behavioral factors alone.  582 

Consequently, through joint modeling of diseases, the differences between model estimates and 583 

observational studies can be used for determining risk attributed to biological factors alone and behavioral 584 

factors alone. These estimations can help inform both the type of interventions and optimal allocation of 585 

resources. While disease risk originating from behavioral factors would require behavioral and structural 586 

interventions because social determinants are key drivers of high-risk behaviors, disease risk originating 587 
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from biological predisposition of pre-existing infections would additionally require disease management 588 

and care support programs. Using a model along with observational data to control for behavioral factors 589 

would help more realistically estimate the biological risk of acquisition and transmission of infections, 590 

and thus inform care management interventions. Modeling work in this area is limited (10,63) and 591 

focused on modeling subgroups in isolation, such as MSM only. Our numerical analyses highlights the 592 

sensitivity of results in a subgroup to variations in disease burden in persons outside the subgroup due to 593 

population mixing, as in the comparison between Scenarios 4 and 2 for HETF.   594 

While estimates of biological risk of co-infection can directly inform care management programs, and the 595 

estimates of risk attributable to behavioral factors are necessary for determining those biological risk 596 

estimates, the value of risk attributable to behavioral factors is not a sufficient measure for informing the 597 

need for behavioral and structural interventions. Indeed, values of relative prevalence closer to 1 or below 598 

could be generated because of higher HIV prevalence (MSM compared to HETF in Scenario 1), low HIV 599 

prevalence (HETM in all scenarios), mitigation of HIV risk through increased care access (Scenario 3 600 

compared to Scenario 2 for HETF and MSM), or risk mitigation in the higher risk population when two 601 

groups mix (HETF in Scenario 4 compared to Scenario 2). Although the relative prevalence values were 602 

closer to 1 or below in all these scenarios, structural interventions would be key interventions mainly in 603 

scenarios with high-prevalence and low care. Further, relative prevalence of greater than 1 can originate 604 

from factors within the population (comparing across Scenarios 1 to 4 for MSM) or from mixing with 605 

populations with high-risk of infection (HETF between Scenarios 2 and 4), each requiring different 606 

intervention strategies. Thus, although the values of relative prevalence would be necessary for inferring 607 

biological risk of infection, they alone are insufficient for informing interventions.  608 

The above results from the numerical analyses justify the need for joint disease modeling for more 609 

accurate representation of the behavioral and biological dynamics of disease interactions. Further, social 610 

determinants, such as poverty, unemployment, homelessness, and stigma and discrimination, are known 611 

correlates of sexual and care behaviors that increase disease risk, such as higher number of partners, 612 
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higher condomless sex, and lower treatment uptake among persons experiencing homelessness compared 613 

to persons with stable housing (17–20). Therefore, structural interventions, such as healthcare coverage, 614 

subsidized housing and food programs, and access to mental healthcare, are key part of behavioral 615 

interventions to reduce risk of STI acquisition (12,13,15,16,64). While the costs of these structural 616 

interventions can be extrapolated from small cohort studies, the impact of structural interventions on 617 

disease burden is infeasible to estimate through controlled trials, because of the intricate disease 618 

interactions attributed to behavioral factors and its sensitivity to population and epidemic features (as 619 

observed through numerical analyses conducted here). A model would be a fundamental tool for 620 

estimation of the impact and thus cost-effectiveness, which are key measures used for allocation of public 621 

health resources. The new MAC simulation framework is computationally ideal for the above application, 622 

as it can be expanded to simulate sexual and care behavioral factors as a function of social conditions, and 623 

thus, subsequently serve as a decision-analytic tool for evaluation of structural interventions. 624 

Joint modeling of STIs in the literature is limited, and most focus on sub population groups (10,63). 625 

While sub-population modeling could help compare impact of alternate interventions on the sub-626 

population, a national model that additionally simulates mixing between sub-populations and thus cross-627 

over effects of interventions, would help identify optimal combination of interventions for overall 628 

reduction of diseases and disparities. Such a decision-analytic model would be suitable for informing 629 

public health guidelines, such as through the HealthyPeople2030 plan (65). Such a joint-disease joint-630 

population model would also be suitable during emergence of new infection outbreaks, such as the recent 631 

2022 Mpox outbreak. It could help shed light on populations at greatest risk and those that would benefit 632 

from medical countermeasures, to help inform interventions for containment of transmissions. 633 

Our work is subject to limitations. The above analyses were conducted using hypothetical 634 

epidemiological and care assumptions, and thus, our work is limited to evaluating sensitivity of joint 635 

disease dynamics to key behavioral factors and epidemiological factors. Thus, the results should not be 636 

used to infer actual burden of coinfection. We assumed biological risk of coinfection to be zero to 637 
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evaluate the sensitivity of behavioral factors alone. However, computational changes needed for modeling 638 

the biological risk are minimal, through use of a factor multiplied to the rates of transmission or 639 

progression to represent the increased risk, and calibrating the factor specific to a disease by matching 640 

simulated cases of coinfection with surveillance data. The scope of this work was limited to presenting a 641 

new simulation framework for joint modeling of diseases, and we did not model all behavioral changes 642 

driven from epidemic awareness. While some of these behavioral changes such as partnership selection 643 

for serosorting behaviors could be added to the current model structure through some modifications, 644 

changes in network structure, such as generational changes in the number of partners that would change 645 

the overall network statistics from the ones used in model calibration, would require recalibration. This 646 

would be a general challenge for any disease model and is outside the scope of this study. However, 647 

changes in network structure for evaluating impact of interventions could be carried out with the current 648 

model, by evaluating potential changes to network structure specific to interventions.  649 

5. CONCLUSIONS 650 

The study contributes a new simulation technique that is uniquely suitable for jointly modeling infectious 651 

diseases in a heterogeneous population that have common modes of transmission but varying 652 

epidemiological features, that a single simulation technique would be insufficient or computationally 653 

challenging. The numerical analysis serves as proof-of-concept for its application to STIs. The numerical 654 

analysis also demonstrates the influence of behavioral factors on joint disease outcomes, and its 655 

sensitivity to disease burden, care access, and population heterogeneity and mixing, which justify the 656 

need for joint modeling of related infectious diseases. Social and economic conditions are among key 657 

drivers of behaviors that increase STI risk. The new simulation framework is especially suitable for 658 

simulating behavioral factors as a function of social determinants, and it can be expanded in future work 659 

to subsequently evaluate optimal combinations of common structural interventions and disease-specific 660 

interventions for overall reduction of STI burden. The new simulation technique would also be suitable 661 

for the joint modeling of other infectious diseases that have common modes of transmissions. This would 662 
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be especially suitable for early detection and intervention of new or emergent disease outbreaks, when 663 

prevalence is still low, but spread within networks of people with other ongoing diseases. Examples in 664 

recent years include Mpox for sexually transmitted infections, or COVID-19, SARS, MERS for 665 

respiratory infections.  666 

LIST OF ABBREVIATIONS 667 

STIs: sexually transmitted infections 668 

HIV: human immunodeficiency virus 669 

HPV: human papillomavirus 670 

HCV: hepatitis C 671 

HBV: hepatitis B 672 

NG: Gonorrhea 673 

CT: Chlamydia  674 

PWH: people with HIV 675 

ART: antiretroviral therapy treatment 676 

PrEP: pre-exposure prophylaxis 677 

NHSS: U.S. National HIV Surveillance Systems 678 

SDH: social determinants of health  679 

MAC: mixed agent-based compartmental 680 

ABENM: agent-based evolving network modeling 681 

ABNM: agent-based network modeling 682 

PATH 4.0: Progression and Transmission of HIV, version 4.0 683 

ECNA: Evolving Contact Network Algorithm  684 

RP: relative prevalence  685 

HETF: heterosexual females  686 

HETM: heterosexual males 687 
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MSM: men who have sex with men (men who have sex with men only and men who have sex with men 688 

and women) 689 
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Table 1: Overview of Disease 1 (HIV) scenarios  919 

HIV 
(Disease 1) 
scenarios  

Descriptive 
name 

HIV prevalence assumptions HIV care assumptions 

Scenario 1  status-quo Initiated the model with a HIV 
prevalence of 0.1%, 0.05%, and 
6% for HETF, HETM, and 
MSM, respectively. Values 
correspond to HIV prevalence 
in the United States in 2006.  

Care continuum distributions scaled-
up as per values in the United States 
over the period 2006 – 2017. The 
corresponding values for the 
proportion of PWH on treatment with 
viral suppression was about 20%, 
18%, and 19%, in 2006, and 56%, 
50%, and 57%, in 2017, for HETF, 
HETM, and MSM, respectively.  

Scenario 2  low 
prevalence, 
low care 

Initiated the model with a HIV 
prevalence of 0.07%, 0.04%, 
and 3.2% for HETF, HETM, 
and MSM, respectively. Values 
correspond to HIV prevalence 
in the United States in 1990s.   

Care continuum distributions as per 
values in 2006, and kept constant for 
all 12 years of simulation. The 
corresponding values for the 
proportion of PWH on treatment with 
viral suppression was about 20%, 
18%, and 19%, for HETF, HETM, 
and MSM, respectively.  

Scenario 3  low 
prevalence, 
high care 

Initiated the model with a HIV 
prevalence of 0.07%, 0.04%, 
and 3.2% for HETF, HETM, 
and MSM, respectively. Values 
correspond to HIV prevalence 
in the United States in 1990s.  

Care continuum distributions as per 
values in 2017, and kept constant for 
all 12 years of simulation. The 
corresponding values for the 
proportion of PWH on treatment with 
viral suppression was about 56%, 
50%, and 57%, for HETF, HETM, 
and MSM, respectively. 

Scenario 4  equal and 
low 
prevalence 
for all 
transmission 
groups 

Initiated the model with a 
prevalence of 0.07% for HETF, 
HETM, and MSM. Values 
correspond to HETF HIV 
prevalence in the United States 
in 1990s.   

Care continuum distributions as per 
values in 2006, and kept constant for 
all 12 years of simulation. The 
corresponding values for the 
proportion of PWH on treatment with 
viral suppression was about 20%, 
18%, and 19%, for HETF, HETM, 
and MSM, respectively.  

Note: HIV care assumptions are an input to the simulation. HIV prevalence are an input only for 920 
initialization of the model in the first year of simulation. HIV prevalence over time are an outcome of the 921 
model. For Scenario 1 (status-quo), the model was validated to match the U.S. epidemic on multiple 922 
metrics, including prevalence, for the period 2006 to 2017. Scenarios 2 to 4 are hypothetical.  923 

 924 

 925 

 926 
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Table 2: Computational time of the mixed-agent based compartmental model for the two-disease example 927 

Number of nodes in the network  
Number of 

persons in the 
compartmental 

model  

Total 
simulation  

population size 

*Computation time 
per run (minutes) 
Average (range) Infected  

Susceptible 
partners Total  

           
4,100               17,947        22,047           1,025,050           1,047,097  12(10-16) 
           
8,216               35,740        43,956           2,053,900           2,097,856  31(24-41) 
         
12,020               50,612        62,632           3,005,000           3,067,632  56(46-71) 

*Using single thread on Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz  3.70 GHz 64-bit operating 928 
system, x64-based processor. Average and range of 10 runs. 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 
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 959 

Figure 2a: Prevalence (absolute) and incidence (per year) of STIs in the US [Source: (34,48,66–69)]. Note: Except 960 
for HIV, all other STI incidence in MSM (men who have sex with men) were among MSM at high-risk of STI from 961 
pooled global estimates; Not all STI are presented for MSM due to data unavailability. 962 

963 
Figure 2b: STI to HIV incidence ratios (x-axis) and prevalence ratios (y-axis) for common STIs in the U.S. in 2018 964 
[Source: (34,66–69)]. Note: Except for HIV, all other STI incidence in MSM (men who have sex with men) were 965 
among MSM at high-risk of STI from pooled global estimates; Not all STI are presented for MSM due to data 966 
unavailability. 967 

 968 
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 969 

Figure 3: a) Varying transmission rates and recovery rates creates varying burdens of hypothetical Disease 2 (D2). 970 
b) Varying assumptions for HIV across Scenarios 1 to 4 (S1 to S4), creates varying HIV disease burdens (right). 971 
HETF-heterosexual female; HETM-heterosexual male; MSM-men who have sex with men (men only and men and 972 
women). Note: For each HIV scenario (S1 to S4), there are 16 data points corresponding to each of the sixteen 973 
Disease 2 scenarios (larger the marker size higher the value of D2 transmission rate); For HETF and HETM, data 974 
points for S1 to S4 mostly overlap; Results are from last year of 12-year-long simulation (for S1 it corresponds to 975 
calendar year 2017). 976 

 977 
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 978 

Figure 4: a) Relative prevalence (𝑅𝑅𝑃𝑃𝐷𝐷2|𝐷𝐷1) (color gradient) presented as a function of D2/D1 incidence ratio (y-axis) 979 
and prevalence ratio (x-axis) for Scenarios 1 to 4 in each column. b) Same as a) but all scenarios combined into one 980 
column. c) Corresponding average degrees (y-axis) among persons with at least D1 (D1+), at least D2 (D2+), and 981 
overall, plotted against D2 prevalence (x-axis) for Scenarios 1 to 4. d) The same average degrees (y-axis) but plotted 982 
against D1 prevalence;  983 
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𝑅𝑅𝑅𝑅𝐷𝐷2|𝐷𝐷1 is the prevalence of D2 among persons with D1 compared to persons without D1;D1 is HIV; D2 is 984 
hypothetical Disease 2; HETF-heterosexual female; HETM-heterosexual male; MSM-men who have sex with men 985 
(men only and men and women). Note: For each HIV scenario (S1 to S4), there are 16 data points corresponding to 986 
each of the sixteen Disease 2 scenarios (larger the marker size higher the value of D2 transmission rate); Results 987 
are from last year of 12-year-long simulation (for S1 it corresponds to calendar year 2017). 988 
 989 
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 1020 

Figure 5: a) Relative prevalence (𝑅𝑅𝑅𝑅𝐷𝐷1|𝐷𝐷2)(color gradient) as a function of D2/D1 incidence ratio (y-axis) and 1021 
prevalence ratio (x-axis) for Scenarios 1 to 4 (S1 to S4) in each column. b) Same as a) but all scenarios combined 1022 
into one column;  1023 

𝑅𝑅𝑅𝑅𝐷𝐷1|𝐷𝐷2 is the prevalence of D1 among persons with D2 compared to persons without D2; D1 is HIV; D2 is 1024 
hypothetical Disease 2. HETF-heterosexual female; HETM-heterosexual male; MSM-men who have sex with men 1025 
(men only and men and women). Note: For each HIV scenario (S1 to S4), there are 16 data points corresponding to 1026 
each of the sixteen Disease 2 scenarios (larger the marker size higher the value of D2 transmission rate); Results 1027 
are from last year of 12-year-long simulation (for S1 it corresponds to calendar year 2017). 1028 
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1 Overview of MAC  1093 

The mixed agent-based compartmental (MAC) simulation framework was developed for 1094 

co-modeling of diseases spread over a common contact network but have varying levels of 1095 

prevalence and incidence that neither agent-based or compartmental model alone are sufficient. 1096 

The computational framework for the hybrid agent-based compartmental simulation was enabled 1097 

through use of a recently developed agent-based evolving network modeling technique 1098 

(ABENM)(1), applied to the development of the Progression and Transmission of HIV (PATH 1099 

4.0) model in the United States and validated against data from the National HIV Surveillance 1100 

Systems (NHSS) (2). The main concept of ABENM is to simulate only persons infected with at 1101 

least one low-prevalence disease and their immediate contacts at the individual level as agents of 1102 

the simulation, and to model all other persons including those with high-prevalence diseases using 1103 

a compartmental modeling structure. Immediate contacts are defined as all partners a person will 1104 

have over their lifetime who at the current time-step may be infected or susceptible. As these 1105 

contacts in the network become infected with a low-prevalence disease, their immediate contacts 1106 

are added as agents to the network (transitioning from the compartmental portion of the model to 1107 

the network portion of the model), thus evolving the contact network. An Evolving Contact 1108 

Network Algorithm (ECNA) maintains the network dynamics. Here we provide an overview of 1109 

the MAC simulation framework, without loss of generality, using a two-disease example, low-1110 

prevalence Disease 1 and high-prevalence Disease 2. In the analyses presented in the main paper, 1111 

we modeled HIV as Disease 1, adopting the validated PATH 4.0 model (2) and a hypothetical 1112 

Disease 2. Without loss of generality, we can model Disease 2 as a single stage disease, as the 1113 

process would be similar for multi stages, but for the analyses presented in the main paper, we 1114 

experimented with varying rates of transmission and recovery to make it representative of a range 1115 

of diseases. We believe this framework can be generalized to any number of diseases, the 1116 

computational complexity and relevance informing decisions for modeling it in the ABENM or in 1117 

the compartmental.  1118 

1.1 Overview of MAC using low-prevalence disease 1 and high-prevalence disease 2  1119 

We present the framework using HIV as Disease 1 and a hypothetical Disease 2. We track 1120 

HIV-infected persons and immediate contacts using a dynamic graph 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ), with the number 1121 

of nodes in the graph 𝑄𝑄𝑡𝑡 = |𝒩𝒩(𝐺𝐺𝑡𝑡)| and the number of edges |ℰ(𝐺𝐺𝑡𝑡)| dynamically changing over 1122 
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time 𝑡𝑡 as persons become newly infected with HIV and their immediate contacts are added to the 1123 

network. Each person in the network has attributes age, transmission-group (heterosexual female 1124 

(HETF), heterosexual male (HETM), men who have sex with men (MSM)), degree (number of 1125 

lifetime partnerships), geographic jurisdiction, and health status ({stage of Disease 1, stage of 1126 

Disease 2}, including {0,0} to indicate uninfected with either disease).  1127 

 1128 

We track all other persons using an array 𝑆𝑆𝑡𝑡 of size 𝐴𝐴 × 𝑅𝑅 × 𝐷𝐷 × 𝐺𝐺 𝑋𝑋 𝐻𝐻, where, 1129 

 𝐴𝐴 is the number of age-groups, 1130 

 𝑅𝑅 is the number of risk-groups, 1131 

 𝐷𝐷 is the number of degree-bins (degree is the number of contacts per person, degrees are 1132 

grouped into bins analogous to age grouped into age-groups), 1133 

 𝐺𝐺 is the number of geographic jurisdictions (equal to 1 here corresponding to national), and 1134 

 𝐻𝐻 is the number of health states (two in numerical analyses:{0,0} and {0,1} corresponding 1135 

to {HIV stage, Disease 2 stage}; note: by design persons who are HIV positive will not be 1136 

in the compartmental model). 1137 

Therefore, each element of the array (𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ�) is the number of people in that specific 1138 

category, and thus, 𝑄𝑄𝑡𝑡 + ∑ 𝑆𝑆𝑡𝑡,𝑖𝑖𝑖𝑖∈[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ] , would be the total number of people in the population at 1139 

time 𝑡𝑡.  1140 

As all HIV infected persons and exposed partners are in the network, HIV transmissions and HIV 1141 

disease progression are modeled at the individual level (using HIV transmission and HIV disease 1142 

progression modules in Appendix S2.1). Disease 2 transmission and progression are modeled 1143 

using differential equations (as typically done in compartmental modeling technique) but with the 1144 

consideration that people in both the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) and compartmental array 𝑆𝑆𝑡𝑡 can be infected 1145 

with Disease 2 (see compartmental module in Appendix S2.1).  1146 

The mathematical challenges to address for this method to work is to maintain the dynamics 1147 

between the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) and compartmental array 𝑆𝑆𝑡𝑡, including, transitioning people from 1148 

𝑆𝑆𝑡𝑡 to 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ). Specifically, determining ‘who’, i.e., the degree, transmission group, age, and 1149 

geographical location of the persons, are to be added as the immediate contacts of the node newly 1150 

infected with HIV, as these characteristics of infected persons and their contacts are known to be 1151 

correlated [12]. Upon determining and adding all lifetime partners of nodes newly infected with 1152 
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HIV, we need to determine when the partnerships would initiate and dissolve, including the age of 1153 

both partners at that time, such that the overall dynamics of age-mixing and transmission-group-1154 

mixing of the resulting network match that of the U.S. population over time. As network generation 1155 

techniques in commonly used agent-based models are designed to generate the network between 1156 

the full population (susceptible and infected persons), they cannot be adopted here. We developed 1157 

an evolving contact network algorithm (ECNA) for modeling the transitions from 𝑆𝑆𝑡𝑡 to 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) 1158 

(see ECNA module in Appendix S2.3). As HIV is a chronic infection, once persons enter the 1159 

network  𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) they do not transition back to 𝑆𝑆𝑡𝑡. However, for low-prevalence diseases that 1160 

are not chronic, they can be added to the compartments corresponding to their group (stability  of 1161 

the network dynamics for varying epidemiology profiles are discussed elsewhere (1)).   1162 

We discuss the computational structure of MAC in Appendix S1.2 and the four simulation modules 1163 

in Appendix S2. A visual representation of the computational structure is presented in Figure 1 1164 

(main manuscript). All notations used in the model are also summarized in Table S1. 1165 

1.2 Computational structure of MAC  1166 

As noted above, following the compartmental modeling structure, we use a five-dimensional array 1167 

𝑆𝑆𝑡𝑡 to keep track of the number of susceptible persons (who are not contacts of persons with HIV 1168 

infection), i.e., 𝑆𝑆𝑡𝑡[𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔, ℎ] is the number of susceptible persons in age-group 𝑎𝑎� , transmission-1169 

group 𝑟̅𝑟, degree-bin 𝑑̅𝑑, pseudo-geographic jurisdiction 𝑔𝑔, and health status ℎ at time 𝑡𝑡. 1170 

As noted above, following the ABNEM structure, we use a dynamic graph 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) to track HIV-1171 

infected persons and their immediate contacts, where 𝒩𝒩 is a set of nodes, each node representing 1172 

an HIV-infected person or a susceptible sexual partner (they may or may not have Disease 2), 1173 

and ℰ(𝐺𝐺𝑡𝑡) is a set of undirected edges, an edge {𝑖𝑖, 𝑗𝑗} representing a sexual partnership between 1174 

nodes 𝑖𝑖 and 𝑗𝑗.  1175 

The graph 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) has the following features:  1176 

Static adjacency matrix: 𝐶𝐶𝑡𝑡 of time-variant size 𝑄𝑄𝑡𝑡 × 𝑄𝑄𝑡𝑡 , with static elements 𝐶𝐶𝑡𝑡[𝑖𝑖, 𝑗𝑗] = 1 1177 

if 𝑖𝑖 and 𝑗𝑗 are sexual partners anytime during their lifetime and 𝐶𝐶𝑡𝑡[𝑖𝑖, 𝑗𝑗] =0 otherwise, and 1178 

Dynamic adjacency matrix: 𝑉𝑉𝑡𝑡 of time-variant size 𝑄𝑄𝑡𝑡 × 𝑄𝑄𝑡𝑡, with element 𝑉𝑉𝑡𝑡[𝑖𝑖, 𝑗𝑗] = 1 if 1179 

𝑖𝑖 and 𝑗𝑗 are in a partnership during month 𝑡𝑡 and 𝑉𝑉𝑡𝑡[𝑖𝑖, 𝑗𝑗] = 0 otherwise.  1180 
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Each edge {𝑖𝑖, 𝑗𝑗}𝜖𝜖ℰ has the following features (similar to nodes having features of say age, sex, etc., 1181 

edges can also have features): 1182 

Partnership initiation time: 𝑡𝑡({𝑖𝑖, 𝑗𝑗}) representing the simulation month for when the 1183 

partnership initiated,  1184 

Partnership termination time: 𝑡𝑡({𝑖𝑖, 𝑗𝑗}) representing the simulation month when the 1185 

partnership terminated,  1186 

Partnership initiation age: �𝒶𝒶�𝑖𝑖 ,𝒶𝒶�𝑗𝑗�  representing the age of nodes 𝑖𝑖 and 𝑗𝑗, at the time of 1187 

partnership initiation, and   1188 

Partnership termination age: �𝒶𝒶𝑖𝑖 ,𝒶𝒶𝑗𝑗� representing the age of nodes 𝑖𝑖 and 𝑗𝑗, at the time 1189 

of partnership termination. 1190 

Each node 𝑗𝑗𝑗𝑗𝑗𝑗(𝐺𝐺𝑡𝑡) has the following features:  1191 

Actual degree: 𝑑𝑑𝑗𝑗 representing the actual number of lifetime sexual partners of node 𝑗𝑗, 1192 

Current degree: 𝑑̂𝑑t,j representing the number of lifetime sexual partners of person 𝑗𝑗 who 1193 

are already added as nodes in 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ); if node 𝑗𝑗 is HIV-infected 𝑑̂𝑑t,j = 𝑑𝑑𝑗𝑗, if node 𝑗𝑗 is 1194 

HIV-susceptible 𝑑̂𝑑t,j ≤  𝑑𝑑𝑗𝑗, and thus dynamically changing with time 𝑡𝑡, 1195 

Partnership distribution matrix: 𝐿𝐿𝑡𝑡,𝑗𝑗 of size 𝐴𝐴 × 2, where 𝐴𝐴 is the number of age-groups, 1196 

𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎, 1] is the number of partnerships that node 𝑗𝑗 initiates in age group 𝑎𝑎, and 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎, 2] is 1197 

the number of partnerships that are yet to be assigned; the sub-script 𝑡𝑡 are to indicate that 1198 

the values of column 2 of 𝐿𝐿𝑡𝑡,𝑗𝑗 can change over time, specifically, 𝐿𝐿𝑡𝑡,𝑗𝑗[,2] is a column of 1199 

zeros if the node is HIV-infected as all their partnerships are already assigned, and greater 1200 

than or equal to zero if the node is HIV-susceptible (when the HIV-susceptible person is 1201 

added as a contact of a different HIV-infected person one of the rows is decremented, and 1202 

when the HIV-susceptible person becomes HIV-infected all rows of column 2 are 1203 

decremented to zero as their partners are found and added - the HIV-ECNA was 1204 

specifically developed for determining when and how to assign these partnerships, and thus 1205 

generating the network, which is discussed in Appendix S2.3),   1206 
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Health status: 𝒽𝒽t,j = {𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢}, e.g., 𝒽𝒽t,j = {1,0} if node 𝑗𝑗 1207 

is stage 1 HIV and no Disease 2 at time 𝑡𝑡,  1208 

Deceased status: 𝓂𝓂𝑡𝑡,𝑗𝑗 = 1 if node 𝑗𝑗 is alive and 0 otherwise, 1209 

Age: 𝒶𝒶𝑡𝑡,𝑗𝑗 taking an integer value representative of the age of node 𝑗𝑗, 1210 

Geographic jurisdiction: ℊ𝑗𝑗 taking an integer value representative of the geographic 1211 

location of node 𝑗𝑗, 1212 

Transmission-group: 𝓇𝓇𝑗𝑗 taking one of the following values, representative of transmission-1213 

group of node 𝑗𝑗, 𝓇𝓇𝑗𝑗  ∈ {heterosexual female, heterosexual male, MSM}, and 1214 

HIV care continuum and disease stage: 𝓈𝓈𝑡𝑡,𝑗𝑗 taking one of the following values, 0 (not 1215 

infected), 1 (infected, acute HIV stage, and undiagnosed), 2 (non-acute HIV, and 1216 

undiagnosed), 3 (diagnosed and not in care), 4 (in care not on antiretroviral therapy (ART) 1217 

treatment), 5 (on ART no viral load suppression (VLS)), or 6 (on ART with VLS).  1218 

The main relationships between different components of the graph 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) are the following. 1219 

Between partnership initiation 𝑡𝑡({𝑖𝑖, 𝑗𝑗}) and termination 𝑡𝑡({𝑖𝑖, 𝑗𝑗}) times and static and 1220 

dynamic adjacency matrices (𝐶𝐶𝑡𝑡 and 𝑉𝑉𝑡𝑡): 1221 

𝐶𝐶𝑡𝑡[𝑖𝑖, 𝑗𝑗] = � 1 𝑖𝑖𝑖𝑖 {𝑖𝑖, 𝑗𝑗}𝜖𝜖ℰ
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, i.e., if {𝑖𝑖, 𝑗𝑗} are partners at some point during their life, this will 1222 

have a value of 1,  1223 

𝑉𝑉𝑡𝑡[𝑖𝑖, 𝑗𝑗] = �1 if  𝑡𝑡({𝑖𝑖, 𝑗𝑗}) ≤ 𝑡𝑡 ≤  𝑡𝑡({𝑖𝑖, 𝑗𝑗})
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, i.e., if {𝑖𝑖, 𝑗𝑗} are partners at time 𝑡𝑡 this will have a 1224 

value of 1, and thus, 1225 

𝐶𝐶𝑡𝑡[𝑖𝑖, 𝑗𝑗] ≥ 𝑉𝑉𝑡𝑡[𝑖𝑖, 𝑗𝑗]. 1226 

Between actual degree 𝑑𝑑𝑗𝑗, current degrees 𝑑̂𝑑t,j, and static adjacency matrix 𝐶𝐶𝑡𝑡: 1227 

𝑑̂𝑑t,j �
= 𝑑𝑑𝑗𝑗  if node j is infected

≤  𝑑𝑑𝑗𝑗  if node j is susceptible , i.e., if a node is infected, they are linked to all partners 1228 

they will have (actual degree) over their lifetime and thus 𝑑𝑑𝑗𝑗 = 𝑑̂𝑑t,j, and if a node is 1229 

susceptible, they are only linked to their infected partners and thus 𝑑𝑑𝑗𝑗 ≤ 𝑑̂𝑑t,j, and  1230 

𝑑̂𝑑t,j = ∑ 𝐶𝐶𝑡𝑡[𝑖𝑖, 𝑗𝑗]𝑖𝑖=1:𝑄𝑄𝑡𝑡 , i.e., 𝐶𝐶𝑡𝑡 keeps track of their current degree. 1231 
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Between actual degree 𝑑𝑑𝑗𝑗 and partnership distribution matrix 𝐿𝐿𝑡𝑡,𝑗𝑗: 1232 

∑ 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎, 1]𝑎𝑎=1:𝐴𝐴 = 𝑑𝑑𝑗𝑗, at any 𝑡𝑡, i.e., as 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎, 1] tracks number of partnerships that initiate 1233 

at age-group 𝑎𝑎, when summed over all 𝑎𝑎 it should add to the actual degree 𝑑𝑑𝑗𝑗 for all nodes 1234 

whether infected or susceptible, and 1235 

∑ 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎, 2]𝑎𝑎=1:𝐴𝐴 = �𝑑𝑑𝑗𝑗 − 𝑑̂𝑑t,j if node 𝑗𝑗 is susceptible
0 if node 𝑗𝑗 is infected

, i.e., as 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎, 2] tracks number of 1236 

partnerships that initiate at age-group 𝑎𝑎 and are yet to be generated, ∑ 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎, 2]𝑎𝑎=1:𝐴𝐴 would 1237 

be zero if the node is infected because all partnerships of an infected node are already 1238 

connected in the network, and would be equal to the number of partners yet to be assigned 1239 

if the node is susceptible.  (Assigning partnerships and all other features related to the 1240 

network are part of the newly developed HIV-ECNA network generation algorithm, 1241 

discussed later).  1242 

This section presented the computational structure of the model, specifically the compartmental 1243 

modeling structure, the network structure, and the features of the nodes and edges in the network. 1244 

A visual representation of the computational structure is presented in Figure 1. The next section 1245 

describes the methods (modules) used in simulating these features, Appendix S3 discusses the data 1246 

inputs, and Appendix S4 discusses model initialization, and Appendix S5 provides an overview of 1247 

the steps of the simulation. 1248 

2 Four main modules of MAC  1249 

We present the overall MAC framework through four modules, that are run at every time-step 1250 

(monthly) of the simulation: a compartmental module for simulating Disease 2, a Bernoulli 1251 

transmission module for simulating new infections, the ECNA network generation module for 1252 

generating partnership networks of new HIV-infected persons, and a disease progression module 1253 

for simulating HIV-related events for HIV-infected persons. 1254 

2.1 Compartmental module for simulating high-prevalence Disease 2  1255 

This module updates the demographic features (births, aging, and deaths) and Disease 2 features 1256 

(transmission and progression) of persons tracked through the array 𝑆𝑆𝑡𝑡, using difference equations 1257 

as follows.  1258 
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𝑆𝑆𝑡𝑡+Δ𝑡𝑡 = 𝑆𝑆𝑡𝑡 +
𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

Δ𝑡𝑡 1259 

𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

 is the rate of change in 𝑆𝑆𝑡𝑡, with the general equation for its calculation only varying in element 1260 

corresponding to health status ℎ, as follows using a simple two stage Disease 2 as in our numerical 1261 

analyses,   1262 

𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ = {0,0}�1263 

= −𝐷𝐷2 𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐷𝐷2 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠  1264 

𝑑𝑑𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ = {0,1}�1265 

= 𝐷𝐷2 𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐷𝐷2 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠 1266 

Each element on the right-hand side can be calculated as follows,   1267 

𝐷𝐷2 𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔]𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ = {0,0}�, 1268 

𝐷𝐷2 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛾𝛾𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔, ℎ = {0,1}� , 1269 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑜𝑜 = � 1
|𝑎𝑎�|
� 𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔, ℎ = {0,0}� ,    1270 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑖𝑖𝑖𝑖 =  � 1
|𝑎𝑎�−1|

� 𝑆𝑆𝑡𝑡�𝑎𝑎� − 1, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ = {0,0}�, and 1271 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠 = 𝛿𝛿𝑎𝑎�  𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ�,  1272 

where, 1273 

𝜃𝜃[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔] is the infection rate for persons in age-group 𝑎𝑎�, transmission-group 𝑟𝑟, degree-bin 1274 

𝑑̅𝑑, pseudo-geographic jurisdiction 𝑔𝑔 at time 𝑡𝑡, 1275 

𝛾𝛾 is the recovery rate (in this hypothetical analyses we assumed it is static, but could be 1276 

varied as a function of 𝑎𝑎�, 𝑟𝑟,𝑔𝑔, to represent epidemiological differences by demography or 1277 

as a function of time 𝑡𝑡 to represent changes in care or treatment over time, 1278 

|𝑎𝑎�| is the age-interval of age-group 𝑎𝑎�, and  1279 

𝛿𝛿𝑎𝑎� is mortality rate as a function of age-group 𝑎𝑎� (here we only modeled all-cause mortality, 1280 

but it could be varied as a function of health status ℎ).  1281 

 1282 

We calculated infection rate 𝜃𝜃[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔] as follows, (as 𝐺𝐺 = 1 here, for clarity of notation, we ignore 1283 

𝑔𝑔 in below notations) 1284 

 1285 
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𝜃𝜃[𝑎𝑎�,𝑟𝑟,𝑑𝑑�] = 𝛽𝛽[𝑎𝑎�,𝑟𝑟,𝑑𝑑�]𝑐𝑐[𝑎𝑎�,𝑟𝑟,𝑑𝑑�]Mr�𝑎𝑎�, 𝑑̅𝑑�  1286 

 1287 

𝐌𝐌i = � 𝑟𝑟𝑖𝑖,𝑗𝑗(𝐏𝐏 𝐀𝐀)𝑇𝑇𝐃𝐃
𝑗𝑗∈{𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑀𝑀𝑀𝑀𝑀𝑀}

 1288 

Where,  1289 

𝛽𝛽[𝑎𝑎�,𝑟𝑟,𝑑𝑑�] is the per contact transmission probability among persons in age-group 𝑎𝑎�, 1290 

transmission-group 𝑟𝑟, degree-bin 𝑑̅𝑑, 1291 

𝑐𝑐[𝑎𝑎�,𝑟𝑟,𝑑𝑑�] is the number of contacts among persons in age-group 𝑎𝑎�, transmission-group 𝑟𝑟, 1292 

degree-bin 𝑑̅𝑑, 1293 

𝐌𝐌i is a matrix of size 𝐴𝐴 × 𝐷𝐷, with each element Mi�𝑎𝑎�, 𝑑̅𝑑� the probability that the contacts 1294 

of a person in transmission-group 𝑖𝑖 and with degree 𝑑̅𝑑 and age-group 𝑎𝑎� is infected, 1295 

𝐏𝐏 is a matrix of size 𝐷𝐷 × 𝐴𝐴, with each element 𝑃𝑃(𝑑̅𝑑, 𝑎𝑎�) the prevalence (
𝐼𝐼𝑎𝑎�,𝑟𝑟�,𝑑𝑑�,𝑔𝑔

𝑁𝑁𝑎𝑎�,𝑟𝑟�,𝑑𝑑�,𝑔𝑔
) among 1296 

persons in degree-bin 𝑑̅𝑑 and age-group 𝑎𝑎�, (𝐼𝐼𝑎𝑎�,𝑟̅𝑟,𝑑𝑑�,𝑔𝑔 is the number of persons infected with 1297 

Disease 2 and 𝑁𝑁𝑎𝑎�,𝑟̅𝑟,𝑑𝑑�,𝑔𝑔 is the number of persons in that group), 1298 

 1299 

𝐀𝐀 is an age-mixing matrix of size 𝐴𝐴 × 𝐴𝐴, with each element A(m, n) the probability persons 1300 

in age-group 𝑚𝑚 mix with persons in age-group 𝑛𝑛, 1301 

𝐃𝐃 is a degree-mixing matrix of size 𝐷𝐷 × 𝐷𝐷, with each element D(m, n) the probability 1302 

persons in degree-bin 𝑚𝑚 mix with persons in degree-bin 𝑛𝑛,  1303 

𝑟𝑟𝑖𝑖,𝑗𝑗 is the probability persons in transmission-group 𝑖𝑖 mix with persons in transmission-1304 

group 𝑗𝑗, and 1305 

𝑇𝑇 represents matrix transpose.  1306 

 1307 

𝐼𝐼𝑎𝑎�,𝑟̅𝑟,𝑑𝑑�,𝑔𝑔 = 𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ = {0,1}�+ |�𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,1}]�|,  1308 

𝑁𝑁𝑎𝑎�,𝑟̅𝑟,𝑑𝑑�,𝑔𝑔 = 𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ = {0,0}� + 𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔, ℎ = {0,1}� + |�𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,0}]�+1309 

 |�𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,1}]�|  1310 

i.e.,  𝐼𝐼𝑗𝑗 would be the sum of Disease 2 infected persons in group 𝑗𝑗 in the compartmental model 1311 

(𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔, ℎ = {0,1}�) and the number of nodes in the network in group 𝑗𝑗 (|�𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,1}]�|), 1312 

and similarly, 𝑁𝑁𝑗𝑗 would be the sum of the total number of persons in group 𝑗𝑗 in the compartmental 1313 
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model (𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔, ℎ = {0,0}�+ 𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ = {0,1}�) and the total number of nodes in group 1314 

𝑗𝑗 in the network (|�𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,0}]� + |�𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,1}]�|). Note that, while the first element of ℎ 1315 

is always zero in notations related to 𝑆𝑆𝑡𝑡 indicating that all persons in the compartmental model are 1316 

HIV negative, we use a dot in notations related to 𝒩𝒩 to denote that it sums over all nodes in any 1317 

stage of Disease 1. 1318 

 1319 

Simulating Disease 2 among HIV infected persons in the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) 1320 

We use the above transition rates (infection rate 𝜃𝜃[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔] and progression rate 𝛾𝛾) to simulate 1321 

Disease 2 among nodes in the network. We first convert rates to probability, as 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =1322 

1 − 𝑒𝑒𝑒𝑒𝑝𝑝−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.1 (assuming sojourn times follow exponential distribution). We then use a binomial 1323 

distribution to determine number of nodes to transition, specifically,  1324 

number of nodes newly infected with Disease 2 =𝑖𝑖𝐷𝐷2~Binomial( ��𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,0}]��, 1 −1325 

𝑒𝑒𝑒𝑒𝑝𝑝−𝜃𝜃[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔] .1)  1326 

number of nodes newly recovered from Disease 2 =𝑟𝑟𝐷𝐷2~Binomial( ��𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,1}]��, 1 −1327 

𝑒𝑒𝑒𝑒𝑝𝑝−𝛾𝛾 .1) 1328 

We then randomly choose 𝑖𝑖𝐷𝐷2 from node-set �𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,0}]� and set their health status ℎ = {. ,1}, 1329 

and randomly choose 𝑟𝑟𝐷𝐷2 from node-set �𝒩𝒩[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔,ℎ={.,1}]� and set their health 2 status ℎ = {. ,0}. 1330 

Note that the dot in the first element of ℎ indicates that Disease 2 transitions in our numerical are 1331 

independent of Disease 1 stage, however, to model biological risks of coinfections this assumption 1332 

would be modified.  1333 

Note that, given the simulation time-step is chosen such that the rates are sufficiently small, as the 1334 

sample size increases, the number of persons to transition drawn from a Binomial distribution will 1335 

be similar to the number determined by directly using the difference equations, expect that the 1336 

former is stochastic and generates an integer number and the latter is deterministic and generates 1337 

a floating point number. To equalize the effects of randomness, the model in the numerical 1338 

analyses was setup to draw from the Binomial distribution even for the compartmental model. For 1339 

example, the number of D2 new infections in the compartmental model (Section S2.1) would 1340 

change from 𝜃𝜃[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔]𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔, ℎ = {0,0}� to Binomial( ��𝑆𝑆𝑡𝑡�𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑,𝑔𝑔,ℎ = {0,0}���, 1 −1341 

𝑒𝑒𝑒𝑒𝑝𝑝−𝜃𝜃[𝑎𝑎�,𝑟𝑟,𝑑𝑑�,𝑔𝑔] .1). 1342 

 1343 
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2.2 Transmission module for simulating new Disease 1 infections in network (HIV-1344 
infection) 1345 

This module determines if a HIV-susceptible node 𝑙𝑙 in the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) becomes infected 1346 

using a Bernoulli transmission equation and individual-level sexual behaviors and transmission 1347 

risk factors, each factor modeled as functions of demographic features, and HIV testing and 1348 

treatment status of infected contacts. Note, as persons in the compartmental model array 𝑆𝑆𝑡𝑡 are not 1349 

connected to an HIV-infected person, their chance of infection is zero. However, note, persons can 1350 

move from 𝑆𝑆𝑡𝑡 to 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) upon becoming partners of an HIV-infected person, modeled using the 1351 

HIV-ECNA algorithm discussed in the next section, which would then expose them to HIV 1352 

infection. Specifically, every time-step (monthly) of the simulation, this module determines if a 1353 

HIV-susceptible node 𝑙𝑙 in graph 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) becomes HIV-infected i.e., for nodes with health status 1354 

𝒽𝒽t−1,𝑙𝑙 = {0, . } or 𝒽𝒽t−1,𝑙𝑙[0] = 0, it estimates its updated value 𝒽𝒽t,𝑙𝑙 as follows. 1355 

𝒽𝒽t,𝑙𝑙[0] = 𝐹𝐹−1 �1 −∏ �1 − 𝛼𝛼𝑗𝑗𝜀𝜀�
𝑠𝑠𝑡𝑡,𝑗𝑗.𝑐𝑐𝑡𝑡,𝑗𝑗�1− 𝛼𝛼𝑗𝑗�

𝑠𝑠𝑡𝑡,𝑗𝑗.(1−𝑐𝑐𝑡𝑡,𝑗𝑗)𝑄𝑄𝑡𝑡
𝑗𝑗=1 �, where, 1356 

𝛼𝛼𝑗𝑗 = 𝑉𝑉𝑡𝑡[𝑙𝑙, 𝑗𝑗].𝓂𝓂𝑡𝑡,𝑗𝑗  .𝑝𝑝𝑡𝑡,𝑗𝑗, where 𝑉𝑉𝑡𝑡[𝑙𝑙, 𝑗𝑗] and 𝓂𝓂𝑡𝑡,𝑗𝑗 are the elements of the graph described in 1357 

Appendix S1.2, and 𝑝𝑝𝑡𝑡,𝑗𝑗 is the probability of transmission per act modeled as a function of 1358 

health state 𝒽𝒽t,𝑗𝑗 and transmission-group 𝓇𝓇𝑗𝑗 of the infected node 𝑗𝑗; we will have a value of 1359 

𝛼𝛼𝑗𝑗 = 𝑝𝑝𝑡𝑡,𝑗𝑗 if 𝑗𝑗 is a contact of 𝑙𝑙 (i.e., 𝑉𝑉𝑡𝑡[𝑙𝑙, 𝑗𝑗] = 1) and is alive (i.e., 𝓂𝓂𝑡𝑡,𝑗𝑗 = 1), and 𝛼𝛼𝑗𝑗 = 0 1360 

otherwise; further 𝑝𝑝𝑡𝑡,𝑗𝑗 = 0 if  𝒽𝒽t−1,𝑗𝑗 = {0,0}, and 𝑝𝑝𝑡𝑡,𝑗𝑗 ≥ 0 for all other values of 𝒽𝒽t−1,𝑗𝑗, 1361 

i.e., 𝑝𝑝𝑡𝑡,𝑗𝑗 can be a function of care and disease stage of Disease 1 only or a function of care 1362 

and disease stage of Disease 1 and Disease 2 if the presence of one infection biologically 1363 

increases the risk of another, 1364 

𝜀𝜀 = 1 - condom effectiveness, 1365 

𝑠𝑠𝑡𝑡,𝑗𝑗 = number of sex acts per month with node 𝑗𝑗, modeled as a function of age, transmission-1366 

group, and number of partners of node 𝑗𝑗,  1367 

𝑐𝑐𝑡𝑡,𝑗𝑗 = proportion of acts with node 𝑗𝑗 that is condom protected, modeled as a function of 1368 

age, transmission-group, and number of partners of node 𝑗𝑗,  1369 

𝐹𝐹−1(𝑢𝑢) = an inverse Bernoulli distribution that takes a value of 1 with probability 𝑢𝑢 and 1370 

value of 0 with probability 1 − 𝑢𝑢. 1371 
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If node 𝑙𝑙 becomes infected, then the above equation will yield 𝒽𝒽t,𝑙𝑙[0] = 1 i.e., transition to first 1372 

stage of Disease 1.  1373 

Every time-step 𝑡𝑡, this module also determines and updates any changes in sexual 1374 

partnerships of HIV-infected nodes. Specifically, for every partnership (𝑘𝑘, 𝑗𝑗), it updates its 1375 

active/inactive status as 𝑉𝑉𝑡𝑡[𝑘𝑘, 𝑗𝑗] = �1 if  𝑡𝑡({𝑘𝑘, 𝑗𝑗}) ≤ 𝑡𝑡 ≤  𝑡𝑡({𝑘𝑘, 𝑗𝑗}), 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

.  1376 

2.3 ECNA network generation module for generating partnerships of new HIV-infected 1377 
nodes  1378 

This module controls the overall network dynamics of partnerships between nodes. The main 1379 

functionality is to generate the contact network for each new HIV-infected node 𝑙𝑙. The steps of the 1380 

ECNA are as follows.  1381 

For every new HIV-infected node 𝑙𝑙, 1382 

1. Determine the number of new partnerships (edges) to generate as actual degree minus current 1383 

degree. Note, these new partnerships would all be with HIV-susceptible persons as any 1384 

partnerships with HIV-infected were already added when networks of those HIV-infected 1385 

persons were created.  1386 

2. For each new HIV-susceptible partner node, determine node features: number of lifetime 1387 

partners using ECNA (discussed below), transmission-group, current age-group, and pseudo-1388 

geographic jurisdiction using conditional probability distributions, and partnership distribution 1389 

using a two-step Markov process (discussed below).  1390 

3. For each partnership, determine age of both partners and simulation times at partnership 1391 

initiation and termination, by formulating and solving as assignment optimization model 1392 

(discussed below). 1393 

4. Determine who each new partner is by a uniform random draw from all who are eligible, i.e., 1394 

all persons who are eligible have an equal chance of selection. All HIV-susceptible nodes in 1395 

the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) and HIV-susceptible non-agents in the compartmental model array 𝑆𝑆𝑡𝑡 1396 

with features matching that in steps 2 and 3 above, can be eligible.  1397 

5. For each new partner and partnership (determined in previous steps) update their 1398 

corresponding features in the network 𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) and compartmental array 𝑆𝑆𝑡𝑡. 1399 
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S2.3.1 ECNA for determining degree of susceptible partner nodes 1400 
We assumed that the contact network of sexual partnerships follows a scale-free network, where 1401 

the distribution of the number of contacts per person follows a power-law distribution (3). A key 1402 

feature of scale-free networks is that, for a node 𝑙𝑙, the degree-bin of a partner 𝑑̅𝑑𝑘𝑘 is not independent 1403 

of its degree-bin 𝑑̅𝑑𝑙𝑙 because of degree correlations between node neighbors (4). That is, 1404 

Pr�𝐷𝐷�𝑘𝑘 = 𝑑̅𝑑𝑘𝑘|𝐷𝐷�𝑙𝑙 = 𝑑̅𝑑𝑙𝑙� ≠  Pr�𝐷𝐷�𝑘𝑘 = 𝑑̅𝑑𝑘𝑘�; where 𝐷𝐷�𝑘𝑘 is the random variable for degree-bin of node 1405 

k, and thus, 𝑑̅𝑑𝑘𝑘 cannot be directly drawn from the power-law probability mass function. While the 1406 

literature presents an analytical method for estimation of Pr�𝐷𝐷�𝑘𝑘 = 𝑑̅𝑑𝑘𝑘|𝐷𝐷�𝑙𝑙 = 𝑑̅𝑑𝑙𝑙� for general static 1407 

scale-free networks (4), this method is not suitable for simulating an epidemic in a dynamically 1408 

evolving contagion network(1). Specifically, in general static scale-free networks, the full network 1409 

is available so the degree of all node neighbors are available, and thus Pr�𝐷𝐷�𝑘𝑘 = 𝑑̅𝑑𝑘𝑘|𝐷𝐷�𝑙𝑙 = 𝑑̅𝑑𝑙𝑙� is an 1410 

expectation over all possible values of 𝑑̅𝑑𝑙𝑙, i.e., an average over “all” node neighbors. However, as 1411 

we only simulate HIV-infected nodes and their immediate contacts in the network, in our context, 1412 

only values corresponding to HIV-infected node neighbors’ are used. As it is more likely that 1413 

nodes with higher degree get infected first, the value of Pr�𝐷𝐷�𝑘𝑘 = 𝑑̅𝑑𝑘𝑘|𝐷𝐷�𝑙𝑙 = 𝑑̅𝑑𝑙𝑙� when 𝑙𝑙= ‘all node 1414 

neighbors’ is different compared to when 𝑙𝑙= ‘HIV-infected node neighbors’. And further, 1415 

Pr�𝐷𝐷�𝑘𝑘 = 𝑑̅𝑑𝑘𝑘|𝐷𝐷�𝑙𝑙 = 𝑑̅𝑑𝑙𝑙� is likely to change over time as the HIV epidemic spreads and the percent 1416 

of the population that is HIV-infected changes. We developed a neural network model for the 1417 

prediction of Pr�𝐷𝐷�𝑘𝑘 = 𝑑̅𝑑𝑘𝑘|𝐷𝐷�𝑙𝑙 = 𝑑̅𝑑𝑙𝑙�  using as independent variables, 𝑑̅𝑑𝑙𝑙, 𝑑̅𝑑𝑘𝑘, the minimum degree 1418 

of the network m, the percent of the population that is infected (𝑝𝑝), and the scale-free network 1419 

parameter 𝜆𝜆𝓇𝓇𝑙𝑙 corresponding to transmission-group of node 𝑙𝑙 (𝓇𝓇𝑙𝑙). Details of this algorithm are 1420 

presented elsewhere (1), and summarized below.  1421 

The neural network was trained on data generated by multiple simulations of hypothetical diseases, 1422 

characterized by different values of probability of transmission, on scale-free networks of different 1423 

minimum degree and size. Specifically, using the barabasi.game in the R software multiple scale-1424 

free network of varying size (𝑁𝑁) (1000, 5000, and 10000), and minimum network degree (𝑚𝑚) (1, 1425 

2, 3, 4, and 5) were generated. Then, hypothetical diseases were simulated on each network, and 1426 

at every time-step, for every newly infected node, the following data were collected, the 1427 

independent variables 𝑑̅𝑑𝑙𝑙, 𝑑̅𝑑𝑘𝑘, 𝑚𝑚,  𝑁𝑁, 𝑝𝑝, and the conditional probability as Pr (𝑑̅𝑑𝑘𝑘|𝑑̅𝑑𝑙𝑙)  =  𝑧𝑧𝑘𝑘,𝑙𝑙
∑ 𝑧𝑧𝑘𝑘,𝑙𝑙𝑙𝑙

 , 1428 
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where, 𝑧𝑧𝑘𝑘,𝑙𝑙 was a counter in the simulation that kept track of the total number of susceptible 1429 

contacts with degree 𝑑𝑑𝑙𝑙 ∈ 𝑑̅𝑑𝑙𝑙 for newly infected persons with 𝑑𝑑𝑘𝑘 ∈ 𝑑̅𝑑𝑘𝑘 for every 𝑑̅𝑑𝑘𝑘, 𝑑̅𝑑𝑙𝑙 1430 

combination. The value of the transmission probability itself were not relevant, however the 1431 

prevalence (𝑝𝑝) was relevant, and therefore we used small values of transmission probability to 1432 

capture a range of prevalence over time as the infection spread. Although the scale-free network 1433 

generation package in R (barabasi.game) uses 𝑚𝑚 and 𝑁𝑁 as inputs, the scale-free network power-1434 

law degree distribution decay-coefficient 𝜆𝜆 is more relevant as it is more generalizable. Therefore, 1435 

we recoded 𝑚𝑚 and 𝑁𝑁 into 𝜆𝜆, by calculating 𝜆𝜆 from the corresponding networks generated, as 1436 

follows. For a scale-free network following a power law degree distribution, the probability that a 1437 

node has degree 𝑘𝑘 (represented as 𝑃𝑃𝑃𝑃(𝑘𝑘)) can be written as 1438 

𝑃𝑃𝑃𝑃(𝑘𝑘) =
𝑘𝑘−𝜆𝜆

∑ 𝑑𝑑−𝜆𝜆𝑑𝑑=𝑚𝑚:𝑚𝑚�
 1439 

where, the decay-coefficient 𝜆𝜆 = −𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 (𝑛𝑛𝑘𝑘)/𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 (𝑘𝑘), 𝑛𝑛𝑘𝑘= number of nodes with degree 𝑘𝑘, 𝛥𝛥 is 1440 

the gradient, 𝑚𝑚 is the minimum degree, and 𝑚𝑚�  is the maximum degree (network size influences 1441 

maximum degree and thus served as a proxy).  1442 

The trained neural network was used in the ECNA module for determining the value of Pr (𝑑̅𝑑𝑘𝑘|𝑑̅𝑑𝑙𝑙), 1443 

corresponding to the degree of the newly infected node (𝑑̅𝑑𝑙𝑙), HIV prevalence at the time, the scale-1444 

network parameter for the transmission-group (𝜆𝜆𝓇𝓇𝑙𝑙), and the minimum degree of the network (𝑚𝑚). 1445 

Data used for the estimation of 𝜆𝜆𝓇𝓇𝑙𝑙 are discussed in Appendix S3.5 and S3.6. We assumed 1446 

minimum degree of 2 and maximum degree of 128, and thus, for every 𝑑̅𝑑𝑙𝑙, values of Pr (𝑑̅𝑑𝑘𝑘|𝑑̅𝑑𝑙𝑙) 1447 

were normalized to add to 1 to keep the range of 𝑑̅𝑑𝑘𝑘 from 21 to 27. However, the computational 1448 

structure can be set to take any degree range (see Appendix S3.3). 1449 

S2.3.2 Two-step Markov process for determining the partnership distribution by age  1450 
 1451 

Suppose 𝑑𝑑𝑘𝑘 is the actual degree (number of lifetime partners) of a newly added susceptible node 1452 

𝑘𝑘. We need to determine at what age of 𝑘𝑘 will each partnership initiate. Specifically, suppose there 1453 

is a matrix 𝐿𝐿� of size 𝐴𝐴 × 𝐷𝐷, with 𝐴𝐴 the number of age-groups and 𝐷𝐷 the number of degree-bins, 1454 

and element 𝐿𝐿�[𝑎𝑎�, 𝑑̅𝑑] representing the proportion of partnerships that initiate at age-group 𝑎𝑎� for 1455 

persons in degree-bin 𝑑̅𝑑, with each column of 𝐿𝐿� adding to 1, for all 𝑑̅𝑑 ∈ {1,2, …𝐷𝐷}. Then, for any 1456 
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node 𝑘𝑘 with actual degree 𝑑𝑑𝑘𝑘𝜖𝜖𝑑̅𝑑, we can calculate the partnership distribution matrix, i.e., the 1457 

number of partnerships that initiate at age 𝑎𝑎�, as 𝐿𝐿𝑘𝑘[𝑎𝑎�, 1] = 𝐿𝐿��𝑎𝑎�, 𝑑̅𝑑�.𝑑𝑑𝑘𝑘. Direct data for 𝐿𝐿� would be 1458 

a longitudinal survey over the duration of life of an individual, where the individual reports the 1459 

number of partnerships they initiated at every age points of their life. Such surveys, however, are 1460 

unavailable. Therefore, we estimated 𝐿𝐿� using survey data on the reported number of partners up to 1461 

that time by persons of different age-groups(see S2.2 and S2.3). Note that, these survey data only 1462 

represent the number of partners up to the current age of the surveyed individual. Thus, the degree-1463 

bin 𝑑̅𝑑 each person would belong to is unknown as 𝑑̅𝑑 represents the number of partners the person 1464 

would eventually have over their full lifetime. The age at which each partnership initiated is also 1465 

unknown.  1466 

We developed a two-step Markov process and simulation method for estimation of  𝐿𝐿�  using the 1467 

survey data. Details of this method were presented previously (2), we discuss it below for 1468 

completeness. 1469 

Step 1: Formulation and solution method for the probabilities of initiating a new partnership- 1470 

Let 𝑋𝑋𝑎𝑎� be the degree-bin corresponding to the number of partners a node has up to the age of 1471 

age-group 𝑎𝑎�, 𝑎𝑎� ∈ {1, 2, … ,𝐴𝐴}.  Then, �𝑋𝑋𝑎𝑎�𝑡𝑡;Ω, superdiag(𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝐴𝐴−1)�
𝑡𝑡=1

∞  is a discrete-time 1472 

Markov chain with state space Ω =1473 

{1𝑎𝑎�=1, 2𝑎𝑎�=1, … ,𝐷𝐷𝑎𝑎�=1, 1𝑎𝑎�=2, 2𝑎𝑎�=2, …𝐷𝐷𝑎𝑎�=2, … , 1𝑎𝑎�=𝐴𝐴, 2𝑎𝑎�=𝐴𝐴, … ,𝐷𝐷𝑎𝑎�=𝐴𝐴}, where each discrete timestep 1474 

corresponds to the length of time equal to the width of age-group 𝑎𝑎�, 𝐷𝐷 is the number of degree-1475 

bins, 𝐴𝐴 is the number of age-groups, superdiag(𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝐴𝐴−1) is a block matrix with 1476 

{𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝐴𝐴−1} on the superdiagonal and all other elements equal to zero1, and 𝑃𝑃𝑎𝑎�  is a 𝐷𝐷 × 𝐷𝐷 1477 

upper triangular matrix, with 𝑃𝑃𝑎𝑎�[𝑥𝑥,𝑦𝑦] equal to the probability that a person transitions from state 1478 

𝑥𝑥𝑥𝑥{1𝑎𝑎� , 2𝑎𝑎� , … ,𝐷𝐷𝑎𝑎�} in age-group 𝑎𝑎� to state 𝑦𝑦𝑦𝑦{1𝑎𝑎�+1, 2𝑎𝑎�+1, … ,𝐷𝐷𝑎𝑎�+1} in age-group 𝑎𝑎� + 1 (i.e., goes 1479 

from degree-bin 𝑥𝑥 to degree-bin 𝑦𝑦 in one age-group increment).  By assuming that there are no 1480 

generational changes in partnership behavior and that births are equal to deaths, we can rewrite 1481 

the above Markov process as a regular Markov chain that is in steady state, i.e., the state 1482 

distribution is stationary over time.  Using the components of each matrix 𝑃𝑃𝑎𝑎�, and defining a row 1483 

                                                            
1 Alternatively, “… is a block upper bidiagonal matrix with {𝑃𝑃1,𝑃𝑃2, … . ,𝑃𝑃𝐴𝐴−1} on the superdiagonal and the elements 
of the diagonal blocks equal to zero.” 
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vector 𝜋𝜋𝑎𝑎�  with 𝜋𝜋𝑎𝑎�[𝑥𝑥] equal to the proportion of people (among those in age-group 𝑎𝑎�) with 1484 

number of partners up to age 𝑎𝑎� in degree-bin 𝑥𝑥, we can write 1485 

𝜋𝜋𝑎𝑎�+1 = 𝜋𝜋𝑎𝑎�𝑃𝑃𝑎𝑎�. 1486 

Note that, for each 𝑎𝑎�, the elements of 𝜋𝜋𝑎𝑎� add to 1 and 𝑎𝑎� is a normalized sub-vector of the steady 1487 

state distribution of the above Markov chain.  1488 

Data for 𝜋𝜋𝑎𝑎� are available from the behavioral survey studies (see Appendix S3.5 and S3.6).  We 1489 

solved for the values in 𝑃𝑃𝑎𝑎�, for each 𝑎𝑎�, by formulating and solving a linear least-squares 1490 

optimization problem as follows.  1491 

For each 𝑎𝑎�, we formulated an optimization model as 1492 

Objective Function: min
𝑧𝑧

1
2
‖𝐶𝐶𝐶𝐶 − 𝜋𝜋𝑎𝑎�+1𝑇𝑇 ‖22        1493 

Subject to: 𝐵𝐵𝐵𝐵 = 𝑏𝑏         1494 

  0 ≤ 𝑧𝑧 ≤ 1         1495 

where the objective function is equivalent to min
𝑃𝑃𝑎𝑎�

1
2
‖𝜋𝜋𝑎𝑎�𝑃𝑃𝑎𝑎� − 𝜋𝜋𝑎𝑎�+1‖22, i.e., equivalent to 1496 

minimizing the sum of squared errors between the left- and right-hand sides of the equation 1497 

𝜋𝜋𝑎𝑎�+1 = 𝜋𝜋𝑎𝑎�𝑃𝑃𝑎𝑎� defined above (‖. ‖2 is the ℓ2-norm), and is obtained by reformulating as below: 1498 

𝑧𝑧 is a column vector of length 𝐷𝐷2 obtained by stacking the columns of 𝑃𝑃𝑎𝑎�; i.e., 𝑧𝑧 =1499 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑃𝑃𝑎𝑎�), 1500 

𝐶𝐶 is a 𝐷𝐷 × 𝐷𝐷2 matrix where, for each row 𝑖𝑖 = 1, 2, … ,𝐷𝐷, 𝐶𝐶[𝑖𝑖, (𝑖𝑖 − 1)𝐷𝐷 + 1: 𝑖𝑖𝑖𝑖] = 𝜋𝜋𝑎𝑎� and 1501 

all other elements are equal to zero, 1502 

𝜋𝜋𝑎𝑎�+1𝑇𝑇  is the transpose of 𝜋𝜋𝑎𝑎�+1,  1503 

𝐵𝐵 is a 𝐷𝐷 × 𝐷𝐷2 matrix consisting of D side-by-side 𝐷𝐷 × 𝐷𝐷 identity matrices, and 1504 

𝑏𝑏 is a column vector of length 𝐷𝐷, all of whose elements are equal to 1.  1505 

The reformulation converts the objective function into a linear least squares function, which is 1506 

easier to solve using standard linear least-squares solvers. The constraint 𝐵𝐵𝐵𝐵 = 𝑏𝑏 ensures that each 1507 

row of 𝑃𝑃𝑎𝑎�  adds to 1, a necessary Markov chain property. We used the least-squares solver in 1508 
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MATLAB to solve for the optimal value of elements of vector 𝑧𝑧, and thus obtained elements of 1509 

𝑃𝑃𝑎𝑎�.  1510 

Step 2: Simulation- We simulated a hypothetical population of 10,000 persons. At the start of the 1511 

simulation, all persons are assigned the lowest age group (𝑎𝑎� = 1) and lifetime partners are assigned 1512 

according to the degree distribution of the lowest age group (taking mid-value of the degree-bin). 1513 

Every time-unit, of length equal to the width of the age-group interval, each person transitions to 1514 

the next age-group and is assigned additional partners as per the transition probabilities in 𝑃𝑃𝑎𝑎� 1515 

estimated in Step 1. This is repeated until all persons reach the last age-group. Taking all persons 1516 

with lifetime partners in degree-bin 𝑑̅𝑑 at the last age-group, we estimated 𝐿𝐿�[𝑎𝑎�, 𝑑̅𝑑] as the average of 1517 

the proportion of partnerships that initiated when that person was at age-group 𝑎𝑎�. 1518 

S2.3.3 Assignment model with heuristic solution for partnership initiation and termination  1519 
 1520 

We formulated the problem of assigning age at partnership initiation as a variant of an assignment 1521 

optimization model. Suppose 𝑛𝑛𝑘𝑘[𝑖𝑖] is the age of partnership initiation for 𝑖𝑖𝑡𝑡ℎ partner of node 𝑘𝑘 1522 

(|𝑛𝑛𝑘𝑘| = 𝑑𝑑𝑘𝑘 the degree of node 𝑘𝑘). Then the objective is to assign each element (and all elements) 1523 

of 𝑛𝑛𝑙𝑙 of a newly infected node 𝑙𝑙 to one (and-only-one) element of 𝑛𝑛𝑘𝑘 for each partner 𝑘𝑘, with 1524 

constraints to maintain the probability distribution for age-mixing between partners, and 1525 

partnership distribution matrices (𝐿𝐿𝑡𝑡,𝑙𝑙 and 𝐿𝐿𝑡𝑡,𝑘𝑘,∀𝑘𝑘) of the newly infected node 𝑙𝑙 and each partner 1526 

𝑘𝑘. However, solving it using standard solvers for each infected person is computationally 1527 

expensive, and therefore, we developed a heuristic solution algorithm. Solving for partnership 1528 

initiation age for each new partner sets the focal point for assigning the other three parameters 1529 

partnership initiation time, partnership termination age, and partnership termination time. Details 1530 

of this method were presented previously (2), and are discussed below for completeness. 1531 

The task is to estimate partnership initiation age {𝒶𝒶�𝑙𝑙 ,𝒶𝒶�𝑘𝑘}, termination age �𝒶𝒶𝑙𝑙 ,𝒶𝒶𝑘𝑘�, intiation 1532 

time 𝑡𝑡({𝑙𝑙, 𝑘𝑘}), and termination time 𝑡𝑡({𝑙𝑙, 𝑘𝑘}) between nodes 𝑙𝑙 and 𝑘𝑘. The optimal values are those 1533 

that ensures age-mixing between partners is maintained, the distribution of partnership age-1534 

initiation for newly infected node 𝑙𝑙 (i.e., 𝐿𝐿𝑡𝑡,𝑙𝑙[,1]) is maintained, and the distribution of partnership 1535 

age-initiation for each of its partners 𝑘𝑘 is maintained. We can formulate this problem as an 1536 

optimization model as follows. Let,  1537 
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𝑀𝑀 be an age-mixing matrix of size 𝐴𝐴 𝑋𝑋𝑋𝑋 with element 𝑀𝑀[𝑖𝑖, 𝑗𝑗] the probability that, given a 1538 

person is in age-group 𝑗𝑗, his or her partner is in age-group 𝑖𝑖 (here, element 𝑗𝑗 corresponds 1539 

to the newly infected node, and 𝑖𝑖 the yet to be assigned partners); 𝑀𝑀 will vary by risk-1540 

group, but we do not include risk group in the notation for clarity, 1541 

𝑃𝑃 = 𝑀𝑀 ∙ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿𝑡𝑡,𝑙𝑙[, 2]), where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) is a diagonal matrix with diagonal elements equal 1542 

to those of the vector 𝑣𝑣 , be a matrix of size 𝐴𝐴 𝑋𝑋𝑋𝑋 with element 𝑃𝑃[𝑖𝑖, 𝑗𝑗] representing the 1543 

number of partners of age in age-group 𝑖𝑖 yet to be assigned, when the newly infected node 1544 

𝑙𝑙 is in age-group 𝑗𝑗,  1545 

𝑛𝑛 be a vector of size 𝐴𝐴 with 𝑛𝑛[𝑖𝑖] = ∑ 𝑃𝑃[𝑖𝑖, 𝑗𝑗]𝑗𝑗=1:𝐴𝐴 , ∀ 𝑖𝑖𝑖𝑖{1, . . ,𝐴𝐴} denoting the number of 1546 

partnerships to initiate when the partner is in age-group 𝑖𝑖, 1547 

𝑁𝑁 be a binary matrix of size 𝐴𝐴𝐴𝐴𝐷𝐷𝑡𝑡,𝑙𝑙, where, 𝐷𝐷𝑡𝑡,𝑙𝑙 = 𝑑𝑑𝑙𝑙 − 𝑑̂𝑑t,l, 𝑑𝑑𝑙𝑙 is the degree of the newly-1548 

infected node 𝑙𝑙 and 𝑑𝑑𝑙𝑙 − 𝑑̂𝑑t,l is the number of partners to newly add, with element 𝑁𝑁[𝑎𝑎�,𝑘𝑘] =1549 

�1 𝑖𝑖𝑖𝑖 𝐿𝐿𝑡𝑡,𝑘𝑘[𝑎𝑎�, 1] > 0
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, i.e., 𝑁𝑁[𝑎𝑎�, 𝑘𝑘] = 1 if partner 𝑘𝑘 is eligible to initiate the partnership at 1550 

age-group 𝑎𝑎�  ,  and 1551 

𝑅𝑅 be a binary matrix of size 𝐴𝐴 𝑋𝑋𝐷𝐷𝑡𝑡,𝑙𝑙, with element 𝑅𝑅[𝑎𝑎�, 𝑘𝑘] = 1 if the partnership with 𝑘𝑘 1552 

would occur when partner 𝑘𝑘 is in age-group 𝑎𝑎�. 1553 

Then, the problem is to solve for 𝑅𝑅 using the following formulation of the optimization model 1554 

Objective Function:  min
𝑅𝑅
∑ �∑ 𝑅𝑅[𝑖𝑖, 𝑗𝑗] −  ∑ 𝑃𝑃[𝑖𝑖, 𝑞𝑞]𝑞𝑞=1:𝐴𝐴𝑗𝑗=1:𝑑𝑑𝑙𝑙−𝑑𝑑�t,l �

2
𝑖𝑖=1:𝐴𝐴       1555 

 Subject to: 𝑅𝑅[𝑖𝑖, 𝑗𝑗] ≤   𝑁𝑁[𝑖𝑖, 𝑗𝑗];   ∀ 𝑖𝑖𝑖𝑖{1, . . ,𝐴𝐴}, 𝑗𝑗𝑗𝑗�1, . . ,𝑑𝑑𝑙𝑙 − 𝑑̂𝑑t,l�     1556 

   ∑ 𝑅𝑅[𝑖𝑖, 𝑗𝑗] = 1; ∀ 𝑗𝑗𝑖𝑖=1:𝐴𝐴 �1, . . ,𝑑𝑑𝑙𝑙 − 𝑑̂𝑑t,l�      1557 

The objective function seeks to minimize the sum of squared error between the number of 1558 

contacts initiating at a particular age-group and the expected number of contacts to initiate at that 1559 

age-group (here the age references to the partner’s age). The first constraint ensures that the newly 1560 

infected node does not initiate a partnership in the age-group where the partner does not have an 1561 

expected partner initiation. The second constraint ensures that any partnership initiates only one 1562 

time. The above model can be considered a variant of an unbalanced assignment problem, a 1563 
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category of problems that deal with assigning 𝑛𝑛 jobs (here partners) to 𝑚𝑚 machines (here age-1564 

groups). The first variant being the addition of the first constraint (which is similar to a machine 1565 

assignment problem constraint where not all jobs are eligible on all machines). The second variant 1566 

being the modification of the objective function, from the typical form 1567 

min
𝑅𝑅
∑ ∑ 𝑅𝑅[𝑖𝑖, 𝑗𝑗]𝑗𝑗=1:𝑑𝑑𝑙𝑙−𝑑𝑑�t,l 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖=1:𝐴𝐴 , by setting 𝑐𝑐𝑖𝑖𝑖𝑖 = 1 (the cost of assigning job 𝑖𝑖 to machine 𝑗𝑗 for 1568 

all 𝑖𝑖, 𝑗𝑗 combination), and putting a tight constraint that the maximum capacity of the machine 1569 

should be met (𝑛𝑛[𝑖𝑖]). Notice that, if there exists a solution, there could be more than one solution 1570 

to this problem. A solution will not exist if for any age-group 𝑎𝑎�, 𝑛𝑛[𝑎𝑎�] > ∑ 𝑁𝑁[𝑎𝑎�, 𝑗𝑗]𝑗𝑗=1:𝐷𝐷𝑡𝑡,𝑙𝑙 , i.e., the 1571 

number of required partnerships at age-group 𝑎𝑎� is greater than that available. 1572 

Instead of applying a standard assignment problem optimization solver, which was 1573 

computationally expensive to apply for every newly infected node, we developed a simple 1574 

heuristic solution algorithm as follows.  1575 

Let 𝑒𝑒𝑘𝑘 be a vector of size 𝐴𝐴 with 𝑒𝑒𝑘𝑘[𝑖𝑖] = 𝑛𝑛[𝑖𝑖]𝑁𝑁[𝑖𝑖,𝑘𝑘], for every new partner 𝑘𝑘. Then, 𝑒𝑒𝑘𝑘[𝑖𝑖] >1576 

0 if 𝑘𝑘 is eligible to initiate a partnership at age-group 𝑖𝑖 and there is a need for a partnership at that 1577 

age-group. For each new partner 𝑘𝑘, we search through all elements of 𝑒𝑒𝑘𝑘 by starting at the last 1578 

element, we select the first occurrence of 𝑖𝑖 with 𝑒𝑒𝑘𝑘[𝑖𝑖] > 0 as the solution, i.e., set 𝑅𝑅[𝑎𝑎� = 𝑖𝑖,𝑘𝑘] = 1, 1579 

and update 𝑛𝑛[𝑎𝑎�] = 𝑛𝑛[𝑎𝑎�] − 1. This process of starting at the last element of 𝑒𝑒𝑘𝑘 leads to an optimal 1580 

solution, provided a feasible solution exists, because of the following property assumptions related 1581 

to the distribution of lifetime partners by age-group of partnership initiation.  1582 

Property 1: For any 𝑘𝑘, if 𝑁𝑁[𝑖𝑖, 𝑘𝑘] = 1 then 𝑁𝑁[𝑗𝑗, 𝑘𝑘] = 1 ∀ 1 ≤ 𝑗𝑗 ≤ 𝑖𝑖 but the opposite is not 1583 

necessarily true.  1584 

Property 2: Let 𝒮𝒮𝑎𝑎� be a set of partners eligible to initiate partnership at age-group 𝑎𝑎�, i.e., if 1585 

𝑁𝑁[𝑎𝑎�, 𝑗𝑗] > 1, then 𝑗𝑗 ∈ 𝒮𝒮𝑎𝑎�. Then, 𝒮𝒮𝑗𝑗 ⊆ 𝒮𝒮𝑖𝑖∀𝑗𝑗 > 𝑖𝑖, i.e., �𝒮𝒮𝑗𝑗� ≤ |𝒮𝒮𝑖𝑖|, where |. | is the size of the set. 1586 

Properties 1 and 2 suggest that partners who are eligible to initiate partnership at an older 1587 

age-group are also eligible to initiate partnership at a younger age-group but not necessarily vice-1588 

versa. Property 2 further suggests that the number of partners feasible to initiate a partnership at a 1589 

specific age-group decreases with age, with the oldest age-group having the least number. 1590 

Therefore, the heuristic method is equivalent to starting at the oldest age-group, randomly picking 1591 
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from those eligible, removing them from all sets 𝒮𝒮𝑎𝑎�, and iterating to the next oldest age-group to 1592 

repeat the process. We apply the heuristic algorithm even for cases where a solution does not exist 1593 

(infeasible solution), i.e., when there exists at least one age-group, say 𝑎𝑎�, where 𝑛𝑛[𝑎𝑎�] > 1594 

∑ 𝑁𝑁[𝑎𝑎�, 𝑗𝑗]𝑗𝑗=1:𝐷𝐷𝑡𝑡,𝑙𝑙  indicating that the number of required partnerships at age-group 𝑎𝑎� is greater than 1595 

that available. And at the end of the algorithm, any unassigned partner 𝑘𝑘, i.e., for 𝑘𝑘 with 1596 

∑𝑅𝑅[. ,𝑘𝑘] = 0, are assigned to initiate partnership when they are in age-group 𝑎𝑎�, i.e., set 𝑅𝑅[𝑎𝑎�,𝑘𝑘] =1597 

1, and if there are more than one such occurrence, they are randomly selected. This infeasibility in 1598 

solution occurred 9% on average. Considering that the infeasibility is caused by trying to match 1599 

various types of data, age-mixing data with partnership initiation derived from number of partners, 1600 

this margin of error could be expected.      1601 

Upon solving for 𝑅𝑅, for every partner 𝑘𝑘, using 𝑃𝑃 and 𝑅𝑅 together we can identify the age-1602 

groups of 𝑙𝑙 and 𝑘𝑘 at which the partnership will initiate. We select a random age within those age-1603 

groups to set as {𝒶𝒶�𝑙𝑙 ,𝒶𝒶�𝑘𝑘}. We then set 𝑡𝑡({𝑙𝑙, 𝑘𝑘}) = 𝑡𝑡 +  𝒶𝒶�𝑙𝑙 − 𝒶𝒶𝑡𝑡,𝑙𝑙 and 𝒶𝒶𝑡𝑡,𝑘𝑘 = 𝒶𝒶�𝑘𝑘 − (𝑡𝑡({𝑙𝑙,𝑘𝑘}) − 𝑡𝑡). If 1604 

this partnership initiated in the past, we would then have 𝒶𝒶�𝑙𝑙 − 𝒶𝒶𝑡𝑡,𝑙𝑙 < 0, 𝑡𝑡({𝑙𝑙,𝑘𝑘}) < 𝑡𝑡, and 𝒶𝒶𝑡𝑡,𝑘𝑘 >1605 

𝒶𝒶�𝑘𝑘 . If this partnership would initiate in the future, we would then have 𝒶𝒶�𝑙𝑙 − 𝒶𝒶𝑡𝑡,𝑙𝑙 > 0, 𝑡𝑡({𝑙𝑙, 𝑘𝑘}) >1606 

𝑡𝑡, and 𝒶𝒶𝑡𝑡,𝑘𝑘 < 𝒶𝒶�𝑘𝑘. If this partnership would initiate at current time-step, we would then have 𝒶𝒶�𝑙𝑙 =1607 

𝒶𝒶𝑡𝑡,𝑙𝑙, 𝑡𝑡({𝑙𝑙,𝑘𝑘}) = 𝑡𝑡, and 𝒶𝒶𝑡𝑡,𝑘𝑘 =  𝒶𝒶�𝑘𝑘 (note: this is of significance in HIV as the susceptible person is 1608 

then exposed to the acute phase of infection where the transmission is high). Finally, partnership 1609 

termination time 𝑡𝑡({𝑙𝑙, 𝑘𝑘}) is set to the time the next partnership of node 𝑙𝑙 initiates.  1610 

Data inputs for this section follows from the estimations from the previous sections, and 1611 

additionally uses age-mixing matrix discussed in Appendix S3.5 and S3.6. 1612 

2.4 Disease progression module for simulating Disease 1 progression for nodes in the 1613 
network 1614 

The disease progression module updates the individual-level demographic and disease dynamics 1615 

for every HIV-infected person in the network just like an agent-based model. This includes aging, 1616 

Disease 1-related and natural mortality, progression through Disease 1 disease and care stages. For 1617 

the analyses in the main paper we adopted the disease progression module from PATH (5).  1618 
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3 General data structure and data inputs used in ECNA module development 1619 

3.1 Age structure 1620 

For the numerical analyses, the compartmental model used the following age-groups:{13 −1621 

17, 18 − 24, 25 − 29, 30 − 34, 35 − 39, 40 − 44, 45 − 65}. The agent-based model used 1622 

individual age and tracks persons until death, though for the numerical analyses we included only 1623 

persons aged 13-65, to focus on transmissions. For future work, the compartmental model can be 1624 

easily extended to include age 65+ for purposes of tracking disease progression, such as 1625 

progression of HPV to cervical or other forms of cancer. Also note that, the age-structure in 1626 

compartmental model is flexible to change and should be informed by age-groups used in data 1627 

inputs, to sufficiently capture data heterogeneity (see S3.7 for data that informed choice of age-1628 

structure used here). Once an age-structure is chosen, all data common to both compartmental and 1629 

network should be converted to this age-distribution. Further, the distributions should be kept 1630 

consistent between the network and compartmental, e.g., though agent-based uses individual age, 1631 

the age-group for partnership mixing should be drawn from the same distribution as that used in 1632 

compartmental model. Data specific to agents can use any age-structure and have parameters with 1633 

varying age-structures. For example, the overall population (network +compartmental) was 1634 

initialized to the U.S. census data using the age-structure noted above, but the distribution of people 1635 

with HIV (agents) were distributed using data in Table S2. Some of the sexual behavioral data 1636 

from the literature are presented in Table S4, which has a different age-structure than in the 1637 

compartmental model. As these data are common to persons in both compartmental and network 1638 

they were converted to compartmental age-structure.  1639 

3.2 Birth cohort for evolving network 1640 

Individuals can only enter the population by aging into the lowest sexually active age-group 1641 

modeled (13 to 17) and are susceptible upon entering the population, i.e., added to the 1642 

compartmental model. We assume a constant number of births per year, calculated for each risk 1643 

group using the overall birth rate in the U.S. in 2015 times the population in the respective risk 1644 

group. 1645 

As the evolving network tracks all life-time partnerships of persons with HIV (Disease 1), when a 1646 

person becomes newly infected, the current age of one or more of their susceptible contacts could 1647 
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be outside the ‘alive’ susceptible population, either the susceptible contact has already aged-out, 1648 

i.e., was a partner in the past, or not yet aged-in, i.e., is a partner in the future. Persons who have 1649 

aged-out will have an age value greater than the sexually-active age (or dead) and thus, 1650 

computationally will not influence any part of the model. Persons who have not aged-in will have 1651 

an age value less than 13, including negative. Computationally, this would not cause an issue in 1652 

the network because the partnership activation algorithm (discussed in S2.3.3) enforces the 1653 

activation age to be within the sexually active age-groups modeled here. However, when that 1654 

person is moved from the susceptible compartment to the network, as the model is set to decrement 1655 

the number in the corresponding compartment by one, but the first age-group in the compartmental 1656 

array (𝑆𝑆𝑡𝑡) is 13-17, it would create an error. To overcome this, the model maintains a birth-cohort, 1657 

an array of dimension 100 ×  9 (corresponding to age X degree-bin dimensions), initialized to the 1658 

number of births per year distributed by degree-bin (degree-bin distribution discussed below), i.e., 1659 

each row sums to constant number of births per year. If a person of age less than 13 years (say 𝑖𝑖) 1660 

with degree-bin 𝑗𝑗 moves from compartmental to network (𝐺𝐺𝑡𝑡), then the corresponding element of 1661 

the birth-cohort (100 + 𝑖𝑖 − 13, 𝑗𝑗) is decremented by 1. Every year, the values in the 100th row of 1662 

the birth-cohort array are added to the compartmental array (𝑆𝑆𝑡𝑡) corresponding to the first age-1663 

group (13-17), every row 𝑖𝑖 ∈ {2, . .100} of the birth-cohort is set equal to the value in row 𝑖𝑖 − 1, 1664 

and row 0 is initialized to add to the number of births. For the assumptions used here, a birth-1665 

cohort dimension of 65 − 13 ×  9 would be sufficient, however, we set it to 100 ×  9 for the 1666 

computational structure to be generalizable to any disease assuming maximum age is 100 years, 1667 

as its contribution to computational complexity is minimal.  1668 

3.3 Degree-bin structure 1669 

For the numerical analyses, the computational structure of compartmental array uses a degree-bin 1670 

distribution of dimension 9 as follows:{0, 1, 2, 3 − 4, 5 − 8, 9 − 16, 17 − 32, 33 − 64, 65 −1671 

128}. However, in the model we assumed minimum and maximum degree (lifetime number of 1672 

partnerships) as 2 and 128, respectively, as the probabilities outside of this were low. However, 1673 

we kept the computational structure to include degree 0 and 1 to keep it generalized and flexible 1674 

to changes, or for modeling other networks such as needle sharing. The computational structure is 1675 

also flexile to change the maximum degree. In the methods in Appendix S2.3, degree of 0 and 1 1676 

could also be included in parameter estimations (see Appendix S3.5). 1677 
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3.4 Risk-group categorization 1678 

The distribution of persons by HIV transmission-group category are presented in Table S3. We 1679 

only modeled the first three groups, i.e., only simulated sexual transmissions of HIV, and excluded 1680 

persons who infect drugs (PWID). Data initialization was specific to these categorizations, where 1681 

available (Table S2). Sexual behavioral data (Tables S3 to S10) were obtained from surveys of 1682 

sexual behavior, which may not necessarily have excluded PWID. However, as PWID are a much 1683 

smaller fraction of the population, we believe it would not have an influence on the overall 1684 

distributions used here. Data for HIV care continuum distribution over time were also specific to 1685 

the transmission-group. Our validation metrics for HIV similarly included transmission-group 1686 

specific parameters, including distribution of new infections across the three groups, incidence 1687 

divided by prevalence within each group, and distribution of infections by age-group within each 1688 

transmission-group. Model outputs matched surveillance data in most cases (2). 1689 

3.5 Data for ECNA module methods: heterosexuals 1690 

The National Survey for Family Growth (NSFG), that surveys sexual behavior among persons 1691 

aged 15–44 years, presents survey results for the distribution of men (and women) by the reported 1692 

number of female (and male) sexual partners they have had to this point (age-group) in their lives 1693 

(Table S5.1 for men and Table S5.2 for women). Note that this data represents 𝜋𝜋𝑎𝑎�[𝑥𝑥] (in the 1694 

Appendix S2.3.2 method), i.e., the proportion of people (among those in age-group 𝑎𝑎�) with 1695 

reported number of partners (upto age 𝑎𝑎�) in degree-bin 𝑥𝑥.  Therefore, we can directly use this data 1696 

in Appendix S2.3.2 method to infer both the distribution of lifetime number of partners, and for 1697 

each degree-bin, infer the proportion of partnerships initiating in each age-group. However, that 1698 

would restrict us to the reported degree-bin [0, 1, 2, 3-6, 7-14, 15+]. Therefore, we converted this 1699 

data to probabilities in degree-bin of interest ([0, 1, 2, 3-4, 5-8, 9-16, 17-32, 33-64, 65-128]) as 1700 

follows. By assuming that the number of partners up to age-group 𝑎𝑎�,∀𝑎𝑎�, also follows a power-law 1701 

distribution, we estimated the power-law exponent 𝜆𝜆𝑎𝑎� for each age-group 𝑎𝑎� by fitting to the data 1702 

in each age-group, and using 𝜆𝜆𝑎𝑎�, determined the 𝑃𝑃𝑟𝑟𝑎𝑎�(𝑘𝑘) ∀𝑘𝑘 ∈ {0, 1, 2, 3 − 4, 5 − 8, 9 − 16, 17−1703 

32, 33 − 64, 65 − 128}. Note here that we included degree 0 and 1 because for younger age-1704 

groups, 𝑃𝑃𝑟𝑟𝑎𝑎�(𝑘𝑘 = 0) and 𝑃𝑃𝑟𝑟𝑎𝑎�(𝑘𝑘 = 1) are not small values. We then applied the method in 1705 

Appendix S2.3.2. Results for the distribution of persons by degree-bin. i.e., 𝑃𝑃𝑃𝑃�𝑑̅𝑑� ∀𝑑̅𝑑 ∈1706 

{0, 1, 2, 3 − 4, 5 − 8, 9 − 16, 17 − 32, 33 − 64, 65 − 128} are presented in Table S6. The power-1707 
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law exponent corresponding to this distribution is used in the simulation as input to the neural 1708 

network model (Appendix S2.3.1) to predict neighbor’s degree.  1709 

The proportion of partnerships initiated by age-group 𝑎𝑎� for persons in degree-bin 𝑑̅𝑑, i.e.,  1710 

∑ 𝐿𝐿��𝑖𝑖, 𝑑̅𝑑�𝑎𝑎�
𝑖𝑖=1  for each 𝑑̅𝑑, estimated using the method in Appendix S2.3.2, are presented in Tables 1711 

S7.1 and S7.2 for heterosexual male and female transmission-groups, respectively. These data 1712 

along with data for partnership age-mixing (Table S10) were used in the simulation as inputs to 1713 

the method in Appendix S2.3.3, and was applied to every newly infected node, to infer current age 1714 

of each partner and the age-group of both persons at time of their partnership activation. 1715 

3.6 Data for ECNA module methods: MSM 1716 

Similar steps as heterosexuals was applied to MSM, expect that the data set used were different. 1717 

There are no national surveys for MSM that report the distribution of MSM by number of 1718 

partnerships upto age-group (as that for heterosexuals in Tables S5.1 and S5.2). However, there 1719 

are smaller surveys, that only report the median and the range of the partners up to the persons 1720 

current age-group, for both heterosexuals and MSM (Table S8). By assuming that the number of 1721 

partners up to any given age also follow a power-law distribution, we estimated 𝜆𝜆𝑎𝑎�  specific to each 1722 

age-group 𝑎𝑎� by applying the equation for the median of the power-law distribution, as   1723 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎�2
1

𝜆𝜆𝑎𝑎�−1, where 𝑚𝑚𝑎𝑎� = 1 is the minimum degree in age-group 𝑎𝑎�, and using the data 1724 

from the smaller surveys (Table S8) as the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. With the estimation of these exponents 1725 

(𝜆𝜆𝑎𝑎� ,∀{𝑎𝑎�}), the same steps as heterosexuals were followed. Corresponding results for the 1726 

distribution of persons by degree-bin are presented in Table S6. The proportion of partnerships 1727 

initiated by age-group 𝑎𝑎� for persons in degree-bin 𝑑̅𝑑, are presented in Tables S9. Data for 1728 

partnership age-mixing are presented in Table S10. 1729 

 1730 

Note that the data in Table S8 were based on a small survey compared to the nationally 1731 

representative NSFG survey used for heterosexuals. Therefore, to compare the differences in the 1732 

two data sources, and thus the influence of minimal data for MSM, we estimated the proportion of 1733 

partnerships initiated by age-group 𝑎𝑎�  for heterosexual male and female using the data from Table 1734 

S8 and compared it with that estimated from the NSFG survey (Table S5), the comparisons are 1735 

presented in Figure S1. The youngest age-groups had the most difference, which though improved 1736 
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with older age-groups, continued to have some differences. The data were closer for heterosexual 1737 

male than female. Thus, as more data become available these estimations should be updated.   1738 

3.7 Additional age-group assumptions  1739 

Note that the use of age-group 13-17, 18-24, 25-29, 30-34, 35-39, 40-44, and 45-65 for 𝐿𝐿��𝑎𝑎�, 𝑑̅𝑑�, 1740 

though the original source starts from 18-24 for MSM (Table S7) and ends at 40-44 in both sources, 1741 

MSM (Table S7) and heterosexuals (Table S4), was to keep consistent with the age mixing matrix 1742 

(𝑀𝑀) (presented in Table S9), necessary for the methods in Appendix S2.3.3. To do so, we assumed 1743 

half of partnerships in 18-24 initiate in age group 13-17. We also assumed that the number of 1744 

partnerships initiating in age group 45-64 is the same as the number initiating in age-group 40-44. 1745 

Note that, the use of compartmental age-structure was driven by this data, however, as noted in 1746 

S3.1, it could be modified based on model application and corresponding data. 1747 

4 Model initialization and dry run  1748 

We can initialize the model to be representative of people in a population in a specific year. 1749 

For the analyses in the main simulation, we initialized age, transmission-group, degree 1750 

distributions as per persons in the U.S in 2006 in both compartmental model and network. For 1751 

distribution by Disease 2 health status in the compartmental model and network, we randomly 1752 

selected 10% of persons in each category as infected with Disease 2, and dry running the 1753 

simulations so that the state distributions reach a steady state. We initialized the network for 1754 

Disease 1 to be representative of HIV in the US in the year 2006 through using two dry runs to 1755 

ensure network dynamics are generated in addition to epidemic and demographic distributions.  1756 

Dry run is a technique used for initialization of the model. It involves running the simulation 1757 

for a certain period, but the data generated over that period of run is not representative of an actual 1758 

epidemic projection and thus referred to as a dry run. For a pure agent-based model (without 1759 

networks), we could initialize the model with a few agents and assign parameters to match 1760 

surveillance data for the demographic, disease stage, and care-continuum stage distributions. But 1761 

the agents would be lacking the ‘history’, e.g., the age at infection, and the age and stage of ART 1762 

initiation, relevant for modeling future events. Therefore, we can do a dry run, which means 1763 

starting with some number of people, assigning them data according to a specific year, say 2006 1764 
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surveillance distributions as done here for HIV, running the simulation for several years while 1765 

maintaining the distributions to match that of 2006. As persons become newly infected, their 1766 

history is being generated, and the initial persons from day 0 age-out of the model. The above 1767 

method is also sufficient for diseases modeled in the compartmental model (Disease 2 here). 1768 

However, for diseases modeled in ABENM (Disease 1 here), the network adds another layer of 1769 

complexity as static data is infeasible (and moreover, rarely available) for determining the contact 1770 

network structure, including the links of HIV-infected persons to each of their lifetime partners, 1771 

the current age of partners, the initiation and termination times of the links, the initiation and 1772 

termination age of nodes at both ends of a link, the transmission-group of the partner, and the 1773 

infection status of partner. Therefore, for Disease 1, we first do a dry run to allow for the network 1774 

to dynamically grow over time (Dry run #1), and then apply the data from surveillance to set the 1775 

demographic, and disease and care-continuum stages (Dry run #2). Dry runs are explained in more 1776 

detail in (2) as applied to HIV and validated against NHSS, a similar method can be applied for 1777 

other diseases modeled.  1778 

5 Overview of simulation modeling steps  1779 

We provide an overview of the full simulation model in this section. All notations used in 1780 

the model are also summarized in Table S1. 1781 

Step 1: Initialization of the compartmental model array 𝑆𝑆𝑡𝑡=0 and graph 𝐺𝐺𝑡𝑡=0(𝒩𝒩,ℰ) at time-step 1782 

𝑡𝑡 = 0 1783 

Step 1a. We initialize the compartmental model array to be representative of the United 1784 

States population by age, transmission-group, and degree distribution in 2006. We 1785 

distributed the total population in the U.S. into degree bins by using life-time partner 1786 

distribution data for MSM and heterosexuals [43]. Within each degree-bin, we distributed 1787 

the population into seven age-groups, ranging from age 13 to 65, using US census data for 1788 

distribution by age, and further by risk-group (heterosexual male, heterosexual female, or 1789 

MSM) using population size estimates for MSM from [35,42].  1790 

Step 1b. We initiate a random graph of 1500 nodes and zero edges. For each node, we set 1791 

their HIV status as newly infected, allocate a degree by randomly drawing from the overall 1792 

degree distribution, and assign Disease 1-related care continuum and disease stages, age, 1793 
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and transmission-group through random draws from the corresponding distributions of 1794 

HIV in the US in 2006.  1795 

Step 2: Dry run- to make the network and disease state-distribution representative of the population 1796 

of interest 1797 

Dry run the model for a certain number of time-steps (here we chose 200 monthly time-steps) by 1798 

running the following steps sequentially for every time-step. 1799 

Step 2a. Run the ECNA module (Appendix S2.3) to generate the network of contacts for 1800 

every new HIV-infected node in the network. 1801 

Step 2b. Run the compartmental module (Appendix S2.1) to update Disease 2 parameters 1802 

in the compartmental model and network .   1803 

Step 2c. Run the transmission module (Appendix S2.2) to generate new Disease 1 1804 

infections in the network. 1805 

Step 2d. Run the disease progression module (Appendix S2.4) to update demographics and 1806 

Disease 1 progression and care parameters for nodes in the network. 1807 

Step 3: Main simulation run.  1808 

Repeat Steps 2a to 2d, for the required number of months. For the analyses in the paper, we 1809 

simulated years 2006 to 2017 in monthly time-steps.  1810 

 1811 
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Table S1: Table of Notations 
Notation Description 

𝑡𝑡 Simulation time-step. 
𝐴𝐴 The number of age-groups. 
𝑅𝑅 The number of transmission-groups. 
𝐷𝐷 The number of degree bins. 
𝒢𝒢 The number of geographic jurisdictions (1 representing national in this 

analyses).   
𝑎𝑎�;𝑟𝑟; 𝑑̅𝑑; 𝑔𝑔;ℎ Used when referring to an age-group, transmission-group, degree-bin, 

geographic jurisdiction, and health status, respectively, in the compartmental 
model. 
We use a dash for age-group and degree-bin to indicate that they are 
grouped intervals in the compartmental model.  

𝒶𝒶𝑡𝑡,𝑗𝑗;𝓇𝓇𝑗𝑗; 𝑑𝑑𝑗𝑗; 
ℊ𝑗𝑗;𝒽𝒽t,j 

Used when referring to the age, transmission-group, degree, geographic 
jurisdiction, and health status, respectively, of node 𝑗𝑗 in in the network at 
time t. Notations with no t in subscript are variables whose values do no 
change over time. 

𝑆𝑆𝑡𝑡[𝑎𝑎�, 𝑟𝑟, 𝑑̅𝑑, 
𝑔𝑔,ℎ ] 

An array of size 𝐴𝐴 × 𝑅𝑅 × 𝐷𝐷 × 𝒢𝒢 representing the number of susceptible 
persons in the model, in age-group 𝑎𝑎�, transmission-group 𝑟𝑟, degree-bin 𝑑̅𝑑, 
pseudo-geographic jurisdiction 𝑔𝑔, and health status, at time t. 

𝒩𝒩 A set of nodes, each representing an infected person or a susceptible sexual 
partner. 

ℰ A set of edges representing sexual partnerships between nodes. 
𝐺𝐺𝑡𝑡(𝒩𝒩,ℰ) A dynamic graph with 𝒩𝒩 a set of nodes and ℰ a set of edges, at time t. 

𝑄𝑄𝑡𝑡 The number of nodes in graph G, at time t. 
𝐶𝐶𝑡𝑡[𝑖𝑖, 𝑗𝑗] A static adjacency matrix of size 𝑄𝑄𝑡𝑡 × 𝑄𝑄𝑡𝑡, with static element 𝐶𝐶𝑡𝑡[𝑖𝑖, 𝑗𝑗] = 1 if 

𝑖𝑖 and 𝑗𝑗 are sexual partners anytime during their lifetime and 𝐶𝐶𝑡𝑡[𝑖𝑖, 𝑗𝑗] =0 
otherwise. 

𝑉𝑉𝑡𝑡[𝑖𝑖, 𝑗𝑗] A dynamic adjacency matrix of size 𝑄𝑄𝑡𝑡  × 𝑄𝑄𝑡𝑡 , with element 𝑉𝑉𝑡𝑡[𝑖𝑖, 𝑗𝑗] = 1 if 𝑖𝑖 
and 𝑗𝑗 are sexual partners during month 𝑡𝑡 and 𝑉𝑉𝑡𝑡[𝑖𝑖, 𝑗𝑗] = 0 otherwise. 

ℯ = {𝑖𝑖, 𝑗𝑗} An edge in graph 𝐺𝐺𝑡𝑡 representing a sexual partnership between 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 and 
𝑗𝑗  

𝑡𝑡({𝑖𝑖, 𝑗𝑗}) The partnership initiation time; represents the simulation month for 
partnership initiation. 

𝑡𝑡({𝑖𝑖, 𝑗𝑗}) The partnership termination time; represents the simulation month for 
partnership termination. 

�𝒶𝒶�𝑖𝑖 ,𝒶𝒶�𝑗𝑗�  The age of nodes 𝑖𝑖 and 𝑗𝑗 at the time of their partnership initiation. 
�𝒶𝒶𝑖𝑖 ,𝒶𝒶𝑗𝑗� The age of nodes 𝑖𝑖 and 𝑗𝑗 at the time of their partnership termination. 
𝑎𝑎�𝑡𝑡,𝑗𝑗 Age-group of node 𝑗𝑗 at time 𝑡𝑡. 
𝒶𝒶𝑡𝑡,𝑗𝑗 Age of node j at time t. 
𝑑̅𝑑𝑗𝑗 Degree-bin corresponding to the number of lifetime partners of node 𝑗𝑗. 
𝑑𝑑𝑗𝑗 The actual number of lifetime sexual partners of node 𝑗𝑗. 
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𝑑̂𝑑t,j The number of lifetime sexual partners of person 𝑗𝑗 who are already added as 
nodes in graph G at time t. For infected nodes 𝑑𝑑𝑗𝑗 = 𝑑̂𝑑t,j for susceptible nodes 
in G, 𝑑𝑑𝑗𝑗 ≥ 𝑑̂𝑑t,j  

𝐿𝐿𝑡𝑡,𝑗𝑗 A partnership distribution matrix of size 𝐴𝐴 × 2, where 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎�, 1] is the 
number of partnerships that initiate at age-group 𝑎𝑎�, and 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎�, 2] is the 
number of partnerships that are yet to be assigned. For infected 
nodes, 𝐿𝐿𝑡𝑡,𝑗𝑗[𝑎𝑎�, 2] = 0,∀𝑎𝑎�  

𝒽𝒽t,j Infection status of node j at time t. It is an array of size equal to the number 
of diseases modeled. 

𝓂𝓂𝑡𝑡,𝑗𝑗 Deceased status of node j at time t. 
𝓇𝓇𝑗𝑗 Transmission-group of person j. 
𝑝𝑝𝑡𝑡,𝑗𝑗 Infectiousness or risk of transmission per act for person j at time t. 
𝜀𝜀 1-condom effectiveness. 
𝑠𝑠𝑡𝑡,𝑗𝑗 The number of sex acts per month for person j at time t. 
𝑐𝑐𝑡𝑡,𝑗𝑗 The proportion of acts condom protected of person j at time t. 

𝐹𝐹−1(𝑢𝑢) The inverse Bernoulli distribution that takes values 1 with probability 𝑢𝑢 and 
0 with probability 1 − 𝑢𝑢. 

𝐷𝐷𝑘𝑘 Random variable for degree of node 𝑘𝑘. 
Pr (𝐷𝐷𝑘𝑘
= 𝑑𝑑𝑘𝑘|𝐷𝐷𝑙𝑙 = 𝑑𝑑𝑙𝑙) 

Conditional probability distribution for 𝐷𝐷𝑘𝑘. 

Pr (𝐷𝐷𝑘𝑘 = 𝑑𝑑𝑘𝑘) Marginal probability distribution for 𝐷𝐷𝑘𝑘. 
m Minimum degree of the network. 
𝜆𝜆𝓇𝓇𝑙𝑙 Scale-free network parameter corresponding to the transmission-group of 

node l. 
𝐿𝐿�[𝑎𝑎�, 𝑑̅𝑑] A matrix of size 𝐴𝐴 × 𝐷𝐷, representing the proportion of partnerships that 

initiate at age-group 𝑎𝑎� for persons in degree-bin 𝑑̅𝑑. 
𝑋𝑋𝑎𝑎� Random variable representing the number of lifetime partners at age-

group 𝑎𝑎�. 
𝑃𝑃𝑎𝑎� The transition probability matrix of size 𝐷𝐷 × 𝐷𝐷 for age-group 𝑎𝑎�. 
𝜋𝜋𝑎𝑎� The steady state distribution for lifetime-partners in age-group 𝑎𝑎�. 
𝑧𝑧 A vector of size 𝐷𝐷2 × 1, converted from matrix 𝑃𝑃𝑎𝑎�. 
𝐶𝐶 A matrix of size 𝐷𝐷 × 𝐷𝐷2, recreated with values of 𝜋𝜋𝑎𝑎�. 
𝐵𝐵 A binary matrix of size  𝐷𝐷 × 𝐷𝐷2. 
𝑏𝑏 A vector of ones of size 𝐷𝐷 × 1. 

𝑀𝑀[𝑖𝑖, 𝑗𝑗] An age-mixing matrix of size 𝐴𝐴 × 𝐴𝐴, which represents the probability that, 
given a person is in age-group 𝑖𝑖, his or her partner is in age-group 𝑗𝑗. Varies 
by transmission-group. 

𝑃𝑃[𝑖𝑖, 𝑗𝑗] A matrix of size 𝐴𝐴 × 𝐴𝐴, representing the expected number of contacts the 
newly infected node 𝑙𝑙 should have with person in age-group 𝑖𝑖, when node 𝑙𝑙 
is in age-group 𝑗𝑗.  

𝑁𝑁[𝑎𝑎�, 𝑘𝑘] A binary matrix of size 𝐴𝐴 × (𝑑𝑑𝑙𝑙 − 𝑑̂𝑑t,l), which represents whether partner 𝑘𝑘 
would have a newly initiating partnership at age-group 𝑎𝑎�. 
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𝑅𝑅[𝑎𝑎�, 𝑘𝑘] A binary matrix of size 𝐴𝐴 × (𝑑𝑑𝑙𝑙 − 𝑑̂𝑑t,l), which represents whether the 
partnership with partner 𝑘𝑘 would occur when partner 𝑘𝑘 is in age-group 𝑎𝑎�. 

𝑛𝑛[𝑖𝑖] A vector of size A, denoting the number of partnerships that should initiate 
when the partner is in age-group i.  

𝑒𝑒𝑘𝑘[𝑖𝑖] A vector of size A, representing node k to be eligible to initiate a partnership 
at age-group i. 
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Table S2: Data for initialization people with HIV (PWH) in 2006   
 

Heterosexual 
Female 

Heterosexual 
Male 

MSM Source 

Distribution of PWH in year 2006 by stage (6–8) 
Acute-unaware 0.16% 0.07% 0.43%   
NonAcute-unaware 5% 3% 14% 

 

NonAcute Aware- No care 9% 5% 24% 
 

NonAcute In care- No ART 4% 2% 10% 
 

NonAcute-On ART- No VLS 1% 1% 3% 
 

NonAcute-On ART-VLS 5% 2% 12% 
 

Total 24% 12% 64% 
 

Age distribution of PWH in year 
2006 

(same for heterosexuals and MSM) (7,9) 

13-14  0.20% 
  

15-19  0.90% 
  

20-24  3% 
  

25-29  6% 
  

30-34  9% 
  

35-39  15% 
  

40-44  21% 
  

45-49  19% 
  

50-54  13% 
  

55-59  7% 
  

60-64  3% 
  

>=65  3% 
  

Age distribution of new HIV infections in 2006 (7,9) 
13-14 0.10% 0.10% 0.10% 

 

15-19 4% 4% 4% 
 

20-24 17% 17% 21% 
 

25-29 15% 15% 19% 
 

30-34 15% 15% 15% 
 

35-39 12% 12% 12% 
 

40-44 11% 11% 12% 
 

45-49 11% 11% 9% 
 

50-54 10% 10% 7% 
 

55-59 5% 5% 2% 
 

60-64 0% 0% 0% 
 

>=65 0% 0% 0% 
 

Distribution of CD4 cell count (cells/μL) at diagnosis for those aware of infection by year 
2006(10–12) 

<50 10% 10% 10%  
50-200 14% 14% 14%  
200-500 66% 66% 51%  

>500 10% 10% 25%  
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Table S3:  Distribution of the U.S. population by transmission-category (13–15)  

HIV Transmission  Category Percentage 
Heterosexual female 47.25% 
Heterosexual male 47.25% 
Men who have sex with men (MSM)(men only and women) 2.33% 
People who infect drugs (PWID)-female 1.20% 
PWID- heterosexual male 1.80% 
PWID-MSM 0.18% 
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Table S4: Behavioral parameters related to transmission  

Age -
group 

13-
14 

15–
17 

18–
19 

20–
24 

25–
29 

30–
34 

35–
39 

40–
44 

45-
49 

50-
54 

55-
59 

60-
64 

65-
70 Source 

Number of sex acts per year a (16–
19) 

HET 
Female 

20-
41 

20-
41 

73-
127 

73-
127 

62-
108 

51-
93 

51-
93 

48-
86 

48-
86 

40-
73 

32- 
73 

35-
62 

35-
62  

HET male 30 - 
60 

30- 
60 

68- 
119 

68 - 
119 

63 - 
110 

59- 
104 

59- 
104 

52- 
95 

39-
95 

36- 
73 

36-
73 

24-
67 

24-
67  

MSM 30 - 
60 

30- 
60 

68- 
119 

68 - 
119 

63 - 
110 

59- 
104 

59- 
104 

52- 
95 

39-
95 

36- 
73 

36-
73 

24-
67 

24-
67  

Proportion of acts that are anal (16–
19) 

HET 
Female 0.07 0.07 0.07 0.07 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0.04 0.04  

HET Male 0.06 0.06 0.06 0.06 0.11 0.07 0.07 0.09 0.09 0.06 0.06 0.05 0.05  

MSM 1 1 1 1 1 1 1 1 1 1 1 1 1  

Proportion of acts condom protected (main partners) b (20) 

HET 
Female 0.58 0.58 0.39 0.39 0.27 0.18 0.18 0.14 0.14 0.11 0.11 0.09 0.09  

HET male 0.79 0.79 0.45 0.45 0.28 0.26 0.26 0.21 0.21 0.1 0.1 0.06 0.06  

MSM 0.79 0.79 0.45 0.45 0.28 0.26 0.26 0.21 0.21 0.1 0.1 0.06 0.06  

Proportion 
of acts 

condom 
protected 
(casual 

partners) 
(all risk 
groups) 

0.57 0.57 0.57 0.57 0.54 0.54 0.53 0.53 0.53 0.52 0.52 0.52 0.52 (21) 

 
Other parameters  

 
Source 

Proportion of anal sex acts insertive (receptive) (among MSM 
with other MSM) 

50% (50%) Assumption 

Proportion of HIV-infected MSM who have sex with women 
(MSMW)  

21% (21–24) 

Proportion of partnerships with female for MSMW 80% Calibrated in 
(5) 

Proportion of anal acts with female for MSMW 50% Calibrated (5) 
a Number of sex acts were estimated as the average of the reported number of sex acts weighted by the 
proportion reporting under each category of number of partners/sex acts among those sexually active. 
For MSM, we used the heterosexual male data as age-distributed data were not available for MSM. 
Moreover, the median of 1 partner for MSM (24) matched the heterosexual male data. Number of sex acts 
are uniformly distributed in the given range 
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b We applied the heterosexual male data to MSM. These data are for the general population (heterosexual 
and MSM) unaware of their HIV status, and they apply to their main partners. 
Note: All data in the table relate to probability distributions of the parameters and for each person 
random samples are drawn from these distributions as follows. If proportions are for true or false 
outcomes, we draw a random number u~ Uniform float[0,1], if u <= proportion then it is true else false, 
e.g., determining if MSM is MSMW. If proportions are for behavior of a specific individual then they are 
directly used as point estimates, e.g., among all sex acts among MSMW, 80% are assigned to women. If 
they are from probability distributions such as Uniform (e.g., sex acts), or Geometric (e.g., partnership 
duration), samples are drawn from this distribution. 
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Table S5.1: For each age group, the distribution of the number of sex partners accrued-to-date 
for men in that age group (each row adds to 1) (25)  

  Number of female sexual partners 
Age 
Group 
of 
Males 

Total 
in Age 
Group 

0 1 2 3-6 7-14 15 or 
more 

15-19 10,208 0.385 0.23 0.092 0.207 0.062 0.025 
20-24 9,883 0.09 0.159 0.117 0.335 0.141 0.159 
25-29 9,226 0.049 0.1 0.088 0.294 0.232 0.238 
30-34 10,138 0.028 0.107 0.069 0.285 0.219 0.292 
35-39 10,557 0.02 0.089 0.07 0.28 0.255 0.288 
40-44 11,135 0.019 0.088 0.054 0.256 0.242 0.342 

 

Table S5.2: For each age group, the distribution of the number of sex partners accrued-to-date 
for women in that age group (each row adds to 1) (25) 

  Number of male sexual partners 
Age 
Group 
of 
Females 

Total 
in Age 
Group 

0 1 2 3-6 7-14 15 or 
more 

15-19 9,834 0.378 0.272 0.09 0.191 0.05 0.019 
20-24 9,840 0.089 0.246 0.13 0.322 0.144 0.069 
25-29 9,249 0.025 0.225 0.117 0.313 0.201 0.119 
30-34 10,272 0.019 0.205 0.094 0.388 0.18 0.113 
35-39 10,853 0.011 0.202 0.112 0.358 0.205 0.112 
40-44 11,512 0.014 0.204 0.105 0.374 0.191 0.112 
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Table S6: Scale-free degree distribution, stratified by risk group  

Degree  0 1 2 3-4 5-8 9-16 17-32 33-64 65-128 
HET-female 0 0 0.261 0.229 0.179 0.131 0.093 0.064 0.044 
HET-male 0 0 0.211 0.202 0.175 0.143 0.113 0.088 0.068 
MSM 0 0 0.190 0.189 0.171 0.146 0.122 0.100 0.081 
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Table S7.1: Within each degree-bin, the estimated proportion of lifetime partnerships that are 
initiated by the time a person leaves an age-group, for heterosexual men with number of lifetime 
partnerships in that degree-bin  

Degree-
bin 
(degree 
range)--> 

1 (2) 2 (3-4) 3 (5-8) 4 (9-16) 5 (17-32) 6 (33-64) 7 (65-
128) 

Age-
group               

13-17 0.6 0.38 0.22 0.12 0.06 0.03 0.02 
18-24 0.67 0.57 0.48 0.39 0.29 0.23 0.17 
25-29 0.75 0.7 0.65 0.59 0.49 0.44 0.37 
30-34 0.84 0.82 0.79 0.76 0.69 0.66 0.61 
35-39 0.84 0.82 0.79 0.76 0.69 0.66 0.61 
40-44 0.92 0.91 0.9 0.88 0.85 0.83 0.81 
45-65 1 1 1 1 1 1 1 

 

Table S7.2: Within each degree-bin, the estimated proportion of lifetime partnerships that are 
initiated by the time a person leaves an age-group, for heterosexual women with number of 
lifetime partnerships in that degree-bin 

Degree-
bin 
(degree 
range)--> 

1 (2) 2 (3-4) 3 (5-8) 4 (9-16) 5 (17-32) 6 (33-64) 7 (65-
128) 

Age-
group               

13-17 0.81 0.47 0.26 0.14 0.07 0.04 0.02 
18-24 0.89 0.72 0.55 0.45 0.32 0.26 0.26 
25-29 1.00 0.98 0.97 0.98 0.96 0.93 0.89 
30-34 1.00 0.98 0.97 0.98 0.96 0.95 0.94 
35-39 1 1 1 1 1 1 1 
40-44 1 1 1 1 1 1 1 
45-65 1 1 1 1 1 1 1 
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Table S8: Median and range of lifetime number of partners accrued-to-date in that age group by 
transmission-group (26) 

Age 
Group 

MSM  Heterosexual men Heterosexual women 

 Median Range Median Range Median Range 
18-24 15 (1–3100) 4 (1–99) 4 (1–25) 
25-29 30 (1–2562) 8 (1–99) 6 (1–60) 
30-34 55 (1–7000) 9 (1–99) 7 (1–40) 
35-39 67 (0–9005) 12 (1–99) 7 (1–99) 

 

 

Table S9: Estimated proportion of partnerships that initiated by age-group for persons with 
lifetime partners in degree-bin for MSM  

Degree-bin (degree) 
--> 1 (2) 2 (3-4) 3 (5-8) 4 (9-16) 5 (17-32) 6 (33-64) 7 (65-128) 

Age-group               
13-17 0.35 0.21 0.12 0.06 0.03 0.01 0.01 
18-24 0.71 0.42 0.24 0.12 0.06 0.03 0.02 
25-29 0.83 0.73 0.61 0.52 0.43 0.35 0.27 
30-34 0.92 0.90 0.82 0.79 0.76 0.70 0.64 
35-39 0.96 0.94 0.89 0.87 0.85 0.80 0.75 
40-44 0.98 0.97 0.94 0.93 0.93 0.90 0.88 
45-65 1 1 1 1 1 1 1 

 

 

 

 

 

 

 

 

 

 

 

 



 

83 
 

Table S10: Age mixing: proportion of partners within own age-group (26)  

Age Group Heterosexual female Heterosexual male Men who have sex with men 

13–17 91.1 91.05 91.1 

18–24 90.0 92.1 48 

25-29 57.7 82 55.9 

30–34 54.5 54.5 46.3 

35-39 81.8 76.2 55.2 

40–44 81.8 76.2 55.2 

45–65 81.8 76.2 55.2 
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Figure S1.1: Comparing the proportion of partnerships initiated by age-group estimated using 
data from source 1(presented in Table S8) with those estimated using data from source 11 
(presented in Tables S5.1 and S5.2), for heterosexual men. 
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Figure S1.2: Comparing the proportion of partnerships initiated by age-group estimated using data 
from source 1 (presented in Table S8) with those estimated using data from source 11 (presented 
in Tables S5.1 and S5.2), for heterosexual female. 
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