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2019). In 2017, cod densities in the NBS were elevated near the Bering 
Strait (Stevenson and Lauth, 2019), which is at the southern border of 
the Chukchi Sea (Fig. 1), indicating that the population distribution may 
have continued into the unsampled southern Chukchi Sea. However, cod 
distribution and abundance have not been examined in the Chukchi Sea 
during the recent warm period, and the life stages and size distributions 
of any cod recently present in the Chukchi Sea are also unknown. 

Juvenile cod have been documented in the Chukchi Sea (Barber 
et al., 1997; Mecklenburg et al., 2011, 2018; Logerwell et al., 2015) and 
Beaufort Sea (Andriashev, 1937; Rand and Logerwell, 2010), however, 
relatively few records exist and habitat of juvenile cod in the Chukchi 
Sea has not been examined (Mecklenburg et al., 2011). In the Chukchi 
Sea, the largest reported cod were 33 cm (Logerwell et al., 2015), 31 cm 
(Barber et al., 1997), and 17.6 and 8.7 cm total length (TL) (Mecklen
burg et al., 2011), which are below the smallest known size of maturity 
for cod in the EBS or Gulf of Alaska (Stark, 2007). In the EBS, age-0 cod 
inhabit nearshore benthic habitat, or pelagic habitat in offshore deeper 
areas (Hurst et al., 2015). Because size and energetic storage are 
important factors contributing to the overwintering survival of juvenile 
marine fishes (Sogard, 1997; Hurst, 2007), it is unclear whether small 
boreal gadids such as cod can survive long periods of cold in low pro
ductivity habitats typical of the Chukchi Sea. 

The juvenile cod observed in the Chukchi Sea may be sourced from 
larvae advected northward from the Bering Sea. Cod spawn in the EBS 
from March to mid-April as far north as the continental shelf break at 
about 60◦N latitude (Neidetcher et al., 2014) and eggs likely remain at 
their spawned location because they are demersal (Thomson, 1963; 
Fadeev, 2005). Larvae become more buoyant at hatch (Laurel et al., 
2010) and are typically in surface waters where they have been reported 
in the EBS from April through June (Matarese et al., 2003) and in the 
western Bering Sea (WBS) in June (Bulatov, 1986). Ocean currents 
during the larval period may carry larvae from the NBS to the Chukchi 
Sea through the Bering Strait. A mooring (A3) located just north of the 
Bering Strait (Fig. 1), provides hourly time series of ocean temperatures 
and currents from which estimates of the northward transport through 
the Bering Strait have been made (Woodgate, 2018). 

The objectives of this study were to 1) investigate thermal and ocean 
transport conditions which could affect cod larvae transported between 
the NBS and Chukchi Sea; 2) describe cod distribution in the Chukchi 
Sea by life stage before (2010 and 2012) and during (2017, 2018, 2019) 
the recent period of warm summer ocean temperatures in the Chukchi 
Sea; and 3) understand the potential survival trajectories of age-0 cod in 

the Chukchi sea by comparing their habitat, size, diet and condition to 
juveniles collected farther south, in the Gulf of Alaska (GOA). 

2. Methods 

2.1. Bering Strait temperature and transport 

Monthly averaged near-bottom temperatures in April through June 
from 1998 through 2019 measured at a subsurface mooring were used to 
investigate the thermal exposure of any cod larvae possibly in the Bering 
Strait during the larval period (Mooring A3 in Woodgate et al., 2015; 
Woodgate, 2018; Woodgate and Peralta-Ferriz, 2021). This mooring is 
located ~35 km north of the Bering Strait proper, at a point where water 
temperatures are considered to be a meaningful average of the water 
temperatures in the eastern and western sides of the Bering Strait 
(Woodgate, 2018). These measurements are made near bottom and 
represent the bottom layer (~30–40 m) of the water column. In 
April–June, sea surface temperatures are ~1–2 ◦C warmer than the 
near-bottom temperatures in the annual mean (Woodgate and 
Peralta-Ferriz, 2021; Woodgate, 2018, Fig. 1). Thus, depending on 
where they reside in the water column, larvae in April–June may be 
exposed to warmer (~1–2 ◦C) temperatures than considered here. 

Estimates of water volume transport from the NBS to the Chukchi Sea 
during the larval period were obtained to investigate possible inter- 
annual differences in northward larval transport through the Bering 
Strait. Monthly-averaged northward transport estimates during 
April–June from 2000 to 2019 were calculated from the A3 mooring 
data (see Woodgate, 2018 for method), and an average transport value 
for April–June was calculated for each year. 

2.2. Larval distributions 

Larval Pacific cod were sampled in the Bering and Chukchi Seas 
during research cruises as part of the Arctic Shelf Growth, Advection, 
Respiration and Deposition (ASGARD) Rate Measurements Project, the 
Distributed Biological Observatory (DBO), and the Arctic Integrated 
Ecosytem Survey (AIES) funded by the North Pacific Research Board 
(NPRB) Arctic Integrated Ecosystem Research Program (AIERP; Baker 
et al., 2020b; 2023) in June 2017, June 2018, August–September 2017, 
and August–September 2018 (Fig. 2) using a paired 60-cm diameter 
bongo net (505-μm mesh) towed obliquely from the surface to 10 m off 
the bottom (see Deary et al., 2021 for a description of the sampling 

Table 1 
Summary of trawling effort and number and presumed life stage of Pacific cod caught during each survey used in this study.  

Year Months Trawl type Mouth opening Max. mesh 
(mm) 

Min. mesh 
(mm) 

No. 
stations 

Chukchi Sea 
Region 

Raw number (presumed 
age) 

2010 Sep. Large-mesh 
benthic 

16.2 m horiz. 80 10 38 Western 0 

2012 Aug.– 
Sep. 

Large-mesh 
benthic 

17.0 m horiz. 100 31 71 Eastern 4 (age-1) 

2012 Aug.– 
Sep. 

Small-mesh 
benthic 

2.1 m horiz. 7 4 40 Eastern 0 

2017 Aug.– 
Sep. 

Surface 18 m horiz. X 24 m vert. 1620 12 17 Eastern 64 (age-0) 

2017 Aug.– 
Sep. 

Midwater 7.5 m horz. X 7.9 m 
vert. 

64 30 33 Eastern 152 (age-0) 

2017 Aug.– 
Sep. 

Small-mesh 
benthic 

2.1 m horiz. 7 4 60 Eastern 43 (age-0) 

2018 Aug.– 
Sep. 

Large-mesh 
benthic 

16.2 m horiz. 80 10 54 Western 52 (age-1), 8 (adult) 

2019 Aug.– 
Sep. 

Surface 18 m horiz. X 24 m vert. 1620 12 10 Eastern 2 (age-0) 

2019 Aug.– 
Sep. 

Midwater 7.5 m horz. X 7.9 m 
vert. 

64 30 42 Eastern 52 (age-0), 1 (adult) 

2019 Aug.– 
Sep. 

Small-mesh 
benthic 

2.1 m horiz. 7 4 49 Eastern 7 (age-0) 

2019 August Large-mesh 
benthic 

16.2 m horiz. 80 10 79 Western 51 (age-1), 4 (adult)  
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into the NBS between 2010 and 2017 coincides with a reduction in the 
cold pool in the NBS (Stevenson and Lauth, 2019; Baker, 2021). Pre
liminary tagging data suggests that adult cod move from the EBS into the 
NBS after sea ice has retreated northward in the spring and summer (J. 
Nielsen, Kingfisher Marine Research, and S. McDermott, AFSC, personal 
communication, February 23, 2021). Based on these tagging data, it is 
possible that the early ice retreat in both 2018 and 2019 (Stabeno and 
Bell, 2019; Siddon et al., 2020) allowed the fish to reach the Bering Strait 
early enough in the year to continue northward into the Chukchi Sea by 
August. 

Increased temperatures on the Chukchi Sea shelf in the summer are 
less likely to be the cause of the increased cod presence in recent years 
than temperatures in the spring in the NBS and Bering Strait. Annual 
summer water temperatures on the ECS shelf have increased since 2014 
(Danielson et al., 2020); however, even in the earlier and colder years of 
this study (2010 and 2012), when age-0 and adult cod were absent, some 
of the sampled habitat was warm enough (based on observed presence in 
2017 and 2019) to support cod. The entire water column of the rela
tively shallow southeastern Chukchi Sea warms in the summer due to 
both advection and wind mixing (Grebmeier et al., 2015; Woodgate 
et al., 2015), and the nearshore areas are in the Alaska Coastal Current, 
which is typically warmer than the rest of the shelf from June to at least 
October (Woodgate et al., 2010; Woodgate, 2018). Even in the cold 
years of this study, the Chukchi Sea appeared warm enough during the 
summer for age-0 and adult cod to be present. 

Age-0 cod in the Chukchi Sea use both pelagic and demersal habitats, 
which is similar to their habitat use in the EBS (Hurst et al., 2015). Diet 
differences between age-0 fish in pelagic and benthic habitats imply that 
age-0 cod remain at a habitat type for, at minimum, a daily feeding 
cycle. It should be noted that the age-0 fish from the benthic and mid
water trawls that had significantly different diets were from different 
geographic areas, and prey field differences could be responsible for the 
observed diet differences. Nevertheless, the benthic-caught fish ate 
predominately benthic prey items, and the midwater-caught fish ate 
predominately pelagic prey items. In the EBS, age-0 cod are pelagic over 
deeper water and benthic in nearshore shallower areas, which is 
possibly related to temperature; the juveniles occupy demersal habitat 
in inshore areas with relatively warm bottom temperatures, and occupy 
warmer pelagic habitat when they are over deep water with cold benthic 
habitat (Hurst et al., 2015). Age-0 habitat use in the Chukchi Sea fits the 
same general pattern, with the addition that some fish use the pelagic 
nearshore habitat. This may mean that, in addition to temperature, fish 
in nearshore areas may select their depth in the water column based on 
some other factor, such as localized prey fields, or salinity. 

The absence of a length mode of juveniles in the ECS in 2019 larger 
than that observed in 2018 suggests that the age-1 cod in 2018 may not 
have survived to age-2. All previous reports of cod from the ECS have 
been of juvenile-sized fish (Barber et al., 1997; Mecklenburg et al., 2011, 
2018; Logerwell et al., 2015). It seems that cod juveniles in the Chukchi 
Sea either suffer high mortality rates, or migrate to other areas prior to 
adulthood. 

The juveniles in the Chukchi Sea may not be able to successfully 
grow and provision themselves well enough to survive to become adults. 
Condition (lipid densities and weight at length) was lower in the 2017 
age-0 cod from the Chukchi Sea than those from the GOA. Lipid densities 
were also lower in the age-0 cod in this study than in co-occurring gadids 
in the Chukchi Sea in 2017 (Copeman et al., 2022). The age-0 cod in the 
Chukchi Sea in this study inhabited colder waters (2017, 2–6 ◦C) than 
age-0 cod during the summer in the EBS (~6–12 ◦C; Hurst et al., 2015; 
Hurst et al., 2018) and the Gulf of Alaska (~8–11 ◦C; Abookire et al., 
2007; Laurel et al., 2016a). Further, summer temperatures in the 
Chukchi Sea are lower than those modeled for maximum growth 
(~11.0–11.5 ◦C) and maximum lipid accumulation (10 ◦C) in controlled 
laboratory growth experiments (Laurel et al., 2016b; Hurst et al., 2010, 
2012b; Copeman et al., 2017). Thus, temperatures during the summer in 
the Chukchi Sea may be too low for juvenile cod to achieve sufficient 
size or energetic thresholds to survive long, low-productive Arctic 
winters. Future monitoring of age-0 cod in the Chukchi Sea should 
include both growth and condition metrics. 

The abundance of age-0 cod in the ECS is potentially high enough to 
be ecologically meaningful if they could survive to adulthood. Only 
small numbers of juveniles were caught with our small-mesh benthic 
trawl, but catch rates in the nearshore areas of the ECS were similar to 
catch rates in EBS nursery areas using a similar trawl (Hurst et al., 2015, 
Table 3); however, they were one order of magnitude lower than catch 
rates in GOA nursery areas in high-abundance years (Table 3). An 
abundance estimate based on our limited number of stations in 2017 
should be viewed with caution, but it provides a general sense of the 
potential number of cod juveniles in the ECS in 2017. Benthic trawl 
catch rates in the ECS were highest from 67 ◦N to 69 ◦N inshore of 40 m 
bottom depth, an area of approximately 14,500 km2. Mean catch rates 
here were approximately 12,000 fish per km2. Assuming the trawl 
caught all of the fish in the towpath, and our sampling was represen
tative of the area, mean density multiplied by area would equal 
approximately 174 million fish present in 2017 within the area from 
67◦N to 69 ◦N inshore of 40 m bottom depth. Alternatively, estimating 
abundance from the mean catch rates and area of the entire survey area 
south of 70 ◦N provides an estimate of approximately 150 million fish. 
Even if these estimates are high, there were tens of millions of age-0 cod 
in the ECS in 2017. If these or future age-0 cod survive to adulthood, and 
either remain in the Chukchi Sea or successfully migrate to other 

Table 2 
Prey-specific relative index of importance (PSIRI) for prey taxa by trawl type for 
Pacific cod small juveniles collected in the eastern Chukchi Sea in 2017. Only 
prey items with PSIRI greater than 3 are listed.  

Trawl Type Prey Taxa Prey Group PSIRI 

Small-mesh 
benthic 

Polychaeta Annelid worm 13.57 

Small-mesh 
benthic 

Eurytemora 
herdmandi 

Calanoid copepods, <2.5 mm 
Total length 

13.55 

Small-mesh 
benthic 

Nematoda parasite Unidentified 10.55 

Small-mesh 
benthic 

Euphausiidae juv/ 
adult 

Euphausiids, j+a 10.00 

Small-mesh 
benthic 

Decapoda Decapoda 8.83 

Small-mesh 
benthic 

Cistenides spp. Annelid worm 5.59 

Small-mesh 
benthic 

Margarites spp. Gastropod 4.41 

Small-mesh 
benthic 

Argis spp. Carideans 3.21 

Small-mesh 
benthic 

Paguridae juv/adult Anomuran crab 3.06  

Midwater Calanoida (<2.5 
mm) 

Calanoid copepods, <2.5 mm 
Total length 

17.68 

Midwater Actinopterygii Fish 17.48 
Midwater Caridea Carideans 17.01 
Midwater Gadiformes Fish 12.89 
Midwater Cirripedia cypris Barnacle 8.72 
Midwater Centropages 

abdominalis 
Calanoid copepods, >2.5 mm 
Total length 

8.09 

Midwater Brachyura megalopa Brachyuran crab 6.80 
Midwater Paguridae zoea Anomuran crab 6.04  

Surface Centropages 
abdominalis 

Calanoid copepods, >2.5 mm 
Total length 

31.41 

Surface Calanoida (<2.5 
mm) 

Calanoid copepods, <2.5 mm 
Total length 

31.28 

Surface Decapoda Decapoda 13.45 
Surface Crustacea Crustacean 8.33 
Surface Pseudocalanus spp. Calanoid copepods, <2.5 mm 

Total length 
7.34 

Surface Brachyura megalopa Brachyuran crab 5.73  
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