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Abstract— Quantum noise is the key challenge in Noisy
Intermediate-Scale Quantum (NISQ) computers. Previous
work for mitigating noise has primarily focused on gate-level
or pulse-level noise-adaptive compilation. However, limited
research has explored a higher level of optimization by making
the quantum circuits themselves resilient to noise.

In this paper, we propose QuantumNAS, a comprehensive
framework for noise-adaptive co-search of the variational
circuit and qubit mapping. Variational quantum circuits are a
promising approach for constructing quantum neural networks
for machine learning and variational ansatzes for quantum
simulation. However, finding the best variational circuit and
its optimal parameters is challenging due to the large design
space and parameter training cost. We propose to decouple
the circuit search from parameter training by introducing
a novel SuperCircuit. The SuperCircuit is constructed with
multiple layers of pre-defined parameterized gates (e.g., U3
and CU3) and trained by iteratively sampling and updating the
parameter subsets (SubCircuits) of it. It provides an accurate
estimation of SubCircuits performance trained from scratch.
Then we perform an evolutionary co-search of SubCircuit and
its qubit mapping. The SubCircuit performance is estimated
with parameters inherited from SuperCircuit and simulated
with real device noise models. Finally, we perform iterative
gate pruning and finetuning to remove redundant gates in a
fine-grained manner.

Extensively evaluated with 12 quantum machine learning
(QML) and variational quantum eigensolver (VQE) bench-
marks on 14 quantum computers, QuantumNAS significantly
outperforms noise-unaware search, human, random, and exist-
ing noise-adaptive qubit mapping baselines. For QML tasks,
QuantumNAS is the first to demonstrate over 95% 2-class,
85% 4-class, and 32% 10-class classification accuracy on real
quantum computers. It also achieves the lowest eigenvalue for
VQE tasks on H2, H2O, LiH, CH4, BeH2 compared with
UCCSD baselines. We also open-source the TorchQuantum

library for fast training of parameterized quantum circuits to
facilitate future research.

Keywords-Quantum Computing; Quantum Noise; Varia-
tional Quantum Algorithm; Quantum Machine Learning; Neu-
ral Networks; Qubit Mapping; VQE; QNN

I. INTRODUCTION

Quantum Computing (QC) is a new computational

paradigm that aims to address classically intractable prob-

lems with considerably higher efficiency and speed. It has

been shown to have exponential or polynomial advantage

in various domains such as cryptography [1], database

search [2], chemistry [3]–[5] and machine learning [6]–

[10], etc. In the recent two decades, QC hardware has
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Figure 1. Noise-adaptive circuit and qubit mapping co-search. A gate-
sharing SuperCircuit that contains numerous parameter subsets (SubCircuit)
is firstly trained. Then we perform an evolutionary search with the quantum
noise feedback to find the most robust circuit and qubit mapping.

witnessed rapid progress by virtue of breakthroughs in

physical implementation technologies.

Despite the exciting advancements, we are still ex-

pected to reside in the Noisy Intermediate Scale Quantum

(NISQ) [11] stage for multiple years before entering the

Fault-Tolerant era [12], [13]. In the NISQ era, quantum

computers typically contain tens to hundreds of qubits,

which are insufficient for quantum error correction. The

qubits and quantum gates also suffer from high error rates

of 10−3 to 10−2. Therefore, reducing quantum error is of

pressing demand to close the gap between the requirements

from the quantum algorithm side and available QC capacity

from the hardware side.

Many quantum system works have been proposed in

recent years [14]–[29]. Some of them focus on noise-

adaptive quantum program compilation to mitigate the noise

impact [30]–[39]. Noise-adaptive qubit mapping [40]–[44]

aims to find the best mapping from logical qubits to physical

qubits, which minimizes the gate error and SWAP inser-

tion overhead. Noise-adaptive instruction scheduling and

crosstalk mitigation techniques [39], [45] aim to reduce

the undesired inter-qubit interference and the circuit depth.

However, those techniques only explore a small design space

by optimizing the compilation process with a fixed input

quantum circuit. Limited research efforts have been made
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Figure 2. Iterative pruning and finetuning remove small-magnitude
parameters. thus reducing the number of compiled gates.

to explore how to improve the noise resilience of QC via

a co-design strategy for searching, training, and compiling

quantum circuits.

This work fills this blank by proposing QuantumNAS, a

noise-adaptive quantum circuit and qubit mapping co-search

framework to find the most robust quantum circuit and

corresponding qubit mapping tailored for a given task on the

target quantum device as in Figure 1. We study variational

quantum circuits (trainable circuits with parameterized quan-

tum gates) since they provide unique opportunities to alter

circuit structures while performing the same functionality.

First, we are strongly motivated by the significant impacts

of quantum noise on performance. In Figure 3, we show the

accuracy of MNIST 4-class image classification simulated

by the noise-free simulator and measured on the real IBMQ-

Yorktown quantum computer. Key observations: (1) More

parameters increase the model capacity, thus increasing

noise-free simulation accuracy. Nevertheless, more parame-

ters mean more gates, which introduces more noise, and the

accumulated noise quickly offsets the capacity benefit. As

a result, the measured accuracy peaks at 45 parameters. (2)

To make things worse, quantum noise exacerbates the per-

formance variance. The measured accuracy variance under

the same #parameters is much higher than that of noise-free,

e.g., [25%, 59%] vs. [67%, 77%] under 45 parameters. The

observations both call for the noise-adaptive search for the

most robust circuit.

One major challenge for this noise-adaptive search is

the algorithmic scalability issue. It is almost intractable

to solve the two-level optimization problem (for quantum

circuit and qubit mapping) via iterative circuit sampling,

parameter training, and evaluation in the large design space.

To address this, we propose to decouple the training and

search by introducing a novel SuperCircuit-based search

approach (Figure 1). We first construct a SuperCircuit by

stacking a sufficient number of layers of pre-defined pa-

rameterized gates to cover a large design space. Then,

we train the SuperCircuit by sampling and updating the

Large gap due to 
gate errors

More parameters increase the noise-free 
accuracy but degrade measured 
accuracy

Accuracy varies greatly under the same #parameters but different 
circuits, motivating us to systematically search for the best circuit.

Figure 3. MNIST-4 on noise-free simulator / real QC. More parameters
increase the noise-free accuracy but degrade measured accuracy due to
larger gate errors. Accuracy varies greatly under the same #parameters but
different circuits, motivating us to search for the best circuit systematically.
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Figure 4. Accuracy vs. #parameters of multiple methods. The accuracy of
conventional designs quickly saturates then drops. QuantumNAS mitigates
the quantum noise and delays the peak of the curve, allowing larger model
capacity and higher accuracy (up to 33% higher).

parameter subsets (SubCircuits) from the SuperCircuit. The

performance of a SubCircuit with inherited parameters from

the SuperCircuit can provide a reliable relative performance

estimation for the individual SubCircuit trained from scratch.

In this way, we only pay the training cost once but can

evaluate all the SubCircuits fast and efficiently. Hence, the

search cost is significantly reduced.

Furthermore, we perform an evolutionary co-search with

noise information in the loop to find the most robust quan-

tum circuit and qubit mapping jointly. In each iteration, the

evolution engine samples a population of SubCircuit and

qubit mapping pairs. Then the performance of each sampled

SubCircuit can be evaluated by an estimator on two types

of backends: a noise-aware simulator or a real quantum

hardware. The estimator takes the inherited parameters from

the SuperCircuit and assigns them to the SubCircuit. With a

noise-aware simulator backend, the performance is evaluated

with direct noise classical simulation with a realistic device

noise model. Alternatively, we can replace the simulator with

real quantum hardware. The requirement for such evalua-

tion is no harder than any common variational quantum

algorithms. After multiple evolutionary search iterations,

we can obtain a pair of robust circuit and qubit mapping

and then train the parameters from scratch. SuperCircuit-
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based search is inspired by the supernet method in classical

ML model training [46]–[51]. However, we have five major

differences: (1) The SuperCircuit is more general than the

ML model and can be applied to various parameterized

quantum algorithms such as VQE; (2) We co-search circuit

with its qubit mapping; (3) Our search is aware of quantum

noise to improve robustness; (4) We propose novel front

sampling and restricted sampling specialized for quantum

circuits. (5) We experimentally demonstrate the feasibility

of training circuits on real QC with on-device gradient

computation.

Finally, on top of the searched circuit and qubit mapping,

we further propose a fine-grained pruning technique (Figure

2) to remove redundant parameters and gates and finetuning

to recover the performance. We end up with a slimmed

circuit with similar noise-free performance but fewer noise

sources, which in return improves the final measured per-

formance.

Overall, QuantumNAS can mitigate the impact of quan-

tum noise and delays the accuracy peak as shown in Fig-

ure 4. The contributions of QuantumNAS are five-fold: Ê

Noise-Adaptive Quantum Circuit & Qubit Mapping Co-

Search to enable noise-resilient QC. Ë SuperCircuit-based

Efficient Search Flow: we propose a scalable quantum

circuit search method based on SuperCircuit. Front sampling

and restricted sampling are proposed for efficient exploration

and stable optimization in the huge design space. Ì Iterative

Quantum Pruning is introduced to remove redundant quan-

tum gates in a fine-grained manner. Í Extensive Real QC

Evaluations: we extensively evaluate QuantumNAS with

12 benchmarks in QML and VQE on 14 quantum com-

puters, observing significant improvements over baselines.

Î Open-Source QC Library: To facilitate future research

in QML and variational quantum simulation, we release

TorchQuantum, a PyTorch-based GPU-accelerated library

to enable fast training of parameterized quantum circuits

(over 200× faster than the PennyLane [52]). It also sup-

ports push-the-button deployment of trained circuits on real

quantum devices.

II. BACKGROUND AND MOTIVATION

A. Quantum Basics

Qubits. The power of quantum computation stems from

its fundamentally unique way of storing and manipulating

information [53], [54]. Unlike a conventional bit, a quantum

bit (qubit) can be in a linear combination of the two basis

states 0 and 1: |ψ〉 = α |0〉+ β |1〉 , for α, β ∈ C, satisfying

|α|2 + |β|2 = 1. The ability to create a “superposition” of

basis states allows us to use an n-qubit system to represent a

linear combination of 2n basis states. In contrast, a classical

n-bit register can only store one of the 2n states.

Quantum Circuits. To perform computation on a quantum

system, we manipulate the qubits’ state by applying a

quantum circuit. A quantum circuit consists of a sequence
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Figure 5. Example circuits for QML and VQE tasks.

of operations called quantum gates, which take one quan-

tum state to another through unitary transformations, i.e.,

|ψ〉 → U |ψ〉, where U is a unitary matrix. Results of a

quantum circuit are obtained by qubit readout operations

called measurements, which collapse a qubit state |ψ〉 to ei-

ther |0〉 or |1〉 probabilistically according to the amplitudes α

and β. Finding the best quantum circuits for a computational

task is non-trivial [54] – a realistic, robust quantum circuit

must: (1) faithfully express the desired transformation; (2)

complete in an efficient number of steps; (3) be able to be

implemented on hardware with reasonable fidelity.

Operational Noises. In real QC, errors occur due to imper-

fect control signals, unwanted interactions between qubits,

or interference from the environment [55]–[57]. Thus, qubits

undergo decoherence error over time, and quantum gates

introduce operation errors (e.g., coherent/stochastic errors)

into the system. These systems need to be characterized [57]

and calibrated [58] frequently to mitigate noise impacts. So

noise-adaptive techniques in QC algorithms, circuits, and

devices are critical for operating quantum computers.

B. Variational Quantum Circuits

A variational circuit is a trainable quantum circuit where

its quantum gates are parameterized (e.g., by angles in

quantum rotation gates). The parameterized quantum circuit

Φ(x, θ) is used to prepare a variational quantum state:

|ψ(x, θ)〉 = Φ(x, θ) |0 . . . 0〉, where x is the input data

related to the computation and θ is a set of free variables

for adaptive optimizations. Variational methods have shown

huge potentials in applications such as quantum ML [6],

[59]–[61], numerical analysis [62], [63], quantum simulation

[3], [4], [64]–[66], and optimizations [8], [67].

Typically, the training of variational circuits is performed

by first selecting a hand-designed circuit for a computational

task and, secondly, finding an optimal set of parameters

for the circuit via a hybrid quantum-classical optimization

procedure. The optimization is usually an iterative process

to search for the best candidates for the parameters in

Φ(x, θ). Whether a variational quantum algorithm is suc-

cessful depends on how well the circuit can be trained. For

example, “barren plateau” [68] is a phenomenon when the
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Figure 6. QuantumNAS Overview. (1) A SuperCircuit is trained by iteratively sampling and updating parameter subsets (SubCircuits). The parameters from
SuperCircuit and the simulator with practical noise models can provide an accurate final performance ranking estimation of SubCircuits. (2) Evolutionary
co-search for circuit and qubit mapping pair of best estimated performance (lowest validation loss/eigenvalue for QML/VQE). (3) Train the searched
SubCircuit. (4) Iterative pruning and finetuning to remove redundant gates. (5) Compile and deploy on real devices.

cost function landscape is flat, making a variational circuit

untrainable with gradient-based optimizations.

Quantum Neural Network (QNN) is a promising appli-

cation of variational quantum circuits [69]. Figure 5 shows

the example circuits we used for QML (QNN) and VQE.

For QML tasks such as image classification, we first encode

the pixels using rotation gates and then use parameterized

trainable quantum gates to process the information. We

measure the qubits on Z-basis to obtain classical values, then

compute Softmax of those values to get the probability for

each class. For VQE, the parameterized circuit is used for

state preparation, and the measurement part is constructed

according to the molecule. We prepare for the state multi-

ple times for measurements on different qubits and bases,

multiply expectation values of qubits, and perform weighted

sum. The final result is the expectation value for the ground

state energy of the molecule. The parameters can be trained

with backpropagation, in which we compute the derivative

of each parameter (θi) on loss function (L) and update the

parameters with a learning rate α, θ̂i = θi − α ∂L
∂θi

.

III. NOISE-ADAPTIVE QUANTUMNAS

A. Overview

Figure 6 shows QuantumNAS overview, time cost, and a

simple example. Firstly, a SuperCircuit is trained as a fast

estimation of SubCircuits performance ranking. We show

several sampled example SubCircuits in the diagram. Front

sampling and restricted sampling are proposed to promote

the reliability of estimations. Then a noise-adaptive evolu-

tionary co-search is performed to find the best circuit and

qubit mapping pair. A performance estimator is employed to

provide fast and accurate feedback to the evolution engine.

Redundant gates with small parameter magnitude are further

pruned from the searched circuit. The pruned circuit is

finally compiled and deployed on real quantum devices.

B. SuperCircuit Construction and Training

It is critical to encompass a large design space to include

the most robust circuit. However, training all candidate

circuits, evaluating their final performance, and selecting

the best one is too costly. We thus propose SuperCircuit to

evaluate each circuit in the design space (SubCircuit) without

fully training it. Since we only need to find the best circuit,

relative performance is sufficient and can be estimated by

the SuperCircuit.

With pre-specified basis gates and design space, the

SuperCircuit is defined as the circuit with the largest number

of gates in the space, whose parameters are trained by itera-

tively sampling and updating a subset of gates/parameters

(SubCircuit). SuperCircuit contains multiple blocks, each

with several layers of parameterized gates. A SubCircuit

is a subset of the SuperCircuit that can have a different

number of blocks and gates inside blocks. Figure 7 shows

one block of U1+CU1 space containing one U1 layer and

one CU1 layer. The SuperCircuit contains all gates, while

the SubCircuit only contains gates with solid lines. In one

SuperCircuit training step, we sample a SubCircuit and only

compute gradients using the SubCircuit and update that

subset of parameters of SuperCircuit. Intuitively, training a

SuperCircuit is simultaneously training all SubCircuits in the

design space. All gates in SuperCircuit are single/two-qubit

gates, thus are local interactions in variational ansatz.

4



...Sample and update a parameter
subset (SubCircuit)

Sample and update a parameter
subset (SubCircuit)Front

Sampling 

Sample and update a parameter
subset (SubCircuit)

Step1 Step2 Step3

Q0

Q1

Q2

Q3

Figure 7. SuperCircuit training. At each step, a subset of SuperCircuit parameters (SubCircuit) is sampled and then updated.

3
2

3

2

Block
Config

#Block

3
1
3

3

4
2

3
3

3

3

3
2Restricted

Sampling

2
3

2

3

3
2

4

44

3 layers alter

2 layers alter

Sampling

5 layers alter

3 2 4 3

3 3 4 3 3 2

2 3 1 3 4 2

2 3 4 2 3 2

3
2

3

2

Block
Config

#Block

2
3
1
3

3

4
2

3
3

3

3

3
2Restricted

Sampling

2
3

2

3

3
2

Sample

4

44

alter 3 layers

alter 2 layers

Unrestricted
Sampling

Max 4 different
layers

alter 5 layers

3 2 4 3

3 3 4 3 3 2

2 3 1 3 4 2

2 3 4 2 3 2

Figure 8. Restricted sampling constrains #layers that are different
between two steps. It improves SubCircuit consistency thus stabilizes the
SuperCircuit training process.

Mutation

2 3 22 3 22 3 4 22 3 4 2 2 3 4 2

Crossover
2 3 2 24 3 24 33 2 3 2 24 3 2 3 21 2 2 2 21Gene

Circuit

Figure 9. SubCircuit mutation and crossover in evolutionary search.

SuperCircuit aims to facilitate the low-cost evaluation of

SubCircuits in the design space. Given one SubCircuit, it

is sufficient to inherit the gate parameters from the Super-

Circuit and then perform evaluation without training. That

provides an accurate estimation of the relative performance

of the SubCircuit. Since the next stage is derivative-free

optimization such as evolutionary search, using relative

performance between SubCircuits is sufficient to find the

best one. In addition, SuperCircuit can be reused for new

devices or when noise changes. Thus, we only need to pay

the noise-free SuperCircuit training cost for once but can

use it for all devices. The number of circuits run for naı̈ve

search is Ndevice×Nsearch×(Ntrain+Neval); while that for

SuperCircuit search is 1×Ntrain+Ndevice×Nsearch×Neval.

The overall search cost is significantly reduced by around

Ndevice × Nsearch times which is 10 × 1600 = 16, 000
in our setting. Ndevice means #quantum devices to exe-

cute the circuit. Nsearch means #evaluated circuits during

search. Ntrain/Neval means #circuit running iterations in

training/evaluation.

A critical challenge in sampling-based SuperCircuit train-

ing is the large variance. Naı̈ve random sampling often

causes severe trainability issues due to intractable sampling

variance from drastic SubCircuit change, leading to unre-

liable relative performance estimation. To address this, we

propose front sampling and restricted sampling.

Front Sampling. In front sampling, only the subsets with

the several front blocks and front gates can be sampled. For

instance, if the subset contains three blocks, then blocks 0, 1,

2 will be sampled. Inside a block, if two gates are sampled

in a layer, then the gates on qubits 0 and 1 will be sampled.

Figure 7 shows several valid cases of front sampling. In the

leftmost example, only the front two U1 gates and the front

three CU1 gates are sampled. So in that step, only those

five parameters are updated. Front sampling helps improve

SuperCircuit trainability as SubCircuits share the parameters

of front blocks and gates.

Restricted Sampling is another essential technique we

propose to boost training stability. We prevent the sampled

SubCircuits from changing dramatically between two steps

by constraining the maximum number of different layers.

Therefore, the training process is stabilized as the sampling

variance is under control. As in Figure 8, the upper path is

unrestricted sampling where the two SubCircuits differ by

5 layers. In the bottom path, restricted sampling limits the

layer differences to 3, bringing better cross-step consistency.

C. Noise-Adaptive Evolutionary Co-Search

SuperCircuit provides highly efficient relative perfor-

mance estimations. We adopt a derivative-free optimization

to explore the joint space of circuit and qubit mapping.

Evolutionary Search. Genetic algorithm is employed in

which the gene vector encodes circuit and qubit mapping.

Each element in the circuit sub-gene represents the circuit

width (#gates) in the layer. One additional gene sets the

circuit depth (#blocks). Front sampling is also applied here.

The qubit mapping sub-gene encodes the mapping between

logical and physical qubits. We concatenate circuit and qubit

mapping sub-genes as the pair’s gene.

The evolution engine keeps a population of pairs and

searches for high-performance candidates. In one iteration, it

first evaluates all pairs by querying a performance estimator

and selects multiple pairs with the highest performance (the

lowest loss/eigenvalue for QML/VQE) as the parent popula-
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tion. Then mutation and crossover are conducted to generate

the new population as in Figure 9. Mutation randomly

alters several genes with a pre-defined probability. Crossover

first selects two parent samples from the parent population;

and then generates a new sample, each gene of which is

randomly selected from one of the two parent samples. If

the qubit mapping sub-gene contains a repeated qubit, we

will replace the repeated one with the first unused qubit.

The new population is the ensemble of parent population,

mutations, and crossovers. Then we sort the new population

and select the ones with the highest performance as parents

and enter the next iteration. The population of the very first

iteration is from random sampling. Population size across

iterations remains the same. For QML, we use validation

set loss as the indicator. The lower the validation loss, the

higher the final accuracy.

Performance Estimator. Ideally, the performance of

circuit-qubit mapping pairs is directly evaluated on real

quantum devices, which, however, could be extremely slow

due to limited resources and queuing. Therefore we apply

an estimator to provide fast relative performance with noise.

It takes the query pairs from the evolution engine as inputs.

Then, it inherits the gate parameters of searched SubCircuit

from SuperCircuit and sets the searched qubit mapping as

the initial mapping of the compiler. There are two ways

of estimation. One way is to use a simulator with a noise

model from real devices. Noise models are from calibrations

such as randomized benchmarking performed by the IBMQ

team. They contain coherence (depolarizing), decoherence

(thermal relaxation), and SPAM (readout) errors. The models

are updated around twice a day and can be directly accessed

with Qiskit API; the second is to use a noise-free simulator

and compute the overall success rate with the product of

success rates of all gates. Then the augmented loss will

be noise-free simulated loss divided by calculated success

rate: roverall =
∏

i rgatei , laugmented =
lnoise free

roverall
, where r

is the success rate, and l is the loss. The first method is

more accurate but slower, while the second is less accurate

but faster. Therefore, in QuantumNAS, small circuits (≤10

Qubits) apply the first method; large circuits apply the

second method.

The estimator has two approximations. The first uses the

performance of one SubCircuit with inherited parameters

to estimate the performance of the same SubCircuit with

parameters trained from scratch. The second uses the sim-

ulation results, either with noise model or success rate, to

estimate the performance on real devices. Since we only care

about relative performance, the two-level approximation still

maintains enough reliability for the search engine. Figure 10

shows the effectiveness of the first approximation with five

tasks in two design spaces. For each point, the x-axis

value is the performance (loss) with inherited parameters

from SuperCircuit; the y-axis value is that with parameters

trained from scratch. The average Spearman’s correlation

score is 0.75, showing strong positive correlations thus

accurate relative performance. Figure 11 further shows the

final estimated loss and the real loss for MNIST-4 on

IBMQ-Yorktown. The correlation between them is 0.76, a

strong positive correlation. Thus, the estimated performance

is reliable enough to search for the best circuit-mapping pair.

D. Iterative Quantum Pruning

We further propose to remove redundant quantum gates

to reduce the noise, inspired by the classical NN prun-

ing [70]–[75] and pruning for noise-robust analog neuro-

computing [76]–[80]. The motivations are three-fold. First,

the sub-optimality of the evolutionary search stage leaves

room for further optimization of the searched circuit by

reducing the number of gates. Second, even with the same

circuit, there exist multiple parameter sets to achieve similar

noise-free performance. Some sets contain more parameters

with a magnitude close to zero, which can be safely re-

moved with iterative pruning and finetuning. Third, some

gates, such as U3, contain multiple parameters. Partially

removing the parameters can also bring benefits. #compiled

gates of U3(θ, φ, λ), U3(0, φ, λ), U3(θ, φ,0), U3(θ,0, λ),

U3(θ,0,0), U3(0, φ,0) and U3(0,0, λ) are 5, 1, 4, 4, 4, 1,

1, respectively. Therefore, having one or two parameters as

zeros in the U3 gates can reduce up to 80% gates compiled

to the basis gate set (CNOT, SX, RZ).

Therefore, we propose iterative pruning to remove the cir-

cuit parameters in a fine-grained manner, shown in Figure 2.

Specifically, we first train the searched circuit from scratch

to convergence. We rank all the normalized rotation angles

(θ, φ, λ) ∈ [−π, π) and remove part of angles that are closest

to 0◦. Then we finetune the rest parameters to recover the

accuracy. We iteratively increase the pruning ratio and fine-

6



T
ra

in
in

g
 S

te
p

s
/s

0

3

6

9

12

Batch=1 Batch=4 Batch=16 Batch=64 Batch=256

8.74
9.119.289.359.35

3.934.114.104.194.14
3.78

6.32

9.03

11.52
12.99

1.15

2.08

3.45

5.00

6.25

0.00020.00080.00330.01330.0529

PennyLane CPU QuantumEngine CPU (Dynamic)
QuantumEngine CPU (Static) QuantumEngine GPU (Dynamic)
QuantumEngine GPU (Static)

Static mode in QuantumEngine 
can speed up training by over 2×

QuantumEngine CPU (Dynamic)
QuantumEngine GPU (Dynamic)

246× 
Faster

Figure 12. Training speed of TorchQuantum vs. PennyLane [52].
TorchQuantum provides at least 246× speedup.

tune the circuit parameters until achieving the desired ratio.

In practice, we adopt polynomial pruning ratio decay [81]:

rnow = rfinal+(rinitial−rfinal)
(

1− snow−sbegin
send−sbegin

)3

where

r is pruning ratio, and s is training step. For final pruning

ratio selection, we make sure that the noise-free simulation

performance is not degraded compared with the un-pruned

circuit. Thus, due to fewer gates and fewer noise sources

after compilation, the accuracy of the circuit can be further

increased by up to 9%.

E. TorchQuantum Library

To accelerate parameterized quantum circuit train-

ing in this work, we build a PyTorch library named

TorchQuantum. Its APIs are implemented similarly to

existing operations in PyTorch. So it makes quantum circuit

construction as easy as a standard neural network model. It

supports all common quantum gates. The state vector and

unitary matrix of each gate are implemented with a native

torch.Tensor data type. The simulations are achieved

with complex-valued differentiable matrix multiplication op-

erators such as torch.bmm.

There exists several QNN training frameworks such as

PennyLane [52]. The major advantage is its flexible in-

terfaces to various frameworks such as PyTorch, Tensor-

Flow, JAX, Keras, and NumPy. However, the operations are

not implemented using native ones in those frameworks,

so off-the-shelf optimizations of those frameworks cannot

be used. Moreover, Pennylane can only use parameter

shift to obtain gradients, which is inherently sequential,

so no parallelization on batch and gate dimension can be

achieved. Compared with Pennylane, QuantumEngine has

several unique advantages: (1) It supports both dynamic and

static computational graphs. Dynamic mode simulates each

gate individually, so the state vector after each gate can be

obtained for easy debugging (statevector simulation). Static

mode optimizes tensor network simulation by fusing unitary

of multiple gates before applying to the state vector, reducing

the computation amount (tensor network simulation). (2) It

supports both parameter shift and back-propagation training.

In back-propagation mode, training is highly parallelized.

PennyLane only supports parameter shift and processes

batch with inefficient ’For’ loop. (3) All simulations can be

Table I
BENCHMARK INFORMATION SUMMARY.

Task Class Input Size #qubit Encoder (Mapping)

MNIST-10 0-9 6×6 10 10RY,10RZ,10RX,6RY

MNIST-4 0,1,2,3 4×4 4 4RY,4RZ,4RX,4RY

MNIST-2 3,6 4×4 4 4RY,4RZ,4RX,4RY

Fashion-4
t-shirt,trouser

4×4 4 4RY,4RZ,4RX,4RY
pullover,dress

Fashion-2 dress,shirt 4×4 4 4RY,4RZ,4RX,4RY

Vowel-4 hid,hId,had,hOd 10 4 4RY,4RZ,2RX

H2 VQE – 2 Bravyi-Kitaev [82]

H2O VQE – 6 Bravyi-Kitaev

LiH VQE – 6 Bravyi-Kitaev

CH4-6Q VQE – 6 Bravyi-Kitaev

CH4-10Q VQE – 10 Bravyi-Kitaev

BeH2 VQE – 15 Bravyi-Kitaev

accelerated with PyTorch’s GPU acceleration support. (4)

PyTorch’s native automatic differentiation can be applied to

train parameters.

Furthermore, TorchQuantum supports push-the-button

conversion between PyTorch quantum circuit and IBM

Qiskit QuantumCircuit, such that we can support convenient

end-to-end training-to-deployment flow. It contains many

ready-to-use templates, e.g., random and strongly-entangled

layers. Parameter shift is also supported for gradient com-

putations. All steps in QuantumNAS are implemented with

it. The library has great potential to accelerate research in

parameterized QC, especially for QML, VQE, etc.

Figure 12 shows the training speed of 10-qubit parameter-

ized quantum circuits containing 100 RX and 100 CRY gates

vs. PennyLane. Since PennyLane processes batch with the

’For’ loop, the training speed reduces linearly with the batch

size. TorchQuantum supports tensorized batch processing

on CPU/GPU, so the speed is not severely influenced. The

training speed is 246 to 104 times faster than PennyLane.

IV. EVALUATION

A. Evaluation Methodology

Benchmarks. We conduct experiments on 6 QML and

6 VQE tasks. QML benchmark information is shown in

Table I. MNIST and Fashion use 95% images in ‘train’ split

as the training set and 5% as the validation set. Due to the

limited real QC resources, we randomly sample 300 images

from the ‘test’ split as our test set and report their accuracy

on the real quantum devices. However, we find 300 images

can already have comparable accuracy to the whole testing

set: on four circuits, the whole testing set acc/300-sample

acc are 0.505/0.497, 0.284/0.283, 0.564/0.547, 0.272/0.287.

The input images are 28 × 28. We center-crop them to

24×24 and down-sample them with average pooling. Vowel-

4 dataset (990 samples) is separated to train:validation:test =

6:1:3 and test with the whole test set. We perform principal

component analysis (PCA) for the vowel features and take

10 most significant dimensions. For readout, we measure the

expectation values on Pauli-Z basis and obtain a value [-1,

1] from each qubit. For 2-class, we sum the qubit 0 and 1, 2

and 3 respectively to get two values, which will be processed

7



Table II
COMPILED CIRCUIT PROPERTIES FOR QUANTUMNAS AND BASELINES.

Depth #Gates (#1Q+#CNOT) #Params Acc.

Noise-Unaware 237 365 (299+66) 120 0.48
Random 45 100 (94+6) 36 0.86
Human 64 135 (124+11) 36 0.88
QuantumNAS 70 133 (123+10) 36 0.89

+ Pruning 59 116 (106+10) 22 0.92

by Softmax to get probabilities. For 4 and 10-class, we use

Softmax on expectation values to obtain probabilities.

For VQE, the goal is to find the low-energy eigenvalue

of a target molecule by repeated measurements of the

expectation value of the Hamiltonian of the molecule (as

detailed in Section V). The molecules we study in this work

contain H2, LiH, H2O, CH4, and BeH2 as in Table I. VQE

circuits are searched and trained on classical machines then

deployed on real QC to obtain the eigenvalues.

Quantum Devices and Compiler Configurations. We

use IBMQ quantum computers via Qiskit [83] APIs. We

study 10 devices, with #qubits from 5 to 65 and Quan-

tum Volume from 8 to 128. We also employ Qiskit for

compilation. The optimization level is set to 2 except for

level 3 for Noise-adaptive and Sabre baselines in Figure 13

and Table IV. For searched qubit mapping, we set it as the

‘initial layout’ of the compiler. QML/VQE experiments run

8192/2048 shots.

Circuit Design Spaces. We select 6 circuit design spaces,

4 from previous QML work, and name them with gates:

1) ‘U3+CU3’ – One block has a U3 layer with one U3 gate

on each qubit, and a CU3 layer with ring connections,

e.g., CU3(0, 1), CU3(1, 2), CU3(2, 3), CU3(3, 0).
2) ‘ZZ+RY’ [84] – One block contains one layer of ZZ gate,

also with ring connections, and one RY layer.
3) ‘RXYZ’ [68] – One block has four layers: RX, RY, RZ,

and CZ. There is one
√
H layer before the blocks.

4) ‘ZX+XX’ [85] – according to their MNIST circuit design,

one block has two layers: ZX and XX.
5) ‘RXYZ+U1+CU3’ [86] – according to their random cir-

cuit basis gate set, we design SuperCircuit in which one

block has 11 layers in the order of RX, S, CNOT, RY, T,

SWAP, RZ, H,
√
SWAP, U1 and CU3.

6) ‘IBMQ Basis’ [58] – we design SuperCircuit with

basis gate set of IBMQ devices, in which one block has

6 layers in the order of RZ, X, RZ, SX, RZ, CNOT.

The SuperCircuits for space 1 to 4 contain 8 blocks; space

5 has 4 blocks; space 6 has 20 and does not have front

sampling. The design spaces contain numerous SubCircuits,

e.g.: RXYZ+U1+CU3 contains 411×4 = 3×1026 SubCircuits.

Baselines. We have six baselines: (1) Noise-unaware

search: the SubCircuits are searched with noise-free sim-

ulation. No noise information is involved. (2) Random

generation: with the same gate set, we generate random

circuits and constrain their #parameters the same as the

QuantumNAS searched circuit for fair comparisons. We

generate three different circuits and report the best. (3)

Table III
DEVICE-SPECIFIC CIRCUIT HAS THE BEST ACCURACY.

Run on ↓ Searched for → Yorktown Belem Santiago

Yorktown 0.85 0.60 0.54
Belem 0.67 0.77 0.43
Santiago 0.82 0.81 0.85

Human design: we also make sure the same #parameters.

For U3+CU3, RXYZ+U1+CU3 and IBMQ Basis spaces,

human design has full width in the several front blocks. For

ZZ+RY, RXYZ, and ZX+XX spaces, we stack multiple blocks

introduced in the original paper. The last layer of human

designs may not have full width to make sure the same total

number of parameters. (4) Human design+noise-adaptive

mapping: the circuit has the same #parameters with Quan-

tumNAS. The qubit mapping is optimized with state-of-the-

art technique [41]. (5) Human design+Sabre mapping: the

circuit has the same #parameters with QuantumNAS, the

qubit mapping is optimized with Sabre [40]. (6) Human

design(1/2 #Param)+Sabre mapping: similar to (6) with

half #parameters. (7) For VQE, we have an additional

UCCSD [87] baseline. For UCCSD of CH4-10Q and BeH2,

the original circuit cannot be successfully run on IBMQ

machines because of too many gates (>10,000), so we only

take the front 1,000 gates for real QC experiments and report

the results of the full circuit using the Qiskit noisy simulator.

SuperCircuit and SubCircuit Training Setups. For all

searched SubCircuits and baselines, we use the same training

setting for fair comparisons. We use Adam optimizer with

initial learning rate 5e-3 and weight decay 1e-4, cosine

learning rate scheduler. We train for 200 epochs with batch

size 256 for QML tasks; 1000 steps for VQE tasks with

batch size 1. For QML, the objective is to minimize training

loss, while VQE minimizes the eigenvalue. SuperCircuits

training has the same settings with SubCircuits, except

adding a linear learning rate warm-up from 0 to 5e-3 in the

first 30 epochs for QML and 150 steps for VQE. Restricted

sampling is applied during the whole training process. We

set the largest number of different layers as seven. An

additional technique is to progressively shrink the lower

bound of possible sampled SubCircuit #blocks to stabilize

training. We use Nvidia TITAN RTX 2080 GPU. The time

cost is shown in Figure 6.

Noise-Adaptive Evolutionary Co-Search Setups. The

evolutionary search is conducted with inherited gate param-

eters on the validation set of QML tasks. For QML and VQE,

the evolution engine searches 40 iterations with a population

of 40, parents population 10, mutation population 20 with

0.4 mutation probability, and crossover population 10. The

noise model is obtained from IBM’s calibration data for the

performance estimator, and the noise simulator is the Qiskit

QASM simulator. We also run 8192 shots on simulators.

Iterative Pruning Setups. The searched SubCircuit is

firstly trained from scratch. In pruning, we set five final

pruning ratios, 0.1, 0.2, 0.3, 0.4, and 0.5. The starting ratio
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Figure 13. QuantumNAS achieves the highest accuracy on real QC devices (IBMQ-Yorktown). Pruning further improves 2% on average.
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Figure 14. On four 5-Qubit real QC devices, the design searched by QuantumNAS outperforms baseline designs with higher measured accuracy.

is 0.05. Pruning starts at step 0 and ends at half of total

steps. We report the highest measured accuracy among the

five ratios.

B. Experimental Results

Results on Four and Two Classifications. Figure 13

shows the measured accuracy on IBMQ-Yorktown (5Q) of

QuantumNAS and 6 baselines on 5 QML tasks in 6 different

design spaces. QuantumNAS achieves over 85% 4-class and

95% 2-class accuracy and consistently outperforms baselines

except for Vowel-4 in ZZ+RY space and MNIST-4 in ZX+

XX space. The statistics for Fashion-2 U3+CU3 space are in

Table II. The noise-unaware search only optimizes noise-free

accuracy, which results in a deep circuit (237 depth) with

low measured accuracy. U3+CU3, RXYZ, RXYZ+U1+U3 and

IBM Basis are better spaces as they always outperform the

remaining two design spaces, and thus they are considered

more noise-resilient. In addition, pruning brings an average

of 2% for 4-class and 1% improvement for 2-class tasks.

When the searched circuits contain only a small number

of parameters, such as 7 in Vowel-4 ZZ+RY, removing any

parameter will hurt the accuracy. For circuits with more

parameters, such as 36 for MNIST-4 U3+CU3, the pruning

ratio can be 50% while increasing accuracy by 4%. In

Table II, pruning removes 14 parameters and reduces depth

by 11. The accuracy is improved by 3% since the pruned

circuit has similar noise-free accuracy but fewer gates and

less noise. For IBMQ Basis, although its space is larger

than U3+CU3, the accuracy is sometimes lower. Hence, a

larger design space does not necessarily bring better final

performance because of the higher search difficulty.

Results on Different Quantum Devices and Noise. Fig-

ure 14 shows QuantumNAS performance on various devices.

For one task, QuantumNAS SubCircuits for each device are

searched with the same SuperCircuit, but with noise models

tailored for each device. For the machine with the small-

est noise, IBMQ-Santiago, although the baseline methods

achieve higher accuracy than Melbourne and Guadalupe,

QuantumNAS can still deliver 5% better accuracy on av-

erage. Additionally, we show the accuracy of QuantumNAS

tested 3 weeks after search, which is slightly lower than

tested immediately but still much higher than baselines. One

reason is that the machines are calibrated by the IBMQ at

least once a day, so noises are not far from the calibration

point. Therefore, even the noise characteristics change on

a machine in calibration interval, QuantumNAS circuits are

still noise-resilient. The results on Athens are unavailable
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since it is retired. Table III shows performance of circuits

searched and run on different devices. Best performance is

achieved when two devices are the same, which shows the

necessity of device-specific circuits.

Scalability. We further show QuantumNAS results on

larger machines with larger circuits. We search for circuits

with 15, 16, 21, 21 qubits in U3+CU3 space for machines

with 15, 16, 27, 65 qubits in Figure 15. For the 21 qubit

model, the SuperCircuit contains 1 block. QuantumNAS can

achieve over 5% better accuracy. For even larger circuits

for which classical simulations are infeasible, we can move

the whole pipeline to quantum machines. Super/Subcircuit

training can be done with parameter shift, and evolution-

ary search can directly evaluate SubCircuits on quantum

machines. We demonstrate the high feasibility of training

circuits on quantum machines using parameter shift. We

train SubCircuits for different tasks on different machines as

in Table V. Results show comparable real QC test accuracy

of training on real QC and classical simulators. We also

show the training curve of MNIST-4 in Figure 16 left.

We add experiments on using real QC devices to evaluate

SubCircuits in search as in Table IV and compare with using

noisy simulator. We experiment with Qiskit optimization

levels 2 and 3. Due to queuing, we can only afford 20 search

iterations which take ∼3 days. The accuracy of using real

QC is similar to using simulators. In addition, the opt. level

3 cannot consistently improve accuracy over level 2. The

Table IV
SEARCH WITH ESTIMATORS VS. REAL QC FOR FASHION-4 U3+CU3.

Method
Optimization Level 2 Optimization Level 3

York. Bel. Qui. Ath. Sant. York. Bel. Qui. Ath. Sant.

Est. 0.85 0.77 0.84 0.82 0.77 0.69 0.63 0.82 0.84 0.86

Real QC 0.66 0.80 0.76 0.77 0.73 0.70 0.54 0.72 0.84 0.85

Table V
CIRCUIT TRAINING ON REAL QC WITH PARAMETER SHIFT IS FEASIBLE.

Task MNIST-4 MNIST-2 Fashion-4 Fashion-2 Vowel-4 Fashion-2 Fashion-2

Machine Jarkata Jarkata Manila Santiago Lima Guadalupe Montreal

Qubit Usage 4 4 4 4 4 16 16

Classical 0.59 0.79 0.54 0.89 0.31 0.70 0.74

QC Train 0.59 0.83 0.49 0.84 0.34 0.71 0.74

observation aligns with recent work on QC characteriza-

tion [88]. One reason is that QuantumNAS has already found

a good mapping that is hard to optimize further. We further

show the runtime of QuantumNAS training a VQE model

fully on real QC with different qubit numbers in Figure 16

right. The SuperCircuit contains 32 parameters in ZZ+RY

space. The runtime is an upper bound as we assume the

largest SubCircuit is used. The pruning ratio is set as 50%.

The runtime increases approximately linearly as the qubit

number increases. The projected 127 qubit runtime is around

57 hours. Thus QuantumNAS has high scalability.

Results on VQE Tasks. Figure 17 shows the VQE perfor-

mance for H2 in different spaces, measured on the IBMQ-

Yorktown. The theoretical optimal value is -1.85. Estimated

eigenvalues obtained by QuantumNAS are consistently lower

than any other baselines. The UCCSD ansatz baseline is far

from the optimal value as it is not adapted to the hardware

noises. Pruning removes 50% parameters for all five circuit

design spaces and can steadily reduce eigenvalues. Thus

VQE circuits have a higher degree of redundancy over QML

ones, making them more amenable to pruning. Figure 18

further shows the comparison results of QuantumNAS and

UCCSD on LiH (6Q), H2O (6Q), CH4(4Q and 10Q) and

BeH2(15Q) on machines with 7Q, 15Q, and 27Q. Besides
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achieving lower measured expectation values, QuantumNAS

can also reduce the theoretically trained values. For H2O,

the UCCSD noise-free trained expectation value is -49.6

while QuantumNAS has -52.4, indicating that QuantumNAS

ansatz adapts to both the device and the molecule – a

hybrid device and problem ansatz. For CH4-10Q, we also

use the IBMQ-Montreal noisy simulator to simulate the full

original circuit (7164 gates) and obtains expectation value

as -12.86; We also get that of BeH2-15Q (30851 gates) as

-9.81. Despite the much larger circuit, the full circuit results

are worse than shallower ones because the larger number of

gates introduce more significant noise.

C. Performance Analysis

Accuracy Improvement Breakdown. We select five

tasks and five design spaces to show the breakdown of

accuracy improvements in Figure 19. We compare the Quan-

tumNAS co-search to three baselines: (1) human baseline

with no circuit or qubit mapping search, (2) noise-adaptive

mapping search only, and (3) noise-adaptive circuit search

only. Only searching circuit has larger accuracy improve-

ments than only searching qubit mapping, as the space for

circuit search is much larger, echoing our motivation. The

co-design of both aspects can further unlock 9% accuracy

gain on average. As already mentioned in Section I, Figure 4

further shows the #parameters vs. accuracy curves. With

more parameters, the accuracy of baseline designs quickly

saturates and drops due to gate errors. In contrast, Quan-

tumNAS can mitigate the negative effect of gate errors, and

delays the accuracy peak, enabling more effective circuit

parameters and higher accuracy.

Effect of Front and Restricted Sampling. Figure 20

shows the measured performance of SubCircuits on five
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Figure 20. Proposed front and restricted sampling improve final accuracy.

tasks in ZX+XX and RXYZ+U1+CU3 spaces. The baseline

method is random sampling. Since the front and restricted

sampling controls the difference between the consecutive

samples, the SuperCircuit training is more stable. Thus it

improves the reliability of estimated relative performance,

the searched SubCircuit is closer to the optimal one and

achieves on average 12% higher final accuracy.

Effect of qubit topology/error rate/qubit mapping to

performance and design choice. Figure 21 shows MNIST-4

and H2 VQE performance on devices with various topolo-

gies and error rates. We have observations: (1) Comparing

Santiago, Rome, and Athens, with the same topology, a

lower error rate brings better performance. Yorktown has the

highest error rate so the performance is worse than others.

(2) Comparing Rome (‘–’) and Lima (‘T’), Quito (‘T’) and

Yorktown(‘+’), under similar error rates, ‘T’ topology brings

better performance than the other two. (3) For qubit choices

(mapping), the co-searched mapping can consistently out-

perform the naı̈ve mapping. (4) For design choices of co-

search, the average convergence iteration is 13.5, 14, 9.2 for

‘T’, ‘+’, and ‘–’ respectively. Therefore, we need a relatively

larger iteration number for co-search on topology ‘T’ and

‘+’ machines. That may be due to their more complicated

connections than ‘–’.

Search in Small Design Space. We construct a small

U3+CU3 space that does not break into multiple blocks.

All SubCircuits can be arbitrarily sampled without front

sampling. The circuit depth is around 40. Comparisons with

larger space with multiple blocks are shown in Table VI.

Small space has consistently worse accuracy: although small

circuits have less noise, it also has smaller learning capacity.

QuantumNAS can find a better trade-off between noise and

capacity. This can only be achieved when QuantumNAS has
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access to a relatively large design space. So we cannot only

search shallow circuits.

Random Search vs. Evolutionary Search. Multiple

candidate algorithms are applicable for the search stage. We

compare the evolutionary with random search in Figure 22.

The best performance of random search quickly saturates,

while evolutionary can find SubCircuit and qubit mapping

pair with lower loss, which delivers higher accuracy.

Effect of Pruning Ratios. Figure 23 shows the effect of

different final pruning ratio for MNIST-2 ZZ+RY space and

Fashion-2 U3+CU3 spaces. As the final ratio increases, there

exists a sweet spot where the positive effect of gate error

reduction can overcome the negative effect of smaller circuit

capacity so we can observe a peak accuracy. In general,

circuits with more parameters can afford a larger pruning

ratio; those with fewer parameters has a smaller ratio. In

Table VII, we further show the acceleration from pruning

a circuit with 180 parameters using the Pennylane classical

simulation framework.
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Table VI
OURS SHOWS HIGHER ACC. THAN SHALLOW CIRCUITS.

Device Space
MNIST-4 Fashion-4 Vowel-4 MNIST-2 Fashion-2
D Acc. D Acc. D Acc. D Acc D Acc

Santiago
Shallow 50 0.55 58 0.56 35 0.27 28 0.94 30 0.87

Ours 73 0.77 107 0.85 116 0.47 191 0.95 74 0.91

Belem
Shallow 29 0.54 30 0.57 35 0.27 28 0.94 30 0.87

Ours 50 0.58 68 0.77 77 0.46 81 0.94 62 0.90

Yorktown
Shallow 29 0.60 30 0.56 39 0.27 51 0.91 30 0.89

Ours 71 0.71 82 0.85 119 0.40 83 0.93 70 0.89

V. RELATED WORK

Quantum Machine Learning. Quantum machine learning

(QML) [6], [62], [63], [84], [89]–[92] explores the training

and evaluation of ML models on quantum devices. They

have been shown to have potential speed-up over their clas-

sical counterparts in various tasks, including metric learning

[84], data analysis [63], and principal component analysis

[62]. In modern designs, QML models use variational quan-

tum circuits with trainable parameters – quantum neural

networks (QNNs). Various theoretical formulations for QNN

have been proposed, e.g., quantum classifier [85], quantum

convolution [86], and quantum Boltzmann machine [93],

etc. Most prior works are exploratory and rely on classical

simulation of small quantum systems [85]. Several works

also propose to search circuits [94]–[97] but they neither

perform noise-adaptive co-search of the circuit and qubit

mapping nor have extensive evaluations on real QC devices

as in QuantumNAS.

Noise-Adaptive Quantum Compiling. A quantum com-

piler translates a quantum program written in high-level

programming languages to hardware instructions, which is

an analogy to compiler and EDA tools in classical com-

putations [98]–[102]. For NISQ systems [11], such trans-

lation needs to be noise-adaptive. As such, Many noise-

adaptive quantum compilers have been proposed. For ex-

ample, various gate errors can be suppressed by dynami-

cal decoupling [103]–[106], composite pulses [107]–[109],

randomized compiling [110], hidden inverses [111], qubit

mapping [40]–[42], instruction scheduling [39], [112], and

frequency tuning [45], [113], [114]. Typically, the key to

these techniques is to find opportunities for local error

cancellation within a quantum circuit. Instead, we propose to

search for a quantum circuit and its qubit mapping pair that

is the most resilient to noise. The flexibility in changing

the quantum circuit itself gives us more freedom to build

12



Table VII
PRUNING CAN SPEEDUP CIRCUITS IN PENNYLANE.

Pruning Ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s) 3.46 3.19 2.93 2.63 2.32 2.11 1.80 1.52 1.28 0.95

Speedup 0 7.9% 15.4% 24.0% 33.0% 39.1% 48.0% 55.9% 63.0% 72.4%

robustness into the quantum algorithms.

Quantum Simulation. Beyond ML, variational circuits can

also be used to explore challenging quantum many-body

physics problems. The first implementation of variational

circuits was the Variational Quantum Eigensolver (VQE) [3],

[4], [65] for quantum simulation of physical systems.

Prior work showed that finding such an ansatz and learn-

ing their parameters is challenging. Different classes of

ansatz designs have been proposed: (1) Problem ansatz [4],

[66] is adapted to a target problem. E.g., UCCSD ansatz

[87] is a design based on the structures in a quantum system

using computational chemistry models. (2) Hardware ansatz

[3] is adapted to the properties of the computing hardware.

Problem ansatz is shown to be typically more resilient to

barren plateau than hardware ansatz [68]. In this work, our

QuantumNAS aims to find a balanced and robust ansatz

design via SuperCircuit-based search.

Quantum Error Mitigation. As the error forms the bot-

tleneck of the quantum area [88]. Various error mitiga-

tion methods are proposed. Extrapolation methods [115],

[116] perform multiple measurements under different error

rates and extrapolate ideal measurement outcomes when no

noise. Quasi-probability [115], [117] probabilistically inserts

X/Y/Z gates then sum results together to cancel out noise.

Ensemble of diverse mapping [118] runs different mappings

of the same circuit on different machines and combines

the results. Other methods such as quantum subspace ex-

pansion [119] and learning-based mitigation [120], [121]

are also proposed. QuantumNAS is fundamentally different.

Prior work focuses on the low-level numerical correction

of trained circuits; QuantumNAS embraces much larger

optimization freedom by searching ansatz with intrinsic ro-

bustness and performs pruning during training. The existing

noise mitigation can be combined with QuantumNAS as they

are orthogonal.

VI. CONCLUSION

We propose QuantumNAS, a noise-adaptive co-search

framework for robust variational circuit and qubit mapping.

We leverage the SuperCircuit-based search to explore an

ample design space efficiently. Iterative pruning is further

leveraged to remove redundant gates in the searched circuits.

Extensive experiments on QML and VQE tasks demonstrate

the higher robustness and performance of QuantumNAS

searched circuits over baseline designs. We also open-source

our circuit training library TorchQuantum, serving as a

convenient infrastructure for future research of variational

quantum algorithms.

Outlook. Our results suggest a variety of new avenues

for further theoretical and experimental explorations in the

domain of variational quantum algorithms. For example: (1)

Machine Learning: How to deploy a noise-adaptive search

strategy to automate the design of a quantum feature map

(i.e., embedding data in high-dimensional Hilbert space)? (2)

Optimization: Can a searched variational ansatz be designed

to alleviate the barren plateau issue as seen in many existing

shallow ansatz? (3) Chemistry: What are the applications

amenable to the ansatz search strategy and how to use the

searched ansatz to efficiently prepare low-energy eigenstates

of a many-body quantum system?

Data Availability. Our open-source software can be found

in this link: TorchQuantum. Source data will also be made

available to facilitate further research.
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APPENDIX

A. Abstract

Our paper introduces a pipeline to search for the most

robust architecture (ansatz) and qubit mapping of parame-

terized quantum circuits with noise information in the loop.

The artifact contains two parts. The first is a general

parameterized quantum circuit training framework called

TorchQuantum. It supports the contribution of our paper

on a convenient framework for parameterized quantum cir-

cuit research. It can be validated by running the training of

an example circuit such as a quantum neural network (QNN)

to perform image classification. The second part is the Quan-

tumNAS pipeline. It supports our contribution on a method

to find the most robust circuit ansatz and corresponding qubit

mapping on the target quantum device. We provide scripts

and Google Colab notebooks to reproduce each step of

the pipeline, from SuperCircuit training, noise-aware search,

SubCircuit training, to pruning, and finally evaluation on real

quantum hardware (IBMQ quantum machines). The results

can be validated by the better performance of the searched

circuits, such as the higher classification accuracy of QNN

and the lower expectation value of VQE. The minimal

hardware requirements will be Intel CPU, one Nvidia GPU,

and remote access to IBMQ quantum machines (using our

provided token). The minimal software requirements will be

python libraries such as PyTorch, Qiskit, etc.
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B. Artifact check-list (meta-information)

• Algorithm: SuperCircuit-based quantum circuit search. It
contains:

– SuperCircuit training.
– SubCircuit and qubit mapping co-search.
– SubCircuit training.
– pruning.

• Program: Benchmarks:

– Image classification with quantum neural networks.
– Vowel recognition with quantum neural networks.
– Variational quantum eigensolver (VQE) task with parame-

terized quantum circuits.

• Compilation: Qiskit Compiler. Public available. Version
0.31.0.

• Binary: PyTorch binary checkpoint files are included.
• Model: Automatically searched and human designed quan-

tum neural networks, variational quantum circuits.
• Data set:

– Vowel recognition. Public available: https://www.openml.
org/d/58. Approximate size: 100KB.

– MNIST image classification. Public available: http://yann.
lecun.com/exdb/mnist/. Approximate size: 15MB.

– Fashion MNIST image classification. Public available:
https://github.com/zalandoresearch/fashion-mnist. Approx-
imate size: 15MB.

The dataset can also be automatically accessed through our
TorchQuantum library with no need for explicit download-
ing and installing.

• Run-time environment:

– Not OS-specific.
– Main software dependencies: Python, PyTorch, Qiskit
– No need for root access.

• Hardware:

– Intel CPUs.
– Remote access to IBMQ quantum machines. Public avail-

able: https://quantum-computing.ibm.com/
– Nvidia GPUs for faster training.

• Run-time state: Sensitive to the noise characteristic of quan-
tum machines. The noise on real quantum machines changes
constantly, so the searched noise-aware circuit architecture
and the measured performance may change.

• Execution: Specific conditions during experiments: the
searched circuits need to be evaluated on the real machine
right after searching, otherwise the noise characteristics will
drift, and performance will be degraded. The runtime depends
on the available CPU/GPU machines and the size of the
quantum circuits. The approximate runtime on CPU machines
for searching and testing one 4-qubit quantum circuit will be
around 5 to 10 hours. The approximate runtime on one Nvidia
GPU will be about 5 to 10 times faster.

• Metrics:

– Classification task: top1 accuracy, the higher the better.
– VQE task: expectation value of molecule ground state

energy, the lower the better.

• Output:

– Classification task: classification labels.
– VQE task: expectation value of molecule ground state

energy.

• Experiments: We provide shell scripts for each step of the
QuantumNAS pipeline. You may find the detailed instruc-
tions in https://github.com/mit-han-lab/torchquantum/artifact/

README.md. The maximum allowable variation of classifi-
cation accuracy should be smaller than 10%.

• How much disk space required (approximately)?: < 10
GB

• How much time is needed to prepare workflow (approx-
imately)?: 1 hour.

• How much time is needed to complete experiments (ap-
proximately)?: 24 hours.

• Publicly available?: Yes. https://github.com/mit-han-
lab/torchquantum and https://zenodo.org/record/5787244#
.YbunmBPMJhE.

• Code licenses (if publicly available)?: MIT License.
• Data licenses (if publicly available)?:

– Vowel: Creative Commons Public available.
– MNIST: Creative Commons Attribution-Share Alike 3.0.
– Fashion MNIST: MIT License.

• Workflow framework used?: PyTorch, Qiskit.
• Archived (provide DOI)?: https://github.com/mit-han-lab/

torchquantum. We will also provide a Zenodo link and DOI
at the end of the evaluation.

C. Description

1) How to access

The artifact is available at the following link:

• https://github.com/mit-han-lab/torchquantum

2) Hardware dependencies

In order to complete the QuantumNAS pipeline experi-

ments in a reasonable amount of time, a CPU with at least 16

GB memory is necessary. Remote access to IBMQ quantum

machines is necessary. We provide tokens in the artifact to

access the IBMQ machine so no additional effort is required

to get access. One GPU machine is highly recommended as

it will significantly accelerate the training process.

3) Software dependencies

The artifact is implemented in Python and requires several

packages such as PyTorch and Qiskit. The detailed full

list of the required packages is in requirements.txt

file and can be installed automatically when installing the

TorchQuantum library.

4) Data sets

Machine learning datasets include Vowel recognition,

MNIST, and FashionMNIST. VQE benchmarks include var-

ious molecules. Details can be found in Table I of the paper.

5) Models

The QNN models are searched SubCircuits with our

noise-aware search pipeline. We also have human design,

random search, no-unaware searched models as baselines.

D. Installation

You can first download the repo to local machine. Then enter

the folder and run:

pip install --editable .

See our README.md for detailed installation instruc-

tions.

E. Experiment workflow

We provide multiple examples to run our artifact.
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1) Running the TorchQuantum library

We provide the script to construct, train and

deploy a simple QNN for the MNIST task in the

artifact/example1 folder. The command is:

./example1/1_train_qnn.sh

2) Running the QuantumNAS pipeline

(i) Run the SuperCircuit training step:

./example2/quantumnas/1_train_supercircuit.sh

(ii) Run the SubCircuit and qubit mapping co-search step:

./example2/quantumnas/2_search.sh

(iii) Run the SubCircuit training step:

./example2/quantumnas/3_train_subcircuit.sh

(iv) Run the pruning of searched SubCircuit:

./example2/quantumnas/4_prune.sh

(v) Run the SubCircuit evaluation step:

./example2/quantumnas/5_eval.sh

Furthermore, we provide scripts to train and evaluate the

human baseline designs:

(i) Run the human baseline training step:

./example2/human/1_train.sh

(ii) Run the human baseline evaluation step:

./example2/human/2_eval.sh

We also provide other scripts for training QuantumNAS

in different datasets, design spaces, and quantum machines

and other baselines. Please check the README.md file for

the details.

F. Evaluation and expected results

For the evaluation of the functionality of QuantumNAS,

the quantum circuit should be successfully constructed and

trained. The expected results will be decreasing training loss

and increasing training accuracy on the classification task.

For the evaluation of QuantumNAS, the evaluated ac-

curacy on real quantum machines will be obtained after

running the scripts. The expected results will be (1) Quan-

tumNAS searched model has better accuracy than baseline

models for classification tasks. (2) QuantumNAS searched

model achieves lower expectation value of molecule ground

state energy for the VQE tasks. This can verify the critical

results of the paper in Figure 14, as the main contribution is

finding a robust quantum circuit and its qubit mapping for

the real quantum devices.

G. Experiment customization

The general TorchQuantum can be used to construct,

train and deploy different architectures of the quantum

circuits. The users can build different customized circuits

from scratch.

H. Notes

Since most of the results in our paper are evaluated

on real quantum machines provided by IBMQ, some of

the machines such as IBMQ_Yorktown, IBMQ_Athens,

IBMQ_Melbourne have already retired, so we are only

able to reproduce results on the remaining accessible quan-

tum machines.

I. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-

review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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