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Abstract. We prove that a continuous potential q can be constructively de-
termined from the knowledge of the Dirichlet–to–Neumann map for the per-
turbed biharmonic operator �2

g + q on a conformally transversally anisotropic
Riemannian manifold of dimension � 3 with boundary, assuming that the ge-
odesic ray transform on the transversal manifold is constructively invertible.
This is a constructive counterpart of the uniqueness result of [56]. In particu-
lar, our result is applicable and new in the case of smooth bounded domains
in the 3–dimensional Euclidean space as well as in the case of 3–dimensional
admissible manifolds.

1. Introduction and statement of results. Let (M, g) be a smooth compact
oriented Riemannian manifold of dimension n � 3 with smooth boundary @M . Let
� be the Dirichlet trace operator defined by

� : H2(M int) ! H
3/2(@M)⇥H

1/2(@M), �u = (u|@M , @⌫u|@M ), (1)

which is bounded and surjective, see [24, Theorem 9.5]. Here and in what follows
M

int = M \@M , Hs(M int) and H
s(@M), s 2 R, are the standard L

2–based Sobolev
spaces on M

int and its boundary @M , respectively, and ⌫ is the exterior unit normal
to @M . We also let H

2
0
(M int) = {u 2 H

2(M int) : �u = 0}. Let ��g = �� be
the Laplace–Beltrami operator on M , and let �2 be the biharmonic operator on
M . Let q 2 C(M). By standard arguments, see for instance [35, Appendix A], the
operator

�2 + q : H2

0
(M int) ! H

�2(M int) = (H2

0
(M int))0, (2)

is Fredholm of index zero and has a discrete spectrum. We shall assume throughout
the paper that

(A) 0 is not in the spectrum of the operator 2.
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Thus, for any f = (f0, f1) 2 H
3/2(@M)⇥H

1/2(@M), the Dirichlet problem
(
(�2 + q)u = 0 in M

int
,

�u = f on @M,
(3)

has a unique solution u 2 H
2(M int), depending continuously on f . Physically, the

Dirichlet boundary condition in 3 corresponds to the clamped plate equation, see
[22]. We define the Dirichlet–to–Neumann map ⇤q by

h⇤qf, giH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M) =

Z

M

(�u)(�v)dV +

Z

M

quvdV,

(4)
where g = (g0, g1) 2 H

3/2(@M) ⇥ H
1/2(@M), v 2 H

2(M int) is such that �v = g,
and u is the solution to 3. The linear map ⇤q is well defined and

⇤q : H3/2(@M)⇥H
1/2(@M) ! H

�3/2(@M)⇥H
�1/2(@M)

is continuous, see [35, Appendix A]. This corresponds to the fact that in the weak
sense we have ⇤qf = (�@⌫(�u)|@M ,�u|@M ).

Note that working with solutions u 2 H
4(M int) of the equation (�2 + q)u = 0,

the explicit description for the Laplacian in the boundary normal coordinates, see
7 below, together with boundary elliptic regularity, see [24, Theorem 11.14], shows
that the knowledge of the graph of the Dirichlet–to–Neumann map ⇤q, {(f,⇤qf) :

f 2 H
7
2 (@M)⇥H

5
2 (@M)} is equivalent to the knowledge of the set of the Cauchy

data,

{(u|@M , @⌫u|@M , @
2

⌫
u|@M , @

3

⌫
u|@M ) : u 2 H

4(M int), (�2 + q)u = 0 in M
int

}.

The areas of physics and geometry where biharmonic operators occur, include
the study of the Kirchho↵ plate equation in the theory of elasticity, and the study
of the Paneitz-Branson operator in conformal geometry, see [22, 15]. In particular,
in the elasticity theory, the biharmonic operator is used to model small transversal
vibrations of a plate of negligible thickness, according to the Kirchho↵–Love model
for elasticity. Furthermore, the biharmonic equation also arises in the theory of
steady Stokes flows of viscous fluids, where it is the equation satisfied by the stream
function, see [49].

The inverse boundary problem for a potential perturbation of the biharmonic
operator is to determine the potential q in M from the knowledge of the Dirichlet–
to–Neumann map ⇤q. In the case of domains in the Euclidean space Rn with
n � 3, this problem was solved in [27], [28] showing that a potential q can indeed
be recovered from the knowledge of the Dirichlet–to–Neumann map ⇤q. While the
work [28] considers the case of bounded potentials, certain classes of unbounded
potentials are dealt with in the work [27], see also [35]. We refer to [33], [32] where
the inverse boundary problem of determination of a first-order perturbation of the
biharmonic operator was studied in the Euclidean case, see also [11], [1], [2], [4]
for the case of non-smooth perturbations, and [9], [23] for the case of second order
perturbations.

Going beyond the Euclidean setting, the global uniqueness in the inverse bound-
ary problem for zero and first-order perturbations of the biharmonic operator was
only obtained in the case when the manifold (M, g) is admissible in [5], see Definition
1.2 below, and in the more general case when (M, g) is CTA (conformally transver-
sally anisotropic, see Definitions 1.1) with the injective geodesic X-ray transform
on the transversal manifold (M0, g0) in [56]. The works [5] and [56] are extensions
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of the fundamental works [16] and [17] which initiated this study in the case of per-
turbations of the Laplacian. We refer to the works [39], [21], [20], [38], for inverse
boundary problems for nonlinear Schrödinger equations on CTA manifolds, and we
remark that there are no assumptions on the transversal manifold in these works.

Definition 1.1. A compact Riemannian manifold (M, g) of dimension n � 3 with
boundary @M is called conformally transversally anisotropic (CTA) if M ⇢⇢ R ⇥

M
int
0

where g = c(e � g0), (R, e) is the Euclidean real line, (M0, g0) is a smooth
compact (n�1)–dimensional manifold with smooth boundary, called the transversal
manifold, and c 2 C

1(M) is a positive function.

Definition 1.2. A compact Riemannian manifold (M, g) of dimension n � 3 with
boundary @M is called admissible if it is CTA and the transversal manifold (M0, g0)
is simple, meaning that for any p 2 M0, the exponential map exp

p
with its maximal

domain of definition in TpM0 is a di↵eomorphism onto M0, and @M0 is strictly
convex.

The proofs of the global uniqueness results in the works [16], [17] [5], [56] rely
on construction of complex geometric optics solutions based on the techniques of
Carleman estimates with limiting Carleman weights. Thanks to the work [16], we
know that the property of being a CTA manifold guarantees the existence of limiting
Carleman weights.

Once uniqueness results for inverse boundary problems have been established,
one is interested in upgrading them to a reconstruction procedure. The reconstruc-
tion of a potential perturbation of the Laplacian from boundary measurements in
the Euclidian space was obtained in the pioneering works [45] and [47], see also
[48]. We refer to [46] for reconstruction in the case of partial data inverse bound-
ary problems. In the case of admissible manifolds, a reconstruction procedure for
a potential perturbation of the Laplacian was given in [29], complementing the
uniqueness result of [16], see also [3]. In the case of more general CTA manifolds
whose transversal manifolds enjoy the constructive invertibility of the geodesic ray
transform, a reconstruction procedure for a potential perturbation of the Laplacian
was established in [19], complementing the uniqueness result of [17]. We refer to
[7], [8] for the reconstruction of a Riemannian manifold from the dynamical data.

Turning the attention to inverse boundary problems for a potential perturbation
of the biharmonic operator, to the best of our knowledge, there is no reconstruction
procedure available in the literature and the purpose of this paper is to provide such
a reconstruction procedure. Our result will be stated in the most general setting
possible, i.e. on a CTA manifold whose transversal manifold enjoys the constructive
invertibility of the geodesic ray transform, but it is applicable and new already in
the case of smooth bounded domains in the 3–dimensional Euclidean space and in
the case of 3–dimensional admissible manifolds. To state our result, we shall need
the following definition.

Definition 1.3. We say that the geodesic ray transform on the transversal manifold
(M0, g0) is constructively invertible if any function f 2 C(M0) can be reconstructed
from the knowledge of its integrals over all non-tangential geodesics in M0. Here
a unit speed geodesic � : [0, L] ! M0 is called non-tangential if �̇(0), �̇(L) are
non-tangential vectors on @M0 and �(t) 2 M

int
0

for all 0 < t < L.

Our main result is as follows, and it gives a constructive counterpart to the
uniqueness result of [56].
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Theorem 1.4. Let (M, g) be a given CTA manifold and assume that the geodesic

ray transform on the transversal manifold (M0, g0) is constructively invertible. Let

q 2 C(M) be such that assumption (A) is satisfied. Then the knowledge of ⇤q

determines q in M constructively.

Combining Theorem 1.4 with the constructive invertibility of the geodesic ray
transform on a simple two-dimensional Riemannian manifold, see [50], [31], [54], see
also [43], [44], we obtain the following unconditional result.

Corollary 1. Let (M, g) be a given 3–dimensional admissible manifold, and let

q 2 C(M) be such that assumption (A) is satisfied. Then the knowledge of ⇤q

determines q in M constructively.

Remark 1. As explained in [16], bounded smooth domains in the Euclidean space
are examples of admissible manifolds, and therefore, Corollary 1 is applicable and
new in this case.

Remark 2. Beyond the case of a simple two-dimensional Riemannian manifold, the
constructive invertibility of the geodesic ray transform is also known in particular
in the following situations:

• (M0, g0) is a two-dimensional Riemannian manifold with strictly convex bound-
ary, no conjugate points, and the hyperbolic trapped set (these conditions are
satisfied in negative curvature, in particular), see [25].

• (M0, g0) is of dimension n � 3, has a strictly convex boundary, and is globally
foliated by strictly convex hypersurfaces, see [55].

Remark 3. The work [56] establishes that not only a continuous potential but
an entire continuous first-order perturbation can be determined uniquely from the
knowledge of the set of the Cauchy data on the boundary of a CTA manifold
provided that the geodesic ray transform on the transversal manifold is injective,
and therefore, it would be interesting to propose a reconstruction procedure of the
recovery of a full first-order perturbation. We shall address this question in future
work. To the best of our knowledge, there are no reconstruction results even in the
case of a first-order perturbation of the Laplacian on admissible manifolds and the
only available result is the work [14] in the case of compact domains contained in
cylindrical manifolds of the form R ⇥ Td with Td being the d-dimensional torus,
d � 2, see also [53] for the Euclidean case. Note that the problem of determining a
first-order perturbation of the biharmonic operator appears to be more challenging,
as here one has to recover a first-order perturbation uniquely while in the case of
the Laplacian, one only needs to determine it up to a gauge transformation, which
is only the first step in the corresponding program for the biharmonic operator, see
[56].

Let us proceed to discuss the main ideas in the proof of Theorem 1.4. The first
step is the derivation of the integral identity,
Z

M

qu1u2dV = h(⇤q � ⇤0)�u1, �u2iH1/2(@M)⇥H3/2(@M),H�1/2(@M)⇥H�3/2(@M), (5)

where u1, u2 2 L
2(M) are solutions to (�2 + q)u1 = 0 and �2

u2 = 0 in M
int. The

next step is to test the integral identity 5 agains suitable complex geometric optics
solutions u1 and u2. Working on a general CTA manifold, we shall obtain such
solutions based on Gaussian beam quasimodes for the conjugated biharmonic oper-
ator, constructed on M and localized to non-tangential geodesics on the transversal
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manifold M0 times Rx1 . Such solutions were constructed in [56] without any notion
of uniqueness involved. In this paper, we propose an alternative construction to
produce complex geometric optics solutions enjoying a uniqueness property. The
key step in the proof is the constructive determination of the Dirichlet trace �u1 on
@M of the unique complex geometric optics solution u1 from the knowledge of the
Dirichlet–to–Neumann map ⇤q. Once this step is carried out, the quantity on the
right hand side of 5 is reconstructed thanks to the knowledge of the manifold M

and ⇤q. Another ingredient in the proof is the boundary reconstruction formula for
q|@M from the knowledge of ⇤q. Using it together with the constructive invertibility
of the geodesic ray transform and following the standard argument, see [17], [19],
we reconstruct the potential q from the left hand side of 5, with u1 and u2 being
the complex geometric optics solutions.

To the best of our knowledge, there are two approaches to the reconstruction
of the Dirichlet boundary traces of suitable complex geometric optics solutions to
the Schrödinger equation in the Euclidean space in the literature. In the first one,
suitable complex geometric optics solutions are constructed globally on all of Rn,
enjoying uniqueness properties characterized by decay at infinity, see [45], [47],
while in the second one, complex geometric optics solutions are constructed by
means of Carleman estimates on a bounded domain, and the notion of uniqueness
is obtained by restricting the attention to solutions of minimal norm, see [46]. In
both approaches, the boundary traces of the complex geometric optics solutions
in question are determined as unique solutions of well-posed integral equations on
the boundary of the domain, involving the Dirichlet–to–Neumann map along with
other known quantities. In the proof of Theorem 1.4 in order to reconstruct the
Dirichlet trace �u1 = (u1|@M , @⌫u1|@M ) on @M of the unique complex geometric
optics solution u1 from the knowledge of the Dirichlet–to–Neumann map ⇤q, we
follow the second approach, adapting the simplified version of it given in [19] to the
case of perturbed biharmonic operators. Compared to [19], we not only need to
reconstruct the boundary trace u1|@M but also the boundary trace @⌫u1|@M of the
normal derivative. In doing so, we introduced the single layer operator associated
to the Green operator of the conjugated semiclassical biharmonic operator.

Finally, let us mention that similarly to the reconstructions results of [29] and
[19], we make no claims regarding the practicality of the reconstruction procedure
developed in this paper. Our purpose merely is to show that all the steps in the
proof of the uniqueness result of [56] can be carried out constructively.

This article is organized as follows. In Section 2 we collect some essentially
well-known results related to the maximal domain of the biharmonic operator and
boundary traces needed in the proof of Theorem 1.4. The derivation of the integral
identify 5 is also given in Section 2. In Section 3 we present an extension of the
Nachman–Street method [46] for the constructive determination of the boundary
traces of suitable complex geometric optics solutions, developed for the Schrödinger
equation, to the case of the perturbed biharmonic equation. In Section 4, we give
a construction of complex geometric optics solutions to the perturbed biharmonic
equations enjoying uniqueness property and complete the proof of Theorem 1.4.
Finally, a reconstruction formula for the boundary traces of a continuous potential
from the knowledge of ⇤q for the perturbed biharmonic operator is established in
Appendix A.
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2. The Hilbert space H�2(M) and boundary traces. The purpose of this
section is to collect some essentially well-known results needed in the proof of The-
orem 1.4, see also [24], [41]. Since we are dealing with the biharmonic operator �2

rather than the Laplacian, some of the proofs are provided for the convenience of
the reader.

Let (M, g) be a smooth compact oriented Riemannian manifold of dimension
n � 3 with smooth boundary @M . We shall need the following Green formula for
�2, valid for u, v 2 H

4(M int),
Z

M

(�2
u)vdV �

Z

M

u(�2
v)dV =

Z

@M

@⌫u(�v)dS �

Z

@M

u@⌫(�v)dS

+

Z

@M

@⌫(�u)vdS �

Z

@M

(�u)@⌫vdS,
(6)

where ⌫ is the unit exterior normal vector to @M , dV and dS are the Riemannian
volume elements on M and @M , respectively, see [24].

We shall also need the following expressions for the operators � and @⌫� on the
boundary of M , valid for v 2 H

4(M int),

�v = @
2

⌫
v +H@⌫v +�tv on @M,

@⌫�v = @
3

⌫
v + @⌫H@⌫v +H@

2

⌫
v +�t@⌫v on @M,

(7)

where H = 1

2
@⌫ log | det g| 2 C

1(M) and �t = �g|@M
is the tangential Laplacian

on @M , see [40].
Consider the Hilbert space

H�2(M) = {u 2 L
2(M) : �2

u 2 L
2(M)},

equipped with the norm

kuk
2

H�2 (M)
= kuk

2

L2(M)
+ k�2

uk
2

L2(M)
.

The spaceH�2(M) is the maximal domain of the bi-Laplacian�2, acting on L
2(M).

We shall need the following result concerning the existence of traces of functions
in H�2(M).

Lemma 2.1. (i) The trace map �j : C1(M) ! C
1(@M), u 7! @

j

⌫
u|@M , j =

0, 1, extends to a linear continuous map

�j : H�2(M) ! H
�j�1/2(@M). (8)

(ii) The trace map �̃j : C1(M) ! C
1(@M), u 7! @

j

⌫
(�u)|@M , j = 0, 1, extends

to a linear continuous map

�̃j : H�2(M) ! H
�j�5/2(@M).

Proof. We follow the arguments of [13, Section 1], carried out in the case of �.
(i). Let j = 0, u 2 C

1(M), and w 2 H
1/2(@M). By the Sobolev extension

theorem, see [24, Theorem 9.5], there exists v 2 H
4(M int) such that

v|@M = 0, @⌫v|@M = 0, @
2

⌫
v|@M = 0, @

3

⌫
v|@M = w, (9)

and
kvkH4(M int)  CkwkH1/2(@M). (10)

It follows from 6, 7, 9 that

�

Z

@M

uwdS =

Z

M

(�2
u)vdV �

Z

M

u(�2
v)dV,
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and therefore, using 10, we get
����
Z

@M

uwdS

����  CkukH�2 (M)kvkH4(M int)  CkukH�2 (M)kwkH1/2(@M).

Hence,
k�0ukH�1/2(@M)  CkukH�2 (M). (11)

By the density of the space C
1(M) in H�2(M), see [41, Chapter 2, Section 8.1,

page 192], and also [24, Theorem 9.8, and page 233], we conclude that the map �0
extends to a continuous linear map: H�2(M) ! H

�1/2(@M) and 11 holds for all
u 2 H�2(M). This shows (i) with j = 0.

Let next j = 1 in (i) and let us now prove that �1 extends to a continuous
linear map: H�2(M) ! H

�3/2(@M). To that end, let u 2 C
1(M) and let w 2

H
3/2(@M). By the Sobolev extension theorem, there is v 2 H

4(M int) such that

v|@M = 0, @⌫v|@M = 0, @
2

⌫
v|@M = w, @

3

⌫
v|@M = �Hw, (12)

where H is defined in 7, and

kvkH4(M int)  CkwkH3/2(@M). (13)

It follows from 7 and 12 that

�v|@M = w, @⌫(�v)|@M = 0. (14)

Using 6, 12, 14, we get
Z

@M

(@⌫u)wdS =

Z

M

(�2
u)vdV �

Z

M

u(�2
v)dV,

and therefore, using 13, we see that
����
Z

@M

(@⌫u)wdS

����  CkukH�2 (M)kwkH3/2(@M).

Thus,
k�1ukH�3/2(@M)  CkukH�2 (M). (15)

By the density of the space C1(M) in H�2(M), we obtain that the map �1 extends
to a continuous linear map: H�2(M) ! H

�3/2(@M) and 15 holds for all u 2

H�2(M). This shows (i) with j = 1.
(ii). The proof here follows along the same lines as in the case (i). Let us only

mention that when j = 0, we shall work with w 2 H
5/2(@M) and v 2 H

4(M int)
such that

v|@M = 0, @⌫v|@M = w, @
2

⌫
v = �Hw, @

3

⌫
v = �(@⌫H)w +H

2
w ��tw.

Therefore, this together with 7 implies that

�v|@M = 0, @⌫�v|@M = 0.

We also have kvkH4(M int)  CkwkH5/2(@M).

When j = 1, we shall work with w 2 H
7/2(@M) and v 2 H

4(M int) such that

v|@M = w, @⌫v|@M = 0, @
2

⌫
v = ��tw, @

3

⌫
v = H�tw.

Therefore, by 7, we get

�v|@M = 0, @⌫�v|@M = 0.

We also have kvkH4(M int)  CkwkH7/2(@M). This completes the proof of Lemma
2.1.
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By Lemma 2.1, we have the following consequence of 6.

Corollary 2. For any u 2 H�2(M) and v 2 H
4(M int), we have the following

generalized Green formula,

Z

M

(�2
u)vdV �

Z

M

u�2
vdV =

Z

@M

@⌫u(�v)dS �

Z

@M

u@⌫(�v)dS

+

Z

@M

@⌫(�u)vdS �

Z

@⌦

(�u)@⌫vdS,
(16)

where Z

@M

@⌫u(�v)dS := h�1u,�viH�3/2(@M),H3/2(@M),

Z

@M

u@⌫(�v)dS := h�0u, @⌫(�v)iH�1/2(@M),H1/2(@M),

Z

@M

@⌫(�u)vdS := h�̃1u, viH�7/2(@M),H7/2(@M),

Z

@⌦

(�u)@⌫vdS := h�̃0u, @⌫viH�5/2(@M),H5/2(@M).

We shall need the following extension of [18, Theorem 26.3] to the case of the
biharmonic operator �2. Here for u 2 H�2(M), we set

�u = (�0u, �1u), (17)

where �j , j = 0, 1, are given by 8. Note � in 17 is an extension of the trace map in
1.

Theorem 2.2. For each g = (g0, g1) 2 H
�1/2(@M) ⇥ H

�3/2(@M), there exists a

unique u 2 L
2(M) such that

(
�2

u = 0 in M
int

,

�u = g on @M,
(18)

and

kukL2(M)  CkgkH�1/2(@M)⇥H�3/2(@M). (19)

Here kgk
2

H�1/2(@M)⇥H�3/2(@M)
= kg0k

2

H�1/2(@M)
+ kg1k

2

H�3/2(@M)
.

Proof. We shall follow the proof of [18, Theorem 26.3]. Let v 2 H
4(M int) be such

that v|@M = 0, @⌫v|@M = 0. If there is u 2 L
2(M) satisfying 18 then by the

generalized Green formula 16, we obtain
Z

M

u�2
vdV = hg0, @⌫(�v)iH�1/2(@M),H1/2(@M)�hg1,�viH�3/2(@M),H3/2(@M). (20)

Consider the subspace

L := {�2
v : v 2 H

4(M int), v|@M = 0, @⌫v|@M = 0} ⇢ L
2(M).

In view of 20, we define the linear functional F on L by

F (�2
v) := hg0, @⌫(�v)iH�1/2(@M),H1/2(@M) � hg1,�viH�3/2(@M),H3/2(@M). (21)

Using the Cauchy–Schwarz inequality, the following Sobolev trace theorem

k(v, @⌫v, @
2

⌫
v, @

3

⌫
v)k(H7/2⇥H5/2⇥H3/2⇥H1/2)(@M)  CkvkH4(M int),
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and 7, we obtain from 21 that

|F (�2
v)|  kg0kH�1/2(@M)k@⌫(�v)kH1/2(@M) + kg1kH�3/2(@M)k�vkH3/2(@M)

 CkgkH�1/2(@M)⇥H�3/2(@M)kvkH4(M int).
(22)

Using the fact that v|@M = 0, @⌫v|@M = 0, and boundary elliptic regularity, see [24,
Theorem 11.14], we get

kvkH4(M int)  Ck�2
vkL2(M). (23)

Combining 22 and 23, we obtain that

|F (�2
v)|  CkgkH�1/2(@M)⇥H�3/2(@M)k�

2
vkL2(M),

which shows that F is bounded on L. Thus, by the Hahn-Banach theorem, F can
be extended to a bounded linear functional on L

2(M), and by Riesz representation
theorem, there exists u 2 L

2(M) such that

F (�2
v) =

Z

M

(�2
v)udV, (24)

and 19 holds. Letting v 2 C
1
0
(M int), we conclude from 24 and 21 that �2

u = 0 in
M

int.
Using 24, 21, and the generalized Green formula 16, we get

h�0u, @⌫(�v)iH�1/2(@M),H1/2(@M) � h�1u,�viH�3/2(@M),H3/2(@M)

=hg0, @⌫(�v)iH�1/2(@M),H1/2(@M) � hg1,�viH�3/2(@M),H3/2(@M),
(25)

for all v 2 H
4(M int) such that v|@M = 0, @⌫v|@M = 0.

Letting w 2 H
1/2(@M), and taking v 2 H

4(M int) such that 9 holds, we see from
25 that �0u = g0. Furthermore, letting w 2 H

3/2(@M) and taking v 2 H
4(M int)

such that 12 holds, in view of 14, we conclude from 25 that �1u = g1.
The uniqueness follows from the fact that if u 2 L

2(M) solves the Dirichlet
problem 18 with g = 0 then by the boundary elliptic regularity, see [24, Theorem
11.14], u 2 H

4(M int), and therefore, u = 0.

Corollary 3. Let q 2 C(M) be such that assumption (A) is satisfied, and let

Hq := {u 2 L
2(M) : (�2 + q)u = 0} ⇢ H�2(M).

Then the trace map

� : Hq ! H
�1/2(@M)⇥H

�3/2(@M) (26)

is bijective.

Proof. We begin by showing that the map � in 26 is surjective. To that end, letting
g 2 H

�1/2(@M) ⇥ H
�3/2(@M), by Theorem 2.2, we get a unique u 2 L

2(M)
satisfying 18. Assumption (A) implies that there is a unique v 2 H

2
0
(M int) such

that (
(�2 + q)v = qu in M

int
,

�v = 0 on @M.
(27)

Now letting w = u � v 2 L
2(M), in view of 18 and 27, we see that w 2 Hq and

�w = g. This shows the surjectivity of � in 26.
The injectivity of � in 26 follows from the fact that if u 2 Hq is such that

�u = 0 then the boundary elliptic regularity, see [24, Theorem 11.14], shows that
u 2 (H4

\H
2
0
)(M int), and by assumption (A), u = 0.
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In view of Corollary 3, we can define the Poisson operator as follows,

Pq = �
�1 : H�1/2(@M)⇥H

�3/2(@M) ! Hq. (28)

We have
kPqfkL2(M)  CkfkH�1/2(@M)⇥H�3/2(@M), (29)

for all f 2 H
�1/2(@M)⇥H

�3/2(@M).
Finally, let us derive the integral identity which will be used to reconstruct the

potential. To that end, let f, g 2 H
3/2(@M) ⇥H

1/2(@M), let u = u
f
2 H

2(M int)
be the unique solution to the Dirichlet problem

(
(�2 + q)u = 0 in M

int
,

�u = f on @M,
(30)

and let v = v
g
2 H

2(M int) be the unique solution to the Dirichlet problem
(
�2

v = 0 in M
int

,

�v = g on @M.
(31)

By the definition of the Dirichlet–to–Neumann map 4, we get

h⇤qf, giH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M) =

Z

M

(�u
f )(�v

g)dV +

Z

M

qu
f
v
g
dV,

(32)

and
h⇤0g, fiH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M)

=

Z

M

(�v
g)(�u

f )dV

=

Z

M

(�v
g)(�v

f )dV = h⇤0f, giH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M).

(33)

In the penultimate equality of 33 we used the fact that the definition of the Dirichlet–
to–Neumann map ⇤0 is independent of the choice of extension of f 2 H

3/2(@M)⇥
H

1/2(@M) to an H
2(M int) element whose trace is equal to f . Considering the

di↵erence of 32 and 33, we obtain the following integral identity,

h(⇤q � ⇤0)f, giH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M) =

Z

M

quvdV, (34)

where u = u
f
, v = v

g
2 H

2(M int) are solutions to 30 and 31, respectively.
We would like to extend the Nachman–Street argument [46] to reconstruct the

potential q from the knowledge of the Dirichlet–to–Neumann map for the bihar-
monic operator and therefore, as in [46], we shall work with L

2(M) solutions rather
than H

2(M int) solutions to the Dirichlet problems 30, 31. Thus, we shall need to
extend the integral identity 34 to such solutions. In doing so, we first claim that
⇤q � ⇤0 extends to a linear continuous map

⇤q � ⇤0 : H�1/2(@M)⇥H
�3/2(@M) ! H

1/2(@M)⇥H
3/2(@M). (35)

To that end, letting f, g 2 C
1(@M) ⇥ C

1(@M), we conclude from 34, 19, and 29
that

|h(⇤q � ⇤0)f, giL2(@M)⇥L2(@M),L2(@M)⇥L2(@M)|

CkukL2(M)kvkL2(M)

CkfkH�1/2(@M)⇥H�3/2(@M)kgkH�1/2(@M)⇥H�3/2(@M).
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Hence,

k(⇤q � ⇤0)fkH1/2(@M)⇥H3/2(@M)  CkfkH�1/2(@M)⇥H�3/2(@M),

which together with the density of C1(@M)⇥C
1(@M) in the space H�1/2(@M)⇥

H
�3/2(@M) gives the claim 35.
Now letting f, g 2 H

�1/2(@M)⇥H
�3/2(@M), approximating them by C

1(@M)⇥
C

1(@M)–functions, using 35, 19, and 29, we obtain from 34 that

h(⇤q � ⇤0)f, giH1/2(@M)⇥H3/2(@M),H�1/2(@M)⇥H�3/2(@M) =

Z

M

quvdV, (36)

where u = u
f
, v = v

g
2 L

2(M) are solutions to 30 and 31, respectively.

3. The Nachman–Street argument for biharmonic operators. The goal of
this section is to extend the Nachman–Street argument [46] for constructive de-
termination of the boundary traces of suitable complex geometric optics solutions,
developed for the Schrödinger equation, to the case of the perturbed biharmonic
equation. Specifically, we shall extend to the case of the perturbed biharmonic
equation the simplified version of the Nachman–Street argument, presented in [19]
in the full data case in the setting of compact Riemannian manifolds with boundary
admitting a limiting Carleman weight.

Let (M, g) be a smooth compact Riemannian manifold of dimension n � 3
with smooth boundary @M , and let �h

2�g = �h
2� be the semiclassical Laplace–

Beltrami operator on M , where h > 0 is a small semiclassical parameter. Assume,
as we may, that (M, g) is embedded in a compact smooth Riemannian manifold
(N, g) without boundary of the same dimension, and let U be open in N such that
M ⇢ U . When ' 2 C

1(U ;R), we let

P' = e
'
h (�h

2�)e�
'
h

be the conjugated operator, and let p' be its semiclassical principal symbol. Fol-
lowing [30], [16], we say that ' 2 C

1(U ;R) is a limiting Carleman weight for �h
2�

on (U, g) if d' 6= 0 on U , and the Poisson bracket of <p' and =p' satisfies,

{<p',=p'} = 0 when p' = 0.

Using Carleman estimates for �h
2�, established in [16], it was shown in [46], see

also [19, Proposition 2.2], that for all 0 < h ⌧ 1 and any v 2 L
2(M), there exists a

unique solution u 2 (Ker(P'))? of the equation

P'u = v in M
int

.

Here
Ker(P') = {u 2 L

2(M) : P'u = 0}.

Based on this unique solution, the Green operator G' for P' was constructed in
[46], see also [19, Theorem 2.3], enjoying the following properties: for all 0 < h ⌧ 1,
there exists a linear continuous operator G' : L2(M) ! L

2(M) such that

P'G' = I on L
2(M), kG'kL(L2(M),L2(M)) = O(h�1),

G
⇤
'
= G�', G'P' = I on C

1
0
(M int).

(37)

Here G
⇤
'

denotes the L
2(M)–adjoint of G'. Letting P

⇤
'

be the formal L2(M)–
adjoint of P', we see that P

⇤
'
= P�'. Note also that if ' is a limiting Carleman

weight for �h
2� then so is �'.
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In this paper we shall work with the semiclassical biharmonic operator (�h
2�)2.

We have
P

2

'
= e

'
h (�h

2�)2e�
'
h .

We shall use G
2
'
: L2(M) ! L

2(M) as Green’s operator for P 2
'
. It follows from 37

that G2
'
enjoys the following properties,

P
2

'
G

2

'
= I on L

2(M), kG
2

'
kL(L2(M),L2(M)) = O(h�2),

(G2

'
)⇤ = G

2

�'
, G

2

'
P

2

'
= I on C

1
0
(M int).

(38)

Furthermore, the first identity in 38 implies that

G
2

'
: L2(M) ! e

'/h
H�2(M). (39)

Next we shall proceed to introduce single layer operators associated to the Green
operator G2

'
. First note that the trace map � given by 17 has the following mapping

properties,

� : e±'/h
H�2(M) ! e

±'/h(H�1/2(@M)⇥H
�3/2(@M)) = H

�1/2(@M)⇥H
�3/2(@M),

(40)

and therefore, using 39, we get

� �G
2

'
: L2(M) ! H

�1/2(@M)⇥H
�3/2(@M)

is continuous. Here and below the operator norms for the various continuous maps
depend on the semiclassical parameter h, and we only indicate explicitly this de-
pendence when needed. This implies that the L

2–adjoint

(� �G
2

'
)⇤ : H1/2(@M)⇥H

3/2(@M) ! L
2(M) (41)

is also continuous. For any g 2 H
1/2(@M)⇥H

3/2(@M), we have

P
2

�'
((� �G

2

'
)⇤g) = 0 in D

0(M int). (42)

The proof is based on the following observation. Letting f 2 C
1
0
(M int), using the

fourth property in 38, we get

(P 2

�'
((� �G

2

'
)⇤g), f)L2(M)

=((� �G
2

'
)⇤g, P 2

'
f)L2(M)

=(g, (� �G
2

'
)P 2

'
f)H1/2(@M)⇥H3/2(@M),H�1/2(@M)⇥H�3/2(@M)

=0.

Now 41 and 42 imply that e'/h(� �G2
'
)⇤g 2 H�2(M), and therefore, we have the

following mapping properties for the operator (� �G
2
'
)⇤,

(� �G
2

'
)⇤ : H1/2(@M)⇥H

3/2(@M) ! e
�'/h

H�2(M),

which improves 41. Thus, in view of 40, we have that the map

� � (� �G
2

'
)⇤ : H1/2(@M)⇥H

3/2(@M) ! H
�1/2(@M)⇥H

�3/2(@M)

is well defined and continuous, and therefore, its L2–adjoint

(� � (� �G
2

'
)⇤)⇤ : H1/2(@M)⇥H

3/2(@M) ! H
�1/2(@M)⇥H

�3/2(@M)

is also continuous. We introduce the single layer operator associated to the Green
operator G2

'
as follows:

S' =e
�'/h(� � (� �G

2

'
)⇤)⇤e'/h

2 L(H1/2(@M)⇥H
3/2(@M), H�1/2(@M)⇥H

�3/2(@M)).
(43)
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Note that definition 43 looks similar to the corresponding single layer operator in
the case of the Laplacian in [46], see also [19], with the only di↵erence that here the
Green operator is G2

'
instead of G' and the trace � has two components.

Now in view of 35 and 43, we have

S'(⇤q � ⇤0) : H
�1/2(@M)⇥H

�3/2(@M) ! H
�1/2(@M)⇥H

�3/2(@M).

is continuous. We claim that

S'(⇤q � ⇤0) = � � e
�'/h

�G
2

'
� e

'/h
� q � Pq (44)

in the sense of linear continuous operators on the space H�1/2(@M)⇥H
�3/2(@M).

Here Pq is the Poisson operator given by 28. To see 44, letting f, g 2 C
1(@M) ⇥

C
1(@M), we get

h� � e
�'/h

�G
2

'
� e

'/h
� q � Pqf, giH�1/2(@M)⇥H�3/2(@M),H1/2(@M)⇥H3/2(@M)

=hq � Pqf, e
'/h(� �G

2

'
)⇤e�'/h

giL2(M),L2(M)

=h(⇤q � ⇤0)f, � � e
'/h(� �G

2

'
)⇤e�'/h

giH�1/2(@M)⇥H�3/2(@M),H1/2(@M)⇥H3/2(@M)

=hS'(⇤q � ⇤0)f, giH�1/2(@M)⇥H�3/2(@M),H1/2(@M)⇥H3/2(@M),

showing 44. Here in the penultimate equality, we used the fact that �2(e'/h(� �

G
2
'
)⇤e�'/h

g) = 0 in M
int in view of 42 and the integral identity 36, and in the last

equality we used 43.
Similar to [19, Proposition 2.4], we have the following result.

Proposition 1. Let f, g 2 H
�1/2(@M)⇥H

�3/2(@M). Then

(1 + h
4
S'(⇤q � ⇤0))f = g (45)

if and only if

(1 + e
�'/h

�G
2

'
� e

'/h
h
4
q)Pqf = P0g. (46)

Proof. Assume first that 45 holds. To show that 46 holds, we first observe that
(h2�)2Pqf = �h

4
qPqf . Using the first property in 38, we also obtain that

(h2�)2(1 + e
�'/h

�G
2

'
� e

'/h
h
4
q)Pqf = 0 in M

int
. (47)

Furthermore, 44 and 45 imply that

�(1 + e
�'/h

�G
2

'
� e

'/h
h
4
q)Pqf = f + h

4
S'(⇤q � ⇤0))f = g. (48)

By the uniqueness result of Theorem 2.2 applied to 47 and 48, we obtain 46.
Now if 46 holds then 45 can be obtained by taking the trace � on both sides of

46.

The recovery of the boundary traces of suitable complex geometric optics solu-
tions to the equation (�2 + q)u = 0 will be based on the following result, which is
similar to [19, Proposition 2.5].

Proposition 2. The operator 1 + h
4
S'(⇤q � ⇤0) : H�1/2(@M) ⇥ H

�3/2(@M) !
H

�1/2(@M)⇥H
�3/2(@M) is a linear homemorphism for all 0 < h ⌧ 1.

Proof. First using that kG
2
'
kL2(M)!L2(M) = O(h�2), see 38, we observe that the

operator 1+ e
�'/h

�G
2
'
� e

'/h
h
4
q in 46 is a linear homemorphism on L

2(M) for all
0 < h ⌧ 1. Thus, for all 0 < h ⌧ 1 and for all v 2 L

2(M), the equation

(1 + e
�'/h

�G
2

'
� e

'/h
h
4
q)u = v in M

int
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has a unique solution u 2 L
2(M). Furthermore, if v 2 H0 then u 2 Hq by the first

property of 38. Hence, for all 0 < h ⌧ 1, the operator 1 + e
�'/h

� G
2
'
� e

'/h
h
4
q :

Hq ! H0 is an isomorphism. It follows from 28 that the operator (1 + e
�'/h

�

G
2
'
� e

'/h
h
4
q) � Pq : H�1/2(@M) ⇥ H

�3/2(@M) ! H0 is an isomorphism for all
0 < h ⌧ 1. This together with Proposition 1 implies the claim.

4. Proof of Theorem 1.4. Let (M, g) be a CTA manifold so that (M, g) ⇢⇢

(R ⇥M
int
0

, c(e � g0)). Since (M, g) is known, the transversal manifold (M0, g0) as
well as the conformal factor c are also known. Therefore, the Dirichlet–to–Neumann
map ⇤0 is also known. Furthermore, we assume the knowledge of the Dirichlet–to–
Neumann map ⇤q. Using the integral identity 36, we would like to reconstruct the
potential q from this data.

Let x = (x1, x
0) be the local coordinates in R⇥M0. We know from [16] that the

function '(x) = x1 is a limiting Carleman weight for the semiclassical Laplacian
�h

2�. Our starting point is the following result about the existence of Gaussian
beam quasimodes for the biharmonic operator, constructed on M and localized to
non-tangential geodesics on the transversal manifold M0 times Rx1 , established in
[56, Propositions 2.1, 2.2]. See also [6], [52], [51], [17], [34] for related constructions
of Gaussian beam quasimodes for second order operators and applications to inverse
boundary problems.

Theorem 4.1. [56, Propositions 2.1, 2.2] Let s = 1

h
+ i�, 0 < h < 1, � 2 R and

let � : [0, L] ! M0 be a unit speed non-tangential geodesic on M0. Then there are

families of Gaussian beam quasimodes vs, ws 2 C
1(M) such that

kvskH1
scl(M

int) = O(1), ke
sx1(h2�)2e�sx1vskL2(M) = O(h5/2), (49)

kwskH1
scl(M

int) = O(1), ke
�sx1(h2�)2esx1wskL2(M) = O(h5/2), (50)

as h ! 0. Furthermore, letting  2 C(M0), and letting x1 2 R, we have

lim
h!0

Z

{x1}⇥M0

vsws dVg0 =

Z
L

0

e
�2�t

c(x1, �(t))
1�n

2  (�(t))dt. (51)

We shall use the Gaussian beam quasimodes of Theorem 4.1 to construct so-
lutions u2, u1 2 L

2(M) to the biharmonic equation �2
u2 = 0 and the perturbed

biharmonic equation (�2 + q)u1 = 0 in M , which will be used to test the integral
identity 36. Note that some solutions of the perturbed biharmonic equations based
on the Gaussian beam quasimodes of Theorem 4.1 were constructed in [56] with the
help of Carleman estimates. Here our construction will be di↵erent as we need to be
able to reconstruct their traces �u1 = (u1|@M , @⌫u1|@M ). Specifically, we construct
complex geometric optics solutions enjoying a uniqueness property based on the
Green operator G2

'
for the conjugated biharmonic operator P 2

'
.

First, let us define u2 2 L
2(M) by

u2 = e
sx1(ws + r̃2), (52)

where ws is the Gaussian beam quasimode given by Theorem 4.1 and r̃2 2 L
2(M)

is the remainder term. Now u2 solves �2
u2 = 0 if r̃2 satisfies

P
2

�'
e
i�x1 r̃2 = �e

i�x1e
�sx1h

4�2
e
sx1ws. (53)

Looking for r̃2 in the form r̃2 = e
�i�x1G

2
�'

r2 with r2 2 L
2(M), we see from 53 and

38 that r2 = �e
i�x1e

�sx1h
4�2

e
sx1ws. It follows from 50 that kr2kL2(M) = O(h5/2),
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and therefore, using 38, we get

kr̃2kL2(M) = O(h1/2), (54)

as h ! 0.
Next we look for u1 2 L

2(M) solving

(�2 + q)u1 = 0 in M
int (55)

in the form,
u1 = u0 + e

�sx1 r̃1. (56)

Here u0 2 L
2(M) is such that

�2
u0 = 0 in M

int
, (57)

and u0 has the form,
u0 = e

�sx1(vs + r̃0), (58)

where vs is the Gaussian beam quasimode given by Theorem 4.1, and r̃0, r̃1 2 L
2(M)

are the remainder terms. First in view of 57, r̃0 should satisfy

P
2

'
e
�i�x1 r̃0 = �e

�i�x1e
sx1h

4�2
e
�sx1vs. (59)

Looking for r̃0 in the form r̃0 = e
i�x1G

2
'
r0, we conclude from 59 that

r0 = �e
�i�x1e

sx1h
4�2

e
�sx1vs.

Thus, it follows from 49 that kr0kL2(M) = O(h5/2), and therefore, using 38, we
obtain that

kr̃0kL2(M) = O(h1/2), (60)

as h ! 0. Now u1 given by 56 is a solution to 55 provided that

(P 2

'
+ h

4
q)e�i�x1 r̃1 = �h

4
e
'/h

qu0 in M
int

. (61)

Looking for r̃1 in the form r̃1 = e
i�x1G

2
'
r1 with r1 2 L

2(M), we see from 61 that

(1 + h
4
qG

2

'
)r1 = �h

4
e
'/h

qu0 in M
int

. (62)

In view of 38, 58, 49, and 60, for all 0 < h ⌧ 1, there exists a unique solution
r1 2 L

2(M) to 62 such that

kr1kL2(M) = O(h4)ke'/h
u0kL2(M) = O(h4),

and therefore,
kr̃1kL2(M) = O(h2). (63)

Next we would like to reconstruct the boundary traces �u1 = (u1|@M , @⌫u1|@M ),
where the complex geometric optics solution u1 to 55 is given by 56, from the
knowledge of the Dirichlet–to–Neumann map ⇤q. First we claim that u1 satisfies
the equation

(1 + h
4
e
�'/h

G
2

'
qe

'/h)u1 = u0. (64)

Indeed, applying the operator G2
'
to 62 and then multiplying it by e

�'/h, we get

e
�sx1 r̃1 + h

4
e
�'/h

G
2

'
qe

'/h
u1 = 0. (65)

Adding u0 to both sides of 65 gives us 64.
Using Proposition 1, we obtain from 64 that f = �u1 2 H

�1/2(@M)⇥H
�3/2(@M)

satisfies the boundary integral equation

(1 + h
4
S'(⇤q � ⇤0))f = �u0. (66)
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Since (M, g) is known, u0 and therefore, �u0 are also known as well as the single
layer operator S', and the Dirichlet–to–Neumann map ⇤0. Furthermore, Dirichlet–
to–Neumann map ⇤q is known as well. By Proposition 2, for all 0 < h ⌧ 1, the
boundary trace f = �u1 can be reconstructed as the unique solution to 66.

Now substituting u1 and u2, given by 56 and 52, respectively, into the integral
identity 36, we get
Z

M

qu1u2dV = h(⇤q � ⇤0)�u1, �u2iH1/2(@M)⇥H3/2(@M),H�1/2(@M)⇥H�3/2(@M). (67)

Now as u2 solves �2
u2 = 0 in M

int, it is a known function. This together with the
reconstruction of �u1 shows that the expression in the right hand side of 67 can be
reconstructed from our data. Thus, we can reconstruct the integral

Z

M

qu1u2dV

=

Z

M

qe
�2i�x1(wsvs + r̃2(vs + r̃0 + r̃1) + ws(r̃0 + r̃1))dV

=

Z

M

qe
�2i�x1wsvsdV +O(h1/2).

(68)

Here we have used 56, 58, 52, 49, 50, 54, 60, and 63.
By Theorem A.1, we can determine q|@M from the knowledge of ⇤q and (M, g)

in a constructive way. Thus, we extend q to a function in C0(R ⇥M
int
0

) in such a
way that q|(R⇥M0)\M is known. This together with 68 and dV = c

n
2 dx1dVg0 allows

us to reconstructZ

R
e
�2i�x1

Z

M0

q(x1, x
0)ws(x1, x

0)vs(x1, x
0)c(x1, x

0)n/2dVg0dx1 +O(h1/2). (69)

Letting h ! 0 in 69, and using 51, we obtain from 69 that
Z

R
e
�2i�x1

Z
L

0

e
�2�t

q(x1, �(t))c(x1, �(t))dtdx1 =

Z
L

0

ˆ̃q(2�, �(t))e�2�t
dt, (70)

for any � 2 R and any non-tangential geodesic � in M0. Here q̃ = qc and

ˆ̃q(�, x0) =

Z

R
e
�i�x1 q̃(x1, x

0)dx1.

The integral in the right hand side of 70 is the attenuated geodesic ray transform
of ˆ̃q(2�, ·) with constant attenuation �2�. Note that if M0 is simple then it was
shown in [54] that the attenuated ray transform is constructively invertible for any
attenuation, and using the inversion procedure in [54], we reconstruct the potential
q.

In general, proceeding similarly to the end of the proof of [19, Theorem 1.4], using
the constructive invertibility assumption of the geodesic ray transform on M0, we
reconstruct the potential q in M . This completes the proof of Theorem 1.4.

Appendix A. Boundary reconstruction of a continuous potential for the
perturbed biharmonic operator. The goal of this appendix is to give a re-
construction formula for the boundary values of a continuous potential q from the
knowledge of the Dirichlet–to–Neumann map for the perturbed biharmonic operator
�2+q on a smooth compact Riemannian manifold of dimension n � 2 with smooth
boundary. In the case of the Schrödinger operator, the constructive determination
of the boundary values of a continuous potential from boundary measurements is
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given in [19, Appendix A], and our reconstruction here will rely crucially on this
work. For the non-constructive boundary determination of a continuous potential
in the case of the Schrödinger operator, we refer to the works [26], [38], [42]. For
the boundary determination of smooth perturbations based on pseudodi↵erential
techniques, see [40] and [33]. Our result is as follows.

Theorem A.1. Let (M, g) be a given compact smooth Riemannian manifold of

dimension n � 2 with smooth boundary, and let q 2 C(M) be such that assumption

(A) is satisfied. For each point x0 2 @M , there exists an explicit family of functions

f� 2 C
1(@M)⇥ C

1(@M), 0 < �⌧ 1, depending only on (M, g), such that

q(x0) = 2 lim
�!0

h(⇤q � ⇤0)f�, f�iH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M).

Proof. Let f 2 H
3/2(@M) ⇥H

1/2(@M) and let us start by considering the special
case of the integral identity 34,

h(⇤q � ⇤0)f, fiH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M) =

Z

M

quvdV. (71)

Here u, v 2 H
2(M int) are solutions to

(
(�2 + q)u = 0 in M

int
,

�u = f on @M,
(72)

and (
�2

v = 0 in M
int

,

�v = f on @M,
(73)

respectively.
We would like to construct suitable solutions to 72 and 73 to test the integral

identity 71. The construction of these solutions will be based on an explicit family
of functions v�, whose boundary values have a highly oscillatory behavior as �! 0,
while becoming increasingly concentrated near a given point on the boundary of
M . Such a family of functions v� was introduced in [10], [12], see also [19], [36],
[38], [37].

To define v�, we let x0 2 @M and let (x1, . . . , xn) be the boundary normal
coordinates centered at x0 so that in these coordinates, x0 = 0, the boundary @M
is given by {xn = 0}, and M

int is given by {xn > 0}. In these local coordinates, we
have Tx0@M = Rn�1, equipped with the Euclidean metric. The unit tangent vector
⌧ is then given by ⌧ = (⌧ 0, 0) where ⌧ 0 2 Rn�1, |⌧ 0| = 1. Associated to the tangent
vector ⌧ 0 is the covector ⇠0

↵
=

P
n�1

�=1
g↵�(0)⌧ 0� = ⌧

0
↵
2 T

⇤
x0
@M .

Let ⌘ 2 C
1
0
(Rn;R) be such that supp(⌘) is in a small neighborhood of 0, and

Z

Rn�1

⌘(x0
, 0)2dx0 = 1. (74)

Let 1

3
 ↵ 

1

2
. Following [12], [38, Appendix C], [19, Appendix A] in the boundary

normal coordinates, we set

v�(x) = �
�↵(n�1)

2 � 1
2 ⌘

✓
x

�↵

◆
e

i
� (⌧

0·x0
+ixn), 0 < �⌧ 1, (75)

so that v� 2 C
1(M), with supp(v�) in O(�↵) neighborhood of x0 = 0. Here ⌧ 0 is

viewed as a covector. A direct computation shows that

kv�kL2(M) = O(1), (76)
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as �! 0, see also [38, Appendix C]. Following [19, Appendix A], we let

v = v� + r1, (77)

where r1 2 H
1
0
(M int) is the solution to the Dirichlet problem,

(
��r1 = �v� in M

int
,

r1|@M = 0.
(78)

By boundary elliptic regularity, we have r1 2 C
1(M), and therefore, v 2 C

1(M).
It was established in [19, Appendix A] that when ↵ = 1/3,

kr1kL2(M) = O(�1/12), (79)

as �! 0. In what follows, we fix ↵ = 1/3.
Note that v 2 C

1(M) solves the Dirichlet problem 73 with

f = f� := (v�|@M , @⌫(v� + r1)|@M ). (80)

Now since the manifold (M, g) is known, the harmonic function v, as well as the
trace f�, are known.

Next we look for a solution u to 72 with the Dirichlet data f = f� given by 80
in the form

u = v� + r1 + r2. (81)

Thus, r2 2 H
2(M int) is the solution to the following Dirichlet problem,

(
(�2 + q)r2 = �q(v� + r1) in M

int
,

�r2 = 0 on @M.
(82)

It follows from [24, Section 11, p. 325, 326] that for all s > 3/2,

kr2kHs(M int)  Ckq(v� + r1)kHs�4(M int). (83)

In particular, letting s = 3 in 83, we get

kr2kL2(M)  Ckq(v� + r1)kH�1(M int)  C(kqv�kH�1(M int) + kr1kL2(M))

= o(1) +O(�1/12) = o(1),
(84)

as �! 0. Note that here we used the following bound

kqv�kH�1(M int) = o(1),

as �! 0, cf. [19, Appendix A, (A.20)], together with 79.
Substituting v and u given by 77 and 81, respectively, into 71 and taking the

limit �! 0, we obtain that

lim
�!0

h(⇤q�⇤0)f�, f�iH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M) = lim
�!0

(I1+I2), (85)

where

I1 =

Z

M

q|v�|
2
dV, I2 =

Z

M

q(v�r1 + (r1 + r2)(v� + r1))dV.

Using 79 and 84, we get
lim
�!0

I2 = 0. (86)

A direct computation shows that

lim
�!0

I1 =
1

2
q(0), (87)

cf. [19, Appendix A, (A.24)]. Combining 85, 86, and 87, we see that

q(0) = 2 lim
�!0

h(⇤q � ⇤0)f�, f�iH�3/2(@M)⇥H�1/2(@M),H3/2(@M)⇥H1/2(@M).
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This completes the proof of Theorem A.1.
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