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1. Introduction and statement of results

The inverse conductivity problem posed by Calderén [5] asks to determine the electri-
cal conductivity of a medium from voltage and current measurements on its boundary.
This problem is the mathematical model of Electrical Impedance (or Resistivity) To-
mography, an imaging method with applications in seismic and medical imaging. It is
also one of the most fundamental models of inverse boundary value problems for elliptic
partial differential equations. For these reasons both the theoretical and applied aspects
of the Calderén problem have been under intense study. We refer to the survey [53] for
more information and references.

In this article we are interested in the case where the electrical conductivity of the
medium is anisotropic, i.e. depends on direction. This can be modeled by a matrix
conductivity coefficient, or in geometric terms by having a resistivity coefficient given
by a Riemannian metric g on a compact manifold M with smooth boundary. There are
many variants of this problem. One of them is the (geometric) Calderén problem for a
Schrodinger equation: given a known compact Riemannian manifold (M, g) with smooth
boundary and an unknown potential ¢ € C°°(M), determine ¢ from the knowledge of
the Cauchy data on M of solutions of the Schrédinger equation

(—Ag+q@u=0in M.

Here —A, is the Laplace-Beltrami operator. This geometric Calderén problem is solved
n [21] when dim(M) = 2. The problem is open in general when dim(M) > 3 with only
partial results available. In particular, the unique determination of ¢ was obtained in
[52] in the Euclidean setting, in [27] for hyperbolic manifolds, and in [40], [29] in the
real analytic setting. Going beyond these settings, the geometric Calderén problem was
only solved in the case when (M, g) is CTA (conformally transversally anisotropic, see
Definition 1.1 below) and under the assumption that the geodesic X-ray transform on
the transversal manifold is injective [10,12].

The linearized version (at ¢ = 0) of the above problem is also of interest, since methods
for the linearized problem often give insight to the original problem. In our case, the
linearized problem reduces to the following simple question asking whether products of
pairs of harmonic functions form a complete set in L!(M):

Question 1. Let (M, g) be a compact oriented Riemannian manifold with smooth bound-
ary. If f € L°°(M) satisfies

/fU1UQ dVg =0
M

for all u; € L*(M) with Ayu; =0in M, j = 1,2, is it true that f =07
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The methods of [21,10,12] give a positive answer to Question 1 when dim(M) = 2,
or when dim(M) > 3 and (M, g) is CTA with the transversal manifold having injective
geodesic X-ray transform. There have been recent attempts to improve these results when
dim(M) > 3. In [20], it is proved that Question 1 has a positive answer when (M, g) is a
complex Kéhler manifold with sufficiently many holomorphic functions. The article [13]
establishes a recovery of singularities result: if (M, g) is transversally anisotropic and the
transversal manifold satisfies a certain geometric condition, one can recover transversal
singularities of f. See also [11], [50] for the linearized Calderén problem with partial data
in the Euclidean setting.

The recent related works [14,15,31,32,34,41,47] regarded inverse problems for nonlin-
ear elliptic equations on CTA manifolds as well as some complex manifolds, equipped
with a Kéhler metric. The linearized problem in Question 1 plays an important role in
these results. Moreover, it was proven in [34] that on a general transversally anisotropic
manifold, the products of four (instead of pairs of) harmonic functions form a complete
set in L'(M), and this result was used crucially to solve the corresponding inverse prob-
lems for semilinear Schrédinger equations. We also mention the related works [22,36],
which solve inverse problems for nonlinear wave equations by showing that sets of prod-
ucts of four waves are dense.

In this article we extend the result of [13] and show that if the transversal manifold
is additionally real-analytic, Question 1 has a positive answer (i.e. one can recover f €
L>°(M) completely, not just some of its singularities).

Let us proceed to state our results. To that end, let us first recall the following
definitions, see [10], [12].

Definition 1.1. Let (M, g) be a smooth compact oriented Riemannian manifold of dimen-
sion n > 3 with smooth boundary oM.

(i) (M, g) is called transversally anisotropic if (M, g) CC (T, g) where T = R x Mt
g = e D go, (R,e) is the Euclidean real line, and (Mg, go) is a smooth compact
(n—1)—dimensional manifold with smooth boundary, called the transversal manifold.

(ii) (M,g) is called conformally transversally anisotropic (CTA) if (M, cg) is transver-

sally anisotropic, for some positive function ¢ € C*°(M).

Here and in what follows Mi"* = Mg\ 9Mj stands for the interior of My. By choosing
local coordinates x’ for My and denoting by ; the coordinate on R, the metric g = e®go
has the form

dz? + gap(a’)da' *da’ P,
where the Einstein summation convention is used for o, 3 =1,...,n — 1.

In this work we require that all manifolds are oriented. We mention the recent work
[4], which studies the Calderén problem on non-oriented Riemannian surfaces.
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Let (M, g) be transversally anisotropic of dimension n > 3 with a transversal mani-
fold (Mo, go). Next we need some definitions related to the transversal manifold (Mp, go).
Following [12], we say that a geodesic v : [T, Ts] = My, 0 < T1,T» < oo, is nontan-
gential if y(=T1),v(T2) € OMo, y(t) € M{™ for all =T} < t < Ty, and 4(—T}), §(Ts) are
nontangential vectors on dMy. Following [13], we have the following definition.

Definition 1.2. We say that (z),&)) € S*Mi" is generated by an admissible pair of
geodesics, if there are two nontangential unit speed geodesics

1 [T, Te) = Mo, 72 : [=S1, 2] = Mo,

0<Ty,T5,51,55 < oo, such that

(i) 71(0) = 72(0) = =,
(if) 41(0) + 42(0) = &), for some 0 < to < 2, where & is understood as an element of
T, M{™ by the Riemannian duality,
(iii) v1, 2 do not have self-intersections at the point x{,, and z{, is the only point of their
intersections, i.e.

nt)=z5t=0, y(s)=x,<s=0,

Y1(t) = 72(5) = 7(t) = 12(8) = .

Let f € L°(M) and let us extend f € L (M) by zero to (R x My) \ M. Writing
x = (x1,2") where 1 € R, and ' are local coordinates My, we let

oo

f()\,x’) = / " f(xy, 2 ) dry, N ER, (1.1)

— 00

be the partial Fourier transform of f with respect to x1. We have for each A € R that
FO\ ) € I (M) 0 €/ (M),

When X is a real analytic open manifold and v € D'(X), we let WF,(u) C T*X \ {0}
stand for the analytic wave front set of u, see [49, Definition 6.1], [25, Sections 8.5, 9.3].
The set WE,(u) C T*X \ {0} is closed conic and we have

(W Fa(u)) = singsupp, (u),

where 7 : T*X — X, (z,€) — x, is the natural projection and singsupp,(u) is the
analytic singular support of u, i.e. the smallest closed set such that u is real analytic in
the complement [25, Theorem 8.4.5]. In particular, W F,(u) = 0 if and only if u is real
analytic on X.

We have the following analytic microlocal result, which is an analog of Theorem 1.1
in [13], established in the C*°—case.
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Theorem 1.3. Let (M,g) be a transversally anisotropic manifold of dimension n > 3
with transversal manifold (Mo, go), and assume that Mi"* and g()|M(i)nt are real analytic.

Assume furthermore that f € L™ (M) satisfies

/fU1U2 deq = 0, (12)

M

for all u; € L*(M) with —Agu; = 0 in M™ . Let (x(, &) € S*M{™ be generated by an
admissible pair of geodesics. Then for any A € R, one has

(25, €6) & WEL(F(A, +)) € T*Mg™ \ {0}

~

Here f(X\, -) refers to the partial Fourier transformation given by (1.1).

Theorem 1.3 implies the following global result, which gives a positive answer to
Question 1 under suitable geometric assumptions.

Theorem 1.4. Let (M, g) be a transversally anisotropic manifold of dimension n > 3 and
assume that the transversal manifold (Mo, go) is connected, MI™ as well as go in M
are real analytic. Assume that every point (zf,&}) € S* MM is generated by an admissible
pair of geodesics. Moreover, assume that f € L°°(M) satisfies (1.2) for all u; € L*(M)
with —Agu; =0 in M™. Then f =0 in M.

Remark 1.5. Note that while (M{", gg) is real analytic, Theorem 1.4 does not follow
from the existing results in the real analytic setting, as it corresponds to deforming the
zero potential by an L* perturbation.

Remark 1.6. In Theorems 1.3 and 1.4 while M is real analytic, the boundary M need
not be real analytic.

As the following example shows, there exist transversally anisotropic manifolds (M, g)
with a transversal manifold (Mg, go) satisfying the geometric conditions of Theorem 1.4
and with a non-invertible geodesic X-ray transform. Therefore, the geometric Calderén
problem is still open on such manifolds while our Theorem 1.4 gives a positive solution
to the corresponding linearized problem.

Example 1.7. Let My = S* x [0,4a], a > 0, be a cylinder with its usual flat metric go. The
geodesics on M are straight lines, circular cross sections, and helices that wind around
the cylinder. The geodesic X-ray transform is not invertible, since the kernel contains
functions of the form f(e®,s) = h(s) where h € C§°((0, a)) integrates to zero over [0, a.
However, it is shown in Appendix A that every point (x(,&)) € S* M is generated by
an admissible pair of geodesics.
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It is established in [13, Lemma 3.1] that if (My,go) satisfies the strict Stefanov—
Uhlmann regularity condition at (z(,&)) € S*Mi™, which we now proceed to recall,
then (z(, &) is generated by an admissible pair of geodesics.

Definition 1.8. The transversal manifold (Mg, go) satisfies the strict Stefanov—Uhlmann
regularity condition at (zf,&)) € S*M{™ if there exists 7' € Sy M such that
90(£0,m") = 0 and such that the following holds: let v,y . : [=T1,T2] = Mo, 0 < T1, T3 <
00, be the geodesic with v, .,/ (0) = x4, Yy, = n'. We have

(i) Vay,, is nontangential,
(i) 7z, contains no points conjugate to x(,
(iii) vas,, does not self-intersect for any time ¢ € [~T1, T3].

Hence, if a transversally anisotropic manifold (M, g) is such that the transversal man-
ifold (M, go) satisfies the strict Stefanov—Uhlmann regularity condition at every point of
S* Mg with M{™ and go|pme real analytic, and (Mo, go) is connected, then Theorem 1.4
holds.

As the following examples demonstrate, there are transversally anisotropic manifolds
(M, g) with a transversal manifold (Mpy, go) satisfying the geometric condition of The-
orem 1.4, and with an invertible geodesic X-ray transform. Thus, for such manifolds
(M, g), Theorem 1.4 also follows from [10], [12].

Example 1.9. Let (My, go) be a simple manifold, i.e. a compact simply connected manifold
with strictly convex boundary so that no geodesic has conjugate points. Then (M, go)
satisfies the strict Stefanov—Uhlmann regularity condition at any point of S*M{"* and
thus also the geometric condition in Theorem 1.4. Note that in this case (M,g) is ad-
missible in the sense of [10], and Theorem 1.4 would also follow from [10].

Example 1.10. Let S? C R* be the unit sphere and let i be a geodesic arc from the north
pole to the south pole of the sphere. Let My be the closure of a neighborhood of . It is
established in [13] that the manifold M) satisfies the strict Stefanov—Uhlmann regularity
condition at each point of S* M. Notice also that the manifold M, contains conjugate
points, so that it is not simple. However, the geodesic X-ray transform on (M, gg) is
injective by [51], and Theorem 1.4 would therefore also follow from [12].

Remark 1.11. We would like to remark that the strict Stefanov-Uhlmann condition is
not satisfied for (My, go) of Example 1.7 since for any (x}, £))) € S*M{" with &) pointing
in the direction of the [0, a] factor, the orthogonal geodesics never reach M.

The proof of Theorem 1.3 depends crucially on the construction of Gaussian beam
quasimodes along nontangential geodesics on My, with exponentially small errors, as
stated in the following result. Before stating the result, let us recall from [49, Chapter 1]
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the notion of a classical analytic symbol. Let V' C C™ be an open set. We say that
a(z;h) = Y 5o hFag(x) is a (formal) classical analytic symbol in V if a € Hol(V),

k=0,1,2,..., and for every V CC V, there exists C = Cf, > 0 such that
jan(@)] < C*HEE, @ eV, (1.3)

k=0,1,2,.... The classical analytic symbol a(z;h) is said to be elliptic if ag # 0.

We have the following essentially well known result, see [48] and [49], and see also the
work by Babich [1] for a sketch of the proof. Notice that here our quasimode construction
is performed along the entire geodesic segment contrary to the standard constructions
in a neighborhood of a point, see [9]. We use the notation

neigh(p, X)

for an open neighborhood of a point p € X, and similarly for neighborhoods of general
subsets of other topological spaces in place of p and X above.

Theorem 1.12. Let (X, g) be a compact Riemannian manifold of dimension n > 2 with
smooth boundary, contained in a real analytic open manifold ()?,g) of the same dimen-
ston with g real analytic in X. Let v [T, Te) = X, 0 < Th, T < 00, be a unit speed
non-tangential geodesic in X, and let X € R. For any neighborhood of v([—T1,Ts]), there
is a family of C> functions v(z;h) on X, 0 < h <1, supported in the neighborhood, and
C > 0 such that

I(=h?Ag = (hs)*)vllL2x) = O(e™77),  lvllra(x) = 1, (1.4)

as h — 0. Here s = % + iX. The local structure of the family v(x;h) is as follows:
let p € y([~T1,T32]) and let t; < --- < ty, be the times in (—T1,Ts) when y(t;) = p,
l=1,...,N,. In a sufficiently small neighborhood V' of a point p € y([—T1,Tz]), we have

UIV _ U(l) 4+t v(Np)7

where each vV has the form

(n—1)

vO (2 h) = h= "7 e @0 (g h).

Here ¢ = o\ is real analytic in V satisfying for t near t;,

e(y(t) =t, Veo(y(t) =4@1), Im(Ve(y(t) >0, Im(V?p)ls4ne >0, (1.5)

and a\V is an elliptic classical analytic symbol in a complex neighborhood of p.
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We have chosen to give a fairly complete proof of Theorem 1.12 since we are not
aware of a detailed treatment in the literature and since we need to have fairly precise
information concerning the quasimodes for our applications. We refer to [33] for a related
complex Riccati equation, and to [6] for a geometric interpretation of it.

Let us briefly mention how the exponentially small error is achieved in Theorem 1.12.
The proof of the theorem is by using the ansatz v(x; h) = **?(®)a(z; h), which, as usual,
leads to solving the eikonal equation for the phase function ¢(x) and a transport equation
for the amplitude a(x; h). We first find an exact analytic solution for the eikonal equation
near a geodesic segment of . Consequently, the transport equation for the amplitude
a(z;h) = Zg:o hEay,(z) has analytic coefficients and we find a(x; k) as a classical analytic
symbol. This involves adapting the nested neighborhood method of [49]. The error for v
being a true eigenfunction then is

N
(—h?A, — (hs)Q)eis“"(Z hjaj) = V2T (an), (1.6)
5=0

where T5 is a second order operator with analytic coefficients. Cauchy estimates and (1.3)

then yield that the error term (1.6) is bounded by AN +t2CV+I NN Letting the order N

of the expansions of a depend on h as N = N(h) = [helc] gives the exponentially small

error in the theorem.

The above was based on finding first an exact analytic solution to the eikonal equation
|dplg = 1 near a geodesic segment of . To find such a solution, we view the eikonal
equation as the Hamilton-Jacobi equation,

p(z, @;(x)) =0, (1'7)

where p(x,&) = [€ |3(z) — 1 is holomorphically continued to a complex domain. When
solving the Hamilton-Jacobi equation (1.7) we proceed by a geometric argument of con-
structing a complex Lagrangian manifold,

A cpH(0),

in a complex neighborhood of a segment of the graph of 4 C T*X, see [48]. The solution
 is then obtained as a generating function of the Lagrangian A, which parametrizes A
as

A ={(z, ¢ (2)}.

Extending the argument to a neighborhood of the geodesic segment of v requires some
extra work involving positive Lagrangians.

Let us proceed to explain the main ideas in the proof of Theorem 1.3. Let ag =
(xf, &) € S*MIP be generated by an admissible pair of geodesics 71 (ap) and v2(ag) on
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M. We first show that there exists a neighborhood of ag in S* M{"* such that every point
« in the neighborhood is generated by an admissible pair of geodesics 71 () and y2(«) on
M. Next we construct two real analytic families of Gaussian beams quasimodes v1 ()
and ve(a) on My, associated to v1(a) and ~o2(«), respectively, with exponentially small
errors. The fact that (M, g) is transversally anisotropic provides us with the limiting
Carleman weight ¢(x) = z; for the Laplacian, and using the technique of Carleman
estimates, we convert the families of Gaussian beams v () and vy () into two families
of harmonic functions on M with exponentially small remainder terms. Testing the
orthogonality relation (1.2) with the constructed families of harmonic functions leads to
the exponential decay of the FBI transform of ]?()\, -) in a neighborhood of ay. Using the
FBI characterization of the analytic wave front set, see [49], we conclude the proof. Note
that we need to work with families of Gaussian beams to fill out the entire neighborhood
of ayp.

Remark 1.13. Similarly to [13], Theorem 1.3 and Theorem 1.4 are established for
transversally anisotropic manifolds rather than CTA manifolds. The reason for this is
that the standard reduction

n42 _(n=2)

CTO(_ACQ)OC 4 :_Ag+Q7 g = e go,

leads to the potential

n+2 _ (n—2)
4 4

g=—c T Qylc ),

see [12], and therefore, to construct harmonic functions with exponentially small remain-
der terms on a CTA manifold, one has to construct Gaussian beam quasimodes for the
conjugated Schrédinger operator,

esml(_hZAg + th)e—sazl7

with exponentially small errors. If ¢ is independent of x; and real-analytic then so is g,
and this construction could be done as in Theorem 1.12. Notice also that for this reason,
one can also include a general real analytic potential which is independent of z; in the
results of Theorem 1.12. However, if ¢ depends on x; then the corresponding sequence of
transport equations becomes of O-type, see e.g. [14], [30], which complicates the analysis
of Theorem 1.12 further and is therefore not developed here.

The proof of Theorem 1.12 given in Section 2 below shows also that the following
result holds.

Corollary 1.14. Let us make the same assumptions as in Theorem 1.12 and let g be real
analytic on X. Then there is a family of C™ functions vy(x; h) on X such that
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1
(= (A + @) — (1)) vl = O™ ), [lwgllzscn) = 1,
as h — 0. Here vy(x; h) satisfies the same properties as does v(z;h) in Theorem 1.12.

Let us mention that Gaussian beam quasimode constructions have a long tradition in
microlocal analysis, see [2], [44], [45], with applications in the analysis of eigenfunctions,
see [54], and inverse problems, see [43] and the references given there.

Finally, let us point out certain related results on a standard geometric version of
the Calderén problem, which asks to determine a metric ¢ up to natural gauges (a
boundary-fixing diffeomorphism, and also a conformal factor when dim(M) = 2) from
the knowledge of Cauchy data on M of solutions of the equation —Agzu = 0 in M. This
problem was solved in [38] when dim(M) = 2, but for dim(M) > 3 it is only known
under additional conditions such as the manifold being real-analytic, see [40,38,37], or
Einstein [19]. Alternative proofs are given in [3,35]. Interesting counterexamples in the
case of measurements on disjoint sets or low regularity coefficients are given in [7,8]. If one
allows degenerate coefficients, there are other counterexamples [37,17]. Counterexamples
with degenerate coefficients form the basis of invisibility cloaking, see e.g. [53].

The paper is organized as follows. Section 2 is devoted to the construction of expo-
nentially accurate Gaussian beam quasimodes and the proof of Theorem 1.12. Section 3
contains some results concerning properties of geodesics needed in the proof of Theo-
rem 1.3. Section 4 extends Theorem 1.12 to produce analytic families of exponentially
accurate Gaussian beam quasimodes. The construction of families of harmonic functions
based on Gaussian beam quasimodes is presented in Section 5. Section 6 contains some
facts about analytic wave front sets and the proofs of Theorem 1.3 and Theorem 1.4.
The admissibility property of geodesics in Example 1.7 is verified in Appendix A.
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2. Exponentially accurate quasimodes. Proof of Theorem 1.12

Let (X,g) be a compact Riemannian manifold of dimension n > 2 with smooth
boundary, contained in a larger real analytic open manifold (X, g) of the same dimension
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with g real analytic in X. We extend v as a unit speed geodesic in X. Let € > 0 be such
that v(t) € X \ X and ~(¢) has no self-intersection for ¢ € [~T}y — 2, —T1) U (Ty, Ty + 2¢].
This choice of ¢ is possible since 7 is non-tangential. First it follows from [28, Lemma
7.2] that y|[_1, _ 1,4¢] self-intersects only at finitely many times ¢; with

“NMi<ti <<ty <Ts.

We also set tg := —T1 — ¢ and ty41 := T2 + €. An application of [12, Lemma 3.5]
shows that there exists an open cover {(Uj, Iij)}?f:-gl of y([-T1 —¢e,T» +¢€]) consisting of
coordinate neighborhoods U; and real analytic diffeomorphisms x; having the following
properties:

(i) k;(U;) = I; x B, where I, are open intervals and B = B(0,d’) is an open ball in
R"1. Here ¢’ > 0 can be taken arbitrarily small and the same for each U;,
(ii) k;j(7(t)) = (t,0) for each t € I},
(iii) ¢; only belongs to I; and I; NI = 0 unless |j — k| < 1,
(iv) kj = K on /1]71((]]- N 1) x B).

The corresponding local coordinates x;(z) = (t,y) € U; are called the Fermi coordinates.
Here we note that Lemma 3.5 in [12] is established in the C'* case, and the real analyticity
of the Fermi diffeomorphisms «; is obtained by inspection of the proof of Lemma 3.5 in
[12], in view of the analyticity of X. As observed in the proof of [12, Lemma 3.5], in the
case when v does not self-intersect, there are Fermi coordinates on a single coordinate
neighborhood of 7|_7, —c 7,4 so that (i) and (ii) are satisfied. These coordinates are
given by inverting the map

n—1

~

(t,y) = expy (D vFex(t)) € X.
k=1

Here ey (t) are the parallel transportations of the last n — 1 vectors of an orthonormal
frame {¥|t=—7,,€1,...,en—1} C Ty(—7,)M and exp is the exponential map of ()A(,g).

Our goal is to construct exponentially accurate Gaussian beam quasimodes near
Y([-T1 — €,T> + €]). We shall start by carrying out the quasimode construction in a
fixed coordinate neighborhood U = U; which we can identify with the set I x B, where
I C R is an open interval and B = B(0,§’) is an open ball in R"~! with §’ > 0. Without
loss of generality, we assume that 0 € I. The geodesic 7 in the open set U is given by
I'={z=(t,y) €I xB:y=0}

Let us consider the following Gaussian beam ansatz,

N 1
v(t,y; h) = BV a(t g h), s= T i, NeER, (2.1)
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where the phase ¢ is complex valued with Im¢(¢,y) > 0 and a is an amplitude. We
shall proceed to construct the quasimode v so that the phase ¢ satisfies (1.5) and the
amplitude a is an elliptic classical analytic symbol.

2.1. Construction of the phase function ¢

We shall proceed using the classical arguments, solving the Hamilton-Jacobi equation
in the complex domain and making crucial use of the geometry of positive complex La-
grangians, see [48]. Let us remark here that while we only need the good properties of
the phase in the real domain, specifically along the geodesic -y, since the phase function
takes complex values, the Hamilton-Jacobi equation holds naturally for the holomorphic
extensions in the complex domain. From the geometric point of view, the complex La-
grangian manifold naturally associated to the phase function ¢ is not confined to the
real domain but is a submanifold of the complexified phase space.

First we have

e P (=h?A, — (hs)?)e"*Pa = —h*Aya — ih(1 + iAh)[2(dy, da), + (A,¢)d]

(2.2)
+(1 4+ i\h)2[(dep, dy)y — 1]a.

In the usual Gaussian beam construction in the C'*°—setting, one solves the eikonal
equation to a large, and sometimes infinite, order along the geodesic, see [43], [2], [44],
[45]. Working in the present real analytic setting, it will be natural to solve the eikonal
equation

(de,dp)g — 1 = p(z, ¢, (x)) =0 (2.3)

in a full neighborhood of the geodesic. Here
p(a,&) =[¢; ~1=G(x)¢- £~ 1 (2.4)
is the semiclassical principal symbol of the operator P = —h?A, — (hs)?, where G(z) =

(¢7%(x)). Since the metric g is real analytic, p(x, £) extends to a holomorphic function in
an open set of the form U x C™, where

Uccr
is a complex neighborhood of U.

Let (z(t),&(t)) = exp(3H,)(0,&) be the integral curve of the Hamiltonian H,, in
T* X, which corresponds to the unit speed geodesic -, so that

. (exp (%H,,) (o,go)) — (), telCR,
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where 7,(x,€) = x, and & = 4(0). Here 4(0) is viewed as a cotangent vector using the
Riemannian duality. Since (0,&) € p~1(0) N (U x R™), we therefore have (z(t),£(t)) €
p~1(0) N (U x R") for all t € I. We have explicitly the Hamilton’s equations

i(t) = 30ep(x(t), £(1)),

) = Jazp( (), &), (2.5)
z(0) =

£(0) =

Recalling that « = (¢,y) € U and writing £ = (7,7) € T, X for the dual variable, we see
from (2.5) that

Orp(x(t),£(t)) #0 forallt e, (2.6)

since the ¢ component of 4(t) is identically 1 in the (¢,y) coordinates.
We look for a real analytic solution ¢ of (2.3) in U such that

Ime(t,y) >0, Imep(t,0)=0, Imey,(t,0)>0, tel, (2.7)

and therefore,

Im p(t,y) ~ |y|* = dist((t,y),[)*, (t,y) € U.

Here and throughout the paper the notation f; ~ fy for positive functions f; and fo
means that there exists a fixed € > 0 with ef; < fo < e ' f;. We will find the required
real analytic solution of (2.3) as the restriction to U C R™ of a holomorphic function ¢
inU C C", solving the following Cauchy problem for the Hamilton-Jacobi equation in
the complex domain,

;(ZL‘)) =0, z= (ta y) ev,
) =(y), (2.8)

Here we take v to be a holomorphic function near 0 € C*~! such that

Im <), (0) > 0, (2.9)

¥(0) is real, and so that the compatibility condition v;(0) = 7o in (2.8) holds, with
& = (10,m0) € R x R™"L. Note that p, ¢ and ¢ are holomorphic in their vari-
ables. For a holomorphic function f(z1,...,zx) in an open set V. C CV we write
Ji(2) = (02, f(2),...,0:.5 f(2)) for the complex gradient, f (2) = (0., f(2 ))]k , for
the complex Hessian, etc. If z; = z; + iy;, holomorphicity implies that 02 f(z) = 0% f(2)
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Fig. 1. A Lagrangian submanifold A C T* X satisfying p (A) = 0 is the union of the red integral curves of
H, in T*XC passing through A’ C T* X, which is represented by the black arrows. Here T* XC is the
cotangent bundle of the complexification of X, which is locally C; x C{. (For interpretation of the colors
in the figure(s), the reader is referred to the web version of this article.)

for any multi-index a. This shows that a holomorphic solution ¢ of (2.8) in U C C™
indeed yields a real analytic solution of (2.3) in U.

Remark. Let us note that [18, Theorem 5.5] gives the standard Hamilton-Jacobi the-
ory locally near a point in the smooth case, and the extension of this theory to the
holomorphic case is discussed in the remark following Theorem 1.8.2 in [23]. However
here we need to construct the phase ¢ enjoying the good properties along the entire
geodesic segment, and therefore, we shall give a detailed discussion of the construction
below. The condition (2.9) will be crucial for this purpose.

Step 1. Solving near a point. In order to solve (2.8), we start by following the proof
of [18, Theorem 5.5], see also [48]. The setting of our proof is illustrated in Fig. 1. To
this end, we observe first that in view of (2.6), by the implicit function theorem applied
to p(0, -, -, -), in a complex neighborhood of (0,0, 79, 70) we have p(0,y,,7) = 0 if and
only if 7 = A(y,n) where X is a holomorphic function near (0,79) € C2®»=1 such that
)\(07 ’l’}o) = 1T70-

Let us define

A= {(0,y,7,n) : =y (y), 7 = Ay, n),y € neigh(0,C" 1)} € C*",

We have that A’ is a complex manifold of complex dimension n — 1 such that
A CpH0),

which is isotropic in the sense that the restriction of o to TA’ x T'A’ vanishes:

ola =0. (2.10)
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Here 0 = 2?21 d&; A da? is the complex symplectic form on (the tangent space of)
C?" = CI x C¢. Indeed, if we fix (z,€) € A, any vector tangent to A’ with base point
at (,¢) is of the form (0, V¥, V7, V") with V" =y V¥ and V¥ € Cn~1. Applying o to
two such vectors gives Vi - by Vil — Vi - b VY = 0, showing (2.10).

Note also that

A NR*™ = {(0,0,70,7m0)}. (2.11)

Indeed, (0,0,79,70) € A’ NR?™ as (19,70) € R™ and ;,(0) = no. To see the opposite
inclusion, let (0,y, A(y,n),n = ¥'(y)) € A’ NR?*" and Taylor expand ¢'(y) at y = 0,

n=1v'(y) =n+¢"0)y+0(yf*), yeR""

We have Imn = Im+”(0)y + O(|y|?), and therefore, in view of (2.9), Imn = 0 implies
that y = 0. This shows (2.11).

Let H, be the complex Hamilton vector field of p, and let us consider the H,, flowout
of A:

A= {exp (%Hp> (p):pelN te neigh(],(C)} cc®,

Here if pp = Zjvzl a;(2)0., is a holomorphic vector field on an open set V' C C¥ in the
sense that a; € Hol(V), j = 1,...,n, we can define the flow exp(tu)(p), p € V, locally
for ¢ € neigh(0, C), by solving the system of ODE,

{Z'j(t) —a;(=(t), 1<j<n,
2(0) = p,

see [16, Section 1] and the references given there.
Then A’ C A, and since the flow of Hj, preserves p, we have

A c p~(0),

and A is a C-Lagrangian submanifold of C?", see [18, Proposition 5.4] for a proof in
the real case. The proof in the present holomorphic setting is similar. Let us also recall
from [18, page 60] that the holomorphic Hamilton vector field H,, is tangent to A at each
point of A. This is because A is a Lagrangian contained in p~1(0).

The differential of |5 is bijective at (0,0, 79,70) since the differential of 7, is in-
jective and since any Lagrangian submanifold has dimension dim(X). (The differential
of 7,|a is injective since the differential of the exponential map TX — X is injective.)
Consequently, there is a function ¢ € Hol(neigh(0, C™)) such that

A=A, = {(z,¢,(x)) : z € neigh(0,C")}, (2.12)
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see [42, Section 5.6, Exercise 4], and also [18, Theorem 5.3] for the real version of this
result. We have ¢/ (0) = & and modifying ¢ by a constant we get ¢(0,y) = ¥ (y), and
such a solution is unique.

Step 2. Solving near +. Let us denote the tangent space of A at (0,0, 79,70) by Ag and

write
Ao :=T0,0,7,n0)A = {(02,0¢) € C" x C" : §¢ = o (0)6,}, (2.13)

where in the second equality we used (2.12).
We claim that Ay is a positive Lagrangian plane in the sense that

1
;U(paﬁ) > 07 pe A0~

To this end, letting My = ¢, (0) and using (2.13), we write p = (J,, Mod,) € Ag. Then
using that My is symmetric, we get

1

Fo(0,7) = (Mo -5, — Vo - 62) = 21 (Mo, - 52)

T (2.14)
= 2Im (My)Re d, - Re 6, + 2Im (Mo)Imd,, - Imd,,

and therefore, it suffices to prove that

Im M, > 0. (2.15)
In doing so, using (2.8), we write
¢1:(0,0)  ©f,(0,0)
0 (%@(o,m W (0) (2.16)

Using that H, is tangent to A, we see that exp(5H,)(0,&) = (2(t), ¢ (x(t))) is real
for ¢ € neigh(0,R), so that ¢;(t,0), ¢} (t,0) are real. Hence,

and therefore, by the condition Tm 1)y, (0) > 0 we imposed on ¢ in (2.9), (2.15) follows.
For future reference, let us remark that

Ao NR?*™ =R H,(0,&), (2.18)

where R H,(0, &) = {sH,(0,&) : s € R}. Indeed, we have H,(0,&y) € AgNR?" since the
H, vector field is tangent to A. On the other hand, if (d,, Mod,) € Ao NR?™, it follows
from (2.17) that
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0p = (61570) = 5t5€(0) = 5tplg(0a§0)7

where d; € R. Here in the second equality we used that (¢,0) corresponds to the geodesic
in Fermi coordinates. We get (53?3M053?) = 6t(p/§(07§0)7M0p/§(Oa€0)) = 5tHP((O’£O))7
which shows (2.18). Here in the last equality we used H,(0,&) € Ao.

Let

t
K(t) := exp (in> A=A, telCR,

and therefore, the differential satisfies
dr(t)(0,80) = Ao = The(t)(0,60)A-

As the canonical transformation k(t) is real for each ¢t € I, dk(¢)(0,&y) preserves positiv-
ity, see [42, Section 5.6, Exercise 8], and therefore,

Ay = Tm(t)(07£0)A ccn
is a positive Lagrangian plane, for all ¢ € I.
We claim that A; is transversal to the fiber F = {(0,n) : n € C"} C C?", for all

tel, ie Ay +F =C?". As dim Ay = n, we have to show that A, N F = {0}. Indeed, let
(0,m) € Ay N F. Then (2.13) implies that

(2) = dk(1)(0, &) (]\jga) , (2.19)
for some 8, € C". We have
0= %a( (2) @) - %a(dﬂ(t)(o,&)) <Mi5x> dr()(0, &) (]\j&»
() i) -

As Im My > 0, we get (Im My)d,, = 0, and therefore, (2.17) implies that d, = ap/g(O,fo)
for some o € C. Thus, by (2.19) we obtain that

(2) = dr(t)(0, &) (H,(0,&)) = aH,(x(t),£()) = a (:g((zD .

Since @(t) # 0, we get a = 0. Hence,

which establishes the claim.



18 K. Krupchyk et al. / Advances in Mathematics 403 (2022) 108362

As A, is transversal to the fiber for all ¢t € I, by inspection of the proof of Theorem 5.5
in [18], we conclude that there exists ¢ € Hol(neigh(Z x B,C"™)) such that A = A, and ¢
solves (2.8). The function ¢ is a continuation of the one appearing in (2.12). Notice that
it is precisely thanks to the fact that the tangent plane A; does not contain any non-zero
vector of the form (0,7) for all ¢ € T that the proof of Theorem 5.5 in [18] applies near
each point in I x {0}, see also [26, Section 24.2].

Step 3. Properties of the solution. Next we shall check that the property (2.7), that
is

Imy(t,y) >0, Ime(t,0) =0, Imgp'y’y(t,()) >0, tel,
holds for ¢. First, ¢! (x(t)) = £(t) is real for ¢t € I. Writing

L o(w(t) = @h(alt)) - #(1) = £ - Lpk(a(t). £(1),

we have

t

P(10) = 0(0) + 5 [ €05 pilals). E(9)ds = w(0) + 1, (2:20)

0
as & - pe(x,§) = 2(p(x, &) + 1). Thus, using that ¢(0) is real, we see that Im ¢(t,0) = 0
for t € I. Furthermore, if (0) = 0, we get o(t,0) = t.
Let M(t) = ¢l (x(t)). Then M(t) is an n X n complex symmetric matrix depending
real analytically on ¢, such that
Tm M (t) > 0, (2.21)
in view of the positivity of A;. We claim that

Im M (t)|w > 0, (2.22)

where W C R™ is an algebraic supplement to Ri(t) so that R&(¢) @ W = R™. To that
end, let us observe first that

Ay MR = dr(t)(0, &) (Ao NR™) = dr(t)(0, &) (R H,(0,&)) = RH,(x(t),&(1)).
Here we have used (2.18) in the second equality. Let v € W be such that
Im M (t)v-v=0.
Hence, by (2.21), we get

Im M (t)v = 0.
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Thus, (v, M(t)v) € Ay NR?* = RH,(x(t),£(t)), and therefore, v is proportional to
pe(x(t),€(t)) = @(t). This gives that v = 0, since v € W. Hence, (2.22) follows, and we
get Im ¢y, (¢,0) > 0 for all t € 1.

Finally, we get Im o(¢,y) > 0 for all (¢,y) € U by Taylor’s formula and by using that
ol (x(t)) = £(t) is real. We have therefore constructed a real analytic solution ¢ of (2.3)
such that (2.7) holds.

2.2. Construction of the amplitude

We shall follow [49, Theorem 9.3], where the construction of the amplitude as a classi-
cal analytic symbol is carried out in a neighborhood of a point, extending the construction
to a full neighborhood of a geodesic segment.

We look for the amplitude a in the form of a formal power series in h,

a(z;h) = Z h*ay(z). (2.23)
k=0

From (2.2), we see that we want to solve the following equation formally in powers of h,
e P (—h*A, — (hs)?)e"*Pa = [~hiLg — ihAgp + h*(—Ay + Ao + M p)]a = 0, (2.24)

in a fixed complex domain U , containing I'. Here
Lo =2(dp,d-)g = 2G(2)pg - 0r = pe(@, 03 (2)) - O, (2.25)

where p is given in (2.4). The transport equation (2.24) can be written in the following
form,

(hLo+ hf (@) + h2Q(x, D))a = 0, (2.26)

where f(z) = Ay is a holomorphic function on U and Q(z, D,) = W(—Ag+ALo+AA )
is a holomorphic differential operator of order 2. To solve (2.26), we remark first that the

holomorphic vector field Lg is transversal to each complex hypersurface Hy, = {(¢,y) €
neigh(I, C) x neigh(0,C"™ 1) : t =ty € I} at (to,0). Indeed,

Pe(@(t), 0, (2 (1)) - O = pr(2(t), 0, (€ (1)) 0 + pyy (x(1), 0 (2(2))) - Dy,

where pl (z(t), ¢l (z(t))) # 0 for all ¢ € I since O,p(x(t),&(t)) # 0 for all ¢ € I as noted
n (2.6). Thus, substituting (2.23) into (2.26), we get a sequence of transport equations
which can all be solved uniquely in a suitable complex domain containing I', provided
that al H,, is prescribed, for some ¢o € I. However, the difficulty here is that we would like
our solution a(z;h) to be a classical analytic symbol, and following [49, Section 9], we
shall establish this fact making use of the method of “nested neighborhoods” introduced
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n [49]. Contrary to [49, Theorem 9.3], where the family of “nested neighborhoods” is
considered near a point, here we shall work in such neighborhoods near a piece of the
geodesic.

For simplicity, let us take ¢ty = 0. We look for solution to (2.26) by using convenient
coordinates. The coordinates we will use are the usual flowout coordinates (see e.g. [39]),
which we show to exist for Ly on a neighborhood of a given interval.

Lemma 2.1. Let J CC I be an open interval. There exist local holomorphic coordinates
(s,2) € neigh(J,C) x neigh(0, C"~1) such that the hyperplane Hy is given by the equation
s=0and Ly = %,
Proof. We continue to work in the Fermi coordinates x = (¢, y) and recall from [28] that
G(t,y) = (9" (t,y)) = 1+ O(ly]*). (2.27)
Now (2.3), (2.4), and (2.27) imply that
(1)?(t,0) + (¢,)%(t,0) =1, (2.28)

and therefore, it follows from (2.20) and (2.28) that ¢} (¢, 0) = 0. Hence, Taylor expanding
o(t,y) at y = 0, we get

p(t,y) = »(0) +t+O(ly). (2.29)

It follows from (2.25), (2.27), and (2.29) that

o =20+ 00 (V00 ) - (8) =204 otue+ o) -0, 230)

Consider the initial value problem for the flow exp(sLg)(0, z),

{8S(t,y)(8,2) = Lo((t,y)(s, 2)), (2.31)

(tv y) (07 Z) = (07 Z)a
where (s, 2) € neigh(I,C) x neigh(0, C*~1). In particular, y(s, z)|.—¢ = 0 and therefore,

y(s,z) = O(|#]). Differentiating the first equation in (2.31) in z; and using (2.30), we get

{as(azjt(s,z)) = O(y(s,2)9:,y) = O(|)), (2.32)

0,t(0,2) = 0.
Hence,

0z,1(s,z) = O(|2]). (2.33)
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Consider the holomorphic map
F : neigh(I,C) x neigh(0,C™™ ') 3 (s,2) = (t,y)(s, 2).

In view of (2.33), the differential DF'(s,0) is given by

#(s,0) 0 . 0
Yis(5,0) 1., (5,00 ooy, (5,0)
DF(s,0) = . . . : (2.34)
Yn-15(50) Yn_1.,(5,0) ... yn_1.,,(5,0)

where t,(s,0) = 2(1+ O(|y(s, 0)[?)) = 2. By Liouville’s formula, see [24, Theorem 1.2.5],
we know that the last n — 1 columns in (2.34) are linearly independent, and therefore,
det(DF'(s,0)) # 0 for all s € neigh(f, C). Furthermore, F'|;, (o} is injective as F(s,0) =
(t(s,0),0) = (2s,0). An application of a holomorphic version of [28, Lemma 7.3] allows
us to conclude that F is a holomorphic diffeomorphism in neigh(.J, C) x neigh(0, C"~1)
where J CC I is an open interval.

Now writing « = (¢, y), in view of (2.31), we see that

ula(s, ) = (s, ) - (5,) = (Lou) (s, 9))

Finally, it follows from (2.30) and (2.31) that

Ost(s, 2) = 2(1+ O(|2[*)),
t(0,2) =0,

and therefore, t(s,z) = 2s + O(|z|?)s. Hence, t = 0 is equivalent to the fact that s = 0,
showing that the hyperplane Hy is given by the equation s =0. O

Passing to the new holomorphic coordinates provided by Lemma 2.1, and renaming
them as x = (t,y), we are led from (2.26) to consider the following initial value problem,

{(h% +hf(z) + h?Q(z, Dy))a =0, (2.35)

a|t:0 = 'UJ(y, h)a

where w(y; h) is a classical analytic symbol near 0 € C"~1. We would like to find a
classical analytic symbol a solving (2.35). Here f is a holomorphic function, and @ is a
holomorphic differential operator of order 2. To that end, it suffices to solve the following
problem,

{<h% +hf(x) + QL Dy))a = hu, (2:36)

a|t=0 = 07
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where v(x;h) is a classical analytic symbol in neigh(.J,C) x neigh(0, C"~!). This is
because a solution a to (2.36) with v = —(% + f(x) + hQ(z, D;))ve and vgli—o = w,
implies that a + vg solves (2.35). Using that

Oy + f(t, y) — e Ftw) 4 d; o eF(t,y)’

where F}(t,y) = f(t,y), we may assume that f(z) = 0.

We shall first carry out the analysis of (2.36) under the assumption that the interval
J is symmetric about the origin and after a rescaling we may assume that J = [—1,1].
Let Q@ C C™ be open such that [—1,1]; x {0}, C © and Q is in the domain of definition
of various symbols. Then let 0 < ¢ < 1, » > 0 be small but fixed so that if we set

Imt
90:{(t,y)e<cnz@+—|n§ |+|Ret\<1+r}

then Qg C Q. Consider the family of open sets,

Imt
QS:{(tay)e(cniLﬂ+“§:l—|+|Ret|<l+T—s},

with 0 < s < r. Note that Q; is a family of “nested neighborhoods” of [—1,1] x 0 in the
sense of [49, Theorem 9.3], so that we have

(i) if s1 > so then Q,, C Q,,,
(ii) there exists § > 0 such that for all s; > s9 and all € Qg we have the inclusion
Ben (2,6(s1 — s2)) C s,

Given p > 0, we say that a € Ay, if a(x;h) = 3o, ax(x)h*, a is holomorphic in €,
such that for all s € (0,7),

sup |ag| < M]’ck)kk, (2.37)
Q. S

s

where f(a, k) is the best constant for which (2.37) holds, and

D flak)u = Jall, < e (2.38)

k=0

Now if a € A, for some p > 0 then f(a,k) < C*1 k£ =0,1,2,..., and therefore, a is a
classical analytic symbol on €. Let

t

(07 a)(ty) = / a(ry)dr. (2.39)

0

We shall need the following result, see [49, Theorem 9.3] and [46, Lemma 5.5].
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Lemma 2.2. Let a € A, be of the form

a= Z hFay,
k=2

and let b = (hd;)"ta. Then

1

16l < O = Jllall,- (2.40)

7

Proof. We have
b=>Y Ko =D by,
k=2 k=1

where by, = 9; ‘aj41. Let us estimate supg, |bx|. To that end, we write

1
b (x) = t/ak+1(ot,y)da
0

We claim that for 0 < o <1, if 2 = (¢,y) € ;5 then

(0t,y) € Qs (1-0) 1) (2.41)
Indeed, using that 0 < e < 1, we get

Imt 1-
MgﬂTmugmetRHrisJ EU)\Imt|—(1—o)|Ret\

£
<l4+r—(s+(1—-o)lt]),

showing (ot,y) € Qi (1—0)j¢ as claimed. It follows from (2.37), (2.41) that for x € €,
we have

1

bela)] < e f(ak+ D+ 0 [
0

(s+( 1—0 )|E])F T

d
:f(a,k+1)(k+l)k+1|t/w
0

]

do

:f(a,k—i—l)(k—l—l)kH m

0
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< flak+ D+ 0 [ o — ok e+ ) [

0 s
(k + )k+1
ksk -

= fla,k+1)
Here we have used that k& > 1. Thus, for any 0 < s < r, we get

(1+1/k)EF(1 +1/k)* < 2ef(a,k+1)

k
S;zlflbkl < fla,k+1) e < o k",
and therefore by the definition of f(b, k), see (2.37), we have
F k) < 2ef(ak+1), k=1,2,....
Using (2.38), we obtain that
2e
16l = Zf (b <3 26k Lyt = 7 lallu
k=1
establishing (2.40). O
Now applying to (hd;)~! to (2.36), we get
+ (h0y) "'h2Q(z, D,)a = 9; tv. (2.42)

Here 0; v is a classical analytic symbol in €. To proceed, we need the following result.
Lemma 2.3. Let a € A,,. Then (hd;) *h?*Q(x, Dy)a € A, with
1(hd) ™ h*Q(a, Dy)all,n < O(w)lall,. (2.43)

Proof. Writing a(z) = > 7o, ax(z)h*, we get

oo

W’Q(z, Do)a =Y h*Q(x, Dy)a_s.

k=2

For s; > s9, in view of the property (ii) of the “nested neighborhoods” €, and (2.37),
we obtain for k = 2,3,... that

C fla,k—2) k2
sup |Q(z, Dy)ag_o| < sup |ag_o| < — k—2 . (2.44
D Qe D] < (g sl < (T R -2 (2.0
The Cauchy estimate was used here in the first inequality. Taking 0 < so = —’7251 <81

for k =3,4,..., we get from (2.44) that
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Cfla,k—2
sup|Q(z, Dy)ay_o| < %k’“
s1 1

and therefore, in view of (2.37),

f(Qz, Dy)ag—2, k) < Cf(a, k —2).

Thus, by the definition of || - ||, see (2.38), we obtain that

1h?Q(z, Dy)all, < p"Cflak —2) < O(u?)|all,- (2.45)

k=2

Lemma 2.2 together with (2.45) implies that

1(hd) ™ h*Q(z, Dz)all,e < O(1L/w)lIh*Q(x, Dy)all, < O(u)allu,
establishing (2.43). O

It follows from Lemma 2.3 that

Q7 wl, < OGW)[wll, @ := (hd) "' h*Q(x, Dy),

for w € A,, and therefore, by Neumann series argument, we have that the equation
(2.42),

a+ (hdy)"'h2Q(x, D,)a = 9; to,

has a unique solution a with ||al|,, < oo for x4 > 0 small enough. Thus, a is a classical
analytic symbol in €.

We shall next proceed to solve (2.35) when the interval J is not necessarily symmetric
with respect to the origin, J = [a, b] where a < 0 < b. Without loss of generality, we may
assume that 0 < a +b. Let N > 0 be the largest integer such that (N + 1)|a| < b. We
first solve (2.35) with the initial condition prescribed at ¢ = 0 in the symmetric interval
[a, ]a|] and obtain a unique classical analytic symbol a(®) in a complex neighborhood of
[a,]a]] x {0}. Next we solve the initial value problem,

{(hat +h2Q(z, Dy))ah) =0, (2.46)

aW]i_jq = a9 q,

in a complex neighborhood of [0,2|a|] x {0}. Continuing this process and working the
symmetric intervals of the form [(j — 1)|al,(j + 1)|al], 7 = 2,..., N, we construct a
classical analytic symbol in a complex neighborhood of [a, (N + 1)|a|]] x {0} solving
(2.35). Finally solving (2.46) with the initial condition prescribed at t = (N + 1)]a| in a
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complex neighborhood of [2(N + 1)|a| — b, b] x {0}, we obtain a classical analytic symbol
in a complex neighborhood of [a,b] x {0} solving (2.35).

Furthermore, demanding that a|;—¢ should be an elliptic classical analytic symbol near
0 in C"~1, we conclude that the classical analytic symbol a(x;h) is elliptic in the sense
that ag # 0. This completes the construction of the amplitude as an elliptic classical
analytic symbol.

It follows from (2.24) that for all N > 1,

N
e P (=h?A, — (hs)?)e's? ( Z hjaj> =WV (—Agan + M Lo+ Agp)an)

in a complex neighborhood U of T. Using (1.3) and Cauchy’s estimates, we obtain after
an arbitrarily small decrease of U that

‘e—isq’( h*Ag — (hs)? W(thak)‘<hN+QCN+1NN.

Choosing N = N(h) = [715], we obtain that

N(h)
e P (—hA, — 5)2)6“*’( > hkak)‘ <O()e @r, Oy >0,
j=0

for all 0 < h < 1. Note that we also have

N(h) N(h) .

k —k
g h¥ar| < C E e " < Ce —7
j=0 k=0

In the estimate above we used k < N(h) = [1/(heC)] and |ax| < C*+1k* which holds
since a is classical analytic symbol.

Let x € C5°(R™ 1) be such that 0 < x < 1, y = 1 for |y| < 1/4 and x = 0 for
ly| > 1/2. In view of (2.1) we set

U<ta Y; h) - h_

eVt yh),  alt,y;h) = <Z hk@k)X(%)- (2.47)

Here ¢’ > 0 is chosen sufficiently small so that x(y/d’) is zero outside the set where
we have constructed the functions ¢ and ag. Since Im ¢(t,y) > %, C > 0, the cutoff
function x does not destroy the exponential smallness of the error, and we see that v
satisfies after an arbitrarily small decrease of the real domain U,

lvllL2y =<1, [(—h?A — (h3)2)v||L2(U) = (’)(e‘ﬁ), C >0, (2.48)
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as h — 0. Here for the first bound, we use the fact that ag # 0.

2.3. Gluing the local quasimodes together

Let us now return to the open Fermi cover (Uj);v:-"(_)l of v([-T1 — e, Tz + €]), replacing
it if necessary by a slightly smaller relatively compact subcover. We have constructed ¢q
real analytic in Up solving the Cauchy problem (2.8) in a complex neighborhood of Uy
so that o(t,0) =t for all t € Iy and Im ¢((¢,0) > 0 for all ¢ € Iy. In order to construct
p = 1 real analytic in Uy, we pick tg € Ip N I; and solve in a complex neighborhood of
Un,

p(z, ¢y (x)) =0,
Pli=t, = po(to,y),
@ (to) = &(to)-

We get @1 such that ¢ = ¢g near (to,0) € Uy N Uy, and thus, by unique continuation,
p1 = o in Uy N Uy, assuming as we may that Uy N Uy is connected. Note that in view
of (2.20), we have ¢;(t,0) =t for all ¢ € I;. Continuing in this way, we obtain ¢; real
analytic in U;, 0 < j < N + 1, such that ¢; = @11 in U; NUj11 and (2.7) holds for
every ;.

Next let a(®) (t,y; h) be an elliptic classical analytic symbol in a complex neighbor-
hood of Uy obtained by solving (2.26). To get a(l)(t,y; h), we solve the sequence of
transport equations (2.26) with ¢ = ¢; and with a("|,—;, = a(®)|;=4,. Thus, by unique-
ness and analytic continuation, V) = a(®) in Uy N U;. Continuing in the same way, we
get vg,v1,...,UN+1 such that

Vj = Vj+1 in Uj n Uj+1. (249)

Let x; = x;(t) € C§°(I;) be such that Z;V:J[)l X; = 1 near [-T7 —¢,T5 +¢], and define
our quasimode v globally by

N+1

v = E X;Vj-
=0

Let p1,...,pr € X' be the distinct points where the geodesic « self-intersects, and
let —T1 <t; <--- <ty <Ts be the times of self-intersections. Let V1,..., Vg be small
neighborhoods in X around p;, j = 1,..., R. Then choosing ¢’ in (2.47) small enough
we obtain an open cover of a neighborhood of y[—T1, T3] in )AQ

supp (v(-5h)) N X C (UL, V3) U (U, W), (2.50)

where in each Vj}, the quasimode is a finite sum,
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o(-shly, = Y ulsh), (2.51)
Ly (t)=p;

and in each W}, (where there are no self-intersecting points), in view of (2.49), there is
some [(k) so that the quasimode is given by

v( -5 h)lw, = vy (5 h)- (2.52)

Finally, the bounds (1.4) follows from the bounds (2.48), and the representations
(2.51) and (2.52) of v. This completes the proof of Theorem 1.12.

3. Some preliminary results about geodesics

Let (X,g) be a compact Riemannian manifold of dimension n > 2 with smooth
boundary, contained in an open real analytic manifold ()A( , g) of the same dimension with
g real analytic in X. First we have the following analog of [13, Lemma 2.1], established
in this work in the smooth case.

Lemma 3.1. Let og = (w0,&0) € S*X™ and let (1, € Si X™ be such that

G+ G2 = toéo (3.1)

for some 0 < ty < 2. Then there exists a neighborhood U of ag in S*X™ and a real
analytic map

I:U = S*X™ x S*X™, (2,8 = (z,w1(x,£)) x (z,ws(x,€))
such that

I(z0,&0) = (z0,¢1) X (20, (2), (3.2)

and

wl(x,é) +W2(x7£) = 19§, ($7§) ev. (33)

Proof. We follow the proof of [13, Lemma 2.1] with minor changes in the real analytic
setting, and the argument is presented here only for the convenience of the reader.

Let z1,...,x, be real analytic local coordinates on X™ centered at zy such that
G(0) = 1. Here G = G(x) = (g’%) is the co-metric tensor. It follows from (3.1) upon
taking the scalar product with (1, (2, and &, that (1 - & = (2 - & and tg = 271 - &o.
Similarly, if (3.3) holds, then tg = 2G(x)ws (z,§) - £, and we therefore should have

G(z)wi(z,8) - & =G - o (3.4)



K. Krupchyk et al. / Advances in Mathematics 403 (2022) 108362 29
Furthermore, if (3.3) is valid, then

wa(z,8) = 2(C1 - &0)§ — wi(z,§).

Note that this implies that |wa(2,§)|¢(z) = 1, provided that (3.4) holds, and therefore,
we only need to determine w;(z,£) € S*X™ depending analytically on (x,¢) such that
w1 (g, &) = ¢1 and (3.4) is valid.

To that end, let us set

G
VG@) -G

Then ((x) is real analytic in x and ((0) = (3. Let

() =

wi(z,€) = () + a(z, §E,
for (z,€) € neigh((zo, &), S*R™), with some o = a(x, ) to be chosen. We have
G(x)a (z, &) - D1 (x,€) = 14 a® + 2aG(x)(x) - €.
We set

wi (z,§) _ ((x) +a

A .0 (50 Vit et 200w €

(3.5)

We would like to find « so that (0, &) = 0 and that (3.4) holds. The former requirement
guarantees that wi(0,&) = (1, and the latter requirement implies that we should have

F(x7 f’ a) = O’

where

F(z,€0) = (1= (G- &)*)a” +2G(2)¢(2) - £(1— (G- €o)*)a+ (G()¢(x) - €)% — (G €0)*.

Note that F is real analytic in (x,&, ) € neigh((0,&p), S*R™) x R, F(0,&,0) = 0, and
F(0,£,0) =2(¢1 - &) (1 — (G- &)%) #0,as 0 < (1 - & = & < 1. Thus, by the implicit
function theorem, there is a neighborhood U of (0, £y) and a unique real analytic function
a(z,€) in U such that «(0,&) =0 and F(z,&,«) = 0 if and only if a = a(z,§). Hence,
w1 (z, &) given in (3.5) satisfies the conditions of the proposition. This completes the
proof. O

We shall also need the following result.
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Lemma 3.2. Let ag = (x9,&0) € S*X™ . Assume that o is generated by an admissible
pair of geodesics v1(ao) : [=T1(ao), T2(co)] = X and y2(ao) : [=S1(a0), S2(a0)] — X,
where 0 < Th(ap), Ta(ag), S1(ag), Sa(ap) < o0o. Then there exists a neighborhood V' of oy
in S* X such that every point a = (o, o) € V is generated by an admissible pair of
geodesics yi(a) : [-Ti(a), Ta(a)] = X and v2(a) : [=S1(a), S2(a)] — X, which depend
real analytically on .

Proof. First we have

G + G2 = too,

for some 0 < ty < 2, where (; = 4;(ap) is viewed as a cotangent vector, using the
Riemannian duality. By Lemma 3.1, there exists a neighborhood U of g in S*X™ and
a real analytic map

I:U = S*X™M x S*X™ o = (ag,a¢) = (g, wi(a)) X (@, wa())
such that

I(0,&0) = (z0,C1) X (20, C2),

and
wi (o) + wa(a) = tooe. (3.6)

The corresponding unit speed geodesics v1(«) : [-T1(),Ta(a)] — X and ~q(a) :
[—Si(a), % ()] = X, Th(a),Tr(a),S1(a),S2(e) > 0, such that v;(a)(0) = oy,
4;(a)(0) = w;(e), are non-tangential being small perturbations of the non-tangential
geodesics 7;(ap), j = 1,2. Hence, the functions Tj(«) and Sj(c«) depend continuously
on a € U and in particularly, they are bounded after an arbitrarily small decrease of U.
Note also that (3.6) implies that 1 («) and 2 () are two distinct geodesics and that are
not reverses of each other.

We claim that there is a neighborhood UcU of ag such that for all a € U , we have

(@) =n(@)©0) < t=0. (3.7)

Indeed, otherwise there exists a sequence ap — ap as k — oo and 0 # tp €
[T (o), To(ay)] such that

Yiar)(tk) = 71(ax)(0), (3-8)

for all k. Assuming, as we may, that ty — tg, we get from (3.8) that v1(a)(tg) =
1 (ap)(0). Since the geodesic 1 () does not self-intersect at xg = v1(ap)(0), we con-
clude that to = 0. Since y1(ag)(tr) — 11 (a0)(0) = 2o € X™ as k — oo, for all k
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sufficiently large, we see that 1 (ag)(t;) € X, As X is compact, it has a positive injec-
tivity radius Inj(X) > 0. Here we have extended X to a closed manifold to speak about
the injectivity radius and the boundary will not cause any problems as 1 (a ) (t) € X1t
for k sufficiently large. Now (3.8) implies that |t;x| > Inj(X) for all k sufficiently large,
which is a contradiction as t; — 0. Thus, the claim (3.7) follows. The same is true for
the family of geodesics v2(a) for «v in a possibly smaller neighborhood of ay.

Finally, we claim there is a neighborhood V' C U of ag such that for all a € V, we
have

@) =(@)s) = t=s=0. (3.9)

Indeed, otherwise, there exists ar — ag as k — oo, and t; € [-T1(ax), Ta(ag)], and
sk € [-S1(ak), S2(ay)] such that

Y1 (k) (k) = 2 () (sk), (3.10)

ti # 0, and si # 0, for all k. Assuming as we may that ¢, — to and sy — sg and passing
to the limit in (3.10), we obtain that

Y1 (o) (to) = y2(ao0)(s0),

and therefore, as v1 () and y2(ap) are admissible, we get tg = sg = 0. Thus, we get

Y1 () (t) = y2(ar)(sk) — o,
(k)2 = 71 () (0) = y2(ar)(0) — o,

as k — oo. Note that for k sufficiently large, all the points v (ay)(tx), v1(ak)(0),
~Ya(ar)(8k), ¥2()(0) are in the interior of X. Therefore, |t;| > Inj(X) and |sg| > Inj(X)
for k sufficiently large, as otherwise, the geodesics v1 () and 2 (ay) would intersect at
a geodesic ball centered at («y),. This contradicts the fact that ¢, — 0 and s — 0 as
k — oo, showing the claim. Hence, the pair of geodesics 71 (), y2(«) is admissible, for
allaeV. O

4. Analytic families of exponentially accurate Gaussian beam quasimodes

When proving Theorem 1.3 below, we shall need the following consequence of Theo-
rem 1.12.

Corollary 4.1. Let (X,g) be a compact Riemannian manifold of dimension n > 2 with
smooth boundary, contained in an open real analytic manifold ()?, g) of the same dimen-
sion with g real analytic in X. Let o = (w0, &0) € S*X™ and let o : [T, To] — X,
0<Ty,To < 00, be a unit speed nontangential geodesic such that vo(0) = xg, and vy does
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not have self-intersections at xg. Let y(«) : [-T1 (), To(a)] = X, 0 < T1 (), To(a) < o0,
a = (ag,af) € neigh(ag, S*X™), be a real analytic family of unit speed nontan-
gential geodesics such that v(cg) = 7o, and y(a)(0) = ay. Let A € R. Then there
is a real analytic family of C°° functions v(z,a;h) on X, a € neigh(ag, S*X™),
0<h <1, and C > 0 such that supp (v(-,a;h)) is confined to a small neighborhood of
Y()([-Ti(a), To(a)]) for each a, and

I(=20, — (hs)*o( a5 W)y = Ole™en), o, ash)llacy <1, (41)

as h — 0, uniformly in . Here s = % + iX. The local structure of the family v( -, a;h)
in a neighborhood of a, is as follows:

(n

v(z,a;h) =h~ 471)eis‘/’("’”’“)a(x,04; h),

where p(x, ) is real analytic in (z,a) for a € neigh(ag, S*X™) and |z — a,| < %,
¢ >0, and a(z,a; h) is an elliptic classical analytic symbol near (xo, o). Furthermore,

for t close to 0 and o € neigh(ag, S* X™), we have

p(y()(t),a) =t, Vo(y(a)(t),a) =F(a)(t),
Im (VZp(v(a)(t))) 2 0, Im (V?9)]sa)@)> > 0.

Proof. The functions T} (o) and T (a) depend continuously on « in a small neighborhood
of ag, and shrinking the neighborhood further we may assume that Ti(a), To(«) are
bounded. Let € > 0 be such that y(a)(t) € X \ X and ~y(a)(t) has no self-intersection for
t € [-Ti(a) —2e,—T1(a))U(Ta(r), To () 4 2¢] for all o € neigh(cvg, S* X). This choice
of ¢ is possible since y(«) are non-tangential and depend smoothly on a. It follows from
(28, Lemma 7.2] that v(a)|[—7, (a)—c,75(a)+<] self-intersects only at finitely many times
ti(a), 1 <j < N(a), with

—Ti(a) <ti(a) < - <tyy(a) < Tr(a).

First we claim that there is Ny such that N(a) < Ny < oo for all a in a small
neighborhood of «g. This follows by inspection of the arguments in the proof of [28,
Lemma 7.2]. Indeed, as explained in [28, Lemma 7.2], if v(«)(t) = v(a)(s) for some t # s
then 4(a)(t) # +5%(«)(s). Furthermore, if r is smaller than the injectivity radius of some
closed manifold containing a fixed neighborhood of X U y(a)([-T1(a) — 2¢, Ta() + 2¢]
for a € neigh(ag, S*X™%), then any two distinct geodesic segments of length < r can
intersect in at most one point. Partitioning [T} (o) — 2¢, To(«) + 2¢] in disjoint intervals
{Jk kKZ(?) of length < r, we get an injective map

{(t,s) € [-T1(a) — 2, Ta() + 2¢]? : s < t and y(a)(t) = v(a)(s)}

— {(k, 1) € {1,..., K(x)}*}, (4.2)
(t,s) — (k,1) such that ¢t € Jy,s € J.
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Since T1(a) and T»(«) are bounded for « in a small neighborhood of ay, we may assume
that K («) is bounded. Consequently, the cardinality of the set {(k,l) € {1,..., K(a)}?}
is bounded uniformly in «. The claim follows.

We also set to(a) := —Ti(a) — ¢ and tyi1() := Ta(a) + €. An inspection of
the proof of [12, Lemma 3.5] allows us to conclude that there exists an open cover
{(Uj(a), ,%j(oz))};\[:(gé)Jr1 of y(a)([-T1 (@) — &, Ta(a) + €]) consisting of coordinate neigh-
borhoods Uj(«) and real analytic diffeomorphisms «; (), depending real analytically on
«, such that the following properties hold,

(i) kj(a)(Uj(a)) = I; x B, where I; are fixed open intervals and B = B(0,¢’) is an
open ball in R"~!. Here 6’ > 0 can be taken arbitrarily small and the same for each
U (), uniformly for a close to ayg,
(ii) w;(c)(y(a)(t)) = (t,0) for each t € I},
(iii) ¢; only belongs to I; and I; N I, = 0 unless |j — k| < 1,
(iv) Kj(a) = Kki(o) on n;l((Ij N1I;) x B).
In particular, the open sets U;(«) are bounded uniformly in o and contain a fixed open
set.
Following the proof of Theorem 1.12, and making use of the fact that the geodesics
~(a) do not have self-intersections at o, for « close to ag, we obtain the statement of
Corollary 4.1. O

Remark 4.2. Let us also note that in general the number of self-intersecting times N ()
need not depend continuously on «. To this end, assume that the dimension of the
manifold X is > 2 and that the geodesic 7 in X has a self-intersection at some point
21 € Y((=T1,T3)) so that z1 = 79(t1) = Yo(t2), t1 < t2. Then one can show that by
means of a small perturbation, that one can unwind the loop in the direction orthogonal
to the plane spanned by the velocity vectors 4(t1) and 4(t2).

5. Construction of families of harmonic functions based on Gaussian beam quasimodes

Let (M, g) be a transversally anisotropic manifold of dimension n > 3 with transversal
manifold (Mo, go), and assume that Mg and go|pzpe are real analytic.

First assume, as we may, that (M, g) is embedded in a compact smooth manifold
(N, g) without boundary of the same dimension, and let U be open in N such that
M C U. Our starting point is the following Carleman estimate for —h2A, established in
[10].

Proposition 5.1. Let ¢ be a limiting Carleman weight for —h?A on U. Then for all
0 < h <1, we have

@ _2
h||u||L2(N) < C||eh(—h2A)e ’IUHL2(N), C > 0, (51)
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for all u € C§°(M™).

Using a standard argument, see [10], we convert the Carleman estimate (5.1) into the
following solvability result.

Proposition 5.2. Let ¢ be a limiting Carleman weight for —h?A on U. If h > 0 is small
enough, then for any v € L?(M), there is a solution u € L*(M) of the equation

@ _¢ . i
en(—=h?Ae"ru=v in M™,

which satisfies
C
lullz2ary < -lvllz2can).-

Now as M CC Rx M there is a compact Riemannian manifold MO of dimension n—
1 with smooth boundary such that M CC R x My CC R x Mi*. Note that (M, 9ol azint)
is an open real analytic manifold with real analytic metric, and we can use Corollary 4.1
to construct a real analytic family of Gaussian beam quasimodes along nontangential
geodesics on MO.

Let us write = (x1,2”) for local coordinates in R x MO. Let

s:%—i—i)\7 AeR, X fixed.

Note by [10, Lemma 2.9] that ¢(x) = £z, is a limiting Carleman weight for —h?A on
U. We are interested in finding harmonic functions,

~Agu=0 in M™, (5.2)
having the form
u=u(z,ash) = e " (v(z',a; h) + r(z, 05 h)),

where v = v(z’, a; h) is the Gaussian beam quasimode constructed in Corollary 4.1 on
the transversal manifold Mo, associated to a nontangential unit speed geodesic ~v(a) on
M, depending analytically on « € neigh(«y, S*Mf{“), and r is a remainder term. Thus,
u is a solution of (5.2) provided that r solves

ele(—thg)e_%(e_i’\xlr) = —e‘“““(—thg0 — (hs)®)v(a’, o; h). (5.3)

Proposition 5.2 and Corollary 4.1 imply that there is » = r(-;a;h) € L?(M) solving
(5.3) such that

[rllc2an) = O(e™7R),  C >0,



K. Krupchyk et al. / Advances in Mathematics 403 (2022) 108362 35

as h — 0, uniformly in « € neigh(ay, S’*M(i)nt).
To summarize, we have the following result.

Proposition 5.3. Let s = %—i—i)\ with A € R being fixed. For all h > 0 small enough, there
are families of harmonic functions uy,uz € L*(M), i.e. —Agu; = 0 in M™, having the
form

ur(z, ;s h) = e *" (v(a’, o h) + 71 (x, a5 h)),

ug(z, a5 h) = e*¥ (v(a’, a; h) + ra(x, a; b)),

where v = v(+,a; h) is the family of Gaussian beam quasimodes constructed in Corol-

lary 4.1 on My, and r € L*(M) is such that ||rj|| L2y = O(e~cr), C >0, as h — 0,

uniformly in o € neigh(ag, S*M{™), j =1,2.
6. Proofs of Theorem 1.3 and Theorem 1.4
6.1. Some facts about analytic wave front sets

We shall rely on the following characterization of the analytic wave front set, which
we recall from [49, Definition 6.1] for the convenience of the reader. In our applications,
we have m =n — 1.

Definition 6.1. Let oy = (z0,&0) € T*R™ \ {0}, and let p(z,a), z € R™, a = (o, a¢) €
T*R™ \ {0}, be analytic defined in a neighborhood of (zg, ap) such that

o(z,)|z=a, =0, cp;(x, A)|o=a, = Qg, (6.1)
and
Im (2, @) > Colz — ag|?, =, a real, (6.2)

for some Cy > 0. Let a(x,a;h) be an elliptic classical analytic symbol defined in a
neighborhood of (zg, ag), and let u € D’'(X), where X C R™ is an open set containing
xo. We have ag ¢ WF,(u) if and only if there is a real neighborhood U of ap and C' > 0
such that

sup |Tu(a; h)| < Ce o, (6.3)
aclU

for 0 < h < 1, where

Tu(a; h) = /eiv(ﬁﬁa)a(x,a;h)x(x)u(m)dm,

and x € C§°(X) is supported in a small neighborhood of g and x = 1 near xg.
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Remark 6.2. It is established in [49, Proposition 6.2] that the condition (6.3) is indepen-
dent of the choice of x, a, and ¢.

Remark 6.3. Assume that ¢, a, and wu satisfy the same conditions as in Definition 6.1,
and let 1) € C§°(R™) be supported in a small neighborhood of 0 and ¢ = 1 near 0. We
have ag ¢ WF,(u) if and only if there is a real neighborhood U of oy and C' > 0 such
that

sup |Tu(a; h)| < Ce cn, (6.4)
acU

for 0 < h <1, where
Tu(o; h) = /ew(iﬂ)a(m,a;h)w(m — ag)u(z)de.

The condition (6.4) is independent of the choice of .

Remark 6.4. The condition (6.1) in Definition 6.1 and Remark 6.3 can be replaced by
the following

o(z,)|z=a, = f(a) real valued, ¢, (z,a)|z=a, = toas, (6.5)

for some fixed ty > 0. Indeed, we apply Definition 6.1 and Remark 6.3 with ¢(z, @)
replaced by %(ga(x, a) — f(a)) and with h replaced by h/tg.

Remark 6.5. Since the wave front set WF,(u) is conic, we may restrict the attention in
Definition 6.1 to & € R™ such that || = 1.

6.2. Proof of Theorem 1.3

Let ag = (z0,&) € S* M be generated by an admissible pair of geodesics v1(ap) :
[T (a0), T2(ao)] = Mo and y2(ao) : [-Si(@), S2(a0)] — Mo. As M CC R x M,
there is a compact Riemannian manifold M, of dimension n — 1 with smooth boundary
such that M CC R x My CC R x M, and 2, € M. Furthermore, we can choose My
so that the geodesics 1 () and 7v2(ap) are nontangential on Mo, and hence, 7, (ap) and
~v2(ay) are admissible on M.

Then by Lemma 3.2, there exists a neighborhood V of g in S*Mént such that
every point & = (au,¢) € V is generated by an admissible pair of geodesics
V(@) : [-Ty(a), Ta(a)] = My and vo() : [—Si(e), Sa(@)] — My, which depend real-
analytically on a. Thus, for all & € V', we have

Y1(a)(0) = y2(@)(0) = v,
Y1 () (0) + F2 (@) (0) = torer, (6.7)
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for some 0 < ty < 2 fixed, 71 (), y2() do not have self-intersections at «a,, and «, is
the only point where v;(a) and y,(«) intersect, for all a € V.

Let 51 = % +iXand sg = %, where A € R. Applying Corollary 4.1, we get v;(z’, a; h),
j = 1,2, Gaussian beam quasimodes on MO, associated to 7;(a) on Mo, depending real
analytically on o € V such that

o5 (- as)|zany < 1, [[(=h2Ag — (h8)2)v;(- s h)||p2ar) = O(e™R),  (6.8)

as h — 0, for some C > 0, uniformly in o« € V.
An application of Proposition 5.3 gives harmonic functions on M having the form

ui (@, a;h) = e (v (2, a5 h) + (s a5 h),

(6.9)
’LLQ(’I, Q5 h) =" (’Ug(xl, Q5 h) + T.Q(:L'v s h))a
where
lrillzzan = O(e™ %), C >0, (6.10)
as h — 0, uniformly in o € V.
Substituting the harmonic functions u; and ug given by (6.9) into (1.2), we get
/fe_“‘””1 (v1(2, a5 h) + r1)(va (2, a; h) + 1r2)dV,, = 0. (6.11)
M
Using (6.10) and (6.8), we see that
/fe*i’\xlvl(x’,a;h)vg(x’,a; h)dV, = O(e~er), C >0, (6.12)
M

uniformly in o € V. Let us extend f € L>®(M) by zero to (R x Mp) \ M and set

o0

f(/\,:c’) = /e*i)‘wlf(:rl,:r')d:rl

—0o0

for the Fourier transform with respect to ;. Using the fact that dV, = dz1dVy,, we
obtain from (6.12) that

/f()\,x')vl(x’,a;h)vg(x’,a; h)dV,, = O(e~ ), C >0, (6.13)
Mo

uniformly in a € V. Recalling that the geodesics 71 («) and y2(«) intersect at a,s only
and that
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supp (v;(+, a3 h)) C small neigh(7;(a), j = 1,2,
we conclude from (6.13) that
FON 2o (2, o R)va (2!, o )\ g0 (@) da' = O(e™ eF), (6.14)
neigh(a/,Mo)

uniformly in @« € V. Recalling that the geodesics v1(a), v2(a) do not have self-
intersections at a,, by Corollary 4.1, we have in a small neighborhood of .,

1 (:C/, a;h) =h- (n—2) eia%(w',a)al(x/, a:h),

(o) (6.15)
4

va(z’,a;h) = h™ e"52%2() g0 (2 ;).

Here p;(z’, o) are real analytic in (z/, ) in a region of the form o € V and |2’ — /| <
1/c, which is an open neighborhood of (z{,ap). Furthermore, a;(z’,a;h) are elliptic
classical analytic symbols in a neighborhood of (z(,ag), 7 = 1,2. It follows that the
neighborhood of «,+ occurring as the domain of integration in (6.14) can be taken to be

fixed and independent of . We also have for the geodesic parameters ¢t and s near 0 that

(012 (n(@)(t), ) = F1(a)(t),  Im((1)70 (11 (a)(t), ) =0,

. (6.16)
Im ((p1)grer (71 (@) (8); @)l 5, (@) 1+) > 0,
and
(02)2r (v2(a)(s5), @) = Fa(@)(s),  Im ((p2)r, (2(a)(5), @) = 0, 6.17)
Im ((2)/pr0 (v2(@)(5), )3 (a) (s1)+) > 0-
Now substituting (6.15) into (6.14), we see that
e EF F N 2)a(a!, a; h)de! = O(eT7), h— 0, (6.18)
neigh(a,/,Mp)
uniformly in o € V. Here
p(a',a) = p1(2’,a) + pa2(2, @) (6.19)

is analytic in a neighborhood of (zf, ), and
a(ac’, Q; h) = e_ALpl(x,7a)a1 ($l7 Q; h)ag(iU/, (&% h) go(l’l)

is an elliptic classical analytic symbol in a neighborhood of (z{, ), since the product
of two classical analytic symbols is a classical analytic symbol.
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We now claim that the phase function ¢(2’, ) in (6.19) satisfies the conditions (6.5)
and (6.2). First, in view of (6.6) and (1.5), we have

(2", )er=a,, = 1(71(a)(0), @) + 2(72(2)(0), @) = 0. (6.20)

Using (6.16), (6.17), and (6.7), we get

0o (2, )ar=a, = (91)5 (11()(0), @) + (02)5 (12()(0), @)

(6.21)
= 41(0)(0) + 42(a)(0) = toag.

It follows from (6.20) and (6.21) that the condition (6.5) holds. Let us now check the
condition (6.2). To this end, Taylor expanding p(z’, ) at 2/ = a,r, we get

90(1'/3 a) :Qa(am’a OL) + (p.{n’ (O@/, a) : (:E/ - O%’)

1
+ 3P (@, 0)(a' — aw) - (2’ — aw) + O(la’ — aw]?),

and therefore, in view of (6.20) and (6.21), when 2’ and « are real, we see that

1
Im (2’ o) = §Irn o (g, @) (@' —ag) - (2" — ap) + O(|2" — az|?).

Hence, the condition (6.2) is equivalent the following condition,
Im ¢!, . (g, @) > 0. (6.22)

Using (6.16), (6.17), and the fact that the vectors 41 («)(0) and 42 («)(0) are not parallel,
we have

Im @3y (s o) = Tm (91)0, (71(@)(0), @) + Tm (92)7714 (12(2) (0), @) > 0,

showing (6.22). Thus, by Remarks 6.3 and 6.4, in view of (6.18), we get ap ¢
WFo(f(\,-)) = WF.(f(=A,-)) for all A € R. Noting that if (1.2) holds for f, it also holds
for f and A € R is arbitrary, we get ag ¢ WF,(f(),-)) for all A € R. This completes the

proof of Theorem 1.3.
6.3. Proof of Theorem 1.4

Now since every point (x(,&) € S*MP is generated by an admissible pair of
geodesics, by Theorem 1.3, we get f(),-) is real-analytic in M for all A\ € R. The
fact that f(),-) has a compact support in M and that My is connected implies that

f(A,) =0 for all A € R, and therefore, f = 0. This completes the proof of Theorem 1.4.
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Appendix A. Discussion related to Example 1.7

Let My = S! x [0,a], with a > 0, be a cylinder with its usual flat metric go. The
purpose of this Appendix is to show that every point (zg,&y) € S* M is generated by
an admissible pair of geodesics.

We have

T*(S' x (0,a)) ~ T*S' x T*(0,a) =~ (S* x R) x ((0,a) x R) =~ (S* x (0,a)) x R?,

and therefore, we may identify Sj; M{™ with the unit circle S in R? ~ C.
Given S 3 & = (&o1, &02) =~ &o1 + o2, we set

&1 = € (&o1 +in2) € S, & = e (&n +iko2) € ST, (A.1)

with o € (0,27) to be chosen. The geodesics 1 and 2 on My such that v;(0) = x¢ and
¥3(0) = ¢&;, j = 1,2, are given by

Y1(t) = (zo1 + &11t, T2 + E12t) € R/27Z % [0, al,
Y2(8) = (To1 + €218, To2 + &225) € R/27Z % [0, al.

The geodesics v, and 7» are nontangential provided that

€12 = Im (€' (€01 + i&02)) = o2 cos @ + Egr sina # 0,

. (A.2)
22 = Im (7" (€01 + i02)) = &o2 cos @ — o1 sina # 0.
Note that if 47 and 9 are nontangential then they do not have self-intersections.
We have in view of (A.1),
& +& = (2 coSs Oé)fo, (AS)

and therefore, the property (ii) of Definition 1.2 follows with ¢y = 2 cos a, provided that
0 <cosa < 1. (A4)
Note that «; and -, intersect each other if there exist ¢ and s such that
11t — €018 € 277, Eqot = Eaas. (A.5)
Now if we choose a so that
|11t — €218 < 2, &1at = Eaas, (A.6)

then (A.5) implies that {1t = &35, and therefore, |t| = |s|. In view of (A.3) and (A.4), we
get t = s = 0, and hence, xg is the only point of intersections of vy; and ~s.
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To achieve (A.6), assuming that (A.2) holds, we estimate

i
Teaal "
| |sin(2a)| =

a

|€2, — sin Za|

|€11t — Eo18] = |§| | N |€22811 — €21&12] = | |s1n(2a)|
|€12||€22 | sin(2a)],

where we use that 0 < gy + €12t < a, 0 < zp2 < a, and (A.2). Thus, to prove the result,
we have to choose « € (0,27) so that (A.2), (A.4), and

a

—— |sin(2a)| < 2 A7
eS| < 2m (A7)

hold. In doing so let us first consider the case when £yo # 0. In this case choosing o > 0
small enough, depending on a and £p2, we see that (A.2), (A.4), and (A.7) hold. When
€02 = 0, we choose @ = § — 8 with 8 > 0 small enough, depending on a. Then (A.7)
becomes

a .
ml SIH(Qﬁ)l < 27T,

which together with (A.2), (A.4) hold for such small 8. This completes the proof that

every point of S* M is generated by an admissible pair of geodesics.

References

[1] V. Babich, Construction of Gaussian beams with exponentially small residual (Russian), Zap. Nauc.
Semin. POMI 203 (1992), Mat. Vopr.Teor. Rasprostr. Voln. 22, 17-20, 173-174, translation in J.
Math. Sci. 79 (1996), no. 4, 1169-1171.

[2] V. Babich, V. Buldyrev, Short-Wavelength Diffraction Theory. Asymptotic Methods, Springer Series
on Wave Phenomena, vol. 4, Springer-Verlag, Berlin, 1991.

[3] M. Belishev, Geometrization of rings as a method for solving inverse problems, in: Sobolev Spaces
in Mathematics. ITI, Int. Math. Ser. (N.Y.), vol. 10, Springer, New York, 2009, pp. 5-24.

[4] M. Belishev, D. Korikov, On the EIT problem for nonorientable surfaces, J. Inverse Ill-Posed Probl.
29 (3) (2021) 339-349.

[5] A.P. Calderén, On an inverse boundary value problem, in: Seminar on Numerical Analysis and Its
Applications to Continuum Physics, Rio de Janeiro, 1980, Soc. Brasil. Mat., Rio de Janeiro, 1980,
pp. 65-73, Reprinted in Comput. Appl. Math. 25 (2016), no. 2-3, 133-138.

[6] M. Dahl, A geometric interpretation of the complex tensor Riccati equation for Gaussian beams, J.
Nonlinear Math. Phys. 14 (1) (2007) 95-111.

[7] T. Daudé, N. Kamran, F. Nicoleau, On the hidden mechanism behind non-uniqueness for the
anisotropic Calderén problem with data on disjoint sets, Ann. Henri Poincaré 20 (3) (2019) 859-887.

[8] T. Daudé, N. Kamran, F. Nicoleau, On nonuniqueness for the anisotropic Calderén problem with
partial data, Forum Math. Sigma 8 (2020), 17 pp.

[9] N. Dencker, J. Sjostrand, M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators,
Commun. Pure Appl. Math. 57 (3) (2004) 384-415.

[10] D. Dos Santos Ferreira, C. Kenig, M. Salo, G. Uhlmann, Limiting Carleman weights and anisotropic
inverse problems, Invent. Math. 178 (1) (2009) 119-171.

[11] D. Dos Santos Ferreira, C. Kenig, J. Sjostrand, G. Uhlmann, On the linearized local Calderén
problem, Math. Res. Lett. 16 (6) (2009) 955-970.

[12] D. Dos Santos Ferreira, Y. Kurylev, M. Lassas, M. Salo, The Calderén problem in transversally
anisotropic geometries, J. Eur. Math. Soc. 18 (11) (2016) 2579-2626.


http://refhub.elsevier.com/S0001-8708(22)00178-5/bibAC1524E240358DE4E5275A3264A1DC1Es1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibAC1524E240358DE4E5275A3264A1DC1Es1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibAC1524E240358DE4E5275A3264A1DC1Es1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibF37EC3EA386568A9481EC0BD0C7090DEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibF37EC3EA386568A9481EC0BD0C7090DEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib42DB3A0FEF3F0CE15F9E8209648DA7BCs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib42DB3A0FEF3F0CE15F9E8209648DA7BCs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib77225E131F65DB9C725F7260E6E6F9D7s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib77225E131F65DB9C725F7260E6E6F9D7s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibE5A449F0CA942281EE501BB348628078s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibE5A449F0CA942281EE501BB348628078s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibE5A449F0CA942281EE501BB348628078s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib79449822D9B74C849CC2FBA402BC78FBs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib79449822D9B74C849CC2FBA402BC78FBs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib9572A72BFD04D85A03B44317A51D9BDFs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib9572A72BFD04D85A03B44317A51D9BDFs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib50BBED427B67DC35571CB7977BB924C7s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib50BBED427B67DC35571CB7977BB924C7s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib5614E0DFCDBE32A292AEBAF0DDE6D39Ds1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib5614E0DFCDBE32A292AEBAF0DDE6D39Ds1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1EEB6BD995A6A3922499C009B0ED842As1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1EEB6BD995A6A3922499C009B0ED842As1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1E39B152B326276EFE3CB3F8DCDF691As1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1E39B152B326276EFE3CB3F8DCDF691As1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib2B577309E7C6628F7FC8BDE26DCDD402s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib2B577309E7C6628F7FC8BDE26DCDD402s1

42 K. Krupchyk et al. / Advances in Mathematics 403 (2022) 108362

[13] D. Dos Santos Ferreira, Y. Kurylev, M. Lassas, T. Liimatainen, M. Salo, The linearized Calderén
problem in transversally anisotropic geometries, Int. Math. Res. Not. (2022), https://doi.org/10.
1093 /imrn/rny234.

[14] A. Feizmohammadi, L. Oksanen, An inverse problem for a semi-linear elliptic equation in Rieman-
nian geometries, J. Differ. Equ. 269 (6) (2020) 4683-4719.

[15] A. Feizmohammadi, T. Liimatainen, Y-H. Lin, An inverse problem for a semilinear elliptic equa-
tion on conformally transversally anisotropic manifolds, preprint, https://arxiv.org/abs/2112.08305,
2021.

[16] F. Forstneric, Actions of (R,+) and (C,+) on complex manifolds, Math. Z. 223 (1) (1996) 123-153.

[17] A. Greenleaf, M. Lassas, G. Uhlmann, On nonuniqueness for Calderén’s inverse problem, Math.
Res. Lett. 10 (5-6) (2003) 685-693.

[18] A. Grigis, J. Sjostrand, Microlocal Analysis for Differential Operators. An Introduction, London
Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press, Cambridge, 1994.

[19] C. Guillarmou, A. S4 Barreto, Inverse problems for Einstein manifolds, Inverse Probl. Imaging 3
(2009) 1-15.

[20] C. Guillarmou, M. Salo, L. Tzou, The linearized Calderén problem on complex manifolds, Acta
Math. Sin. Engl. Ser. 35 (6) (2019) 1043-1056.

[21] C. Guillarmou, L. Tzou, Calderén inverse problem with partial data on Riemann surfaces, Duke
Math. J. 158 (1) (2011) 83-120.

[22] P. Hintz, G. Uhlmann, J. Zhai, An inverse boundary value problem for a semilinear wave equation on
Lorentzian manifolds, Int. Math. Res. Not. (2021) rnab088, https://doi.org/10.1093/imrn /rnab088.

[23] L. Hérmander, Linear Partial Differential Operators, Springer-Verlag, New York, Berlin-Géottingen-
Heidelberg, 1963.

[24] L. Hormander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathematics & Applica-
tions, vol. 26, Springer-Verlag, Berlin, 1997.

[25] L. Hormander, The Analysis of Linear Partial Differential Operators, I, Springer-Verlag, Berlin,
2003.

[26] L. Hormander, The Analysis of Linear Partial Differential Operators, III, Springer-Verlag, Berlin,
2003.

[27] H. Isozaki, Inverse spectral problems on hyperbolic manifolds and their applications to inverse
boundary value problems in Euclidean space, Am. J. Math. 126 (6) (2004) 1261-1313.

[28] C. Kenig, M. Salo, The Calder6én problem with partial data on manifolds and applications, Anal.
PDE 6 (8) (2013) 2003-2048.

[29] R. Kohn, M. Vogelius, Determining conductivity by boundary measurements, Commun. Pure Appl.
Math. 37 (3) (1984) 289-298.

[30] K. Krupchyk, G. Uhlmann, Inverse problems for magnetic Schréodinger operators in transversally
anisotropic geometries, Commun. Math. Phys. 361 (2) (2018) 525-582.

[31] K. Krupchyk, G. Uhlmann, Inverse problems for nonlinear magnetic Schrédinger equations on con-
formally transversally anisotropic manifolds, Anal. PDE (2022), in press.

[32] K. Krupchyk, G. Uhlmann, L. Yan, A remark on inverse problems for nonlinear magnetic
Schrédinger equations on complex manifolds, Proc. Am. Math. Soc. (2022), https://doi.org/10.
1090/proc/16060.

[33] A. Katchalov, M. Lassas, Gaussian Beams and Inverse Boundary Spectral Problems. New Analytic
and Geometric Methods in Inverse Problems, Springer, Berlin, 2004, pp. 127-163.

[34] M. Lassas, T. Liimatainen, Y.H. Lin, M. Salo, Inverse problems for elliptic equations with power
type nonlinearities, J. Math. Pures Appl. (9) 145 (2021) 44-82.

[35] M. Lassas, T. Liimatainen, M. Salo, The Poisson embedding approach to the Calderén problem,
Math. Ann. 377 (1-2) (2020) 19-67.

[36] M. Lassas, T. Liimatainen, L. Potenciano-Machado, T. Tyni, Stability estimates for inverse problems
for semi-linear wave equations on Lorentzian manifolds, arXiv:2106.12257, 2021.

[37] M. Lassas, M. Taylor, G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian man-
ifolds with boundary, Commun. Anal. Geom. 11 (2003) 207—222.

[38] M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann
map, Ann. Sci. Ec. Norm. Supér. (4) 34 (5) (2001) 771-787.

[39] J.M. Lee, Introduction to Smooth Manifolds, Springer, New York, NY, 2013.

[40] J.M. Lee, G. Uhlmann, Determining anisotropic real analytic conductivities by boundary measure-
ments, Commun. Pure Appl. Math. 42 (8) (1989) 1097-1112.

[41] Y. Ma, L. Tzou, Semilinear Calderén problem on Stein manifolds with Kéhler metric, Bull. Aust.
Math. Soc. 103 (1) (2021) 132-144.


https://doi.org/10.1093/imrn/rny234
https://doi.org/10.1093/imrn/rny234
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibBB368FD86AE5E0D23CC317C0E4277293s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibBB368FD86AE5E0D23CC317C0E4277293s1
https://arxiv.org/abs/2112.08305
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibBD536A0B9777D71B3A2CEB482EDC2A5Cs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibFC2E4AC9CB3B2D0602850A03EEDC442As1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibFC2E4AC9CB3B2D0602850A03EEDC442As1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib3BA458671A581DFB39E028003E922E7Fs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib3BA458671A581DFB39E028003E922E7Fs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibD4DA171469693EF6F51013079CB939A7s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibD4DA171469693EF6F51013079CB939A7s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibB040B08825C6CCD506B11EE38FAE880Bs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibB040B08825C6CCD506B11EE38FAE880Bs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib794FEDF0690D7CD578EFCF4649B45170s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib794FEDF0690D7CD578EFCF4649B45170s1
https://doi.org/10.1093/imrn/rnab088
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibB993627D74B488170771D1D8457B0781s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibB993627D74B488170771D1D8457B0781s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibF11895CA491DC600DEB2123636966CBFs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibF11895CA491DC600DEB2123636966CBFs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib562E899656F8981655E9FFDC4FEB90C3s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib562E899656F8981655E9FFDC4FEB90C3s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibAEFA8828F08D4E0A908336EFB66FDBAEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibAEFA8828F08D4E0A908336EFB66FDBAEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibC32F803F0662DDB7E1B17F1BD5EBE9EEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibC32F803F0662DDB7E1B17F1BD5EBE9EEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibAF8854F298270180B2BF8C97655051CBs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibAF8854F298270180B2BF8C97655051CBs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib6E838DBE1DC4F0F8C7347022BEC8E80Es1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib6E838DBE1DC4F0F8C7347022BEC8E80Es1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibB2C4970C81382D6C0ACAC8EC1527B9F9s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibB2C4970C81382D6C0ACAC8EC1527B9F9s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibE59F74D5EACA5BB4F371824A888700AEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibE59F74D5EACA5BB4F371824A888700AEs1
https://doi.org/10.1090/proc/16060
https://doi.org/10.1090/proc/16060
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib40BBAC871EFB0D4BAA7F7CFF31B03782s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib40BBAC871EFB0D4BAA7F7CFF31B03782s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib93E276118A75B85472258B8C08FC501Cs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib93E276118A75B85472258B8C08FC501Cs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib40D599F684345E8870259DA3563EDBCEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib40D599F684345E8870259DA3563EDBCEs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibC512FB3496E6B566614C4062BA873D79s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibC512FB3496E6B566614C4062BA873D79s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibF663C271543BD8A88E6E67E0B497DD0Cs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibF663C271543BD8A88E6E67E0B497DD0Cs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib8DF6355633482CA8EC68FE4569B8E037s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib8DF6355633482CA8EC68FE4569B8E037s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib8B2E500D2DB06BCF30D3C2867691AFEFs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib87F55BB2E59AF4D77C1D19244E1634CFs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib87F55BB2E59AF4D77C1D19244E1634CFs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib0AE69102080AE6D9BD19061B81727033s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib0AE69102080AE6D9BD19061B81727033s1

K. Krupchyk et al. / Advances in Mathematics 403 (2022) 108362 43

[42] A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer-
Verlag, New York, 2002.

[43] L. Oksanen, M. Salo, P. Stefanov, G. Uhlmann, Inverse problems for real principal type operators,
preprint, https://arxiv.org/abs/2001.07599, 2020.

[44] J. Ralston, Approximate eigenfunctions of the Laplacian, J. Differ. Geom. 12 (1) (1977) 87-100.

[45] J. Ralston, Gaussian beams and the propagation of singularities, in: Studies in Partial Differ-
ential Equations, in: MAA Stud. Math., vol. 23, Math. Assoc. America, Washington, DC, 1982,
pp. 206—248.

[46] L. Robbiano, C. Zuily, Analytic theory for the quadratic scattering wave front set and application
to the Schrodinger equation, Astérisque 283 (2002), vi+128 pp.

[47] M. Salo, L. Tzou, Inverse problems for semilinear elliptic PDE with measurements at a single point,
preprint, https://arxiv.org/abs/2202.05290, 2022.

[48] J. Sjostrand, Applications of Fourier distributions with complex phase functions, in: Lecture Notes
in Math., vol. 459, Springer, Berlin, 1975, pp. 256-282.

[49] J. Sjostrand, Singularités Analytiques Microlocales, (French) [Microlocal Analytic Singularities],
Astérisque, vol. 95, Soc. Math. France, Paris, 1982, pp. 1-166.

[50] J. Sjéstrand, G. Uhlmann, Local analytic regularity in the linearized Calderén problem, Anal. PDE
9 (3) (2016) 515-544.

[51] P. Stefanov, G. Uhlmann, Integral geometry of tensor fields on a class of non-simple Riemannian
manifolds, Am. J. Math. 130 (2008) 239-268.

[52] J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,
Ann. Math. (2) 125 (1) (1987) 153-169.

[63] G. Uhlmann, Electrical impedance tomography and Calderén’s problem, Inverse Probl. 25 (12)
(2009) 123011, 39 pp.

[64] S. Zelditch, Local and global analysis of eigenfunctions on Riemannian manifolds, in: Handbook
of Geometric Analysis. No. 1, in: Adv. Lect. Math., vol. 7, Int. Press, Somerville, MA, 2008,
pp. 545-658.


http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1FF85A8942ABE42A632A1FC7289E82A2s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1FF85A8942ABE42A632A1FC7289E82A2s1
https://arxiv.org/abs/2001.07599
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibFA39DFFBC0664EB9404871A879D98AA6s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibD0CF9F0281D7E8CAFF09B07811E611B3s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibD0CF9F0281D7E8CAFF09B07811E611B3s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibD0CF9F0281D7E8CAFF09B07811E611B3s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibE7440DF79649038BC5986BBD2DBB3CC1s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibE7440DF79649038BC5986BBD2DBB3CC1s1
https://arxiv.org/abs/2202.05290
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib47E3B2FFA9D5A3AD0882DD80F3FEDBC0s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib47E3B2FFA9D5A3AD0882DD80F3FEDBC0s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibF6848BCDAAB196AC923E75E56ACEA849s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibF6848BCDAAB196AC923E75E56ACEA849s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibB040CBB6FBD3E1E8CFDF7A0646F02A67s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bibB040CBB6FBD3E1E8CFDF7A0646F02A67s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib7021C295B35DDACEC4BBF8F4239532A0s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib7021C295B35DDACEC4BBF8F4239532A0s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib346B427AD153E43A0FD6F17D09F57A78s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib346B427AD153E43A0FD6F17D09F57A78s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib0DC00F8BC67757CE52ACE24B6A4AC3EDs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib0DC00F8BC67757CE52ACE24B6A4AC3EDs1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1CD7A43ECAD05E2B9881F56E3E98E312s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1CD7A43ECAD05E2B9881F56E3E98E312s1
http://refhub.elsevier.com/S0001-8708(22)00178-5/bib1CD7A43ECAD05E2B9881F56E3E98E312s1

	Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
	1 Introduction and statement of results
	Acknowledgments

	2 Exponentially accurate quasimodes. Proof of Theorem 1.12
	2.1 Construction of the phase function φ
	2.2 Construction of the amplitude
	2.3 Gluing the local quasimodes together

	3 Some preliminary results about geodesics
	4 Analytic families of exponentially accurate Gaussian beam quasimodes
	5 Construction of families of harmonic functions based on Gaussian beam quasimodes
	6 Proofs of Theorem 1.3 and Theorem 1.4
	6.1 Some facts about analytic wave front sets
	6.2 Proof of Theorem 1.3
	6.3 Proof of Theorem 1.4

	Appendix A Discussion related to Example 1.7
	References


